Science.gov

Sample records for peptide bond hydrolysis

  1. Effect of D-amino acid substitutions on Ni(II)-assisted peptide bond hydrolysis.

    PubMed

    Ariani, Hanieh H; Polkowska-Nowakowska, Agnieszka; Bal, Wojciech

    2013-03-01

    Previously we demonstrated the sequence-specific hydrolysis of the R1-(Ser/Thr)-peptide bond in Ni(II) complexes of peptides with a general R1-(Ser/Thr)-Xaa-His-Zaa-R2 sequence (R1 and R2 being any sequences) (Kopera, E.; Krezel, A.; Protas, A. M.; Belczyk, A.; Bonna, A.; Wyslouch-Cieszynska, A.; Poznanski, J.; Bal, W. Inorg. Chem. 2010, 49, 6636). In order to refine our understanding of the mechanism of this reaction and to find ways to accelerate it, we undertook a systematic study of effects of d-amino acid substitutions in the template Ac-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH2 peptide on the hydrolysis rate constants. We found that all stereochemical alterations made around the Ni(II) chelate plane resulted in the decrease of the reaction rate. However, the Ni(II) coordination, a prerequisite to the reaction, was not compromised by these substitutions. We demonstrated that the reaction is only possible when either the side chain of the crucial Ser (or Thr) residue is on the same part of the chelate plane as the next residue in the sequence (Arg), or the side chain of the residue following His (Trp) resides on the opposite side of the plane. The rate of reaction is the fastest when both these conditions are fulfilled. Another novel effect is the strong dependence of the rate of the acyl shift step on the character of the leaving group. PMID:23427909

  2. Theoretical insights into the mechanism of selective Peptide bond hydrolysis catalyzed by [Pd(H(2)O)(4)](2+).

    PubMed

    Kumar, Amit; Zhu, Xiaoxia; Walsh, Kathryn; Prabhakar, Rajeev

    2010-01-01

    In this study, mechanisms for the hydrolysis of the Gly-Pro bond in Gly-Pro-Met and Gly-Pro-His, the Gly-Sar bond in Gly-Sar-Met, and the Gly-Gly bond in the Gly-Gly-Met peptide catalyzed by [Pd(H(2)O)(4)](2+) (I) have been investigated at the DFT level. In all cases, the optimized structure of the active bidentate complex, formed by the reaction of I with the substrate [Pd(H(2)O)(2){(Gly)-(Pro)-(Met-kappaS,kappaN)}](1+) complex for the Gly-Pro-Met peptide, was found to exist in the trans conformation. This structure is in agreement with the experimentally measured TOCSY and ROESY (1)H NMR spectra. After the formation of this complex, the following two mechanisms have been proposed experimentally: (1) external attack mechanism and (2) internal delivery mechanism. The DFT calculations suggest that in the external attack mechanism the calculated barriers are prohibitively high (i.e., 50-70 kcal/mol) for the cleavage of all the peptide bonds, and therefore, this mechanism is ruled out. However, in the internal delivery mechanism, the bidentate complex is first transformed from the trans to the cis conformation. Here, the overall barriers for the hydrolysis of the Gly-Pro-Met, Gly-Pro-His, Gly-Sar-Met, and Gly-Gly-Met peptide bonds are 38.3, 41.4, 39.8, and 39.2 kcal/mol, respectively. These barriers are in much better agreement with the experimentally measured rate constants at pH 2.0 and at 60 degrees C. The substitution of Pd(II) with Pt(II) was found to make a negligibly small difference (0.53 kcal/mol) on the barrier for the cleavage of the Gly-Pro-His bond. These calculations indicate that after the creation of the active bidentate complex in the trans conformation the internal delivery mechanism is the most energetically feasible.

  3. Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate.

    PubMed

    Mihaylov, Tzvetan T; Ly, Hong Giang T; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2016-09-19

    Peptide bond hydrolysis of several peptides with a Gly-X sequence (X = Gly, Ala, Val, Leu, Ile, Phe) catalyzed by a dimeric Zr(IV)-substituted Keggin type polyoxometalate (POM), (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (1), was studied by means of kinetic experiments and (1)H NMR spectroscopy. The observed rate of peptide bond hydrolysis was found to decrease with increase of the side chain bulkiness, from 4.44 × 10(-7) s(-1) for Gly-Gly to 0.81 × 10(-7) s(-1) for Gly-Ile. A thorough DFT investigation was performed to elucidate (a) the nature of the hydrolytically active species in solution, (b) the mechanism of peptide bond hydrolysis, and (c) the influence of the aliphatic residues on the rate of hydrolysis. Formation of substrate-catalyst complexes of the dimeric POM 1 was predicted as thermodynamically unlikely. Instead, the substrates prefer to bind to the monomerization product of 1, [α-PW11O39Zr(OH)(H2O)](4-) (2), which is also present in solution. In the hydrolytically active complex two dipeptide ligands are coordinated to the Zr(IV) center of 2. The first ligand is bidentate-bound through its amino nitrogen and amide oxygen atoms, while the second ligand is monodentate-bound through a carboxylic oxygen atom. The mechanism of hydrolysis involves nucleophilic attack by a solvent water molecule on the amide carbon atom of the bidentate-bound ligand. In this process the uncoordinated carboxylic group of the same ligand acts as a general base to abstract a proton from the attacking water molecule. The decrease of the hydrolysis rate with an increase in the side chain bulkiness is mostly due to the increased ligand conformational strain in the rate-limiting transition state, which elevates the reaction activation energy. The conformational strain increases first upon substitution of Hα in Gly-Gly with the aliphatic α substituent and second with the β branching of the α substituent. PMID:27570876

  4. Peptide bond hydrolysis catalyzed by the Wells-Dawson Zr(α2-P2W17O61)2 polyoxometalate.

    PubMed

    Absillis, Gregory; Parac-Vogt, Tatjana N

    2012-09-17

    In this paper we report the first example of peptide hydrolysis catalyzed by a polyoxometalate complex. A series of metal-substituted Wells-Dawson polyoxometalates were synthesized, and their hydrolytic activity toward the peptide bond in glycylglycine (GG) was examined. Among these, the Zr(IV)- and Hf(IV)-substituted ones were the most reactive. Detailed kinetic studies were performed with the Zr(IV)-substituted Wells-Dawson type polyoxometalate K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O which was shown to act as a catalyst for the hydrolysis of the peptide bond in GG. The speciation of K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O which is highly dependent on the pD, concentration, and temperature of the solution, was fully determined with the help of (31)P NMR spectroscopy and its influence on the GG hydrolysis rate was examined. The highest reaction rate (k(obs) = 9.2 (±0.2) × 10(-5) min(-1)) was observed at pD 5.0 and 60 °C. A 10-fold excess of GG was hydrolyzed in the presence of K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O proving the principles of catalysis. (13)C NMR data suggested the coordination of GG to the Zr(IV) center in K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O via its N-terminal amine group and amide carbonyl oxygen. These findings were confirmed by the inactivity of K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O toward the N-blocked analogue acetamidoglycylglycinate and the inhibitory effect of oxalic, malic, and citric acid. Triglycine, tetraglycine, and pentaglycine were also fully hydrolyzed in the presence of K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O yielding glycine as the final product of hydrolysis. K(15)H[Zr(α(2)-P(2)W(17)O(61))(2)]·25H(2)O also exhibited hydrolytic activity toward a series of other dipeptides.

  5. Hydrolysis of peptide esters by different enzymes.

    PubMed

    Reissmann, S; Greiner, G

    1992-08-01

    The combined use in peptide synthesis of the Fmoc-group with methyl, benzyl or p-nitro benzyl esters is not practical because of the elimination of the Fmoc-group under basic conditions and by catalytic hydrogenation. Nevertheless the solution synthesis of peptides requires those combinations in some cases. For this purpose we have investigated enzymatic hydrolysis of some tri and tetrapeptide esters. The hydrolysis were carried out under pH-control. We measured deprotection of the carboxyl group by thermitase, porcine liver esterase, carboxypeptidase A and alpha-chymotrypsin. The main problems are to suppress proteolytic degradation of the peptide bond and to bring the protected peptides into solution. To solve both problems we used dimethylformamide and dimethylsulfoxide as cosolvents. The ratios between esterolytic and proteolytic activity were estimated under various cosolvent concentrations. Advantages of this method are to avoid side reactions of alkaline instable side chains (e.g. asparagine, glutamine), cleavage of base labile protecting groups and racemization by alkaline saponification. The enzymatic deprotection was followed by HPLC, HPTLC and titration. On a preparative scale this method gives good yields and sufficiently pure products.

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-01

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions.

    PubMed

    Quanten, Thomas; Shestakova, Pavletta; Van Den Bulck, Dries; Kirschhock, Christine; Parac-Vogt, Tatjana N

    2016-03-01

    The interaction between the 1:2 Zr(IV) :Wells-Dawson complex, K15 H[Zr(α2 -P2 W17 O61 )2] (1), and a range of surfactants was studied in detail with the aim of developing metal-substituted POMs as potential artificial proteases for membrane proteins. The surfactants include the positively charged cetyl(trimethyl)ammonium bromide (CTAB), the negatively charged sodium dodecyl sulfate (SDS), the neutral Triton X-100 (TX-100), and zwitterionic 3-[dodecyl(dimethyl)ammonio]-1-propanesulfonate (Zw3-13) and 3-[dimethyl(3-{[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino}propyl)ammonio]-1-propanesulfonate (CHAPS). A combination of multinuclear (1)H, (13)C, and (31) P NMR spectroscopy, (1)H diffusion-ordered NMR spectroscopy ((1)H DOSY), and nuclear Overhauser effect spectroscopy (NOESY) was used to examine the interaction between 1 and each surfactant on the molecular level. Cationic surfactant CTAB caused precipitation of 1 due to strong electrostatic interactions, while the anionic SDS and neutral TX-100 surfactants did not exhibit any interaction at neutral pD. (1)H DOSY NMR spectroscopy indicated an interaction between 1 and zwitterionic surfactants Zw3-12 and CHAPS, which occurs via the positively charged ammonium group in the surfactant molecule. In the presence of anionic, neutral, and zwitterionic surfactants, 1 preserves its catalytic activity towards the hydrolysis of the peptide bond in the dipeptide glycyl-l-histidine (GH). The fastest hydrolysis was observed at pD 7.0 and could be rationalized by taking into account pD-dependent speciation of 1 and coordination properties of GH.

  8. Formation versus Hydrolysis of the Peptide Bond from a Quantum-mechanical Viewpoint: The Role of Mineral Surfaces and Implications for the Origin of Life

    PubMed Central

    Rimola, Albert; Ugliengo, Piero; Sodupe, Mariona

    2009-01-01

    The condensation (polymerization by water elimination) of molecular building blocks to yield the first active biopolymers (e.g. of amino acids to form peptides) during primitive Earth is an intriguing question that nowadays still remains open since these processes are thermodynamically disfavoured in highly dilute water solutions. In the present contribution, formation and hydrolysis of glycine oligopeptides occurring on a cluster model of sanidine feldspar (001) surface have been simulated by quantum mechanical methods. Results indicate that the catalytic interplay between Lewis and Brønsted sites both present at the sanidine surface, in cooperation with the London forces acting between the biomolecules and the inorganic surface, plays a crucial role to: i) favour the condensation of glycine to yield oligopeptides as reaction products; ii) inhibit the hydrolysis of the newly formed oligopeptides. Both facts suggest that mineral surfaces may have helped in catalyzing, stabilizing and protecting from hydration the oligopeptides formed in the prebiotic era. PMID:19399219

  9. Mechanism and applicability of hydrolysis of peptides and proteins utilizing Pt(II) complexes

    SciTech Connect

    Burgeson, I.E.

    1990-06-13

    The hydrolysis of amino acid esters and amides has been achieved by using organic reagents, strongly acidic and basic solutions, and transition metal complexes. However, enzymes have always been able to surpass these methods in terms of speed of the hydrolysis and the mild conditions necessary to observe hydrolysis. In order to understand how enzymes undergo their reactions with such remarkable speed and efficiency, researchers are studying and developing inorganic reagents which can facilitate the hydrolysis of peptide bonds. The treatment of the tripetide {gamma}-glutamyl-cyteinylglycine with one equivalent of PtCl{sub 4}{sup {minus}2} results in hydrolysis of the cysteinyl-glycine bond. The reaction is strongly dependent on the amount of chloride ion in solution and also shows a lesser dependence on ionic strength and pH. Hydrolysis is promoted through a chelate interaction of the platinum with the sulfur of cysteine and the carbonyl oxygen of the amide bond. The hydrolysis of proteins was then undertaken. Yeast cytochrome c and the subunits of hemoglobin were examined to determine if PtCl{sub 4}{sup {minus}2} or Pt(en)Cl{sub 2} could promote cleavage of the peptide bond next to a cysteine residue. It appears that hydrolysis of the peptide bond to the right of the cysteinly side chain has been realized. 51 refs., 12 figs., 12 tabs.

  10. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  11. Small peptides hydrolysis in dry-cured meats.

    PubMed

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases.

  12. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James

    2010-10-01

    The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds. Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO 3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ˜1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium

  13. Catalytic RNA and synthesis of the peptide bond

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Kozlowski, M.; Zou, X.

    1991-01-01

    We are studying whether the L-19 IVS ribozyme from Tetrahymena thermophila can catalyze the formation of the peptide bond when it is supplied with synthetic aminoacyl oligonucleotides. If this reaction works, it could give us some insight into the mechanism of peptide bond formation and the origin of coded protein synthesis. Two short oligoribonucleotides, CCCCC and a protected form of CCCCU were prepared; the former was made by the controlled hydrolysis of Poly(C), and the later by multistep chemical synthesis from the protected monomers. The homopentamer was then aminocylated using C-14 labelled Boc-protected glycine imidazolide. This aminoacylated oligo-nucleotide has now been shown to enter the active site of the L-19 IVS, and aminoacyl transfer, and peptide bond formation reactions are being sought. Our synthesis of CCCCU made us aware of the inadequacy of many of the 2'- hydroxyl protecting groups that are in use today and we therefore designed a new 2'- protecting group that is presently being tested.

  14. Cellular Disulfide Bond Formation in Bioactive Peptides and Proteins

    PubMed Central

    Patil, Nitin A.; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D.; Hossain, Mohammed Akhter

    2015-01-01

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes—a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor—that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery. PMID:25594871

  15. Hydrogen bonding in peptide secondary structures

    NASA Astrophysics Data System (ADS)

    Varga, Zoltán; Kovács, Attila

    Hydrogen bonding interactions in various peptide secondary structures (β-sheet, 27-ribbon, 310-helix, α-helix, π-helix, β-turn II, and γ-turn) have been investigated in small oligopeptides by quantum chemical calculations at the B3LYP/6-31G** level. Besides the primary O...HN interactions, the optimized structures revealed the importance of N...HN hydrogen bonding in several structures. The effect of substitution on the energy and structural properties was investigated comparing the properties of glycine, alanine, valine, and serine. The aliphatic substituents generally weaken the hydrogen bonds, the strongest effects being observed in crowded valine conformers. Additional hydrogen bonding interactions introduced by the OH group of serine can both strengthen (by polarizing the amide moiety through N...H interaction) and weaken (constraining the CO oxygen by O...HO interaction) the backbone hydrogen bonds. The effect of water as a polarizable medium on the energy properties was assessed by the COSMO model.

  16. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  17. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  18. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  19. Interfacial and emulsifying properties of soybean peptides with different degrees of hydrolysis.

    PubMed

    Imura, Tomohiro; Nakayama, Mio; Taira, Toshiaki; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2015-01-01

    In this study, the effects of the degree of hydrolysis on the interfacial and emulsifying properties of soybean peptides were evaluated based on surface and interfacial tension, dynamic light scattering (DLS), and freeze-fracture transmission electron microscopy (FF-TEM) analyses. Of the five evaluated soybean peptides (SP95, SP87, SP75, SP49, and SP23), those with higher degrees of hydrolysis (SP95 and SP87) did not exhibit noticeable surface-active properties in water, whereas those with relatively low degrees of hydrolysis (SP75, SP49, and SP23) exhibited remarkable surface tension-lowering activity. The latter set (SP75, SP49, and SP23) also formed giant associates with average sizes ranging from 64.5 nm to 82.6 nm above their critical association concentration (CAC). Moreover, SP23 with the lowest degree of hydrolysis exhibited excellent emulsifying activity for soybean oil, and FF-TEM analysis demonstrated that the emulsions were stabilized by a lamella-like multilayer peptide structure on the oil droplets that prevented coagulation. The peptide with the lowest degree of hydrolysis (SP23) was effective not only for soybean oil emulsification, but also for the emulsification of liquid paraffin and silicon oil that are generally difficult to emulsify.

  20. Enzymatic Hydrolysis of Peanut Flour Produces Bioactive Peptides with Reduced Allergenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is one of the most severe food allergies due to its life-threatening nature and persistency. Current immunotherapy methods, though effective, are often accompanied by allergic side-effects. Enzymatic hydrolysis of peanut flour has the potential to produce bioactive peptides with impro...

  1. Sonolytic hydrolysis of peptides in aqueous solution upon addition of catechol.

    PubMed

    Sakakura, M; Takayama, M

    2009-03-01

    The sonolytic hydrolysis of peptides with addition of phenolic reagents to aqueous solutions is described. Sonolysis of an aqueous solution of peptides to which catechol (o-dihydroxybenzene) had been added resulted in hydrolytic products reflecting the amino acid sequence without any side reactions, while sonolysis without any additives resulted in oxidation analytes and degradation products caused by side reactions. Although the use of additives such as resorcinol (m-dihydroxybenzene), hydroquinone (p-dihydroxybenzene) and phenol was also effective in producing sequence related products, several degradation products were produced by side reactions. A characteristic of the sonolysis of peptides is that the N-terminal side of proline, Xxx-Pro, is more susceptible than other amino acid residues to the process. This characteristic of sonolysis is superior to that of acid hydrolysis in which cleavage at the C-terminal side of proline, Pro-Xxx is difficult, and where dehydration products result due to side reactions.

  2. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  3. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  4. Peptide Bond Formation in Water Mediated by Carbon Disulfide.

    PubMed

    Leman, Luke J; Huang, Zheng-Zheng; Ghadiri, M Reza

    2015-09-01

    Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings. PMID:26308392

  5. Peptide Bond Isomerization in High-Temperature Simulations.

    PubMed

    Neale, Chris; Pomès, Régis; García, Angel E

    2016-04-12

    Force fields for molecular simulation are generally optimized to model macromolecules such as proteins at ambient temperature and pressure. Nevertheless, elevated temperatures are frequently used to enhance conformational sampling, either during system setup or as a component of an advanced sampling technique such as temperature replica exchange. Because macromolecular force fields are now put upon to simulate temperatures and time scales that greatly exceed their original design specifications, it is appropriate to re-evaluate whether these force fields are up to the task. Here, we quantify the rates of peptide bond isomerization in high-temperature simulations of three octameric peptides and a small fast-folding protein. We show that peptide octamers with and without proline residues undergo cis/trans isomerization every 1-5 ns at 800 K with three classical atomistic force fields (AMBER99SB-ILDN, CHARMM22/CMAP, and OPLS-AA/L). On the low microsecond time scale, these force fields permit isomerization of nonprolyl peptide bonds at temperatures ≥500 K, and the CHARMM22/CMAP force field permits isomerization of prolyl peptide bonds ≥400 K. Moreover, the OPLS-AA/L force field allows chiral inversion about the Cα atom at 800 K. Finally, we show that temperature replica exchange permits cis peptide bonds developed at 540 K to subsequently migrate back to the 300 K ensemble, where cis peptide bonds are present in 2 ± 1% of the population of Trp-cage TC5b, including up to 4% of its folded state. Further work is required to assess the accuracy of cis/trans isomerization in the current generation of protein force fields.

  6. Peptide Bond Isomerization in High-Temperature Simulations.

    PubMed

    Neale, Chris; Pomès, Régis; García, Angel E

    2016-04-12

    Force fields for molecular simulation are generally optimized to model macromolecules such as proteins at ambient temperature and pressure. Nevertheless, elevated temperatures are frequently used to enhance conformational sampling, either during system setup or as a component of an advanced sampling technique such as temperature replica exchange. Because macromolecular force fields are now put upon to simulate temperatures and time scales that greatly exceed their original design specifications, it is appropriate to re-evaluate whether these force fields are up to the task. Here, we quantify the rates of peptide bond isomerization in high-temperature simulations of three octameric peptides and a small fast-folding protein. We show that peptide octamers with and without proline residues undergo cis/trans isomerization every 1-5 ns at 800 K with three classical atomistic force fields (AMBER99SB-ILDN, CHARMM22/CMAP, and OPLS-AA/L). On the low microsecond time scale, these force fields permit isomerization of nonprolyl peptide bonds at temperatures ≥500 K, and the CHARMM22/CMAP force field permits isomerization of prolyl peptide bonds ≥400 K. Moreover, the OPLS-AA/L force field allows chiral inversion about the Cα atom at 800 K. Finally, we show that temperature replica exchange permits cis peptide bonds developed at 540 K to subsequently migrate back to the 300 K ensemble, where cis peptide bonds are present in 2 ± 1% of the population of Trp-cage TC5b, including up to 4% of its folded state. Further work is required to assess the accuracy of cis/trans isomerization in the current generation of protein force fields. PMID:26866899

  7. Role of peptide bond in the realization of biological activity of short peptides.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  8. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis.

    PubMed

    Coscueta, Ezequiel R; Amorim, Maria M; Voss, Glenise B; Nerli, Bibiana B; Picó, Guillermo A; Pintado, Manuela E

    2016-05-01

    Enzymatic hydrolysis of soybean meal protein isolate (SPI) obtained under two temperature conditions with Corolase PP was studied, assessing the impact of hydrolysis on potential antioxidant and antihypertensive activities. The protein was isolated from soybean meal under controlled conditions of time and temperature (70 °C, 1h; 90 °C, 30 min). Degree of hydrolysis assessed the progress of hydrolysis at different sampling times. For hydrolysates the antioxidant and angiotensin-converting-enzyme (ACE) inhibitory activities were measured. As observed, the DH was increasing until reaching 20% at 10h with disappearance of globular proteins and generation of low molecular weight peptides (less than 3kDa). A significant increase in antioxidant and ACE inhibitory capacities was observed. Five main peptides were identified, which may explain through their sequences the bioactive properties analyzed. Through this study was possible to obtain for the first time with Corolase PP soy hydrolysates with potential antioxidant and ACE inhibitory activities, which can be used to obtain new added value functional ingredients from soy meal.

  9. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  10. Site-selective chemical cleavage of peptide bonds.

    PubMed

    Elashal, Hader E; Raj, Monika

    2016-05-01

    Site-selective cleavage of extremely unreactive peptide bonds is a very important chemical modification that provides invaluable information regarding protein sequence, and it acts as a modulator of protein structure and function for therapeutic applications. For controlled and selective cleavage, a daunting task, chemical reagents must selectively recognize or bind to one or more amino acid residues in the peptide chain and selectively cleave a peptide bond. Building on this principle, we have developed an approach that utilizes a chemical reagent to selectively modify the serine residue in a peptide chain and leads to the cleavage of a peptide backbone at the N-terminus of the serine residue. After cleavage, modified residues can be converted back to the original fragments. This method exhibits broad substrate scope and selectively cleaves various bioactive peptides with post-translational modifications (e.g. N-acetylation and -methylation) and mutations (d- and β-amino acids), which are a known cause of age related diseases.

  11. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization.

  12. Influence of ion-associated water on the hydrolysis of Si-O bonded interactions.

    PubMed

    Wallace, Adam F; Gibbs, G V; Dove, Patricia M

    2010-02-25

    Previous studies show the demineralization of biogenic, amorphous, and crystalline forms of silica is enhanced in the presence of alkali and alkaline earth cations. The origins of this effect are difficult to explain in light of work suggesting predominantly weak outer-sphere type interactions between these ions and silica. Here we investigate the ability of M(II) aqua ions to promote the hydrolysis of Si-O bonded interactions relative to ion-free water using electronic structure methods. Reaction pathways for Si-O hydrolysis are calculated with the B3LYP and PBE1PBE density functionals at the 6-31G(d) and 6-311+G(d,p) levels in the presence of water, and both inner- and outer-sphere adsorption complexes of Mg(2+)(6H(2)O) and Ca(2+)(6H(2)O). All reaction trajectories involving hydrated ions are characterized by one or more surmountable barriers associated with the rearrangement of ion-associated water molecules, and a single formidable barrier corresponding to hydrolysis of the Si-O bonded interaction. The hydrolysis step for outer-sphere adsorption is slightly less favorable than the water-induced reaction. In contrast, the barrier opposing Si-O hydrolysis in the presence of inner-sphere species is generally reduced relative to the water-induced pathway, indicating that the formation of inner-sphere complexes may be prerequisite to the detachment of Si species from highly coordinated surface sites. The results suggest a two-part physical model for ion-promoted Si-O hydrolysis that is consistent with experimental rate measurements. First, a bond path is formed between the cation and a bridging oxygen site on the silica surface that weakens the surrounding Si-O interactions, making them more susceptible to attack by water. Second, Si-O hydrolysis occurs adjacent to these inner-sphere species in proportion to the frequency of ion-associated solvent reorganization events. Both processes are dependent upon the particular ion hydration environment, which suggests

  13. Amide and Peptide Bond Formation in Water at Room Temperature.

    PubMed

    Gabriel, Christopher M; Keener, Megan; Gallou, Fabrice; Lipshutz, Bruce H

    2015-08-21

    A general and environmentally responsible method for the formation of amide/peptide bonds in an aqueous micellar medium is described. Use of uronium salt (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) as a coupling reagent, 2,6-lutidine, and TPGS-750-M represents mild conditions associated with these valuable types of couplings. The aqueous reaction medium is recyclable leading to low E Factors. PMID:26251952

  14. Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages.

    PubMed

    López, Constanza M; Bru, Elena; Vignolo, Graciela M; Fadda, Silvina G

    2015-06-01

    In this study, proteolysis and low molecular weight (LMW) peptides (<3kDa) from commercial Argentinean fermented sausages were characterized by applying a peptidomic approach. Protein profiles and peptides obtained by Tricine-SDS-PAGE and RP-HPLC-MS, respectively, allowed distinguishing two different types of fermented sausages, although no specific biomarkers relating to commercial brands or quality were recognized. From electrophoresis, α-actin, myoglobin, creatine kinase M-type and L-lactate dehydrogenase were degraded at different intensities. In addition, a partial characterization of fermented sausage peptidome through the identification of 36 peptides, in the range of 1000-2100 Da, arising from sarcoplasmic (28) and myofibrillar (8) proteins was achieved. These peptides had been originated from α-actin, myoglobin, and creatine kinase M-type, but also from the hydrolysis of other proteins not previously reported. Although muscle enzymes exerted a major role on peptidogenesis, microbial contribution cannot be excluded as it was postulated herein. This work represents a first peptidomic approach for fermented sausages, thereby providing a baseline to define key peptides acting as potential biomarkers.

  15. Valorization of cruor slaughterhouse by-product by enzymatic hydrolysis for the production of antibacterial peptides: focus on α 1-32 family peptides mechanism and kinetics modeling.

    PubMed

    Hedhili, K; Dimitrov, K; Vauchel, P; Sila, A; Chataigné, G; Dhulster, P; Nedjar, N

    2015-10-01

    Bovine hemoglobin is the major component of the cruor (slaughterhouse by-product) and can be considered as an important source of active peptides that could be obtained by pepsic hydrolysis. The kinetics of appearance and disappearance of several antibacterial peptides from α 1-32 family during hydrolysis of synthesized α 1-32 peptide, of purified bovine hemoglobin and of cruor was studied, and reaction scheme for the hydrolysis of α 1-32 family peptides from these three sources was determined. On this basis, a mathematical model was proposed to predict the concentration of each peptide of interest of this family depending on hydrolysis time, and also on temperature (in the range 15-37 °C), pH (in the range 3.5-5.5) and enzyme to substrate ratio (in the range 1/50-1/200 for the synthesized peptide and 1/5-1/20 for purified bovine hemoglobin and cruor). Apparent rate constants of reactions were determined by applying the model on a set of experimental data and it was shown that they depended on the temperature according to Arrhenius's law, that their dependence on the pH was linear, and that enzyme to substrate ratio influence was limited (in the studied range).

  16. Valorization of cruor slaughterhouse by-product by enzymatic hydrolysis for the production of antibacterial peptides: focus on α 1-32 family peptides mechanism and kinetics modeling.

    PubMed

    Hedhili, K; Dimitrov, K; Vauchel, P; Sila, A; Chataigné, G; Dhulster, P; Nedjar, N

    2015-10-01

    Bovine hemoglobin is the major component of the cruor (slaughterhouse by-product) and can be considered as an important source of active peptides that could be obtained by pepsic hydrolysis. The kinetics of appearance and disappearance of several antibacterial peptides from α 1-32 family during hydrolysis of synthesized α 1-32 peptide, of purified bovine hemoglobin and of cruor was studied, and reaction scheme for the hydrolysis of α 1-32 family peptides from these three sources was determined. On this basis, a mathematical model was proposed to predict the concentration of each peptide of interest of this family depending on hydrolysis time, and also on temperature (in the range 15-37 °C), pH (in the range 3.5-5.5) and enzyme to substrate ratio (in the range 1/50-1/200 for the synthesized peptide and 1/5-1/20 for purified bovine hemoglobin and cruor). Apparent rate constants of reactions were determined by applying the model on a set of experimental data and it was shown that they depended on the temperature according to Arrhenius's law, that their dependence on the pH was linear, and that enzyme to substrate ratio influence was limited (in the studied range). PMID:26099509

  17. Highly Selective Dissociation of a Peptide Bond Following Excitation of Core Electrons.

    PubMed

    Lin, Yi-Shiue; Tsai, Cheng-Cheng; Lin, Huei-Ru; Hsieh, Tsung-Lin; Chen, Jien-Lian; Hu, Wei-Ping; Ni, Chi-Kung; Liu, Chen-Lin

    2015-06-18

    The controlled breaking of a specific chemical bond with photons in complex molecules remains a major challenge in chemistry. In principle, using the K-edge absorption of a particular atomic element, one might excite selectively a specific atomic entity in a molecule. We report here highly selective dissociation of the peptide bonds in N-methylformamide and N-methylacetamide on tuning the X-ray wavelength to the K-edge absorption of the atoms connected to (or near) the peptide bond. The high selectivity (56-71%) of this cleavage arises from the large energy shift of X-ray absorption, a large overlap of the 1s orbital and the valence π* orbital that is highly localized on a peptide bond with antibonding character, and the relatively low bond energy of the peptide bonds. These characteristics indicate that the high selectivity on bond dissociation following core excitation could be a general feature for molecules containing peptide bonds.

  18. Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents

    PubMed Central

    Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.

    2010-01-01

    Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595

  19. Bivalent cation binding effect on formation of the peptide bond

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Rode, Bernd Michael

    2000-01-01

    The reactions between formic acid (or glycine) and ammonia, without and with Mg 2+, Ni 2+ and Cu 2+ cations as catalysts, have been studied as model reactions for peptide bond formation using the Becke3LYP functional and 6-311+G(d,p) basis set of DFT theory. Enthalpies and free energies for the stationary points of each reaction have been calculated to determine the thermodynamics of reactions investigated. A substantial decrease in reaction enthalpies and free energies was found for formic acid-ammonia and glycine-ammonia reactions catalysed by Mg 2+, Ni 2+ and Cu 2+ ions compared with those of the uncatalysed amide bond formation. The catalytic effect of the transition metal ions Ni 2+ and Cu 2+ is of similar strength and more pronounced than that of the Mg 2+ cation.

  20. The nature of the bond between peptide and carrier molecule determines the immunogenicity of the construct.

    PubMed

    Beekman, N J; Schaaper, W M; Langeveld, J P; Boshuizen, R S; Meloen, R H

    2001-09-01

    The influence of the nature of the bond between a peptide and a (lipidic) carrier molecule on the immunogenicity of that construct was investigated. As types of bonds a thioester-, a disulfide-, an amide- and a thioether bond were investigated. As carrier molecules a peptide, an N-palmitoylated peptide or a C(16)-hydrocarbon chain were used. The biostability of the bond between peptide and carrier molecule is thioether > amide > disulfide > thioester. However, the immunogenic potency of the constructs used was found to be thioester > disulfide > amide > thioether. In conclusion, a construct with a bond between peptide and (lipidic) carrier molecule that is more susceptible to biological degradation is more immunogenic when used in a peptide-based vaccine than a bond that is less susceptible to biological degradation. PMID:11576330

  1. Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s)

    NASA Astrophysics Data System (ADS)

    Massonnet, Philippe; Haler, Jean R. N.; Upert, Gregory; Degueldre, Michel; Morsa, Denis; Smargiasso, Nicolas; Mourier, Gilles; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2016-10-01

    Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated.

  2. Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s)

    NASA Astrophysics Data System (ADS)

    Massonnet, Philippe; Haler, Jean R. N.; Upert, Gregory; Degueldre, Michel; Morsa, Denis; Smargiasso, Nicolas; Mourier, Gilles; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2016-08-01

    Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated.

  3. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis.

    PubMed

    Cimino, Cecilia V; Colombo, María Laura; Liggieri, Constanza; Bruno, Mariela; Vairo-Cavalli, Sandra

    2015-08-01

    In this article, we report the cloning of an aspartic protease (AP) from flowers of Arctium minus (Hill) Bernh. (Asteraceae) along with the use of depigmented aqueous flower extracts, as a source of APs, for the hydrolysis of whey proteins. The isolated cDNA encoded a protein product with 509 amino acids called arctiumisin, with the characteristic primary structure organization of typical plant APs. Bovine whey protein hydrolysates, obtained employing the enzyme extracts of A. minus flowers, displayed inhibitory angiotensin-converting enzyme (ACE) and antioxidant activities. Hydrolysates after 3 and 5 h of reaction (degree of hydrolysis 2.4 and 5.6, respectively) and the associated peptide fraction with molecular weight below 3 kDa were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization/time of flight mass spectrometry, and reverse phase-high-performance liquid chromatography. The results obtained in this study demonstrate the viability of using proteases from A. minus to increase the antioxidant and inhibitory ACE capacity of whey proteins.

  4. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis.

    PubMed

    Cimino, Cecilia V; Colombo, María Laura; Liggieri, Constanza; Bruno, Mariela; Vairo-Cavalli, Sandra

    2015-08-01

    In this article, we report the cloning of an aspartic protease (AP) from flowers of Arctium minus (Hill) Bernh. (Asteraceae) along with the use of depigmented aqueous flower extracts, as a source of APs, for the hydrolysis of whey proteins. The isolated cDNA encoded a protein product with 509 amino acids called arctiumisin, with the characteristic primary structure organization of typical plant APs. Bovine whey protein hydrolysates, obtained employing the enzyme extracts of A. minus flowers, displayed inhibitory angiotensin-converting enzyme (ACE) and antioxidant activities. Hydrolysates after 3 and 5 h of reaction (degree of hydrolysis 2.4 and 5.6, respectively) and the associated peptide fraction with molecular weight below 3 kDa were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization/time of flight mass spectrometry, and reverse phase-high-performance liquid chromatography. The results obtained in this study demonstrate the viability of using proteases from A. minus to increase the antioxidant and inhibitory ACE capacity of whey proteins. PMID:25575270

  5. Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus.

    PubMed

    Pangestuti, Ratih; Ryu, Bomi; Himaya, Swa; Kim, Se-Kwon

    2013-08-01

    Hippocampus trimaculatus is one of the most heavily traded seahorse species for traditional medicine purposes in many countries. In the present study, we showed neuroprotective effects of peptide derived from H. trimaculatus against amyloid-β42 (Aβ42) toxicity which are central to the pathogenesis of Alzheimer's diseases (AD). Firstly, H. trimaculatus was separately hydrolyzed by four different enzymes and tested for their protective effect on Aβ42-induced neurotoxicity in differentiated PC12 cells. Pronase E hydrolysate exerted highest protection with cell viability value of 88.33 ± 3.33 %. Furthermore, we used response surface methodology to optimize pronase E hydrolysis conditions and found that temperature at 36.69 °C with the hydrolysis time 20.01 h, enzyme to substrate (E/S) ratio of 2.02 % and pH 7.34 were the most optimum conditions. Following several purification steps, H. trimaculatus-derived neuroprotective peptides (HTP-1) sequence was identified as Gly-Thr-Glu-Asp-Glu-Leu-Asp-Lys (906.4 Da). HTP-1 protected PC12 cells from Aβ42-induced neuronal death with the cell viability value of 85.52 ± 2.22 % and up-regulated pro-survival gene (Bcl-2) expressions. These results suggest that HTP-1 has the potential to be used in treatment of neurodegenerative diseases, particularly AD. Identification, characterization, and synthesis of bioactive components derived from H. trimaculatus have the potential to replace or at least complement the use of seahorse as traditional medicine, which further may become an approach to minimize seahorse exploitation in traditional medicine.

  6. Influence of denaturation and aggregation of β-lactoglobulin on its tryptic hydrolysis and the release of functional peptides.

    PubMed

    Leeb, Elena; Götz, Alexander; Letzel, Thomas; Cheison, Seronei Chelulei; Kulozik, Ulrich

    2015-11-15

    Whereas previous studies showed that thermal pre-treatment of whey proteins promote their enzymatic hydrolysis, to date no correlation between the conformation of denatured protein and the release of individual peptides has been considered. Hence, in this study total denaturation of β-lactoglobulin was performed at defined pH-values to enable the generation of different denatured particles. The denatured proteins were used as substrate for tryptic hydrolysis and the hydrolysis progress was characterised by the degree of hydrolysis (DH) and the release of functional peptides, detected using LC-ESI-TOF/MS. Denaturation and subsequent aggregation of β-lactoglobulin, induced by thermal treatment at pH 5.1, altered the DH slightly, whereas the release of investigated peptides was significantly decreased. Contrary, denaturation at pH 6.8 and 8.0 led to formation of non-native monomers and reduced the DH to 75%, but showed promoting as well as reducing effects on the release of peptides, depending on their location within the protein.

  7. Performance of coupled enzymatic hydrolysis and membrane separation bioreactor for antihypertensive peptides production from Porphyra yezoensis protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore more efficient production methods of antihypertensive peptides from Porphyra yezoensis protein, three methods of coupling of enzymatic hydrolysis and membrane separation (CEH-MS) were studied and compared with the traditional EH and offline MS method. The results showed that the conversio...

  8. Influence of denaturation and aggregation of β-lactoglobulin on its tryptic hydrolysis and the release of functional peptides.

    PubMed

    Leeb, Elena; Götz, Alexander; Letzel, Thomas; Cheison, Seronei Chelulei; Kulozik, Ulrich

    2015-11-15

    Whereas previous studies showed that thermal pre-treatment of whey proteins promote their enzymatic hydrolysis, to date no correlation between the conformation of denatured protein and the release of individual peptides has been considered. Hence, in this study total denaturation of β-lactoglobulin was performed at defined pH-values to enable the generation of different denatured particles. The denatured proteins were used as substrate for tryptic hydrolysis and the hydrolysis progress was characterised by the degree of hydrolysis (DH) and the release of functional peptides, detected using LC-ESI-TOF/MS. Denaturation and subsequent aggregation of β-lactoglobulin, induced by thermal treatment at pH 5.1, altered the DH slightly, whereas the release of investigated peptides was significantly decreased. Contrary, denaturation at pH 6.8 and 8.0 led to formation of non-native monomers and reduced the DH to 75%, but showed promoting as well as reducing effects on the release of peptides, depending on their location within the protein. PMID:25977062

  9. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    ERIC Educational Resources Information Center

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  10. Thimet oligopeptidase specificity: evidence of preferential cleavage near the C-terminus and product inhibition from kinetic analysis of peptide hydrolysis.

    PubMed Central

    Knight, C G; Dando, P M; Barrett, A J

    1995-01-01

    The substrate-size specificity of human thimet oligopeptidase (EC 3.4.24.15) was investigated with oligomers of glycyl-prolyl-leucine (GPL)n where n = 2, 3, 4 and 5. These peptides were cleaved only at Leu-Gly bonds to give GPL as the single final product. Hydrolysis was most rapid with (GPL)3 and slowest with (GPL)5. The more water-soluble oligomers of Gly-Hyp-Leu showed the same trend. (Gly-Hyp-Leu)6 was not hydrolysed, consistent with the previous finding that substrates larger than 17 amino acids are not cleaved by thimet oligopeptidase. The cleavage of (GPL)3 to GPL fitted a sequential first-order model. First-order kinetics were unexpected as the initial substrate concentration was greater than Km. The anomaly was also seen during the cleavage of bradykinin and neurotensin, and in these cases first-order behaviour was due to potent competitive inhibition by the C-terminal product. The sequential mechanism for (GPL)3 breakdown by thimet oligopeptidase does not discriminate between initial cleavages towards the N- or C-terminus. As isoleucine is an unfavourable residue in P1, substrates were made in which selected leucine residues were replaced by isoleucine. GPL--GPI--GPL (where--represents the bond between the tripeptide units) was resistant to hydrolysis and GPI--GPL--GPL was cleaved only at the -Leu-Gly- bond. Experiments with isoleucine-containing analogues of (Gly-Hyp-Leu)4 showed that thimet oligopeptidase preferred to cleave these peptides near the C-terminus. PMID:7755557

  11. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.

    PubMed

    Schellenberger, V; Schellenberger, U; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-07-01

    Benzyloxycarbonyl-L-proline p-guanidinophenyl ester is an "inverse substrate" for trypsin; i.e., the cationic center is included in the leaving group instead of being in the acyl moiety. This substrate can be used in trypsin-catalyzed acyl-transfer reactions leading to the synthesis of Pro-Xaa peptide bonds. The reaction proceeds about 20 times slower than reaction with similar alanine-containing substrates, but the ratio between synthesis and hydrolysis is more favorable. The investigation of a series of nucleophiles led to information about the specificity of the process. Nucleophiles differing only in the P(1)'-position show an increasing acyl transfer efficiency in the order Phe < Gly < Ley < Ser < Ala < lle. C terminal elongation of the nucleophiles is of minor influence on their efficiency. The formation of an H bond between the acyl-enzyme and the nucleophile seems to play an important role in the aminolysis of the acyl-enzyme. PMID:18600766

  12. Heterologous expression of five disulfide-bonded insecticidal spider peptides.

    PubMed

    Estrada, Georgina; Silva, Anita O; Villegas, Elba; Ortiz, Ernesto; Beirão, Paulo S L; Corzo, Gerardo

    2016-09-01

    The genes of the five disulfide-bonded peptide toxins 1 and 2 (named Oxytoxins or Oxotoxins) from the spider Oxyopes lineatus were cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage region. These two recombinant vectors were transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The product of each gene was named HisrOxyTx1 or HisrOxyTx2, and the protein expression was ca 14 and 6 mg/L of culture medium, respectively. Either recombinant toxin HisrOxyTx1 or HisrOxyTx2 were found exclusively in inclusion bodies, which were solubilized using a chaotropic agent, and then, purified using affinity chromatography and reverse-phase HPLC (RP-HPLC). The HisrOxyTx1 and HisrOxyTx2 products, obtained from the affinity chromatographic step, showed several peptide fractions having the same molecular mass of 9913.1 and 8030.1 Da, respectively, indicating that both HisrOxyTx1 and HisrOxyTx2 were oxidized forming several distinct disulfide bridge arrangements. The isoforms of both HisrOxyTx1 and HisrOxyTx2 after DTT reduction eluted from the column as a single protein component of 9923 and 8040 Da, respectively. In vitro folding of either HisrOxyTx1 or HisrOxyTx2 yielded single oxidized components, which were cleaved independently by the proteolytic enzyme Factor Xa to give the recombinant peptides rOxyTx1 and rOxyTx2. The experimental molecular masses of rOxyTx1 and rOxyTx2 were 8059.0 and 6176.4 Da, respectively, which agree with their expected theoretical masses. The recombinant peptides rOxyTx1 and rOxyTx2 showed lower but comparable toxicity to the native toxins when injected into lepidopteran larvae; furthermore, rOxyTx1 was able to inhibit calcium ion currents on dorsal unpaired median (DUM) neurons from Periplaneta americana. PMID:27263806

  13. Heterologous expression of five disulfide-bonded insecticidal spider peptides.

    PubMed

    Estrada, Georgina; Silva, Anita O; Villegas, Elba; Ortiz, Ernesto; Beirão, Paulo S L; Corzo, Gerardo

    2016-09-01

    The genes of the five disulfide-bonded peptide toxins 1 and 2 (named Oxytoxins or Oxotoxins) from the spider Oxyopes lineatus were cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage region. These two recombinant vectors were transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The product of each gene was named HisrOxyTx1 or HisrOxyTx2, and the protein expression was ca 14 and 6 mg/L of culture medium, respectively. Either recombinant toxin HisrOxyTx1 or HisrOxyTx2 were found exclusively in inclusion bodies, which were solubilized using a chaotropic agent, and then, purified using affinity chromatography and reverse-phase HPLC (RP-HPLC). The HisrOxyTx1 and HisrOxyTx2 products, obtained from the affinity chromatographic step, showed several peptide fractions having the same molecular mass of 9913.1 and 8030.1 Da, respectively, indicating that both HisrOxyTx1 and HisrOxyTx2 were oxidized forming several distinct disulfide bridge arrangements. The isoforms of both HisrOxyTx1 and HisrOxyTx2 after DTT reduction eluted from the column as a single protein component of 9923 and 8040 Da, respectively. In vitro folding of either HisrOxyTx1 or HisrOxyTx2 yielded single oxidized components, which were cleaved independently by the proteolytic enzyme Factor Xa to give the recombinant peptides rOxyTx1 and rOxyTx2. The experimental molecular masses of rOxyTx1 and rOxyTx2 were 8059.0 and 6176.4 Da, respectively, which agree with their expected theoretical masses. The recombinant peptides rOxyTx1 and rOxyTx2 showed lower but comparable toxicity to the native toxins when injected into lepidopteran larvae; furthermore, rOxyTx1 was able to inhibit calcium ion currents on dorsal unpaired median (DUM) neurons from Periplaneta americana.

  14. Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion.

    PubMed

    Palermo, Giulia; Campomanes, Pablo; Cavalli, Andrea; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-22

    Herein, we combined classical molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations to unravel the whole catalytic cycle of fatty acid amide hydrolase (FAAH) in complex with anandamide, the main neurotransmitters involved in the control of pain. While microsecond MD simulations of FAAH in a realistic membrane/water environment provided a solid model for the reactant state of the enzymatic complex (Palermo et al. J. Chem. Theory Comput. 2013, 9, 1202-1213.), QM/MM simulations depict now a highly concerted two-step catalytic mechanism characterized by (1) acyl-enzyme formation after hydrolysis of the substrate amide bond and (2) deacylation reaction with restoration of the catalytic machinery. We found that a crucial event for anandamide hydrolysis is the inversion of the reactive nitrogen of the scissile amide bond, which occurs during the acylation rate-limiting step. We show that FAAH uses an exquisite catalytic strategy to induce amide bond distortion, reactive nitrogen inversion, and amide bond hydrolysis, promoting catalysis to completion. This new strategy is likely to be of general applicability to other amidases/peptidases that show similar catalytic site architectures, providing crucial insights for de novo enzyme design or drug discovery efforts.

  15. Three competitive transition states at the glycosidic bond of sucrose in its acid-catalyzed hydrolysis.

    PubMed

    Yamabe, Shinichi; Guan, Wei; Sakaki, Shigeyoshi

    2013-03-15

    The acid-catalyzed hydrolysis of sucrose to glucose and fructose was investigated by DFT calculations. Protonations to three ether oxygen atoms of the sucrose molecule, A, B, and (C, D), were compared. Three (B, the fructosyl-ring oxygen protonation; C, protonation to the bridge oxygen of the glycosidic bond for the glucosyl-oxygen cleavage; and D, protonation to that for the fructosyl-oxygen cleavage) gave the fragmentation. Paths B, C, and D were examined by the use of the sucrose molecule and H3O(+)(H2O)13. The path B needs a large activation energy, indicating that it is unlikely. The fragmentation transition state (TS1) of path C needs almost the same activation energy as that of path D. The isomerization TS of Int(C) → Int(D), TS(C → D), was also obtained as a bypass route. The present calculations showed that the path via the fructosyl-oxygen cleavage (D) is slightly (not absolutely) more favorable than that via the glucosyl-oxygen cleavage (C). PMID:23373870

  16. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  17. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    PubMed

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  18. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    PubMed Central

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system. PMID:26904588

  19. Ala-His Mediated Peptide Bond Formation Revisited

    NASA Astrophysics Data System (ADS)

    Larkin, Deana C.; Martinis, Susan A.; Roberts, Deborah J.; Fox, George E.

    2001-12-01

    The historical origin of the translation machinery remains unresolved. Although the large 23S ribosomal RNA (rRNA) is almost certainly the catalytic component of the peptidyl transferase center in the modern ribosome, it is likely that greatly simplified systems were initially employed in the late stages of the prebiotic world. In particular, it has been suggested that small RNAs carrying amino acids were important for the genesis of protein synthesis. Consistent with this, a dipeptide, Ala-His, was previously claimed to be a prebiotically feasible catalyst mediating peptide bond formation in the presence of aminoacylated tRNA and cognate mRNA template, in the absence of other ribosomal components (Shimizu, 1996). We herein report a detailed study of putative dipeptide formation by Ala-His and RNAs carrying leucine. Based on the results presented here, it is unlikely that the dipeptide, Ala-His, catalyzes significant levels of Leu-Leu dipeptide formation in solution. A product is produced which can be readily mistaken for a dipeptide in the TLC separation systems employed in earlier work. We offer explanations for the formation of this product as well as another unexpected product. The results presented here are consistent with the notion that the translation machinery was likely based on catalytic RNA from its very inception.

  20. Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin

    2016-09-01

    The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.

  1. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.

  2. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.

    PubMed

    Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong

    2016-05-15

    In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension.

  3. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.

    PubMed

    Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong

    2016-05-15

    In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension. PMID:26775955

  4. The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis.

    PubMed

    Holden, H M; Matthews, B W

    1988-03-01

    Crystallographic analysis of the binding of mercaptoacetyl-L-valyl-L-tryptophan to thermolysin suggests that this inhibitor is hydrolyzed by the crystalline enzyme. The apparent product of hydrolysis, L-valyl-L-tryptophan (Val-Trp), occupies the S1'-S2' subsites of the active site, not the S1-S1' subsites as observed previously for the dipeptide L-alanyl-L-phenylalanine (Ala-Phe). The difference in binding of Val-Trp and Ala-Phe is consistent with the specificity requirements and preferences of thermolysin. The binding of Val-Trp illustrates the mode of interaction of one of the products of peptide hydrolysis. High resolution crystallographic refinement indicates that the valyl amino group makes three hydrogen bonds to the enzyme and to solvent and, in addition, is 2.8 A from the carboxylate of Glu-143. This is the first instance in which a direct interaction has been observed between Glu-143 and the scissile nitrogen. As such, the study directly supports the mechanism of action for thermolysin proposed by Hangauer et al. (Hangauer, D. G., Monzingo, A. F., and Matthews, B. W. (1984) Biochemistry 23, 5730-5741) and, by analogy, indirectly supports the similar mechanism proposed for carboxypeptidase A (Monzingo, A. F., and Matthews, B. W. (1984) Biochemistry 23, 5724-5729). PMID:3343246

  5. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  6. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. PMID:26686578

  7. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp.

  8. Amino acids, peptides, and proteins as chemically bonded stationary phases--A review.

    PubMed

    Bocian, Szymon; Skoczylas, Magdalena; Buszewski, Bogusław

    2016-01-01

    The selectivity of chromatographic separation depends mostly on the stationary phase and mobile phase composition. Despite being a material with bonded simple organic molecule, a wide group of stationary phases contain immobilized compound that possesses biological activity. Stationary phases that contain amino acids and peptides as well as enzymes and proteins are alternative materials that may be used for liquid chromatographic separations and are reviewed in this work. In the case of peptide-bonded stationary phases, most of these types of materials were elaborated in the 1970s and 1980s; however, over the last few years a growing interest has been observed which is connected with hydrophilic interaction liquid chromatography. The most important application of amino acid and peptide-bonded stationary phases is connected with separation of amino acids, their derivatives, and peptides. The main advantage of such materials is the ability for chiral separations.

  9. Hydrogen bonding constrains free radical reaction dynamics at serine and threonine residues in peptides.

    PubMed

    Thomas, Daniel A; Sohn, Chang Ho; Gao, Jinshan; Beauchamp, J L

    2014-09-18

    Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal Cα-C or N-Cα bond rather than the typical Cα-C bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied π orbital on the β-carbon and the N-Cα bond, leading to low-barrier β-cleavage of the N-Cα bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and z(•) ions, whereas C-terminal interaction leads to effective cleavage of the Cα-C bond through rapid loss of isocyanic acid. Dissociation of the Cα-C bond may also occur via water loss followed by β-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes.

  10. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide.

    PubMed

    Asakawa, Daiki; Smargiasso, Nicolas; De Pauw, Edwin

    2016-05-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194516

  11. Selective cleavage of isoaspartyl peptide bonds by hydroxylamine after methyltransferase priming.

    PubMed

    Zhu, Jeff X; Aswad, Dana W

    2007-05-01

    Formation of atypical isoaspartyl (isoAsp) sites in peptides and proteins via the deamidation-linked isomerization of asparaginyl-Xaa bonds or direct isomerization of aspartyl-Xaa bonds is a major contributor to spontaneous protein damage under mild conditions. This nonenzymatic reaction reroutes the Asx-Xaa peptide bond through the beta-carbonyl of asparaginyl or aspartyl residues, thereby adding an extra carbon to the polypeptide backbone. Formation of isoAsp has been implicated in protein inactivation, aggregation, degradation, and autoimmunity. Knowing the location of isoAsp sites in proteins is important for understanding mechanisms of protein damage and for characterizing protein pharmaceuticals. Here we present a simple nonradioactive method for direct localization of isoAsp residues in peptides or proteins. Using three model peptides, we demonstrate that isoAsp linkages can be cleaved selectively and in high yield by a two-step process in which (i) the isoAsp linkage is converted into a succinimide on incubation with S-adenosyl-l-methionine and the commercially available enzyme, protein l-isoaspartyl-O-methyltransferase, and (ii) the succinimidyl bond is then cleaved by hydroxylamine under conditions that minimize cleavage of the traditional hydroxylamine-sensitive Asn-Gly and related peptide bonds. Location of the isoAsp linkage is then inferred by identifying the cleavage products by mass spectrometry or N-terminal sequencing.

  12. Fluoroolefins as peptide mimetics: a computational study of structure, charge distribution, hydration, and hydrogen bonding.

    PubMed

    Urban, Joseph J; Tillman, Brendon G; Cronin, William Andrew

    2006-09-28

    The design of peptide mimetic compounds is greatly facilitated by the identification of functionalities that can act as peptide replacements. The fluoroalkene moiety has recently been employed for that purpose. The purpose of this work is to characterize prototypical fluoroalkenes (fluoroethylene and 2-fluoro-2-butene) with respect to key properties of peptides (amides) including structure, charge distribution, hydration, and hydrogen bonding. The results are compared to those obtained for model peptides (formamide, N-methylacetamide). Calculations have been carried out at the MP2 and B3LYP levels of theory with the 6-311++G(2d,p) and 6-311++G(2d,2p) basis sets. The results suggest that the fluoroalkene is similar in steric requirements to a peptide bond but that there is less charge separation. Calculations of the hydration free energies with the PCM bulk continuum solvent model indicate that the fluoroalkene has much smaller hydration free energies than an amide but that the difference in solvation free energy for cis and trans isomers is comparable. In studies of complexes with water molecules, the fluoroalkene is found to engage in interactions that are analogous to backbone hydrogen-bonding interactions that govern many properties of natural peptides and proteins but with smaller interaction energies. In addition, key structural differences are noted when the fluoroalkene is playing the role of hydrogen-bond acceptor which may have implications in binding, aggregation, and conformational preferences in fluoroalkene peptidomimetics. The issue of cooperativity in hydrogen-bonding interactions in complexes with multiple waters has also been investigated. The fluoroalkene is found to exhibit cooperative effects that mirror those of the peptide but are smaller in magnitude. Thus, pairwise addivitity of interactions appears to more adequately describe the fluoroalkenes than the peptides they are intended to mimic.

  13. Theoretical study of prebiotic precursors: the peptide bond and its silicon, sulphur and phosphorous analogues

    NASA Astrophysics Data System (ADS)

    Chiaramello, J. M.; Talbi, D.; Berthier, G.; Ellinger, Y.

    2005-04-01

    This paper looks at the possibility that the peptide bond may be more common than originally thought, leading to molecules of prebiotic interest containing heavier atoms of the second row of the periodic table. Ab initio Möller-Plesset (MP2) coupled-cluster molecular orbital methods and density functional theory have been used. A first investigation of the six-atom system [C,3H,O,N] showed that formamide, NH2[bond]CH[double bond]O, is the most stable system that can be formed. Systematic studies on this same system in which C, O and N were respectively replaced by Si, S and P were then carried out. It has been found that the peptide-like linkage is the most stable for [C,3H,S,N] and [Si,3H,O,N] where NH2[bond]CH[double bond]S and NH2[bond]SiH[double bond]O are about 10-14 kcal mol[minus sign]1 more favourable than the corresponding enol tautomers and well below other isomers on the energy scale. For [C,3H,O,P], the most stable species is CH3[bond]P[double bond]O, which is found 18 kcal mol[minus sign]1 below the PH2[bond]CH[double bond]O peptide analogue. By correcting the known inadequacies in the calculations with the average theoretical to experimental ratio from the benchmark molecules of the system, it is possible to obtain a best estimate of rotational constants and infrared frequencies that should be precise enough to initiate laboratory experiments and/or observations. The corrected values of B=6.0342 GHz and C=5.4921 GHz for NH2[bond]CH[double bond]S; B=9.2292 GHz and C=6.1164 GHz for NH2[bond]SiH[double bond]O; B=8.0275 GHz and C=6.4779 GHz for CH3[bond]P[double bond]O should be accurate to within a few tenths of a per cent. Theoretical infrared spectra are also provided to assist in identification of these exotic species.

  14. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers.

    PubMed

    Kanavarioti, A; Rosenbach, M T

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles). PMID:11538282

  15. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  16. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.

    PubMed

    Milne, J C; Eliot, A C; Kelleher, N L; Walsh, C T

    1998-09-22

    In the maturation of the Escherichia coli antibiotic Microcin B17, the product of the mcbA gene is modified posttranslationally by the multimeric Microcin synthetase complex (composed of McbB, C, and D) to cyclize four Cys and four Ser residues to four thiazoles and four oxazoles, respectively. The purified synthetase shows an absolute requirement for ATP or GTP in peptide substrate heterocyclization, with GTP one-third as effective as ATP in initial rate studies. The ATPase/GTPase activity of the synthetase complex is conditional in that ADP or GDP formation requires the presence of substrate; noncyclizable versions of McbA bind to synthetase, but do not induce the NTPase activity. The stoichiometry of ATP hydrolysis and heterocycle formation is 5:1 for a substrate that contains two potential sites of modification. However, at high substrate concentrations (>50Km) heterocycle formation is inhibited, while ATPase activity occurs undiminished, consistent with uncoupling of NTP hydrolysis and heterocycle formation at high substrate concentrations. Sequence homology reveals that the McbD subunit has motifs reminiscent of the Walker B box in ATP utilizing enzymes and of motifs found in small G protein GTPases. Mutagenesis of three aspartates to alanine in these motifs (D132, D147, and D199) reduced Microcin B17 production in vivo and heterocycle formation in vitro, suggesting that the 45 kDa McbD has a regulated ATPase/GTPase domain in its N-terminal region necessary for peptide heterocyclization.

  17. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  18. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles.

    PubMed

    Powell, Prudence O; Sullivan, Mitchell A; Sheehy, Joshua J; Schulz, Benjamin L; Warren, Frederick J; Gilbert, Robert G

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  19. Enhancement of peptide bond formation by polyribonucleotides on clay surfaces in fluctuating environments

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1981-01-01

    The selective effects of polyribonucleotides on the formation of glycine peptide bonds in glycine on clay surfaces are investigated as a model for a template mechanism for the effects of polynucleotides on peptide bond formation. Free oligoglycine yields were determined for the cycling reaction of glycine in the presence and absence of clay and polyribonucleotides or polydeoxyribonucleotides. The polyribonucleotides are observed to lead to increases of up to fourfold increases in oligoglycine formed, with greater enhancements for poly-G nucleotides than for poly-A, poly-U and poly-C, indicating a codonic bias. Polydeoxyribonucleotides are found to provide no enhancement in peptide formation rates, and yields were also greatly reduced in the absence of clay. A mechanism for peptide synthesis is proposed which involves the activation of glycine on the clay surface, followed by the formation of esters between glycine and the 2-prime OH groups of the polyribonucleotide and peptide bonds between adjacent amino acyl esters. It is pointed out that if this mechanism is correct, it may provide a basis for a direct template translation process, which would produce a singlet genetic code.

  20. UV raman examination of alpha-helical peptide water hydrogen bonding.

    PubMed

    Pimenov, Konstantin V; Bykov, Sergei V; Mikhonin, Aleksandr V; Asher, Sanford A

    2005-03-01

    UV resonance Raman spectra (UVRS) of an alpha-helical, 21 residue, mainly Ala peptide (AP) in the dehydrated solid state were compared to those in aqueous solution at different temperatures. The UVRS amide band frequencies of a dehydrated solid alpha-helix peptide show frequency shifts compared to those in aqueous solution due to the loss of amide backbone hydrogen bonding to water; the amide II and amide III bands of the solid alpha-helix downshift, while the amide I band upshifts. The shifts are identical in direction but smaller than those that occur for alpha-helices in aqueous solution as the temperature increases; water hydrogen bonding strengths decrease as the temperature increases. The UV Raman amide band frequency shifts can be used to monitor alpha-helix hydrogen bonding. PMID:15740105

  1. Peptide sweeteners. 3. Effect of modifying the peptide bond on the sweet taste of L-aspartyl-L-phenylalanine methyl ester and its analogues.

    PubMed

    MacDonald, S A; Willson, C G; Chorev, M; Vernacchia, F S; Goodman, M

    1980-04-01

    A series of analogues designed to assess the importance of the amide bond in the dipeptide sweetener L-aspartyl-L-phenylalanine methyl ester has been synthesized and tested. The peptide bond was methylated, replaced by an ester bond, or reversed. all of these modifications produced compounds that did not have a sweet taste. We conclude that the steric, electronic, and directional characteristics of the amide bond are essential for biological activity in the dipeptide sweeteners. PMID:7381839

  2. Peptide sweeteners. 3. Effect of modifying the peptide bond on the sweet taste of L-aspartyl-L-phenylalanine methyl ester and its analogues.

    PubMed

    MacDonald, S A; Willson, C G; Chorev, M; Vernacchia, F S; Goodman, M

    1980-04-01

    A series of analogues designed to assess the importance of the amide bond in the dipeptide sweetener L-aspartyl-L-phenylalanine methyl ester has been synthesized and tested. The peptide bond was methylated, replaced by an ester bond, or reversed. all of these modifications produced compounds that did not have a sweet taste. We conclude that the steric, electronic, and directional characteristics of the amide bond are essential for biological activity in the dipeptide sweeteners.

  3. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    SciTech Connect

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K.

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  4. Stability of peptides in high-temperature aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  5. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach.

    PubMed

    Zhu, Xiaoxia; Barman, Arghya; Ozbil, Mehmet; Zhang, Tingting; Li, Shanghao; Prabhakar, Rajeev

    2012-02-01

    In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1-Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H(2)O and -OH) have been investigated. In addition, the effects of the substrate (L-leucine-p-nitroanilide → L-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1-Zn2 and Mg1-Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with L-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for L-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0-19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1-Zn2, Mg1-Zn2, and Mg1-Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.

  6. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  7. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    PubMed Central

    Aki, Kenzo; Okamura, Emiko

    2016-01-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51–60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61–67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation. PMID:26876027

  8. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    NASA Astrophysics Data System (ADS)

    Aki, Kenzo; Okamura, Emiko

    2016-02-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51-60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61-67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.

  9. Increasing the hydrolysis constant of the reactive site upon introduction of an engineered Cys¹⁴-Cys³⁹ bond into the ovomucoid third domain from silver pheasant.

    PubMed

    Hemmi, Hikaru; Kumazaki, Takashi; Kojima, Shuichi; Yoshida, Takuya; Ohkubo, Tadayasu; Yokosawa, Hideyoshi; Miura, Kin-Ichiro; Kobayashi, Yuji

    2011-08-01

    P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys¹⁴-Cys³⁹ bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys¹⁴-Cys³⁹ bond into the flexible N-terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH-independent hydrolysis constant (K(hyd) °) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in K(hyd) °, but has no effect on the thermal stability. The site-specific disulfide introduction into the flexible N-terminal loop of natural Kazal-type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis.

  10. Oxytocin, the peptide that bonds the sexes also divides them.

    PubMed

    Gao, Shan; Becker, Benjamin; Luo, Lizhu; Geng, Yayuan; Zhao, Weihua; Yin, Yu; Hu, Jiehui; Gao, Zhao; Gong, Qiyong; Hurlemann, Rene; Yao, Dezhong; Kendrick, Keith M

    2016-07-01

    Facilitation of social attraction and bonding by the evolutionarily conserved neuropeptide oxytocin is well-established in female mammals. However, accumulating behavioral evidence suggests that oxytocin may have evolved sex-specific functional roles in the domain of human social cognition. A critical question is how oxytocin differentially modulates neural processing of social information in men and women, leading to divergent behavioral responses. Here we show that intranasal oxytocin treatment produces sex- and valence-dependent increases in amygdala activation when women view individuals identified as praising others but in men those who criticize them. Women subsequently show increased liking for the faces of these individuals, whereas in men it is reduced. Thus, oxytocin may act differentially via the amygdala to enhance the salience of positive social attributes in women but negative ones in men. We hypothesize that oxytocin may have evolved different but complementary roles to help ensure successful reproduction by encouraging mothers to promote a prosocial rearing environment for offspring and fathers to protect against antisocial influences. PMID:27325780

  11. Oxytocin, the peptide that bonds the sexes also divides them

    PubMed Central

    Gao, Shan; Becker, Benjamin; Luo, Lizhu; Geng, Yayuan; Zhao, Weihua; Yin, Yu; Hu, Jiehui; Gao, Zhao; Gong, Qiyong; Hurlemann, Rene; Yao, Dezhong; Kendrick, Keith M.

    2016-01-01

    Facilitation of social attraction and bonding by the evolutionarily conserved neuropeptide oxytocin is well-established in female mammals. However, accumulating behavioral evidence suggests that oxytocin may have evolved sex-specific functional roles in the domain of human social cognition. A critical question is how oxytocin differentially modulates neural processing of social information in men and women, leading to divergent behavioral responses. Here we show that intranasal oxytocin treatment produces sex- and valence-dependent increases in amygdala activation when women view individuals identified as praising others but in men those who criticize them. Women subsequently show increased liking for the faces of these individuals, whereas in men it is reduced. Thus, oxytocin may act differentially via the amygdala to enhance the salience of positive social attributes in women but negative ones in men. We hypothesize that oxytocin may have evolved different but complementary roles to help ensure successful reproduction by encouraging mothers to promote a prosocial rearing environment for offspring and fathers to protect against antisocial influences. PMID:27325780

  12. Acetonitrile hydration and ethyl acetate hydrolysis by pyrazolate-bridged cobalt(II) dimers containing hydrogen-bond donors.

    PubMed

    Zinn, Paul J; Sorrell, Thomas N; Powell, Douglas R; Day, Victor W; Borovik, A S

    2007-11-26

    The preparation of new CoII-mu-OH-CoII dimers with the binucleating ligands 3,5-bis{bis[(N'-R-ureaylato)-N-ethyl]aminomethyl}-1H-pyrazolate ([H4PRbuam]5-, R=tBu, iPr) is described. The molecular structure of the isopropyl derivative reveals that each CoII center has a trigonal-bipyramidial coordination geometry, with a Co...Co separation of 3.5857(5) A. Structural and spectroscopic studies show that there are four hydrogen-bond (H-bond) donors near the CoII-micro-OH-CoII moiety; however, they are too far away to be form intramolecular H-bonds with the bridging hydroxo ligand. Treating [CoII2H4PRbuam(micro-OH)]2- with acetonitrile led to the formation of bridging acetamidato complexes, [CoII2H4PRbuam(micro-1,3-OC(NH)CH3)]2-; in addition, these CoII-micro-OH-CoII dimers hydrolyze ethyl acetate to form CoII complexes with bridging acetato ligands. The CoII-1,3-micro-X'-CoII complexes (X'=OAc-, [OC(NH)CH3]-) were prepared independently by reacting [CoII2H3PRbuam]2- with acetamide or [CoII2H4PRbuam]- with acetate. X-ray diffraction studies show that the orientation of the acetate ligand within the H-bonding cavity depends on the size of the R substituent appended from the urea groups. The tetradentate ligand 3-{bis[(N'-tert-butylureaylato)-N-ethyl]aminomethyl}-5-tert-butyl-1H-pyrazolato ([H2PtBuuam]3-) was also developed and its CoII-OH complex prepared. In the crystalline state, [CoIIH2PtBuuam(OH)]2- contains two intramolecular H-bonds between the urea groups of [H2PtBuuam]3- and the terminal hydroxo ligand. [nPr4N]2[CoIIH2PtBuuam(OH)] does not hydrate acetonitrile or hydrolyze ethyl acetate. In contrast, K2[CoIIH2PtBuuam(OH)] does react with ethyl acetate to produce KOAc; this enhanced reactivity is attributed to the presence of the K+ ions, which can possibly interact with the CoII-OH unit and ester substrate to assist in hydrolysis. However, K2[CoIIH2PtBuuam(OH)] was still unable to hydrate acetonitrile.

  13. Diastereoselective Synthesis of 5-Heteroaryl-Substituted Prolines Useful for Controlling Peptide-Bond Geometry.

    PubMed

    Ali, Rafat; Singh, Gajendra; Singh, Shalini; Ampapathi, Ravi Sankar; Haq, Wahajul

    2016-06-17

    A versatile diastereoselective Friedel-Crafts alkylation reaction of heteroaryl systems with a cyclic enecarbamate for the preparation of 5-heteroaryl-substituted proline analogues in good yields has been developed. These heterocyclic tethered cyclic amino acid building blocks constitute important structural motifs in many biologically active molecules. The impact of the substitution on proline cis/trans isomerization was explored by carrying out solution conformational studies by NMR on 5-furanyl-substituted proline-containing peptides. Conformational analysis revealed that the peptide bond is constrained in an exclusively trans conformation. PMID:27228427

  14. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose.

    PubMed

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2015-09-01

    Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association. PMID:26183776

  15. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose*

    PubMed Central

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2015-01-01

    Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association. PMID:26183776

  16. Separation of cis/trans isomers of a prolyl peptide bond by capillary zone electrophoresis.

    PubMed

    Meyer, S; Jabs, A; Schutkowski, M; Fischer, G

    1994-01-01

    On capillary electrophoresis of the chemically pure thioxo peptide Ala-Phe-psi[CS-N]-Pro-Phe-4-nitroanilide a peak splitting was observed at a capillary temperature of 25 degrees C. By contrast, the oxo peptide analogue exhibits a single, sharp peak under these conditions. Both peaks of the thioxo compound coincided gradually when the temperature was increased to 60 degrees C. Peak fusion was reverted by cooling down the heated sample. This behavior could be attributed to the electrophoresis-mediated separation of the cis/trans prolyl bond isomers of the thioxo peptide, allowing data of this conformational equilibrium to be determined. Derived from computational data about molecular volume and the hydration energy of low-energy cis and trans isomeric structures, the more rapid migration of the cis form in comparison to trans may be explained by structural parameters.

  17. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  18. Preparation and analysis of peptide fragments produced by pepsin hydrolysis of human plasma albumin and their relationship to its structure

    PubMed Central

    Franglen, G.; Swaniker, G. R. E.

    1968-01-01

    Human plasma albumin was prepared and subjected to proteolysis by pepsin at pH2·45 at 25° for 10min. with albumin/pepsin ratio 3000:1. Five peptide fragments were detected in the proteolysate by means of zone electrophoresis and gel filtration; these were separated and purified. Molecular weights, amino acid composition and disulphide bond content of the purified fragments were determined. The results show that a high proportion of the polypeptide chain of albumin appears to have a low cystine content, and at low pH values the molecule would be expected to have a considerable degree of freedom in its structure in these regions of the chain. A tripartite model for the structure of plasma albumin is proposed. PMID:4876098

  19. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  20. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  1. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion.

    PubMed

    Guillot, Alain; Boulay, Mylène; Chambellon, Émilie; Gitton, Christophe; Monnet, Véronique; Juillard, Vincent

    2016-09-01

    We report here the use of a peptidomic approach to revisit the extracellular proteolysis of Lactococcus lactis. More than 1800 distinct peptides accumulate externally during growth of the plasmid-free protease-negative strain L. lactis IL1403 in a protein- and peptide-free medium. These peptides mainly originate from cell-surface- and cytoplasmic-located proteins, despite the fact that no cell lysis could be evidenced. Positioning each identified peptide on its parental protein sequence demonstrated the involvement of exo- and endopeptidase activities. The endopeptidases responsible for the release of surface and cytoplasmic peptides had distinct specificities. The membrane-anchored protease HtrA was responsible for the release of only a part of the surface peptides, and its preference for branched-chain amino acids in the N-terminal side of the cleaved bond was established in situ. Other yet uncharacterized surface proteases were also involved. Several lines of evidence suggest that surface and cytoplasmic peptides were produced by different routes, at least part of the latter being most likely excreted as peptides from the cells. The mechanism by which these cytoplasmic peptides are excreted remains an open question, as it is still the case for excreted cytoplasmic proteins. PMID:27439475

  2. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    PubMed Central

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-01-01

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules. PMID:24756162

  3. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-01

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  4. Magnesium ion catalyzed P-N bond hydrolysis in imidazolide-activated nucleotides - Relevance to template-directed synthesis of polynucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.; Doodokyan, Donald L.; Alberas, Diann J.

    1989-01-01

    Results are presented from a detailed study of the P-N bond hydrolysis in guanosine 5-prime-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-prime-imidazolide (ImpG) in the presence of 0-0.50 M Mg(2+). Pseudo-first-order rate constants of these compounds were obtained as a function of Mg(2+) concentration, for pH values between 6 and 10 and 37 C. It was found that Mg(2+) catalysis was most effective at pH 10, where a 15-fold increase in hydrolysis was achieved in 0.02 M Mg; at 0.2 M, a 115-fold increase was observed. Implication of these results for the mechanism of template-directed oligomerization is discussed.

  5. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding.

    PubMed

    Matsuda, Atsushi; Kobayashi, Hisatoshi; Itoh, Soichiro; Kataoka, Kazunori; Tanaka, Junzo

    2005-05-01

    We developed a new biomaterial effective for nerve regeneration consisting of molecularly aligned chitosan with laminin peptides bonded covalently. Molecularly aligned chitosan was prepared from crab (Macrocheira kaempferi) tendons by ethanol treatment and 4 wt%-NaOH aqueous solutions to remove proteins and calcium phosphate, followed by deacetyl treatment using a 50 wt%-NaOH aqueous solution at 100 degrees C. Molecularly aligned tendon chitosan was chemically thiolated by reacting 4-thiobutyrolactone with the chitosan amino group. The introduction of thiol groups and their distribution to tendon chitosan and chitosan cast film were confirmed using ATR FT-IR, (1)H-NMR, and EDS. The 1.24 micromol/g of thiol groups introduced on the surface of tendon chitosan and the chitosan cast film was confirmed using ultraviolet (UV) spectra. Thiol groups of cysteine located at the end of synthetic laminin peptides were then reacted chemically with thiolated chitosan to form chitosan-S-S-laminin peptide. YIGSR estimated at 0.92 micromol/g and IKVAV estimated at 0.28 micromol/g on thiolated tendon chitosan were confirmed using UV spectra. YIGSR was estimated at 0.85 micromol/g and IKVAV was estimated at 0.34 micromol/g on the thiolated chitosan cast film.

  6. Analysis of hydrogen bonds in peptides, based on the hydration affinity of amides

    NASA Astrophysics Data System (ADS)

    Perczel, András; Lengyel, Istvan; Mantsch, Henry H.; Fasman, Gerald D.

    1993-08-01

    The difference in the affinity for water of peptide groups embedded in different molecular environments was investigated. The chemical shift of an amide proton is sensitive to conformational variations, as well as to changes in the molecular environment [D.S. Wishat, B.D. Sykes and F.M. Richards, J. Mol. Biol., 222 (1991) 311-333]. Therefore, if the conformational motions are minimized or excluded, the observed changes in the chemical shift can simply be related to the environmental effects. The conformation(s) of the cyclic β-turn models studied in this work has been previously reported using X-ray, NMR, circular dichroism, and (FT-IR) spectroscopic methods, as well as MD calculations. [M. Hollósi, K.E. Köver, S. Holly, L. Radics and G.D. Fasman, Biopolymers, 26 (1987) 1527-1572; A. Perczel, M. Hollósi, B.M. Foxman and G.D. Fasman, J. Am. Chem. Soc., 113 (1991) 9772-9784; and H.H. Mantsch, A. Perczel, M. Hollósi and G.D. Fasman, Biopolymers, 33 (1993) 201-207]. The backbone of the cyclo[(δ)Ava—Gly—Pro—Aaa—Gly] (where Aaa = Ser(O tBu), Ser or Thr(O tBu), and δ(Ava) is δ-aminovaleric acid) compounds was found to be rigidly incorporated in the structure and to contain two intramolecular hydrogen bonds. These β-turn models also include one (or two) "free" amide group(s) that are not involved in any type of interaction. The "water titration" of these amide groups in acetonitrile, where they are involved in various degrees of hydrogen bonding, revealed their molecular environment. Owing to the rigidity of these structures, the observed changes in the amide proton chemical shifts, during titration were attributed to their involvement in hydrogen bonding. This was confirmed by monitoring the water titration simultaneously with FT-IR spectroscopy. The phenomenon described here, with the proposed characterization of the investigated peptide/water system, comprise an improvement in the NMR method for analyzing the hydrogen bonding of small rigid peptides.

  7. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.

    PubMed

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K

    2012-02-01

    In this study, we observed unprecedented cleavages of the C(β)-C(γ) bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M(•+)) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116](+) ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent C(β)-C(γ) bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43](+) and [WGGGH - 116](+), obtained from the CID of [LGGGH](•+) and [WGGGH](•+), respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind](•)-2), in agreement with the CID data for [WGGGH](•+) and [W(1-CH3)GGGH](•+); replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C(β)-C(γ) bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the C(β)-C(γ) bond and, therefore, decreases the dissociation energy barrier dramatically. PMID:22135037

  8. The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides.

    PubMed

    Chen, Yaqi; Yang, Chaoqiong; Li, Tao; Zhang, Miao; Liu, Yang; Gauthier, Marc A; Zhao, Yibing; Wu, Chuanliu

    2015-08-10

    The contribution of noncovalent interactions to the stability of naturally occurring peptides and proteins has been generally acknowledged, though how these can be rationally manipulated to improve the proteolytic stability of synthetic peptides remains to be explored. In this study, a platform to enhance the proteolytic stability of peptides was developed by controllably dimerizing them into α-helical dimers, connected by two disulfide bonds. This platform not only directs peptides toward an α-helical conformation but permits control of the interfacial hydrophobic interactions between the peptides of the dimer. Using two model dimeric systems constructed from the N-terminal α-helix of RNase A and known inhibitors for the E3 ubiquitin ligase MDM2 (and its homologue MDMX), a deeper understanding into the interplay of disulfide bonds, α-helicity, and hydrophobic interactions on enhanced proteolytic stability was sought out. Results reveal that all three parameters play an important role on attaining ultrahigh proteolytic resistance, a concept that can be exploited for the development of future peptide therapeutics. The understanding gained through this study will enable this strategy to be tailored to new peptides because the proposed strategy displays substantial tolerance to sequence permutation. It thus appears promising for conveniently creating prodrugs composed entirely of the therapeutic peptide itself (i.e., in the form of a dimer).

  9. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    SciTech Connect

    Patarroyo, Manuel E.; Moreno-Vranich, Armando; Bermudez, Adriana

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.

  10. Metabolism of saikosaponin a in rats: diverse oxidations on the aglycone moiety in liver and intestine in addition to hydrolysis of glycosidic bonds.

    PubMed

    Liu, Guoqiang; Tian, Yuan; Li, Geng; Xu, Lei; Song, Rui; Zhang, Zunjian

    2013-03-01

    The main objective of the present study was to completely characterize the metabolites of the triterpenoid saikosaponin a (SSa) in rats. To this aim, we compared the metabolites in plasma, bile, urine, and feces samples following oral and i.v. routes of administration using liquid chromatography-diode array detector coupled with hybrid ion trap-time-of-flight mass spectrometry. As a result, besides 2 known metabolites, prosaikogenin f and saikogenin f, 15 new metabolites were detected in all. It was found that SSa is metabolized mainly in phase I manner, i.e., hydration and monooxidation on the aglycone moiety and hydrolysis of the β-glucosidic bond in the liver, and sequential hydrolysis of β-glucosidic and β-fucosidic bonds followed by dehydrogenation, hydroxylation, carboxylation, and combinations of these steps on the aglycone moiety in the intestinal tract. Both the renal and biliary routes were observed for the excretion of SSa and its metabolites. Further, a clear metabolic profile in rats was proposed in detail according to the results from the in vivo animal experiment after different routes of administration. Our results update the preclinical metabolism and disposition data on SSa, which is not only helpful for the future human metabolic study of this compound but also provides basic information for better understanding of the efficacy and safety of prescriptions containing saikosaponins. PMID:23277344

  11. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    SciTech Connect

    Mirkin, Noemi G.; Krimm, Samuel

    2014-01-28

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ωB97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  12. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides.

    PubMed

    Thévenet, Pierre; Shen, Yimin; Maupetit, Julien; Guyon, Frédéric; Derreumaux, Philippe; Tufféry, Pierre

    2012-07-01

    In the context of the renewed interest of peptides as therapeutics, it is important to have an on-line resource for 3D structure prediction of peptides with well-defined structures in aqueous solution. We present an updated version of PEP-FOLD allowing the treatment of both linear and disulphide bonded cyclic peptides with 9-36 amino acids. The server makes possible to define disulphide bonds and any residue-residue proximity under the guidance of the biologists. Using a benchmark of 34 cyclic peptides with one, two and three disulphide bonds, the best PEP-FOLD models deviate by an average RMS of 2.75 Å from the full NMR structures. Using a benchmark of 37 linear peptides, PEP-FOLD locates lowest-energy conformations deviating by 3 Å RMS from the NMR rigid cores. The evolution of PEP-FOLD comes as a new on-line service to supersede the previous server. The server is available at: http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD.

  13. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H](+). The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H](+) to that of non-oxidized protonated molecule [M + H](+) of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the Cα-C bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the Cα-C bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  14. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  15. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  16. [Chemical ribonucleases. 3. Synthesis of organic catalysts of hydrolysis of phosphodiester bonds based on quaternary salts of 1,4-diazabicyclo(2.2.2)octane].

    PubMed

    Konevets, D A; Bekk, I E; Sil'nikov, V N; Zenkova, M A; Shishkin, G V

    2000-11-01

    On the basis of imidazole and bisquaternary salts of 1,4-diazabicyclo[2.2.2]octane, a number of highly effective catalysts of the nDm series (here, n is the number of positive charges at neutral pH values and m is the digital code of the catalytically active fragment: 1, histamine, and 2, histidine methyl ester) were synthesized for the cleavage of the phosphodiester bonds in ribonucleic acids. A general method for the synthesis of chemical ribonucleases was suggested, which helps vary both the number of positive charges in their RNA-binding domain and the catalytic center. By the example of hydrolysis under physiological conditions of the in vitro transcript of tRNA(Lys) from human mitochondria, it was shown that the RNA cleavage rate with the nDm conjugates increases approximately 30-fold along with the increase in the number of positive charges from two to four.

  17. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    PubMed

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P < 0.05 or 0.001). These results suggested that RRDY and yam dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models. PMID:27499387

  18. The Pediocin PA-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin PA-1.

    PubMed

    Oppegård, Camilla; Fimland, Gunnar; Anonsen, Jan Haug; Nissen-Meyer, Jon

    2015-05-19

    Peptides, in contrast to proteins, are generally not large enough to form stable and well-defined three-dimensional structures. However, peptides are still able to form correct disulfide bonds. Using pediocin-like bacteriocins, we have examined how this may be achieved. Some pediocin-like bacteriocins, such as pediocin PA-1 and sakacin P[N24C+44C], have four cysteines. There are three possible ways by which the four cysteines may combine to form two disulfide bonds, and the three variants are expected to be produced in approximately equal amounts if their formation is random. Pediocin PA-1 and sakacin P[N24C+44C] with correct disulfide bonds were the main products when they were secreted by the pediocin PA-1 ABC transporter and accessory protein, but when they were secreted by the corresponding secretion machinery for sakacin A, a pediocin-like bacteriocin with one disulfide bond (two cysteines), peptides with all three possible disulfide bonds were produced in approximately equal amounts. All five cysteines in the pediocin PA-1 ABC transporter and the two cysteines (that form a CxxC motif) in the accessory protein were individually replaced with serines to examine their involvement in disulfide bond formation in pediocin PA-1. The Cys86Ser mutation in the accessory protein caused a 2-fold decrease in the amount of pediocin PA-1 with correct disulfide bonds, while the Cys83Ser mutation nearly abolished the production of pediocin PA-1 and resulted in the production of all three disufide bond variants in equal amounts. The Cys19Ser mutation in the ABC transporter completely abolished secretion of pediocin PA-1, suggesting that Cys19 is in the proteolytic active site and involved in cleaving the prebacteriocin. Replacing the other four cysteines in the ABC transporter with serines caused a slight reduction in the overall amount of secreted pediocin PA-1, but the relative amount with the correct disulfide bonds remained large. These results indicate that the pediocin

  19. Competitive formation of 10- and 7-membered hydrogen-bonded rings of proline-containing model peptides

    NASA Astrophysics Data System (ADS)

    Jin, Yusuke; Tonan, Kenji; Ikawa, Shun-ichi

    2002-10-01

    Intramolecularly hydrogen-bonded structures of proline-containing model peptides with a sequence of N- tert-butoxycarbonyl-prolyl-Xaa-NHCH 3 [Xaa=Gly (glycyl), Ala (alanyl), Phe (phenylalanyl), Leu (leucyl), Ile (isoleucyl), and Val (valyl)] were studied by proton nuclear magnetic resonance and infrared spectroscopy. Variation of chemical shifts of amide protons with composition change of DMSO- d6/CDCl 3 mixed solvents were found to be a good measure of intramolecular hydrogen bonding of peptides in CDCl 3 solution. It has been shown that 10- and 7-membered hydrogen-bonded rings, which should have the β- and γ-turn like structures in proteins, respectively, form competitively with each other. It is suggested that the equilibrium between the two hydrogen-bonded rings is determined by steric hindrance due to a side chain of the Xaa residue. Free energies for formation of the 10- and 7-membered hydrogen-bonded rings, Δ G10 and Δ G7, were estimated from the solvent composition-dependent change of the chemical shifts. A good correlation between Δ G10 and the occurrence frequencies of residues Xaa at the ( i+2)th position for the β-turns in proteins has been found.

  20. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides.

    PubMed

    Rozenberg, Mark; Shoham, Gil; Reva, Igor; Fausto, Rui

    2005-06-01

    The FTIR spectra of pure and isotopically diluted (H/D and D/H) polycrystalline L-glutamine, L-hystidine, L-tyrosine, DL-serine, L-threonine, di-, tri-glycine and di-glycine x HCl x H2O salt were measured in the range 4000-2000 cm(-1) at temperatures from 300 to 10 K. The frequencies of decoupled proton stretching mode bands upsilon1, which can be observed only at low temperature, were used for estimation of the of upsilon1-bands red shift, which occurs upon formation of H-bonds involving ionized NH3+ and/or peptide HN-CO groups. The empirical correlation between the red shift and H-bond length, which was found previously for binary gas phase H-bonded complexes, carbohydrates and nucleosides [M. Rozenberg, A. Loewenschuss and Y. Marcus, Phys. Chem. Chem. Phys., 2000, 2, 2699-2702; M. Rozenberg, C. Jung and G. Shoham, Phys. Chem. Chem. Phys., 2003, 5, 1533-1535], was now extended to H-bonded networks in polycrystalline amino acids and peptides. The energies of the different H-bonds present in the crystalline structures could also be successfully estimated from the well-established empirical correlation [A. V. Iogansen, Spectrochim. Acta, 1999, A55, 1585-1612] between this property and the red shifts of the corresponding upsilon1 mode bands.

  1. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. PMID:26831563

  2. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described.

  3. Simultaneous determination of interfacial molarities of amide bonds, carboxylate groups, and water by chemical trapping in micelles of amphiphiles containing peptide bond models.

    PubMed

    Zhang, Yongliang; Romsted, Laurence S; Zhuang, Lanzhen; de Jong, Sander

    2013-01-15

    Chemical trapping is a powerful approach for obtaining experimental estimates of interfacial molarities of weakly basic nucleophiles in the interfacial regions of amphiphile aggregates. Here, we demonstrate that the chemical probe 4-hexadecyl-2,6-dimethylbenzenediazonium ion (16-ArN(2)(+)) reacts competitively with interfacial water, with the amide carbonyl followed by cleavage of the headgroups from the tail at the amide oxygen, and with the terminal carboxylate groups in micelles of two N-acyl amino-acid amphiphiles, sodium N-lauroylsarcosinate (SLS) and sodium N-lauroylglycinate (SLG), simple peptide bond model amphiphiles. Interfacial molarities (in moles per liter of interfacial volume) of these three groups were obtained from product yields, assuming that selectivity toward a particular nucleophile compared to water is the same in an aqueous reference solution and in the interfacial region. Interfacial carboxylate group molarities are ~1.5 M in both SLS and SLG micelles, but the concentration of the amide carbonyl for SLS micelles is ~4.6-5 times less (ca. 0.7 M) than that of SLG micelles (~3 M). The proton on the secondary N of SLG helps solubilize the amide bond in the aqueous region, but the methyl on the tertiary N of SLS helps solubilize the amide bond in the micellar core, reducing its reaction with 16-ArN(2)(+). Application of chemical trapping to proteins in membrane mimetic interfaces should provide insight into the topology of the protein within the interface because trapping of the amide carbonyl and cleavage at the C-N bond occurs only within the interface, and fragment characterization marks those peptide bonds located within the interface.

  4. Site-Specific Conjugation of Peptides and Proteins via Rebridging of Disulfide Bonds Using the Thiol-Yne Coupling Reaction.

    PubMed

    Griebenow, Nils; Dilmaç, Alicia M; Greven, Simone; Bräse, Stefan

    2016-04-20

    Herein, we describe an extension of our previously reported photomediated disulfide rebridging methodology to the conjugation of peptides and proteins. The methodology proved to be reproducible with various alkynes and different peptides. This study includes the first rebridging of the disulfide bond of a peptide through a thiol-yne reaction with a cyclooctyne. In all cases, the rebridging was proven by MS analyses and confirmed by the absence of olefinic protons on (1)H NMR spectra of the resulting products. Finally, this one-pot reduction thiol-yne conjugation was successfully applied to an antibody Fab fragment with a promising conversion, which set a good ground for the future syntheses of new protein and antibody conjugates. PMID:27031217

  5. Counting sulfhydryls and disulfide bonds in peptides and proteins using mercurial ions as an MS-tag.

    PubMed

    Guo, Yifei; Chen, Liqin; Yang, Limin; Wang, Qiuquan

    2008-08-01

    Organic mercurial compounds are the most specific and sensitive reagents for reaction with the sulfhydryl groups (SHs) in peptides and proteins because of the strong mercury-sulfur affinity. Using the monofunctional organic mercury ion RHg(+) as a mass spectrometry (MS)-tag has the advantages of reacting with one sulfhydryl group, offering definite mass shift, and especially stable and characteristic nonradioactive isotopic distribution. Mass spectrometric analysis of derivatized sulfhydryls in peptides/proteins is thus an alternative for precisely counting the number of sulfhydryl groups and disulfide bonds (SS). Here the tags used include monomethylmercury chloride, monoethylmercury chloride, and 4-(hydroxymercuri) benzoic acid. The feasibility of this strategy is demonstrated using HPLC/ESI-MS to count SHs and SS in model peptides/proteins, i.e., glutathione, phytochelatins, lysozyme and beta-lactoglobulin, which contain increasing SHs and various SS linkages. PMID:18524619

  6. Ion mobility mass spectrometry as a potential tool to assign disulfide bonds arrangements in peptides with multiple disulfide bridges.

    PubMed

    Echterbille, Julien; Quinton, Loïc; Gilles, Nicolas; De Pauw, Edwin

    2013-05-01

    Disulfide bridges play a major role in defining the structural properties of peptides and proteins. However, the determination of the cysteine pairing is still challenging. Peptide sequences are usually achieved using tandem mass spectrometry (MS/MS) spectra of the totally reduced unfolded species, but the cysteine pairing information is lost. On the other hand, MS/MS experiments performed on native folded species show complex spectra composed of nonclassical ions. MS/MS alone does not allow either the cysteine pairing or the full sequence of an unknown peptide to be determined. The major goal of this work is to set up a strategy for the full structural characterization of peptides including disulfide bridges annotation in the sequence. This strategy was developed by combining ion mobility spectrometry (IMS) and collision-induced dissociation (CID). It is assumed that the opening of one S-S bridge in a peptide leads to a structural evolution which results in a modification of IMS drift time. In the presence of multiple S-S bridges, the shift in arrival time will depend on which disulfide(s) has (have) been reduced and on the shape adopted by the generated species. Due to specific fragmentations observed for each species, CID experiments performed after the mobility separation could provide not only information on peptide sequence but also on the localization of the disulfide bridges. To achieve this goal, synthetic peptides containing two disulfides were studied. The openings of the bridges were carried out following different experimental conditions such as reduction, reduction/alkylation, or oxidation. Due to disulfide scrambling highlighted with the reduction approaches, oxidation of S-S bonds into cysteic acids appeared to be the best strategy. Cysteine connectivity was then unambiguously determined for the two peptides, without any disulfide scrambling interference.

  7. Metamorphic protein IscU changes conformation by cis-trans isomerizations of two peptidyl-prolyl peptide bonds.

    PubMed

    Dai, Ziqi; Tonelli, Marco; Markley, John L

    2012-12-01

    IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and transfer, populates two conformational states with similar free energies and with lifetimes on the order of 1 s that interconvert in an apparent two-state reaction. One state (S) is structured, and the other (D) is largely disordered; however, both play essential functional roles. We report here nuclear magnetic resonance studies demonstrating that all four prolyl residues of apo-IscU (P14, P35, P100, and P101) are trans in the S state but that two absolutely conserved residues (P14 and P101) become cis in the D state. The peptidyl-prolyl peptide bond configurations were determined by analyzing assigned chemical shifts and were confirmed by measurements of nuclear Overhauser effects. We conclude that the S ⇄ D interconversion involves concerted trans-cis isomerization of the N13-P14 and P100-P101 peptide bonds. Although the D state is largely disordered, we show that it contains an ordered domain that accounts for the stabilization of two high-energy cis peptide bonds. Thus, IscU may be classified as a metamorphic protein.

  8. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration.

    PubMed

    Wen, Xiaoxiao; Zheng, Yudong; Wu, Jian; Wang, Lu-Ning; Yuan, Zhenya; Peng, Jiang; Meng, Haoye

    2015-01-01

    Bacterial cellulose (BC) is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC) by regioselective oxidation, and then composited with collagen peptide (Col-p) via covalent bonds to form Schiff's base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration.

  9. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration

    PubMed Central

    Wen, Xiaoxiao; Zheng, Yudong; Wu, Jian; Wang, Lu-Ning; Yuan, Zhenya; Peng, Jiang; Meng, Haoye

    2015-01-01

    Bacterial cellulose (BC) is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC) by regioselective oxidation, and then composited with collagen peptide (Col-p) via covalent bonds to form Schiff’s base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration. PMID:26229466

  10. An activated triple bond linker enables ‘click’ attachment of peptides to oligonucleotides on solid support

    PubMed Central

    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Åsa; Murtola, Merita; Strömberg, Roger

    2011-01-01

    A general procedure, based on a new activated alkyne linker, for the preparation of peptide–oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition (‘click’ reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into ‘clickable’ azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals. PMID:21795380

  11. Mechanism of the discrepancy in the enzymatic hydrolysis efficiency between defatted peanut flour and peanut protein isolate by Flavorzyme.

    PubMed

    Zheng, Lin; Zhao, Yijun; Xiao, Chuqiao; Sun-Waterhouse, Dongxiao; Zhao, Mouming; Su, Guowan

    2015-02-01

    Both defatted peanut flour (DPF) and peanut protein isolate (PPI) are widely used to prepare peanut protein hydrolysates. To compare their enzymatic hydrolysis efficiencies, DPF and PPI were hydrolysed by Alcalase, Neutrase, Papain, Protamex and Flavorzyme. Alcalase and Flavorzyme were found to be the most efficient proteases to hydrolyse both DPF and PPI. The efficiency was comparable to each other when using Alcalase, while PPI was hydrolysed less efficiently than DPF when using Flavorzyme. Analysis of changes in the protein solubility, subunit and conformation, and amino acid composition of DPF, PPI and their Flavorzyme hydrolysis residues indicated that the PPI preparation process had minimal effect on it, but peptide aggregation via non-covalent bonding (including hydrophobic interactions and hydrogen bonds) during hydrolysis and/or thermal treatment after hydrolysis were likely responsible for the reduced hydrolysis efficiency of PPI by Flavorzyme.

  12. Vasoactive intestinal peptide receptor regulation of cAMP accumulation and glycogen hydrolysis in the human Ewing's sarcoma cell line WE-68.

    PubMed

    Van Valen, F; Jürgens, H; Winkelmann, W; Keck, E

    1989-01-01

    This study describes functional characteristics of receptors for vasoactive intestinal peptide (VIP) on human Ewing's sarcoma WE-68 cells. These characteristics include 125I-VIP binding capacity, cellular cAMP generation, glycogen hydrolysis, and pharmacological specificity. Binding studies with 125I-VIP showed specific, saturable, binding sites for VIP in WE-68 cells. Scatchard analysis revealed the presence of a single class of high-affinity binding sites that exhibited a dissociation constant (Kd) of 90 pM and a maximal binding capacity (Bmax) of 24 fmol/mg of protein. VIP and VIP-related peptides competed for 125I-VIP binding in the following order of potency: human (h) VIP greater than human peptide with N-terminal histidine and C-terminal methionine (PHM) greater than chicken secretin much greater than porcine secretin. Glucagon and the C-terminal fragments VIP[10-28] and VIP[16-28] and the VIP analogue (D-Phe2)VIP did not inhibit 125I-VIP binding. Addition of hVIP to WE-68 cells provoked marked stimulation of cAMP accumulation, hVIP stimulated increases in cAMP content were rapid, concentration-dependent, and potentiated by 3-isobutyl-l-methylxanthine (IBMX). Half-maximal stimulation (EC50) occurred at 150 nM hVIP. The ability of hVIP and analogues to stimulate cAMP generation paralleled their potencies in displacing 125I-VIP binding. (D-Phe2)VIP, VIP[10-28], VIP[16-28], and (p-Cl-D-Phe6, Leu17)VIP, a putative VIP receptor antagonist, affected neither basal cAMP levels nor hVIP-induced cAMP accumulation. WE-68 cell responses to hVIP were desensitized by prior exposure to hVIP. Desensitization to hVIP did not modify the cAMP response to beta-adrenergic stimulation, and beta-adrenergic agonist desensitization did not modify responses to hVIP. hVIP also induced a time- and concentration-dependent hydrolysis of 3H-glycogen newly formed from 3H-glucose in WE-68 cultures. hVIP maximally decreased 3H-glycogen content by 36% with an EC50 value of about 8 nM. The

  13. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin.

    PubMed

    Silveira, Silvana T; Martínez-Maqueda, Daniel; Recio, Isidra; Hernández-Ledesma, Blanca

    2013-11-15

    Dipeptidyl peptidase-IV (DPP-IV) is a serine protease involved in the degradation and inactivation of incretin hormones that act by stimulating glucose-dependent insulin secretion after meal ingestion. DPP-IV inhibitors have emerged as new and promising oral agents for the treatment of type 2 diabetes. The purpose of this study was to investigate the potential of β-lactoglobulin as natural source of DPP-IV inhibitory peptides. A whey protein concentrate rich in β-lactoglobulin was hydrolysed with trypsin and fractionated using a chromatographic separation at semipreparative scale. Two of the six collected fractions showed notable DPP-IV inhibitory activity. These fractions were analysed by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) to identify peptides responsible for the observed activity. The most potent fragment (IPAVF) corresponded to β-lactoglobulin f(78-82) which IC50 value was 44.7μM. The results suggest that peptides derived from β-lactoglobulin would be beneficial ingredients of foods against type 2 diabetes.

  14. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX. PMID:23083335

  15. Amide-I relaxation-induced hydrogen bond distortion: An intermediate in electron capture dissociation mass spectrometry of alpha-helical peptides?

    PubMed

    Pouthier, Vincent; Tsybin, Yury O

    2008-09-01

    Electron capture dissociation (ECD) of peptides and proteins in the gas phase is a powerful tool in tandem mass spectrometry whose current description is not sufficient to explain many experimental observations. Here, we attempt to bridge the current understanding of the vibrational dynamics in alpha-helices with the recent experimental results on ECD of alpha-helical peptides through consideration of amide-I relaxation-induced hydrogen bond distortion. Based on a single spine of H-bonded peptide units, we assume that charge neutralization upon electron capture by a charged alpha-helix excites a nearby amide-I mode, which relaxes over a few picoseconds due to Fermi resonances with intramolecular normal modes. The amide-I population plays the role of an external force, which drives the displacements of each peptide unit. It induces a large immobile contraction of the H bonds surrounding the excited site whose lifetime is about the amide-I lifetime. In addition, it creates two lattice deformations describing H bond stretchings, which propagate from the excited region toward both termini of the alpha-helix, get reflected at the termini and yield H bond contractions which move back to the excited region. Consequently, we show that H bonds experience rather large contractions whose amplitude depends on general features such as the position of the amide-I mode, the peptide length and the H bond force constants. When an H bond contraction is sufficiently large, it may promote a hydrogen atom transfer between two neighboring peptide units leading to the formation of a radical at charge site remote carbonyl carbon which is known to be a precursor to the rupture of the corresponding N[Single Bond]C(alpha) bond. The introduced here way of excitation energy generation and transfer may significantly advance ECD understanding and complement existing ECD mechanisms.

  16. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  17. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  18. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  19. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  20. Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70S Ribosome

    SciTech Connect

    Blaha, Gregor; Stanley, Robin E.; Steitz, Thomas A.; Yale

    2009-10-21

    Elongation factor P (EF-P) is an essential protein that stimulates the formation of the first peptide bond in protein synthesis. Here we report the crystal structure of EF-P bound to the Thermus thermophilus 70S ribosome along with the initiator transfer RNA N-formyl-methionyl-tRNAi (fMet-tRNA{sub i}{sup fMet}) and a short piece of messenger RNA (mRNA) at a resolution of 3.5 angstroms. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. Domain II of EF-P interacts with the ribosomal protein L1, which results in the largest movement of the L1 stalk that has been observed in the absence of ratcheting of the ribosomal subunits. EF-P facilitates the proper positioning of the fMet-tRNA{sub i}{sup fMet} for the formation of the first peptide bond during translation initiation.

  1. Formation of the First Peptid Bond: the Structure of EF-P Bound to the 70S Ribosome

    SciTech Connect

    Blaha, G.; Stanley, R; Steitz, T

    2009-01-01

    Elongation factor P (EF-P) is an essential protein that stimulates the formation of the first peptide bond in protein synthesis. Here we report the crystal structure of EF-P bound to the Thermus thermophilus 70S ribosome along with the initiator transfer RNA N-formyl-methionyl-tRNAi (fMet-tRNAifMet) and a short piece of messenger RNA (mRNA) at a resolution of 3.5 angstroms. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. Domain II of EF-P interacts with the ribosomal protein L1, which results in the largest movement of the L1 stalk that has been observed in the absence of ratcheting of the ribosomal subunits. EF-P facilitates the proper positioning of the fMet-tRNAifMet for the formation of the first peptide bond during translation initiation.

  2. Cloning, sequencing and overexpression of the gene for prokaryotic factor EF-P involved in peptide bond synthesis.

    PubMed Central

    Aoki, H; Adams, S L; Chung, D G; Yaguchi, M; Chuang, S E; Ganoza, M C

    1991-01-01

    A soluble protein EF-P (elongation factor P) from Escherichia coli has been purified and shown to stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Based on the partial amino acid sequence of EF-P, 18- and 24-nucleotide DNA probes were synthesized and used to screen lambda phage clones from the Kohara Gene Bank. The entire EF-P gene was detected on lambda clone #650 which contains sequences from the 94 minute region of the E.coli genome. Two DNA fragments, 3.0 and 0.78 kilobases in length encompassing the gene, were isolated and cloned into pUC18 and pUC19. Partially purified extracts from cells transformed with these plasmids overrepresented a protein which co-migrates with EF-P upon SDS polyacrylamide gel electrophoresis, and also exhibited increased EF-P mediated peptide-bond synthetic activity. Based on DNA sequence analysis of this gene, the EF-P protein consists of 187 amino acids with a calculated molecular weight of 20,447. The sequence and chromosomal location of EF-P establishes it as a unique gene product. Images PMID:1956781

  3. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino-acid peptide derived from alpha-fetoprotein.

    PubMed

    MacColl, R; Eisele, L E; Stack, R F; Hauer, C; Vakharia, D D; Benno, A; Kelly, W C; Mizejewski, G J

    2001-10-01

    A 34-amino-acid peptide has been chemically synthesized based on a sequence from human alpha-fetoprotein. The purified peptide is active in anti-growth assays when freshly prepared in pH 7.4 buffer at 0.20 g/l, but this peptide slowly becomes inactive. This functional change is proven by mass spectrometry to be triggered by the formation of an intrapeptide disulfide bond between the two cysteine residues on the peptide. Interpeptide cross-linking does not occur. The active and inactive forms of the peptide have almost identical secondary structures as shown by circular dichroism (CD). Zinc ions bind to the active peptide and completely prevents formation of the inactive form. Cobalt(II) ions also bind to the peptide, and the UV-Vis absorption spectrum of the cobalt-peptide complex shows that: (1) a near-UV sulfur-to-metal-ion charge-transfer band had a molar extinction coefficient consistent with two thiolate bonds to Co(II); (2) the lowest-energy visible d-d transition maximum at 659 nm, also, demonstrated that the two cysteine residues are ligands for the metal ion; (3) the d-d molar extinction coefficient showed that the metal ion-ligand complex was in a distorted tetrahedral symmetry. The peptide has two cysteines, and it is speculated that the other two metal ion ligands might be the two histidines. The Zn(II)- and Co(II)-peptide complexes had similar peptide conformations as indicated by their ultraviolet CD spectra, which differed very slightly from that of the free peptide. Surprisingly, the cobalt ions acted in the reverse of the zinc ions in that, instead of stabilizing anti-growth form of the peptide, they catalyzed its loss. Metal ion control of peptide function is a saliently interesting concept. Calcium ions, in the conditions studied, apparently do not bind to the peptide. Trifluoroethanol and temperature (60 degrees C) affected the secondary structure of the peptide, and the peptide was found capable of assuming various conformations in solution

  4. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  5. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation.

    PubMed

    Parker, W Ryan; Holden, Dustin D; Cotham, Victoria C; Xu, Hua; Brodbelt, Jennifer S

    2016-07-19

    The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity. PMID:27320857

  6. Effects of Peptide Backbone Amide-to-Ester Bond Substitution on the Cleavage Frequency in Electron Capture Dissociation and Collision-Activated Dissociation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Frank; Zubarev, Roman A.

    2011-08-01

    Probing the mechanism of electron capture dissociation on variously modified model peptide polycations has resulted in discovering many ways to prevent or reduce {{N}} - {{{C}}_α } bond fragmentation. Here we report on a rare finding of how to increase the backbone bond dissociation rate. In a number of model peptides, amide-to-ester backbone bond substitution increased the frequency of {{O}} - {{{C}}_α } bond cleavage (an analogue of {{N}} - {{{C}}_α } bonds in normal peptides) by several times, at the expense of reduced frequency of cleavages of the neighboring {{N}} - {{{C}}_α } bonds. In contrast, the ester linkage was only marginally broken in collisional dissociation. These results further highlight the complementarity of the reaction mechanisms in electron capture dissociation (ECD) and collision-activated dissociation (CAD). It is proposed that the effects of amide-to-ester bond substitution on fragmentation are mainly due to the differences in product ion stability (ECD, CAD) as well as proton affinity (CAD). This proposal is substantiated by calculations using density functional theory. The implications of these results in relation to the current understanding of the mechanisms of electron capture dissociation and electron transfer dissociation are discussed.

  7. Rational derivation of CETP self-binding helical peptides by π-π stacking and halogen bonding: Therapeutic implication for atherosclerosis.

    PubMed

    Zhu, Jian; Lu, Meijuan; Zhu, Lixia

    2016-10-01

    The human cholesteryl ester transfer protein (CETP) transfers cholesteryl ester from high-density lipoprotein (HDL) to other lipoproteins and has been established as an attractive target for reducing the risk of atherosclerosis. Here, an amphipathic α-helix peptide, namely SBH-peptide ((465)EHLLVDFLQSLS(476)), was derived from the C-terminal tail of CETP. The peptide exhibits self-binding capability towards the CETP. Crystal structure analysis, molecular dynamics (MD) simulations and ab initio electron correlation characterizations of CETP-SBH-peptide complex system revealed that the Phe471 residue plays a key role in SBH-peptide binding, which can form a π-π stacking with the Phe197 residue of CETP. In addition, substitution of the hydrogen atom H4 of Phe471 with halogen atoms, in particular the bromine atom Br4, can constitute a geometrically satisfactory halogen bonding with the oxygen atom O of CETP Ile193 residue. Fluorescence polarization assays substantiated that (i) mutation of the aromatic Phe471 to small Ala residue would impair the SBH-peptide affinity with Kd change from 10.5 to 26.4μM, indicating that the π-π stacking should exist in Phe471⋯Phe197 adduct, and (ii) substitution with Br4 can considerably improve SBH-peptide affinity by ∼3-fold, but the SBH-peptide binding does not change essentially upon substitution with Br3 (a negative control that is theoretically unable to form the halogen bonding), indicating that the rationally designed halogen bonding should form between the Phe471(Br4) residue of SBH-peptide and the Ile193 residue of CETP protein.

  8. Rational derivation of CETP self-binding helical peptides by π-π stacking and halogen bonding: Therapeutic implication for atherosclerosis.

    PubMed

    Zhu, Jian; Lu, Meijuan; Zhu, Lixia

    2016-10-01

    The human cholesteryl ester transfer protein (CETP) transfers cholesteryl ester from high-density lipoprotein (HDL) to other lipoproteins and has been established as an attractive target for reducing the risk of atherosclerosis. Here, an amphipathic α-helix peptide, namely SBH-peptide ((465)EHLLVDFLQSLS(476)), was derived from the C-terminal tail of CETP. The peptide exhibits self-binding capability towards the CETP. Crystal structure analysis, molecular dynamics (MD) simulations and ab initio electron correlation characterizations of CETP-SBH-peptide complex system revealed that the Phe471 residue plays a key role in SBH-peptide binding, which can form a π-π stacking with the Phe197 residue of CETP. In addition, substitution of the hydrogen atom H4 of Phe471 with halogen atoms, in particular the bromine atom Br4, can constitute a geometrically satisfactory halogen bonding with the oxygen atom O of CETP Ile193 residue. Fluorescence polarization assays substantiated that (i) mutation of the aromatic Phe471 to small Ala residue would impair the SBH-peptide affinity with Kd change from 10.5 to 26.4μM, indicating that the π-π stacking should exist in Phe471⋯Phe197 adduct, and (ii) substitution with Br4 can considerably improve SBH-peptide affinity by ∼3-fold, but the SBH-peptide binding does not change essentially upon substitution with Br3 (a negative control that is theoretically unable to form the halogen bonding), indicating that the rationally designed halogen bonding should form between the Phe471(Br4) residue of SBH-peptide and the Ile193 residue of CETP protein. PMID:27611728

  9. Synthesis, conformational analysis, and biological activities of cyclic enkephalins and model cyclic peptides containing thioamides as amide bond replacements

    SciTech Connect

    Sherman, D.B.

    1988-01-01

    This thesis describes the first applications of the thioamide surrogate ({psi}(CSNH)) in model cyclic peptides and cyclic enkephalins. The solution phase synthesis and conformational analysis of two model cyclic endothiopentapeptides, cyclo(D-Phe-Pro{psi} (CSNH)Gly-Pro-Gly) (I) and cyclo(D-Phe-Pro-Gly-Pro{psi}(CSNH)Gly) (II), are reported. The conformations of I and II were analyzed using several 1 and 2D NMR techniques, such as INDOR, temperature and concentration dependence, {sup 1}H-{sup 1}H and {sup 1}H-{sup 13}C COSY, ROESY, and magnetization transfer. Compound I displayed the same general conformation as its parent in CDCl{sub 3}, but the {gamma}-turn hydrogen bond appeared to be weaker, while the {beta}-turn hydrogen bond appeared to be stronger. In DMSO-d{sub 6}, this molecule existed in two conformations in a ratio of 2:1. The major conformer appeared to be the same as that in CDCl{sub 3}, while the second contained at least one cis X-Pro bond, most likely at the Gly{sup 1}-Pro{sup 2} position. Compound II displayed the same conformation as its parent in both solvents. The {gamma}-turn hydrogen bond again appeared to be weaker in CDCl{sub 3}, but comparable with the parent in DMSO-d{sub 6}. Molecular modeling studies of I and II indicated the Pro {psi} angle increased by {approx}6{degree} when a thiocarbonyl was present, thereby reducing steric interactions with the Pro {beta} methylene.

  10. Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation

    PubMed Central

    Reddy, K. M. Bhaskara; Kumari, Y. Bharathi; Mallikharjunasarma, Dokka; Bulliraju, Kamana; Sreelatha, Vanjivaka; Ananda, Kuppanna

    2012-01-01

    The S-acetamidomethyl (Acm) or trityl (Trt) protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness. PMID:23118772

  11. Conformations of Prolyl-Peptide Bonds in the Bradykinin 1-5 Fragment in Solution and in the Gas Phase.

    PubMed

    Voronina, Liudmila; Masson, Antoine; Kamrath, Michael; Schubert, Franziska; Clemmer, David; Baldauf, Carsten; Rizzo, Thomas

    2016-07-27

    The dynamic nature of intrinsically disordered peptides makes them a challenge to characterize by solution-phase techniques. In order to gain insight into the relation between the disordered state and the environment, we explore the conformational space of the N-terminal 1-5 fragment of bradykinin (BK[1-5](2+)) in the gas phase by combining drift tube ion mobility, cold-ion spectroscopy, and first-principles simulations. The ion-mobility distribution of BK[1-5](2+) consists of two well-separated peaks. We demonstrate that the conformations within the peak with larger cross-section are kinetically trapped, while the more compact peak contains low-energy structures. This is a result of cis-trans isomerization of the two prolyl-peptide bonds in BK[1-5](2+). Density-functional theory calculations reveal that the compact structures have two very different geometries with cis-trans and trans-cis backbone conformations. Using the experimental CCSs to guide the conformational search, we find that the kinetically trapped species have a trans-trans configuration. This is consistent with NMR measurements performed in a solution, which show that 82% of the molecules adopt a trans-trans configuration and behave as a random coil. PMID:27366919

  12. Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation.

    PubMed Central

    Fernández-Moreno, M A; Vallín, C; Malpartida, F

    1997-01-01

    In a search for strains producing biocides with a wide spectrum of activity, a new strain was isolated. This strain was taxonomically characterized as Streptomyces rochei F20, and the chemical structure of the bioactive product extracted from its fermentation broth was determined to be a mixture of streptothricins. From a genomic library of the producer strain prepared in the heterologous host Streptomyces lividans, a 7.2-kb DNA fragment which conferred resistance to the antibiotic was isolated. DNA sequencing of 5.2 kb from the cloned fragment revealed five open reading frames (ORFs) such that ORF1, -2, -3, and -4 were transcribed in the same direction while ORF5 was convergently arranged. The deduced product of ORF1 strongly resembled those of genes involved in peptide formation by a nonribosomal mechanism; the ORF2 product strongly resembled that of mphA and mphB isolated from Escherichia coli, which determines resistance to several macrolides by a macrolide 2'-phosphotransferase activity; the ORF3 product had similarities with several hydrolases; and the ORF5 product strongly resembled streptothricin acetyltransferases from different gram-positive and gram-negative bacteria. ORF5 was shown to be responsible for acetyl coenzyme A-dependent streptothricin acetylation. No similarities in the databases for the ORF4 product were found. Unlike other peptide synthases, that for streptothricin biosynthesis was arranged as a multienzymatic system rather than a multifunctional protein. Insertional inactivation of ORF1 and ORF2 (and to a lesser degree, of ORF3) abolishes antibiotic biosynthesis, suggesting their involvement in the streptothricin biosynthetic pathway. PMID:9371436

  13. {{text{C}}_{α }} - {text{C}} Bond Cleavage of the Peptide Backbone in MALDI In-Source Decay Using Salicylic Acid Derivative Matrices

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H]+. The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H]+ to that of non-oxidized protonated molecule [M + H]+ of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the {{{C}}_{α }} - {{C}} bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the {{{C}}_{α }} - {{C}} bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  14. Lisdexamfetamine prodrug activation by peptidase-mediated hydrolysis in the cytosol of red blood cells.

    PubMed

    Sharman, Johannah; Pennick, Michael

    2014-01-01

    Lisdexamfetamine dimesylate (LDX) is approved as a once-daily treatment for attention-deficit/hyperactivity disorder in children, adolescents, and adults in some countries. LDX is a prodrug comprising d-amphetamine covalently linked to l-lysine via a peptide bond. Following oral administration, LDX is rapidly taken up from the small intestine by active carrier-mediated transport, probably via peptide transporter 1. Enzymatic hydrolysis of the peptide bond to release d-amphetamine has previously been shown to occur in human red blood cells but not in several other tissues. Here, we report that LDX hydrolytic activity resides in human red blood cell lysate and cytosolic extract but not in the membrane fraction. Among several inhibitors tested, a protease inhibitor cocktail, bestatin, and ethylenediaminetetra-acetic acid each potently inhibited d-amphetamine production from LDX in cytosolic extract. These results suggest that an aminopeptidase is responsible for hydrolytic cleavage of the LDX peptide bond, although purified recombinant aminopeptidase B was not able to release d-amphetamine from LDX in vitro. The demonstration that aminopeptidase-like activity in red blood cell cytosol is responsible for the hydrolysis of LDX extends our understanding of the smooth and consistent systemic delivery of d-amphetamine by LDX and the long daily duration of efficacy of the drug in relieving the symptoms of attention-deficit/hyperactivity disorder. PMID:25489246

  15. Substrate stereoselectivity of poly(Asp) hydrolase-1 capable of cleaving β-amide bonds as revealed by investigation of enzymatic hydrolysis of stereoisomeric β-tri(Asp)s.

    PubMed

    Hiraishi, Tomohiro; Abe, Hideki; Maeda, Mizuo

    2015-12-01

    We previously reported that poly(Asp) hydrolase-1 (PahZ1KP-2) from Pedobacter sp. KP-2 selectively, but not completely, cleaved the amide bonds between β-Asp units in thermally synthesized poly(Asp) (tPAA). In the present study, the enzymatic hydrolysis of stereoisomeric β-tri(Asp)s by PahZ1KP-2 was investigated to clarify the substrate stereoselectivity of PahZ1KP-2 in the hydrolysis of tPAA. The results suggest the following structural features of PahZ1KP-2 at its substrate binding site: (1) the active site contains four subsites (2, 1, -1, and -2), three of which need to be occupied by Asp units for cleavage to occur; (2) for the hydrolysis to proceed, subsite 1 should be occupied by an L-Asp unit, whereas the other three subsites may accept both L- and D-Asp units; (3) for the two central subsites between which cleavage occurs, the (L-Asp)-(D-Asp) sequence is the most favorable for cleavage.

  16. Enhancement of nano-hydroxyapatite bonding to dentin through a collagen/calcium dual-affinitive peptide for dentinal tubule occlusion.

    PubMed

    Wang, Ronghan; Wang, Qiong; Wang, Xiumei; Tian, Lili; Liu, Huiying; Zhao, Miaomiao; Peng, Ce; Cai, Qiang; Shi, Yunming

    2014-02-01

    Calcium phosphate crystals, as the main component of dentin and enamel, have been widely used for the occlusion of dentinal tubules. However, the low bond strength and poor sealing effect limit their clinical practicality. In this study, a collagen/calcium dual-affinitive peptide E8DS (EEEEEEEEDSpESpSpEEDR) and nano-hydroxyapatite (nano-HAp) flocculi were developed to seal dentin tubules for reducing dentin hypersensitivity, whereas the E8DS peptides were pre-applied to improve the adhesion of occlusive hydroxyapatite coating on dentin collagen matrix for the long-lasting sealing effect and relief from hypersensitivity. Our study showed that E8DS peptides had a strong affinity with dentin collageneous matrix that almost 43.7% of initial E8DS peptides immobilized on exposed dentin samples remained detained after continuous washing by distilled water for four weeks at a rate of 1 mL/min. Nano-HAp flocculi were obtained by re-neutralization of HAp-HCl solution and then brushed onto the surfaces of pre-treated human dentin disks with E8DS peptides, which showed a perfect occlusion of exposed dentinal tubules, as compared with Nano-HAp only and a commercial desensitizer, Green Or. With only around 10-min E8DS peptide pre-treatment, the occlusive mineral layers remained intact against consecutively stirred washing in phosphate-buffered saline or coke for 15 min, and 6 min of tooth-brushing, which implied that our E8DS peptide could comparatively improve the durability of sealant-dentin interface bonds for long-lasting dentine desensitization.

  17. Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond.

    PubMed

    Avitabile, C; Capparelli, R; Rigano, M M; Fulgione, A; Barone, A; Pedone, C; Romanelli, A

    2013-04-01

    Cysteine-containing antimicrobial peptides of diverse phylogeny share a common structural signature, the γ core, characterized by a strong polarization of charges in two antiparallel β sheets. In this work, we analyzed peptides derived from the tomato defensin SolyC07g007760 corresponding to the protein γ core and demonstrated that cyclization of the peptides, which results in segregation of positive charges to the turn region, produces peptides very active against Gram negative bacteria, such as Salmonella enterica and Helicobacter pylori. Interestingly, these peptides show very low hemolytic activity and thus represent a scaffold for the design of new antimicrobial peptides.

  18. Plane wave density functional theory studies of the structural and the electronic properties of amino acids attached to graphene oxide via peptide bonding

    NASA Astrophysics Data System (ADS)

    Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo

    2015-08-01

    We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.

  19. Molecular dynamics simulations on pars intercerebralis major peptide-C (PMP-C) reveal the role of glycosylation and disulfide bonds in its enhanced structural stability and function.

    PubMed

    Kaushik, Sandeep; Mohanty, Debasisa; Surolia, Avadhesha

    2012-01-01

    Fucosylation of Thr 9 in pars intercerebralis major peptide-C (PMP-C) enhances its structural stability and functional ability as a serine protease inhibitor. In order to understand the role of disulfide bonds and glycosylation on the structure and function of PMP-C, we have carried out multiple explicit solvent molecular dynamics (MD) simulations on fucosylated and non-fucosylated forms of PMP-C, both in the presence and absence of the disulfide bonds. Our simulations revealed that there were no significant structural changes in the native disulfide bonded forms of PMP-C due to fucosylation. On the other hand, the non-fucosylated form of PMP-C without disulfide bonds showed larger deviations from the starting structure than the fucosylated form. However, the structural deviations were restricted to the terminal regions while core β-sheet retained its hydrogen bonded structure even in absence of disulfide bonds as well as fucosylation. Interestingly, fucosylation of disulfide bonded native PMP-C led to a decreased thermal flexibility in the residue stretch 29-32 which is known to interact with the active site of the target proteases. Our analysis revealed that disulfide bonds covalently connect the residue stretch 29-32 to the central β-sheet of PMP-C and using a novel network of side chain interactions and disulfide bonds fucosylation at Thr 9 is altering the flexibility of the stretch 29-32 located at a distal site. Thus, our simulations explain for the first time, how presence of disulfide bonds between conserved cysteines and fucosylation enhance the function of PMP-C as a protease inhibitor.

  20. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  1. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-23

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  2. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    NASA Astrophysics Data System (ADS)

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  3. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  4. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.

    PubMed

    Mojica, Luis; Chen, Karen; de Mejía, Elvira González

    2015-01-01

    The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health.

  5. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern.

    PubMed

    Mandal, Santi M; Porto, William F; Dey, Prabuddha; Maiti, Mrinal K; Ghosh, Ananta K; Franco, Octavio L

    2013-10-01

    Phytopathogens cause economic losses in agribusiness. Plant-derived compounds have been proposed to overcome this problem, including the antimicrobial peptides (AMPs). This paper reports the identification of Ps-AFP1, a novel AMP isolated from the Pisum sativum radicle. Ps-AFP1 was purified and evaluated against phytopathogenic fungi, showing clear effectiveness. In silico analyses were performed, suggesting an unusual fold and disulfide bond pattern. A novel fold and a novel AMP class were here proposed, the αβ-trumpet fold and αβ-trumpet peptides, respectively. The name αβ-trumpet was created due to the peptide's fold, which resembles the musical instrument. The Ps-AFP1 mechanism of action was also proposed. Microscopic analyses revealed that Ps-AFP1 could affect the fungus during the hyphal elongation from spore germination. Furthermore, confocal microscopy performed with Ps-AFP1 labeled with FITC shows that the peptide was localized at high concentration along the fungal cell surface. Due to low cellular disruption rates, it seems that the main target is the fungal cell wall. The binding thermogram and isothermal titration, molecular dynamics and docking analyses were also performed, showing that Ps-AFP1 could bind to chitin producing a stable complex. Data here reported provided novel structural-functional insights into the αβ-trumpet peptide fold.

  6. Disruption of hydrogen bonds between major histocompatibility complex class II and the peptide N-terminus is not sufficient to form a human leukocyte antigen-DM receptive state of major histocompatibility complex class II.

    PubMed

    Schulze, Monika-Sarah E D; Anders, Anne-Kathrin; Sethi, Dhruv K; Call, Melissa J

    2013-01-01

    Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306-318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.

  7. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  8. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  9. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime

    PubMed Central

    Das, Dibyendu Kumar; Feng, Yinnian; Mallis, Robert J.; Li, Xiaolong; Keskin, Derin B.; Hussey, Rebecca E.; Brady, Sonia K.; Wang, Jia-Huai; Wagner, Gerhard; Reinherz, Ellis L.; Lang, Matthew J.

    2015-01-01

    The αβ T-cell receptor (TCR) on each T lymphocyte mediates exquisite specificity for a particular foreign peptide bound to a major histocompatibility complex molecule (pMHC) displayed on the surface of altered cells. This recognition stimulates protection in the mammalian host against intracellular pathogens, including viruses, and involves piconewton forces that accompany pMHC ligation. Physical forces are generated by T-lymphocyte movement during immune surveillance as well as by cytoskeletal rearrangements at the immunological synapse following cessation of cell migration. The mechanistic explanation for how TCRs distinguish between foreign and self-peptides bound to a given MHC molecule is unclear: peptide residues themselves comprise few of the TCR contacts on the pMHC, and pathogen-derived peptides are scant among myriad self-peptides bound to the same MHC class arrayed on infected cells. Using optical tweezers and DNA tether spacer technology that permit piconewton force application and nanometer scale precision, we have determined how bioforces relate to self versus nonself discrimination. Single-molecule analyses involving isolated αβ-heterodimers as well as complete TCR complexes on T lymphocytes reveal that the FG loop in the β-subunit constant domain allosterically controls both the variable domain module’s catch bond lifetime and peptide discrimination via force-driven conformational transition. In contrast to integrins, the TCR interrogates its ligand via a strong force-loaded state with release through a weakened, extended state. Our work defines a key element of TCR mechanotransduction, explaining why the FG loop structure evolved for adaptive immunity in αβ but not γδTCRs or immunoglobulins. PMID:25605925

  10. tRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics

    PubMed Central

    Zhang, Wenjun; Ntai, Ioanna; Kelleher, Neil L.; Walsh, Christopher T.

    2011-01-01

    Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics with antipseudomonal activities through inhibition of the translocase MraY in bacterial cell wall assembly. The biosynthetic gene cluster for pacidamycins has recently been identified through genome mining of the producer Streptomyces coeruleorubidus, and the highly dissociated nonribosomal peptide assembly line for the uridyl tetrapeptide scaffold of pacidamycin has been characterized. In this work a hypothetical protein PacB, conserved in known uridyl peptide antibiotics gene clusters, has been characterized by both genetic deletion and enzymatic analysis of the purified protein. PacB catalyzes the transfer of the alanyl residue from alanyl-tRNA to the N terminus of the tetrapeptide intermediate yielding a pentapeptide on the thio-templated nonribosomal peptide synthetase (NRPS) assembly line protein PacH. PacB thus represents a new group of tRNA-dependent peptide bond-forming enzymes in secondary metabolite biosynthesis in addition to the recently identified cyclodipeptide synthases. The characterization of PacB completes the assembly line reconstitution of pacidamycin pentapeptide antibiotic scaffolds, bridging the primary and secondary metabolic pathways by hijacking an aminoacyl-tRNA to the antibiotic biosynthetic pathway. PMID:21746899

  11. Specific cleavage at peptide backbone Cα-C and CO-N bonds during matrix-assisted laser desorption/ionization in-source decay mass spectrometry with 5-nitrosalicylic acid as the matrix.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-09-15

    The use of 5-nitrosalicylic acid (5-NSA) as a matrix for in-source decay (ISD) of peptides during matrix-assisted laser desorption/ionization (MALDI) is described herein. Mechanistically, the decay process is initiated by a hydrogen abstraction from a peptide backbone amide nitrogen by 5-NSA. Hydrogen abstraction results in formation of an oxidized peptide containing a radical amide nitrogen. Subsequently, the C(α)-C bond N-terminal to the peptide bond is cleaved to form an a·/x fragment pair. The C(α)-C bonds C-terminal to Gly residues were less susceptible to cleavage than were those of other residues. C(α)-C bonds N-terminal to Pro and Sar residues were not cleaved by the aforementioned mechanism; instead, after hydrogen abstraction from a Pro or Sar C(α)-H bond, the peptide bond N-terminal to the Pro was cleaved yielding b- and y-series ions. We also show that fragments produced by MALDI 5-NSA-induced ISD were formed independently of the ionization process.

  12. Elucidating the structure of cyclotides by partial acid hydrolysis and LC-MS/MS analysis.

    PubMed

    Sze, Siu Kwan; Wang, Wei; Meng, Wei; Yuan, Randong; Guo, Tiannan; Zhu, Yi; Tam, James P

    2009-02-01

    We describe here a rapid method to determine the cyclic structure and disulfide linkages of highly stable cyclotides via a combination of flash partial acid hydrolysis, LC-MS/MS, and computational tools. Briefly, a mixture of closely related cyclotides, kalata B1 and varv A purified from Viola yedoensis was partially hydrolyzed in 2 M HCl for 5 min by microwave-assisted hydrolysis or for 30 min in an autoclave oven (121 degrees C and 15 psi). The partially hydrolyzed peptide mixture was then subjected to LC-MS/MS analysis, with the disulfide linked-peptides fragmented by collision activated dissociation (CAD). A computer program written in-house (available for download at http://proteomics.sbs.ntu.edu.sg/cyclotide_SS ) was used for interpreting LC-MS/MS spectra and assigning the disulfide bonds. Time-point analysis of single-disulfide fragments revealed that nonrandom acid catalyzed fragmentation mostly occurred at the turns which are solvent-exposed and often contain side chain functionalized amino acids such as Asx/Glx and Ser/Thr. In particular, the most susceptible bond for acid hydrolysis in kalata B1 and varv A was found to be the highly conserved N25-G26 which is also the head-to-tail ligation site of the linear precursor proteins, indicating that formation of the three disulfide bonds might precede cyclic structure closure by N25-G26 ligation. This observation is consistent with the recent report that the N25-G26 bond formation is the last step in the cyclotide biosynthetic pathway. The process demonstrated here can potentially be a high throughput method that is generally applicable to determine disulfide bonds of other relatively low-abundance cyclotides.

  13. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

    PubMed Central

    Pandey, Kailash N.

    2014-01-01

    Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems. PMID:25202235

  14. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  15. Effect of the concentrations of calcium chloride and synthetic peptides in primers on dentin bond strength of an experimental adhesive system.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Masaya; Kato, Chikage; Yamauchi, Junichi; Suzuki, Shiro; Katoh, Yoshiroh

    2010-11-01

    The purpose of this study was to evaluate the microtensile bond strength (MTBS) of an experimental adhesive system, which was prepared using different concentrations of calcium chloride (CaCl(2)) and synthetic peptides (pA/pB). Specimens were divided into six experimental groups and two control groups. In the experimental groups, self-etching primers used in the adhesive system comprised both Primer-I (Clearfil SE Bond Primer (SEP) containing 1, 5, or 10 wt% CaCl(2)) and Primer-II (SEP containing 0.1, 1, 5, or 10 wt% pA/pB). The negative control group used Primer-I containing 10 wt% CaCl(2 )and Primer-II containing 10 wt% pA/pB. The positive control group used Clearfil SE Bond only. Respective primers, bonding resin, and composite paste were applied and photopolymerized individually on flattened dentin surfaces of extracted human molars. All specimens were subjected to MTBS testing (n=20). Two-way ANOVA revealed significant differences in MTBS among CaCl(2 )concentrations in Primer-I and pA/pB concentrations in Primer-II (p<0.001), and there was a significant interaction between these two factors (p=0.011).

  16. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  17. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 12, June 1-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    We assume that bituminous coal consists mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal, with emphasis on the crosslinks and breakable single bonds. The program began with an investigation of the structure of the TIPS fraction of Illinois No. 6 coal, that is, the two-thirds of the 16% extracted by pyridine that is toluene-insoluble, pyridine-soluble, mostly through changes in molecular weight during cleavage reactions in pyridine solution. The most promising of these cleavage reactions are now being applied to the 84% of coal that is insoluble in pyridine and presents the main problem in coal liquefaction, following the progress of the reactions by formation of soluble material and swelling of the insoluble portion. We found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal, and later that an ethylenediamine/dimethyl sulfoxide (EDA/DMSO) mixture would dissolve another 21% of the original coal. The BnNH/sub 2/ extract is soluble in pyridine. Our best present guess is that the BnNH/sub 2/ extract cleaves most of the ester groups in coal and that EDA/DMSO cleaves the remaining ester and most of the ether groups.

  18. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 13, October 1-December 31, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1982-02-26

    Bituminous coal is assumed to consist mostly of aggregates of condensed aromatic and aliphatic rings which are connected and made soluble by crosslinks containing single bonds. The objective of this project is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. During this past quarter the following studies were conducted on Illinois No. 6 coal: extraction with benzylamine (BnH/sub 2/), ethanolamine, ethylenediamine (EDA), pyridine; saponification of some toluene-insoluble, pyridine-soluble (TIPS) fraction; cleavages by amines; oxidation with aqueous NaOCl of butylated and methylated pyridine-extracted coal; decarboxylation on black acids. The investigations dealt with two kinds of connecting links in coal, which are designated as ester and ether groups. The ester groups are cleaved by strongly basic amines (to give amides) at 25/sup 0/C and by alcoholic KOH at 100/sup 0/C (to give salts and alcohols or phenols). Both esters and ethers are cleaved by HI or ZnCL/sub 2/ in pyridine at or below 50/sup 0/C. The ethers are also cleaved by BnNH/sub 2/, EDA, and EDA/DMSO to nearly the same extent on several days heating at 100/sup 0/C. Although a cleavage of model ethers by amines were not established, the parallel easy reactions of HI and ZnCl/sub 2/ and the slow 100/sup 0/C reactions of amines on coal lead the authors to designate the non-ester cleavages as ether cleavages. (ATT)

  19. Integrating the intrinsic conformational preferences of non-coded α-amino acids modified at the peptide bond into the NCAD database

    PubMed Central

    Revilla-López, Guillem; Rodríguez-Ropero, Francisco; Curcó, David; Torras, Juan; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2011-01-01

    Recently, we reported a database (NCAD, Non-Coded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally-established conformational propensities, and applications (J. Phys. Chem. B 2010, 114, 7413). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the –NHCO– peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 310-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database. PMID:21491493

  20. Identification of crucial hydrogen-bonding residues for the interaction of herpes simplex virus DNA polymerase subunits via peptide display, mutational, and calorimetric approaches.

    PubMed

    Bridges, K G; Chow, C S; Coen, D M

    2001-06-01

    The catalytic subunit, Pol, of herpes simplex virus DNA polymerase interacts via its extreme C terminus with the processivity subunit, UL42. This interaction is critical for viral replication and thus a potential target for antiviral drug action. To investigate the Pol-binding region on UL42, we engineered UL42 mutations but also used random peptide display to identify artificial ligands of the Pol C terminus. The latter approach selected ligands with homology to residues 171 to 176 of UL42. Substitution of glutamine 171 with alanine greatly impaired binding to Pol and stimulation of long-chain DNA synthesis by Pol, identifying this residue as crucial for subunit interactions. To study these interactions quantitatively, we used isothermal titration calorimetry and wild-type and mutant forms of Pol-derived peptides and UL42. Each of three peptides corresponding to either the last 36, 27, or 18 residues of Pol bound specifically to UL42 in a 1:1 complex with a dissociation constant of 1 to 2 microM. Thus, the last 18 residues suffice for most of the binding energy, which was due mainly to a change in enthalpy. Substitutions at positions corresponding to Pol residue 1228 or 1229 or at UL42 residue 171 abolished or greatly reduced binding. These residues participate in hydrogen bonds observed in the crystal structure of the C terminus of Pol bound to UL42. Thus, interruption of these few bonds is sufficient to disrupt the interaction, suggesting that small molecules targeting the relevant side chains could interfere with Pol-UL42 binding.

  1. Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide pipoles in [4Fe-4S] ferredoxins.

    PubMed Central

    Beck, B W; Xie, Q; Ichiye, T

    2001-01-01

    A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein. PMID:11463610

  2. Dentin bond strength of an experimental adhesive system containing calcium chloride, synthetic peptides derived from dentin matrix protein 1 (pA and pB), and hydroxyapatite for direct pulp capping and as a bonding agent.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Masaya; Kato, Chikage; Yamauchi, Junichi; Suzuki, Shiro; Katoh, Yoshiroh

    2010-07-01

    The purpose of this study was to evaluate the microtensile bond strength (microTBS) of an experimental adhesive system containing calcium chloride (CaCl(2)), synthetic peptides derived from dentin matrix protein 1 (DMP1: pA and pB), and hydroxyapatite experimentally developed for direct pulp capping to human dentin. Clearfil SE Bond/Primer (SEP) and Bond (SEB) were used for each experimental group as the matrix agents. Experimental self-etching primers included: primer-I, SEP containing 10 wt% CaCl(2), and primer-II, SEP containing a 10 wt% compound of pA and pB. The experimental bonding agent was a mixture of SEB and 10 wt% hydroxyapatite. Specimens were divided into five experimental groups, including the control, according to the mode of primer application. Primer-I was primarily applied, followed by primer-II for group 1, primer-I as the primary and SEP as the secondary for group 2, SEP as the primary and primer-II as the secondary for group 3, and SEP was applied twice for group 4, and SEP was applied once for the control. Clearfil SE Bond adhesive system was used as the control. Flat dentin surfaces of human molars were assigned to bonding tests. After each experimental primer was applied to the dentin surface, each experimental bonding agent was applied and photopolymerized, and then resin composite paste (Clearfil Flow FX and Clearfil AP-X) was placed and photopolymerized. The specimens were subjected to microTBS testing. The data were compared using analysis of variance (ANOVA) and post-hoc Bonferroni/Dunn tests. Results showed that the minimum mean value of microTBS was 15.4 MPa for group 1, while the maximum mean value of microTBS was 52.7 MPa for the control. There were significant differences among the experimental groups, except for group 4 and the control. The experimental primers containing CaCl(2) or DMP1 negatively affected the microTBS value of the experimental adhesive system to dentin.

  3. Conformational HER-2/neu B-cell epitope peptide vaccine designed to incorporate two native disulfide bonds enhances tumor cell binding and antitumor activities.

    PubMed

    Dakappagari, Naveen K; Lute, Kenneth D; Rawale, Sharad; Steele, Joan T; Allen, Stephanie D; Phillips, Gary; Reilly, R Todd; Kaumaya, Pravin T P

    2005-01-01

    Cancer vaccines designed to elicit an antibody response that target antigenic sites on a tumor antigen must closely mimic the three-dimensional structure of the corresponding region on the antigen. We have designed a complex immunogen derived from the extracellular domain of human HER-2/neu-(626-649) that represents a three-dimensional epitope. We have successfully introduced two disulfide bonds into this sequence, thereby recapitulating the natural disulfide pairings observed in the native protein. To evaluate the immunogenicity of the doubly cyclized disulfide-linked peptide versus the free uncyclized peptide we examined the induction of antibody responses in both inbred and outbred mice strains, with both constructs eliciting high titered antibodies. The disulfide-paired specific antibodies exhibited enhanced cross-reactivity to HER-2/neu expressed on BT-474 cell line as determined by flow cytometry. The antitumor activities of the disulfidepaired specific antibodies did not improve the in vitro growth inhibition of human breast cancer cells overexpressing HER-2, but showed superior antitumor responses in the context of ADCC and interferon-gamma induction. Inbred mice (FVB/n) vaccinated with the disulfide-paired epitope exhibited a statistically significant reduction in the development of exogenously administered tumors in vivo compared with mice receiving either the free uncyclized or the promiscuous T-cell epitope (MVF) control peptide (p = 0.001). This study demonstrates the feasibility and importance of designing conformational epitopes that mimic the tertiary structure of the native protein for eliciting biologically relevant anti-tumor antibodies. Such approaches are a prerequisite to the design of effective peptide vaccines.

  4. DFT study of H-bonds in the peptide secondary structures: The backbone-side-chain and polar side-chains interactions

    NASA Astrophysics Data System (ADS)

    Vener, M. V.; Egorova, A. N.; Fomin, D. P.; Tsirelson, V. G.

    2010-05-01

    The backbone-side-chain interactions in the peptide secondary structures are studied by the density functional theory methods with/without periodic boundary conditions. The alanine-based two-stranded β-sheet structure infinite models and the cluster models of the C5 structures modified by the glutamic acid residue are considered. Several low-energy structures have been localized in the BLYP/plane-wave and the BLYP/6-311++G** approximations. Combined use of the quantum-topological analysis of the electron density and frequency shifts enables us to detect and describe quantitatively the non-covalent interactions and H-bonds. We found that the strongest backbone-side-chain interaction (˜37 kJ/mol) is due to the intra-chain H-bond formed by the C dbnd O backbone group and by the COOH side-chain group. The OH…O distance equals to 1.727 Å and the frequency shift of the OH stretching vibration is 370 cm -1. The polar side-chains interaction is studied in the infinite model of the alanine-based two-stranded β-sheet structure modified by the glutamic acid/lysine residues. Moderate inter-chain H-bond (˜40 kJ/mol) is formed by glutamic acid COOH group and lysine NH 2 group. The OH…N distance equals to 1.707 Å and the frequency shift of the OH stretching vibration is 770 cm -1.

  5. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine

    NASA Technical Reports Server (NTRS)

    Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.

    1984-01-01

    The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.

  6. Energy relaxation of the amide-I mode in hydrogen-bonded peptide units: a route to conformational change.

    PubMed

    Pouthier, Vincent

    2008-02-14

    A one-site Davydov model involving a C[Double Bond]O group engaged in a hydrogen bond is used to study the amide-I relaxation due to Fermi resonances with a bath of intramolecular normal modes. In the amide-I ground state, the hydrogen bond behaves as a harmonic oscillator whose eigenstates are phonon number states. By contrast, in the amide-I first excited state, the hydrogen bond experiences a linear distortion so that the eigenstates are superimpositions of number states. By assuming the hydrogen bond in thermal equilibrium at biological temperature, it is shown that the amide-I excitation favors the population of these excited states and the occurrence of coherences. Due to the interaction with the bath, the vibron decays according to an exponential or a biexponential law depending on whether the Fermi resonance is wide or narrow. Therefore, each excited state relaxes over a set of number states according to specific pathways. The consequence is twofold. First, the relaxation leads to a redistribution of the number state population which differs from the initial Boltzmann distribution. Then, it allows for coherence transfers so that, although the vibron has disappeared, the hydrogen keeps the memory of its initial distortion and it develops free oscillations.

  7. Antimicrobial cyclic peptides for plant disease control.

    PubMed

    Lee, Dong Wan; Kim, Beom Seok

    2015-03-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  8. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  9. Differences in susceptibility between crystallins and non-lenticular proteins to copper and H2O2-mediated peptide bond cleavage.

    PubMed

    Carmichael, P L; Hipkiss, A R

    1991-01-01

    The relative susceptibilities of lenticular proteins (alpha, beta and gamma-crystallins) and a number of proteins of non-lenticular origin, to hydroxyl radical-mediated peptide bond cleavage were compared. The non-lenticular proteins (bovine serum albumin, ovalbumin, alcohol dehydrogenase, lysozyme, thyroglobulin, beta-amylase, haemoglobin and carbonic anhydrase) were readily cleaved into acid-soluble fragments following 5 hours treatment with copper ions and hydrogen peroxide. In contrast the crystallins were almost totally unaffected by similar treatment. When alpha-crystallin was pre-treated with acid or cleaved into large fragments with cyanogen bromide it became susceptible to hydroxyl radical attack, yet heating the protein did not diminish its resistance. It is suggested that the resistance of alpha-crystallin to the copper/peroxide-mediated fragmentation may be dependent on the conformation of the protein. PMID:1756988

  10. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  11. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  12. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation

    PubMed Central

    Fantini, Jacques; Yahi, Nouara; Garmy, Nicolas

    2013-01-01

    Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes. PMID:23772214

  13. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates.

    PubMed

    Ly, Hong Giang T; Absillis, Gregory; Janssens, Rik; Proost, Paul; Parac-Vogt, Tatjana N

    2015-06-15

    SDS-PAGE/Edman degradation and HPLC MS/MS showed that zirconium(IV)-substituted Lindqvist-, Keggin-, and Wells-Dawson-type polyoxometalates (POMs) selectively hydrolyze the protein myoglobin at Asp-X peptide bonds under mildly acidic and neutral conditions. This transformation is the first example of highly sequence selective protein hydrolysis by POMs, a novel class of protein-hydrolyzing agents. The selectivity is directed by Asp residues located on the surface of the protein and is further assisted by electrostatic interactions between the negatively charged POMs and positively charged surface patches in the vicinity of the cleavage site.

  14. Modeling the mechanisms of biological GTP hydrolysis.

    PubMed

    Carvalho, Alexandra T P; Szeler, Klaudia; Vavitsas, Konstantinos; Åqvist, Johan; Kamerlin, Shina C L

    2015-09-15

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis on the ribosome and in small GTPases.

  15. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  16. Multifunctional PEGylated 2C5-Immunoliposomes Containing pH-sensitive Bonds and TAT Peptide for Enhanced Tumor Cell Internalization and Cytotoxicity

    PubMed Central

    Koren, Erez; Apte, Anjali; Jani, Ankur; Torchilin, Vladimir P.

    2012-01-01

    pH-sensitive PEGylated (with PEG-PE) long-circulating liposomes (HSPC:cholesterol and Doxil®), modified with cell-penetrating TAT peptide (TATp) moieties and cancer-specific mAb 2C5 were prepared. A degradable pH-sensitive hydrazone bond between a long shielding PEG chains and PE (PEG2k-Hz-PE) was introduced. TATp was conjugated with a short PEG1k-PE spacer and mAb 2C5 was attached to a long PEG chain (2C5-PEG3.4k-PE). The “shielding” effect of TATp by long PEG chains was investigated using three liposomal models. At normal pH, surface TATp moieties are “hidden” by the long PEG chains. Upon the exposure to lowered pH, this multifunctional carrier exposes TATp moieties after the degradation of the hydrazone bond and removal of the long PEG chains. Enhanced cellular uptake of the TATp-containing immunoliposomes was observed in vitro after pre-treatment at lowered pH (using flow cytometry and fluorescence microscopy techniques). The presence of mAb 2C5 on the liposome surface further enhanced the interaction between the carrier and tumor cells but not normal cells. Furthermore, multifunctional immuno-Doxil® preparation showed increased cellular cytotoxicity of B16-F10, HeLa and MCF-7 cells when pre-incubated at lower pH, indicating TATp exposure and activity. In conclusion, a multifunctional immunoliposomal nanocarrier containing a pH-sensitive PEG-PE component, TATp, and the cancer cell-specific mAb 2C5 promotes enhanced cytotoxicity and carrier internalization by cancer cells and demonstrates the potential for intracellular drug delivery after exposure to lowered pH environment, typical of solid tumors. PMID:22182771

  17. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity.

    PubMed

    Koren, Erez; Apte, Anjali; Jani, Ankur; Torchilin, Vladimir P

    2012-06-10

    pH-sensitive PEGylated (with PEG-PE) long-circulating liposomes (HSPC:cholesterol and Doxil®), modified with cell-penetrating TAT peptide (TATp) moieties and cancer-specific mAb 2C5 were prepared. A degradable pH-sensitive hydrazone bond between a long shielding PEG chains and PE (PEG(2k)-Hz-PE) was introduced. TATp was conjugated with a short PEG(1k)-PE spacer and mAb 2C5 was attached to a long PEG chain (2C5-PEG(3.4k)-PE). The "shielding" effect of TATp by long PEG chains was investigated using three liposomal models. At normal pH, surface TATp moieties are "hidden" by the long PEG chains. Upon the exposure to lowered pH, this multifunctional carrier exposes TATp moieties after the degradation of the hydrazone bond and removal of the long PEG chains. Enhanced cellular uptake of the TATp-containing immunoliposomes was observed in vitro after pre-treatment at lowered pH (using flow cytometry and fluorescence microscopy techniques). The presence of mAb 2C5 on the liposome surface further enhanced the interaction between the carrier and tumor cells but not normal cells. Furthermore, multifunctional immuno-Doxil® preparation showed increased cellular cytotoxicity of B16-F10, HeLa and MCF-7 cells when pre-incubated at lower pH, indicating TATp exposure and activity. In conclusion, a multifunctional immunoliposomal nanocarrier containing a pH-sensitive PEG-PE component, TATp, and the cancer cell-specific mAb 2C5 promotes enhanced cytotoxicity and carrier internalization by cancer cells and demonstrates the potential for intracellular drug delivery after exposure to lowered pH environment, typical of solid tumors. PMID:22182771

  18. Prolyl-specific peptidases for applications in food protein hydrolysis.

    PubMed

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2015-10-01

    Various food proteins including, e.g. gluten, collagen and casein are rich in L-proline residues. Due to the cyclic structure of proline, these proteins are well protected from enzymatic degradation by typical digestive enzymes. Proline-specific peptidases (PsP) belong to different families of hydrolases acting on peptide bonds (EC 3.4.x.x). They occur in various organisms including bacteria, fungi, plants and insects. Based on their biochemical characteristics, PsP type enzymes are further grouped into different subclasses of which prolyl aminopeptidases (EC 3.4.11.5, PAP), prolyl carboxypeptidases (EC 3.4.17.16, PCP) and prolyl oligopeptidases/prolyl endopeptidases (EC 3.4.21.26, POP/PEP) are of major interest for applications in food biotechnology. This mini review summarises the biochemical assays employed for these subclasses of PsP and their structural properties and the reaction mechanisms. A special focus was set on PsP derived from fungi and insects and important industrial applications in the field of food biotechnology. The degradation of gluten and collagen as well as the hydrolysis of bitter peptides are discussed.

  19. FORMATION OF PEPTIDE BONDS IN SPACE: A COMPREHENSIVE STUDY OF FORMAMIDE AND ACETAMIDE IN Sgr B2(N)

    SciTech Connect

    Halfen, D. T.; Ziurys, L. M.; Ilyushin, V. E-mail: lziurys@as.arizona.edu

    2011-12-10

    acetaldehyde and ketene. CH{sub 3}CONH{sub 2} is therefore one of the most abundant complex organic species in Sgr B2(N), and could be a possible source of larger peptide molecules, as opposed to amino acids.

  20. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  1. Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) antimicrobial peptide. The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS.

    PubMed

    Li, Peng; Wohland, Thorsten; Ho, Bow; Ding, Jeak Ling

    2004-11-26

    S3 peptide, derived from the Sushi 3 domain of Factor C, which is the lipopolysaccharide (LPS)-sensitive serine protease of the horseshoe crab coagulation cascade, was shown previously to harbor antimicrobial activity against Gram-negative bacteria. However, the mechanism of action remains poorly understood at the molecular level. Here we demonstrate that the intermolecular disulfide bonding of S3 resulting in S3 dimers is indispensable for its interaction with LPS. The binding properties of the S3 monomer and dimer to LPS were analyzed by several approaches including enzyme-linked immunosorbent assay (ELISA)-based assay, surface plasmon resonance, and fluorescence correlation spectroscopy (FCS). It is evident that the S3 dimer exhibits stronger binding to LPS, demonstrating 50% LPS-neutralizing capability at a concentration of 1 mum. Circular dichroism spectrometry revealed that the S3 peptide undergoes conformational change in the presence of a disulfide bridge, transitioning from a random coil to beta-sheet structure. Using a fluorescence correlation spectroscopy monitoring system, we describe a novel approach for examining the mechanism of peptide interaction with LPS in the native environment. The strategy shows that intermolecular disulfide bonding of S3 into dimers plays a critical role in its propensity to disrupt LPS micelles and consequently neutralize LPS activity. S3 dimers display detergent-like properties in disrupting LPS micelles. Considering intermolecular disulfide bonds as an important parameter in the structure-activity relationship, this insight provides clues for the future design of improved LPS-binding and -neutralizing peptides.

  2. Thermolysin: a peptide forming enzyme.

    PubMed

    Reddy, A V

    1991-02-01

    Thermolysin, a thermostable endopeptidase, is recognised as a potential peptide bond forming enzyme. The importance of structural properties and its stereospecific nature towards peptide bond formation is described. Thermolysin's use in the keystep of the preparation of an artificial sweetener 'aspartame' is highlighted.

  3. Antihypertensive peptides from food proteins.

    PubMed

    Aluko, Rotimi E

    2015-01-01

    Bioactive peptides are encrypted within the primary structure of food proteins where they remain inactive until released by enzymatic hydrolysis. Once released from the parent protein, certain peptides have the ability to modulate the renin-angiotensin system (RAS) because they decrease activities of renin or angiotensin-converting enzyme (ACE), the two main enzymes that regulate mammalian blood pressure. These antihypertensive peptides can also enhance the endothelial nitric oxide synthase (eNOS) pathway to increase nitric oxide (NO) levels within vascular walls and promote vasodilation. The peptides can block the interactions between angiotensin II (vasoconstrictor) and angiotensin receptors, which can contribute to reduced blood pressure. This review focuses on the methods that are involved in antihypertensive peptide production from food sources, including fractionation protocols that are used to enrich bioactive peptide content and enhance peptide activity. It also discusses mechanisms that are believed to be involved in the antihypertensive activity of these peptides.

  4. Xylan hydrolysis in Populus trichocarpa × P. deltoides and model substrates during hydrothermal pretreatment.

    PubMed

    Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E

    2015-03-01

    Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa × P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa × P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis.

  5. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  6. Preparation and tribological study of a peptide-containing alkylsiloxane monolayer on silicon.

    PubMed

    Song, Shiyong; Ren, Sili; Wang, Jinqing; Yang, Shengrong; Zhang, Junyan

    2006-07-01

    A peptide-containing alkylsilane self-assembled monolayer on silicon surface has been prepared successfully by a simple one-step strategy. The formation and structure of the peptide-containing SAMs were characterized by means of contact angle measurement, ellipsometry, FT-IR, and AFM morphology observation. It was found that the water content in the hydrolysis solution plays a key role in determining the quality of the monolayers. The micro-tribological properties of various films were evaluated by using AFM, while the macro-tribological study was performed on a ball-on-plate tribometer. It was found that the peptide-containing monolayers possess excellent friction-reduction and antiwear ability, which was attributed to its amide-containing structure. In other words, the interchain hydrogen bonds among the molecules enhance the stability of the monolayers against rubbing the counterpart ball and thus endow it an outstanding antiwear ability.

  7. Labeling Primary Amine Groups in Peptides and Proteins with N-Hydroxysuccinimidyl Ester Modified Fe3O4@SiO2 Nanoparticles Containing Cleavable Disulfide-bond Linkers

    PubMed Central

    Patil, Ujwal S.; Qu, Haiou; Caruntu, Daniela; O’Connor, Charles J.; Sharma, Arjun; Cai, Yang; Tarr, Matthew A.

    2013-01-01

    The surface of superparamagnetic silica coated iron oxide (Fe3O4@SiO2) nanoparticles was functionalized with a disulfide bond linked N-hydroxysuccinimidyl (NHS) ester group in order to develop a method for labeling primary amines in peptides/proteins. The nanoparticle labeled proteins/peptides formed after NHS ester reaction with the primary amine groups were isolated using a magnet without any additional purification step. Nanoparticle moieties conjugated to peptides/proteins were then trimmed by cleavage at the disulfide linker with a reducing agent. The labeled peptides were analyzed by LC-MS/MS to determine their sequences and the sites of NHS ester labeling. This novel approach allowed characterization of lysine residues on the solvent accessible surface of native bovine serum albumin. Low cost, rapid magnetic separation, and specificity towards primary amine groups make NHS ester coated Fe3O4@SiO2 nanoparticles a potential labeling probe to study proteins on living cell surfaces. PMID:23909594

  8. Kinetics of the hydrolysis of guanosine 5'-phospho-2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1986-01-01

    The hydrolysis kinetics of guanosine 5'-phospho-2-methylimidazolide (2-MeImpG) in aqueous buffered solutions of various pH's was studied at 75 and 37 C, using spectrophotometric and HPLC techniques. The hydrolysis was found to be very slow even at low pH. At 75 C and pH at or below l.0, two kinetic processes were observed: the more rapid one was attributed to the hydrolysis of the phosphoimidazolide P-N bond; the second, much slower one, was attributed to the cleavage of the glycosidic bond. It is noted that the P-N hydrolysis in phosphoimidazolides is very slow compared to other phosphoramidates, and that this might be one of the reasons why the phosphoimidazolides showed an extraordinary ability to form long oligomers under template-directed conditions.

  9. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors.

  10. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. PMID:26201989

  11. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures

    PubMed Central

    Reynolds, Christopher A.; Koole, Cassandra; Smith, Kevin J.; Mobarec, Juan C.; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G. B.; Miller, Laurence J.; Christopoulos, Arthur; Sexton, Patrick M.

    2016-01-01

    The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190, N3.43240, Q7.49394, and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190, N3.43240, and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364A, N3.43240Q, Q7.49394N, and N3.43240Q/Q7.49394N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394, but not R2.60190/E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events. PMID:26700562

  12. Dissolved Organic Nitrogen Hydrolysis Rates in Axenic Cultures of Aureococcus anophagefferens (Pelagophyceae): Comparison with Heterotrophic Bacteria

    PubMed Central

    Berg, Gry Mine; Repeta, Daniel J.; Laroche, Julie

    2002-01-01

    The marine autotroph Aureococcus anophagefferens (Pelagophyceae) was rendered axenic in order to investigate hydrolysis rates of peptides, chitobiose, acetamide, and urea as indicators of the ability to support growth on dissolved organic nitrogen. Specific rates of hydrolysis varied between 8 and 700% of rates observed in associated heterotrophic marine bacteria. PMID:11772651

  13. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. II - Structures and thermodynamics of the activated complex species

    NASA Technical Reports Server (NTRS)

    Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.

    1988-01-01

    Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.

  14. Exothermic Bond Breaking: A Persistent Misconception

    ERIC Educational Resources Information Center

    Galley, William C.

    2004-01-01

    The misconceptions regarding the nature of ATP hydrolysis and bond breaking are discussed. The students' knowledge in this area is quantitatively measured by a survey of over 600 biochemistry and physiology students.

  15. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  16. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  17. Characterization of disulfide bonds by planned digestion and tandem mass spectrometry.

    PubMed

    Na, Seungjin; Paek, Eunok; Choi, Jong-Soon; Kim, Duwoon; Lee, Seung Jae; Kwon, Joseph

    2015-04-01

    The identification of disulfide bonds provides critical information regarding the structure and function of a protein and is a key aspect in understanding signaling cascades in biological systems. Recent proteomic approaches using digestion enzymes have facilitated the characterization of disulfide-bonds and/or oxidized products from cysteine residues, although these methods have limitations in the application of MS/MS. For example, protein digestion to obtain the native form of disulfide bonds results in short lengths of amino acids, which can cause ambiguous MS/MS analysis due to false positive identifications. In this study we propose a new approach, termed planned digestion, to obtain sufficient amino acid lengths after cleavage for proteomic approaches. Application of the DBond software to planned digestion of specific proteins accurately identified disulfide-linked peptides. RNase A was used as a model protein in this study because the disulfide bonds of this protein have been well characterized. Application of this approach to peptides digested with Asp-N/C (chemical digestion) and trypsin under acid hydrolysis conditions identified the four native disulfide bonds of RNase A. Missed cleavages introduced by trypsin treatment for only 3 hours generated sufficient lengths of amino acids for identification of the disulfide bonds. Analysis using MS/MS successfully showed additional fragmentation patterns that are cleavage products of S-S and C-S bonds of disulfide-linkage peptides. These fragmentation patterns generate thioaldehydes, persulfide, and dehydroalanine. This approach of planned digestion with missed cleavages using the DBond algorithm could be applied to other proteins to determine their disulfide linkage and the oxidation patterns of cysteine residues.

  18. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds.

    PubMed

    Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François

    2016-05-19

    The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments.

  19. Cooperative hydrolysis of aryl esters on functionalized membrane surfaces and in micellar solutions.

    PubMed

    Poznik, M; König, B

    2014-05-28

    Catalytic hydrolysis of peptides, proteins, phosphates or carboxylate esters in nature is catalysed by enzymes, which are efficient, fast and selective. Most of the hydrolytic chemical catalysts published so far mimic the active site of enzymes and contain metal complexes and amino acid residues. Their synthesis can be laborious, while the hydrolytic activity is still limited compared to enzymes. We present an approach that uses fluid membranes of vesicles and micelles as a support for amphiphilic additives, which cooperatively cleave aryl ester bonds. The membrane anchored bis-Zn(II)-complex 1 is hydrolytically active and hydrolyses fluorescein diacetate (FDA) with a second order rate constant (k2) of 0.9 M(-1) s(-1). The hydrolytic activity is modulated by co-embedded membrane additives, bearing common amino acid side chain functional groups. With this approach, the hydrolytic activity of the system is enhanced up to 16 fold in comparison with cyclen 1 (k2 = 14.7 M(-1) s(-1)). DOPC and DSPC lipids form at room temperature fluid or gel phase membranes, respectively. Omitting the lipid, micellar solutions were obtained with hydrolytic activity reaching k2 = 13.4 M(-1) s(-1). It is shown that cooperative hydrolysis is favoured in fluid membranes and micelles, allowing the active moieties to arrange freely. The embedding and dynamic self-assembly of membrane active components in fluid membranes and micelles provide facile access to hydrolytically active soft interfaces.

  20. Solid-phase synthesis of peptide-4-nitroanilides.

    PubMed

    Kaspari, A; Schierhorn, A; Schutkowski, M

    1996-11-01

    A wide variety of Glu/Asp and Gln containing peptide-4-nitroanilides and other chromogenic peptidyl-arylamides could be quickly synthesized by a Fmoc-based solid-phase synthesis strategy employing the side-chain carboxyl groups for transient anchoring to the resin. Suitable synthons for this method, Fmoc-Glu-NH-Np and Fmoc-Asp-NH-Np, were prepared using a diphenylphosphinic chloride-mediated coupling reaction. Peptides of the common structure Suc-Ala-Phe-Pro-Xaa-NH-Np (Xaa = Glu/Asp, Gln) were synthesized and were shown to be substrates for the protease subtilisin Carlsberg (E.C.3.4.21.14a) and for peptidyl-prolyl cis/trans-isomerases (PPIases E.C. 5.2.1.8.). The method was extended to amino acids possessing a side chain missing an anchor for binding to the matrix. We synthesized Suc-Ala-Phe-Pro-Gln-Phe-NH-Np anchoring the dipeptide derivative Fmoc-Glu-Phe-NH-Np with the carboxyl group to Rink amide resin using standard SPPS procedures. Additionally this procedure allowed us the preparation of peptidyl-arylamides, utilizing the commercial available Fmoc-Glu-OAll as building block. A mixture of pentapeptide-4-nitroanilides with the general sequence Ala-Ala-Xaa-Pro-Gln-NH-Np was synthesized. Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate the hydrolysis of the peptide mixture by the protease subtilisin Carlsberg. It could be shown that peptides with the hydrophobic amino acids Phe, Tyr, Leu and Val in the varied P3-position were most rapidly cleaved under the chosen conditions. Hydrolysis of the Gln-NH-Np bond in Ala-Ala-Pro-Pro-Gln-NH-Np has not been observed.

  1. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Storm, Adam C; Klitgaard, Søren; Jørgensen, Henry; Bibby, Bo M; Serena, Anja; Vissing, Kristian

    2016-01-01

    Whey protein is generally found to be faster digested and to promote faster and higher increases in plasma amino acid concentrations during the immediate ~60 min following protein ingestion compared to casein. The aim of the present study was to compare three different whey protein hydrolysates with varying degrees of hydrolysis (DH, % cleaved peptide bonds) to evaluate if the degree of whey protein hydrolysis influences the rate of amino acid plasma appearance in humans. A casein protein was included as reference. The three differentially hydrolysed whey proteins investigated were: High degree of hydrolysis (DH, DH = 48 %), Medium DH (DH = 27 %), and Low DH (DH = 23 %). The casein protein was intact. Additionally, since manufacturing of protein products may render some amino acids unavailable for utilisation in the body the digestibility and the biological value of all four protein fractions were evaluated in a rat study. A two-compartment model for the description of the postprandial plasma amino acid kinetics was applied to investigate the rate of postprandial total amino acid plasma appearance of the four protein products. The plasma amino acid appearance rates of the three whey protein hydrolysates (WPH) were all significantly higher than for the casein protein, however, the degree of hydrolysis of the WPH products did not influence plasma total amino acid appearance rate (estimates of DH and 95 % confidence intervals [CI] (mol L(-1) min(-1)): High DH 0.0585 [0.0454, 0.0754], Medium DH 0.0594 [0.0495, 0.0768], Low DH 0.0560 [0.0429, 0.0732], Casein 0.0194 [0.0129, 0.0291]). The four protein products were all highly digestible, while the biological value decreased with increasing degree of hydrolysis. In conclusion, the current study does not provide evidence that the degree of whey protein hydrolysis is a strong determinant for plasma amino acid appearance rate within the studied range of hydrolysis and protein dose. PMID:27065230

  2. Discovery and Mechanistic Studies of Facile N-Terminal Cα–C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations

    SciTech Connect

    Mu, Xiaoyan; Song, Tao; Xu, Minjie; Lai, Cheuk-Kuen; Siu, Chi-Kit; Laskin, Julia; Chu, Ivan K.

    2014-03-28

    Gas phase fragmentations of protein and peptide (M) ions in a mass spectrometer—induced by, for example, electron-capture dissociation1-2 and electron-transfer dissociation3-422 —form the foundation for top-down amino acid sequencing approaches for the rapid identification of protein components in complex biological samples. During these processes, protonated protein and peptide radicals ([M + nH]•(n – 1)+)5–8 are generated; their fragmentations are governed largely by the properties of the unpaired electron. Because of their importance in modern bioanalytical chemistry, considerable attention has been drawn recently toward understanding the radical cation chemistry behind the fragmentations of these odd-electron biomolecular ions in the gas phase.

  3. Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: determination of the sequence specificity of PDZ domains.

    PubMed

    Joo, Sang Hoon; Pei, Dehua

    2008-03-01

    Preparation of support-bound combinatorial peptide libraries with free C-termini has been challenging in the past because solid-phase peptide synthesis usually starts from the C-terminus, which must be covalently attached to the solid support. In this work, we have developed a general methodology to synthesize and screen one-bead-one-compound peptide libraries containing free C-termini. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers, and peptides were synthesized on the beads in the conventional C --> N manner, with their C-termini attached to the support through an ester linkage on the bead surface but through an amide bond in the bead interior. The surface peptides were cyclized between their N-terminal amine and a carboxyl group installed at a C-terminal linker sequence, while the internal peptides were kept in the linear form. Base hydrolysis of the ester linkage in the cyclic peptides regenerated linear peptides that contained a free alpha-carboxyl group at their C-termini but remained covalently attached to the resin via the N-termini ("inverted" peptides). An inverted peptide library containing five random residues (theoretical diversity of 3.2 x 10 (6)) was synthesized and screened for binding to four postsynaptic density-95/discs large/zona occluden-1 (PDZ) domains of sodium-hydrogen exchanger regulatory factor-1 (NHERF1) and channel-interacting PDZ domain protein (CIPP). The identity of the binding peptides was determined by sequencing the linear encoding peptides inside the bead by partial Edman degradation/mass spectrometry. Consensus recognition motifs were identified for the PDZ domains, and representative peptides were resynthesized and confirmed for binding to their cognate PDZ domains. This method should be generally applicable to all PDZ domains as well as other protein domains and enzymes that recognize the C-terminus of their target proteins.

  4. Disulfide bonds of acetylcholinesterase

    SciTech Connect

    MacPhee-Quigley, K.; Vedvick, T.; Taylor, P.; Taylor, S.

    1986-05-01

    The positions of the inter- and intrasubunit disulfide bridges were established for the 11S form of acetylcholinesterase (AChE) isolated from Torpedo californica. A major form of AChE localized within the basal lamina of the synapse is a dimensionally asymmetric molecule which contains either two (13S) or three (17S) sets of catalytic subunits linked to collagenous and non-collagenous structural subunits. Limited proteolysis yields a tetramer of catalytic subunits which sediments at 11S. Each catalytic subunit contains 8 cysteine residues. Initially, these Cys residues were identified following trypsin digestion of the reduced protein alkylated with (/sup 14/C)-iodoacetate. Peptides were resolved by gel filtration followed by reverse phase HPLC. To determine the disulfide bonding profile, native non-reduced 11S AChE was treated with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to proteolytic digestion. One fluorescent Cys peptide was identified indicating that a single sulfhydryl residue was present in its reduced form. Three pairs of disulfide bonded peptides were identified, sequenced, and localized in the polypeptide chain. The Cys residue that is located in the C-terminal tryptic peptide was disulfide bonded to an identical peptide and thus forms the intersubunit crosslink. Finally, the cysteine positions have been compared with the sequence of the homologous protein, thyroglobulin. Both likely share a common pattern of folding.

  5. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  6. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  7. Influence of the rapeseed protein hydrolysis process on CHO cell growth.

    PubMed

    Chabanon, G; Alves da Costa, L; Farges, B; Harscoat, C; Chenu, S; Goergen, J-L; Marc, A; Marc, I; Chevalot, I

    2008-10-01

    Different protein hydrolysates were prepared from enzymatic hydrolyses of a rapeseed isolate (>90% protein content) using different commercial enzymes of non-animal origin. The extent of hydrolysis was controlled to produce hydrolysates corresponding to various degrees of hydrolysis (DH) from 5 to 30. These hydrolysates were characterized according to their solubility and size peptide pattern. Different growth behaviours of Chinese Hamster Ovary cells were observed when these various hydrolysates were added in serum-free medium containing transferrin, albumin and insulin. Hydrolysates from low degree of hydrolysis generally did not exhibit significant positive effect on cell growth; conversely hydrolysates from extensive hydrolysis, corresponding to a major low molecular size peptides content, usually allowed an increase of the maximal cell density. However, depending on the enzyme used, the supplementation with hydrolysates corresponding to a high degree of hydrolysis and composed of at least 70% peptides with a molecular size under 1kDa, led to different maximal cell density values, indicating the importance of enzyme specificity and consequently the nature of the released peptides. This result showed that the positive influence of the rapeseed hydrolysates on cell growth was not only due to a nutritional support tied to the addition of small peptides but may be related to the presence of peptides exhibiting growth or survival factor effects. Furthermore, total substitution of proteins (transferrin, albumin and insulin) in the cell culture medium by some rapeseed hydrolysates appeared to be a promising alternative to improve the cell growth in protein-free media.

  8. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  9. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane.

    PubMed

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane-water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. PMID:27038545

  10. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  11. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion.

    PubMed

    Wang, Chan; Li, Bo; Wang, Bo; Xie, Ningning

    2015-04-15

    The degradation characteristics of three peptides (Ser-Met, Asn-Cys-Ser, and glutathione) and their zinc-peptide complexes were studied using a two-stage in vitro digestion model. Enzyme-resistant peptides and zinc-peptide complexes, antioxidant activities, and free amino acids released by digestive enzymes, were measured in this study. The results revealed that the three peptides and their zinc-peptide complexes were resistant to pepsin but not to pancreatin. Pancreatin can partly hydrolyse both peptides and zinc-peptide complexes, but more than half of them remaining in their original form after gastrointestinal digestion. The coordination of zinc improved the enzymatic resistance of the peptide due to lower solubility of complexes and affected the hydrolytic site of pepsin and pancreatin. Zinc-Asn-Cys-Ser, which is highly resistant to enzymatic hydrolysis and maintains Zn in a soluble form, may have potential to improve Zn bioavailability.

  12. Alkali hydrolysis of trinitrotoluene.

    PubMed

    Karasch, Christian; Popovic, Milan; Qasim, Mohamed; Bajpai, Rakesh K

    2002-01-01

    Data for alkali hydrolysis of 2,4,6-trinitrotoluene (TNT) in aqueous solution at pH 12.0 under static (pH-controlled) as well as dynamic (pH-uncontrolled) conditions are reported. The experiments were conducted at two different molar ratios of TNT to hydroxyl ions at room temperature. The TNT disappeared rapidly from the solution as a first-order reaction. The complete disappearance of aromatic structure from the aqueous solution within 24 h was confirmed by the ultraviolet-visible (UV-VIS) spectra of the samples. Cuvet experiments in a UV-VIS spectrophotometer demonstrated the formation of Meisenheimer complex, which slowly disappeared via formation of aromatic compounds with fewer nitro groups. The known metabolites of TNT were found to accumulate only in very small quantities in the liquid phase.

  13. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2016-07-27

    ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oβγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oβγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites. PMID:27296627

  14. Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba).

    PubMed

    Wang, Yanchao; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu; Chang, Yaoguang; Xue, Yong

    2015-06-01

    Antarctic krill (Euphausia superba) protein serves as a novel sustainable protein source for human. Krill protein isolate was phosphorylated by the dry-heating method with sodium pyrophosphate. Phosphorylated peptides from Antarctic krill (PP-AKP) were obtained from phosphorylated protein through tryptic hydrolysis. Two types of phosphate bonds were introduced by phosphorylation, i.e. PO and PO bonds. The anti-osteoporotic activities of PP-AKP at two doses (400 and 800mg/kg body weight) were investigated with an osteoporotic rat model, which was established with bilateral ovariectomy surgery. Different doses of PP-AKP were given intraperitoneal injections to rats once a day with alendronate as a positive control. Phosphorylated peptides from Antarctic krill dose-dependently preserved bone mineral density in osteoporotic rats by increasing the degree of bone mineralization. Both trabecular and cortical bone strength in osteoporotic rats was significantly improved with PP-AKP treatment. The mechanism by which PP-AKP augmented bone mineral density and bone strength was relation to the reduction in osteoclast-mediated bone remodeling, as was supported by the decrease in bone resorption markers. Phosphorylated peptides from Antarctic krill could be developed as functional food or nutritional supplements.

  15. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  16. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  17. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation

    PubMed Central

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-01-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33→Ala33, Asp60→Ala60, Ser62→Ala62, and Thr220→Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (ΔΔGT). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the Km values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations. PMID:16411898

  18. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-05-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33-->Ala33, Asp60-->Ala60, Ser62-->Ala62, and Thr220-->Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (DeltaDeltaG(T)). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the K(m) values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.

  19. Peptide nanotubes.

    PubMed

    Hamley, Ian W

    2014-07-01

    The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.

  20. Dicyclopropylmethyl peptide backbone protectant.

    PubMed

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  1. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  2. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  3. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  4. Cryptic Peptides from Collagen: A Critical Review.

    PubMed

    Banerjee, Pradipta; Shanthi, C

    2016-01-01

    Collagen, a predominant structural protein in extracellular matrix (ECM), is now considered to have probable roles in many biological activities and hence, in different forms have found application as nutraceutical or pharmaceutical therapy option. Many of the biological properties are believed to be due to small hidden peptide residues in the collagen molecules, which come into play after the biodegradation or biosorption of the parent molecule. These peptide regions are called cryptic peptides or by some, as cryptides. The proteolytic hydrolysis of the ECM protein releases the cryptic peptides with many novel biological activities not exhibited directly by the parental protein which include angiogenic, antimicrobial, mitogenic and chemotactic properties. The research for understanding the role of these cryptic peptide regions and making use of them in medical field is very active. Such an understanding could lead to the development of peptide supplements for many biomedical applications. The prolific research in this area is reviewed in this paper. PMID:27173646

  5. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  6. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  7. Review seed biopharmaceutical cyclic peptides: From discovery to applications.

    PubMed

    Mahatmanto, Tunjung

    2015-11-01

    Mini-proteins (or peptides) with disulfide bond/s and a cyclic backbone offer exciting opportunities for applications in medicine, as these ribosomally synthesized and posttranslationally modified peptides are exceptionally stable and amenable to grafting epitopes with desirable activities. Here I discuss important aspects of the discovery and applications of disulfide-bonded cyclic peptides from seeds, i.e., the trypsin inhibitor cyclotides and the preproalbumin with sunflower trypsin inhibitor-derived peptides, focusing on bioanalytical methods for and insights generated from their discovery as well as their potential use as engineering scaffolds for peptide-based drug design. The recent discovery of their precursors and processing enzymes could potentially enable in planta production of designer disulfide-bonded cyclic peptides, preferably in edible seeds, and address the demand for new biopharmaceutical peptides in a cost-effective manner. PMID:26385189

  8. High resolution structures of p-aminobenzamidine- and benzamidine-VIIa/soluble tissue factor: unpredicted conformation of the 192-193 peptide bond and mapping of Ca2+, Mg2+, Na+, and Zn2+ sites in factor VIIa.

    PubMed

    Bajaj, S Paul; Schmidt, Amy E; Agah, Sayeh; Bajaj, Madhu S; Padmanabhan, Kaillathe

    2006-08-25

    Factor VIIa (FVIIa) consists of a gamma-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca(2+) ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca(2+) and Mg(2+), and the Ca(2+) sites in FVIIa that could be specifically occupied by Mg(2+) are unknown. Furthermore, FVIIa contains a Na(+) and two Zn(2+) sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca(2+), Mg(2+), Na(+), and Zn(2+). The crystal diffracted to 1.8A resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca(2+) and three bound Mg(2+). The EGF1 domain contains one Ca(2+) site, and the protease domain contains one Ca(2+), one Na(+), and two Zn(2+) sites. (45)Ca(2+) binding in the presence/absence of Mg(2+) to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly(193) in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87A resolution. However, soaking benzamidine-FVIIa/sTF crystals with d-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, d-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis. PMID:16757484

  9. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  10. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  11. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  12. Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties.

    PubMed

    Yin, Li-Jung; Jiang, Shann-Tzong; Pon, Shen-Hwei; Lin, Hsin-Hung

    2010-01-01

    Both 10% and 20% (w/w) Chlorella suspensions were hydrolyzed by 150 to 350 U/mL of cellulases from a 3-d cultivation of Cellulomonas sp. YJ5. Higher chlorophyll, reducing sugars and soluble proteins, and lower residual insoluble solid were observed on both samples after 30-min hydrolysis by various concentrations of cellulases at 50 °C. Decrease in insoluble solid, increases in soluble proteins, peptides and chlorophyll contents, and microscopic observation indicated obvious lysis of cell walls occurred during 60- to 180-min hydrolysis. Significant increases in soluble proteins, peptides, Fe(2+) chelating ability, trolox equivalent antioxidation capacity (TEAC), and reducing power was obtained after 3-h hydrolysis by 150 U/mL of cellulase. These data suggested that cellulolysis technology has high application potential in Chlorella industry.

  13. Evaluation of reduced allergenicity of deamidated gliadin in a mouse model of wheat-gliadin allergy using an antibody prepared by a peptide containing three epitopes.

    PubMed

    Abe, Ryosuke; Shimizu, Shiori; Yasuda, Karin; Sugai, Masae; Okada, Yohei; Chiba, Kazuhiro; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2014-04-01

    Gliadin is the principal allergen of wheat-dependent exercise-induced anaphylaxis (WDEIA). The primary structure of IgE-binding epitopes in wheat gliadin includes tandem sequencing sites of glutamine residues. Therefore, deamidation would be an effective approach to reduce the allergenicity of wheat proteins. In our previous study, we deamidated wheat gliadin without causing peptide-bond hydrolysis or polymerization by use of carboxylated cation-exchange resins, and we found that the deamidated gliadin scarcely reacted with the sera of patients radioallergosorbent test (RAST)-positive to wheat. In this study, we examined the allergenicity of deamidated gliadin in a mouse model of wheat-gliadin allergy. Oral administration of deamidated gliadin to gliadin-sensitized mice suppressed enhancement in intestinal permeability, serum allergen level, serum allergen-specific IgE level, mast-cell-surface expression of FcεRI, and serum and intestinal histamine levels. Our results indicate that gliadin deamidated with no peptide-bond hydrolysis by cation-exchange resins has low allergenicity even under in vivo conditions. PMID:24617642

  14. Evaluation of reduced allergenicity of deamidated gliadin in a mouse model of wheat-gliadin allergy using an antibody prepared by a peptide containing three epitopes.

    PubMed

    Abe, Ryosuke; Shimizu, Shiori; Yasuda, Karin; Sugai, Masae; Okada, Yohei; Chiba, Kazuhiro; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2014-04-01

    Gliadin is the principal allergen of wheat-dependent exercise-induced anaphylaxis (WDEIA). The primary structure of IgE-binding epitopes in wheat gliadin includes tandem sequencing sites of glutamine residues. Therefore, deamidation would be an effective approach to reduce the allergenicity of wheat proteins. In our previous study, we deamidated wheat gliadin without causing peptide-bond hydrolysis or polymerization by use of carboxylated cation-exchange resins, and we found that the deamidated gliadin scarcely reacted with the sera of patients radioallergosorbent test (RAST)-positive to wheat. In this study, we examined the allergenicity of deamidated gliadin in a mouse model of wheat-gliadin allergy. Oral administration of deamidated gliadin to gliadin-sensitized mice suppressed enhancement in intestinal permeability, serum allergen level, serum allergen-specific IgE level, mast-cell-surface expression of FcεRI, and serum and intestinal histamine levels. Our results indicate that gliadin deamidated with no peptide-bond hydrolysis by cation-exchange resins has low allergenicity even under in vivo conditions.

  15. Destruction of waste energetic materials using base hydrolysis

    SciTech Connect

    Benziger, T.M.; Buntain, G.A.; Sanchez, J.A.; Spontarelli, T.

    1993-01-01

    In dismantling weapons from stockpile reduction, environmentally acceptable degradation of the associated high explosive (HE) waste to non-energetic forms is a critical objective. Base hydrolysis appears to be a simple, inexpensive method for converting propellants, explosives, and pyrotechnics (PEPS) into non-energetic materials that can be released directly or, if necessary, treated further. We have demonstrated that many PEPs can be hydrolyzed with aqueous sodium hydroxide or ammonia at temperatures ranging from 60 to 150[degree]C. Hydrolysis experiments have been performed on pure compounds as well as DOE and DoD formulations, such as plastic-bonded explosive (PBX) 9404, tritonal, and rocket motor propellant. Small particle size of the energetic material is desirable, but not necessary. We have decomposed molding powder, pressed charges up to two pounds in weight, and partially exposed, metal-encased pieces. The products formed are dependent on the starting material composition, but usually consist of organic and inorganic salts, e.g., sodium formate, acetate, nitrite and nitrate. The major gaseous product from the base hydrolysis of PEPs is nitrous oxide. The time required for complete destruction varies with the material being hydrolyzed, and is dependent on solubility and mass transfer. Hydrolysis rates can be increased by particle size reduction, efficient stirring, and addition of organic solvent to the alkaline solution. Rate enhancement by ultrasonic agitation is a possibility that we have just begun to study.

  16. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  17. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    SciTech Connect

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by {sup 31}P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 {Angstrom} of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an {alpha}-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  18. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    SciTech Connect

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  19. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  20. Electron transfer in peptides.

    PubMed

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  1. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  2. Constrained Peptides as Miniature Protein Structures

    PubMed Central

    Yin, Hang

    2012-01-01

    This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758

  3. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  4. Structure and hydrolysis of p-(2-oxo-1-pyrrolidinyl)- benzenesulfonic acid

    SciTech Connect

    Kukalenko, S.S.; Frolov, S.I.; Lim, I.K.; Putsykina, E.B.; Vasil'ev, A.F.

    1987-11-20

    With the aid of vibrational and PMR spectra of p-(2-oso-1-pyrrolidinyl)benzenesulfonic acid it was shown that in the solid state it exists as an O-protonated dipolar ion in which the protonated amide cation and sulfonate ion are intermolecularly linked by a very strong hydrogen bond. In concentrated hydrochloric acid the dipolar ion is an intermediate link in the chain of processes in the hydrolysis of the amide bond of the lactam ring.

  5. Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber

    NASA Astrophysics Data System (ADS)

    Hassan, Nur Syakilla; Badri, Khairiah Haji

    2014-09-01

    In the present work, two types of treatment namely alkaline hydrolysis and glycerolysis have been conducted for lignin extraction from oil palm empty fruit bunch (EFB) fiber. Lignin has been retrieved from two sequential methods, which was the klason lignin from residue and lignin from precipitation of the filtrate. Alkaline hydrolysis was performed using 10% NaOH solution at room condition. This has extracted 13.0 % lignin. On the other hand, glycerolysis was carried out using 70% glycerol catalyzed with 5% of 1 M NaOH at 60-70 °C. This has successfully extracted 16.0% lignin. The SEM micrographs exhibited some physical changes on the surface where the impurities and waxes have been removed, exposing the, lumen. Besides that, FTIR analysis was conducted on untreated EFB, treated EFB and extracted lignin. Delignification of EFB fiber was confirmed based on the intensity reduction at 1245 cm-1 that showed lignin was removed from the fiber. The presence of CO, CC and CC aromatic peaks in the FTIR spectra of the dried filtrate gave an evidence on the presence of lignin.

  6. Generation of group B soyasaponins I and III by hydrolysis.

    PubMed

    Zhang, Wei; Teng, Su Ping; Popovich, David G

    2009-05-13

    Soyasaponins are a group of oleanane triterpenoids found in soy and other legumes that have been associated with some of the benefits achieved by consuming plant-based diets. However, these groups of compounds are diverse and structurally complicated to chemically characterize, separate from the isoflavones, and isolate in sufficient quantities for bioactive testing. Therefore, the aim of this study was to maximize the extraction of soyasaponins from soy flour, remove isoflavones, separate group B soyasaponins from group A, and produce an extract that contained a majority of non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one)-conjugated group B soyasaponins I and III. Room temperature extraction in methanol for 24 or 48 h resulted in the maximum recovery of soyasaponins, and Soxhlet extraction resulted in the least. A solid-phase extraction using methanol (45%) was found to virtually eliminate the interfering isoflavones as compared to butanol-water liquid-liquid extraction and ammonium sulfate precipitation, while maximizing saponin recovery. Alkaline hydrolysis in anhydrous methanol produced the maximum amount of soyasaponins I and III as compared to aqueous methanol and acid hydrolysis in both aqueous and anhydrous methanol. The soyasaponin I amount was increased by 175%, and soyasaponin III was increased by 211% after alkaline hydrolysis. Furthermore, after alkaline hydrolysis, a majority of DDMP-conjugated group B soyasaponins such as betag, betaa, gammag, and gammaa transformed into the non-DDMP-conjugated soyasaponins I and III without affecting the glycosidic bond at position C-3 of the ring structure. Therefore, we have developed a method that maximizes the recovery of DDMP-conjugated saponins and uses alkaline hydrolysis to produce an extract containing mainly soyasaponins I and III. PMID:19338335

  7. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  8. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  9. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  10. Hippurate hydrolysis by Legionella pneumophila.

    PubMed Central

    Hébert, G A

    1981-01-01

    Strains of Legionella pneumophila were shown to hydrolyze sodium hippurate in an overnight test system, but strains of L. bozemanii, L. micdadei, L. dumoffii, and some other organisms similar to the legionellae did not. Although only a small number of strains of legionellae other than L. pneumophila have been classified and tested, the results indicate that the hippurate hydrolysis test may prove useful for differentiating among Legionella species. PMID:7462418

  11. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates.

    PubMed

    Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc; González de Mejía, Elvira

    2015-01-01

    The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases. PMID:25894223

  12. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus) Pepsin/Pancreatin Hydrolysates

    PubMed Central

    Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc; González de Mejía, Elvira

    2015-01-01

    The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases. PMID:25894223

  13. Isolation and sequence determination of trichorzianines A antifungal peptides from Trichoderma harzianum.

    PubMed

    el Hajji, M; Rebuffat, S; Lecommandeur, D; Bodo, B

    1987-02-01

    Trichorzianines A, membrane active peptides of the peptaibol class, were isolated from cultures of the mould Trichoderma harzianum. Trichorzianines A were separated into pure components by HPLC on octadecyl bonded and SiO2 phases successively. Nine trichorzianines A (IIa, IIIa, IIIb, IIIc, IVb, Vb, VIa, VIb and VII) were isolated from the complex microheterogeneous mixture. Their N-terminal amino acid is acetylated, the C-terminal amino alcohol is either tryptophanol or phenylalaninol, 7 to 8 of the 19 residues are alpha-aminoisobutyric acid. Gas chromatography on a chiral phase showed isovaline to have the D-configuration and all the other optically active amino acids and amino alcohols to have the L-configuration. The amino acid sequences were determined from their positive ion FAB mass spectra which exhibited the preferential cleavage of the Aib 12-Pro 13 amide bond as a main fragmentation. The resulting fragments subsequently underwent amide bond ruptures that generated two series of abundant acylium ions which enabled direct determination of the 1-19 sequence. The relative position of the isomeric amino acids in the sequence of trichorzianine AVII was assigned from analysis of the N- and C-terminal oligopeptides yielded by its selective acidic hydrolysis. The microheterogeneity of trichorzianines A results mainly from single or multiple substitution of amino acids at the specific positions 5, 14, 16 and 19. PMID:3570662

  14. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    PubMed

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  15. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.

    PubMed

    Marjamaa, Kaisa; Toth, Karolina; Bromann, Paul Andrew; Szakacs, George; Kruus, Kristiina

    2013-05-10

    The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35°C while at 45°C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.

  16. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  17. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  18. HYDROLYSIS

    EPA Science Inventory

    Hydrolytic processes provide the baseline loss rate for any chemical in an aqueous envi- ronment. Although various hydrolytic pathways account for significant degradation of certain classes of organic chemicals, other organic structures are completely inert. Strictly speaking, hy...

  19. The Competing Mechanisms of Phosphate Monoester Dianion Hydrolysis

    PubMed Central

    2016-01-01

    Despite the numerous experimental and theoretical studies on phosphate monoester hydrolysis, significant questions remain concerning the mechanistic details of these biologically critical reactions. In the present work we construct a linear free energy relationship for phosphate monoester hydrolysis to explore the effect of modulating leaving group pKa on the competition between solvent- and substrate-assisted pathways for the hydrolysis of these compounds. Through detailed comparative electronic-structure studies of methyl phosphate and a series of substituted aryl phosphate monoesters, we demonstrate that the preferred mechanism is dependent on the nature of the leaving group. For good leaving groups, a strong preference is observed for a more dissociative solvent-assisted pathway. However, the energy difference between the two pathways gradually reduces as the leaving group pKa increases and creates mechanistic ambiguity for reactions involving relatively poor alkoxy leaving groups. Our calculations show that the transition-state structures vary smoothly across the range of pKas studied and that the pathways remain discrete mechanistic alternatives. Therefore, while not impossible, a biological catalyst would have to surmount a significantly higher activation barrier to facilitate a substrate-assisted pathway than for the solvent-assisted pathway when phosphate is bonded to good leaving groups. For poor leaving groups, this intrinsic preference disappears. PMID:27471914

  20. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.

  1. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  2. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  3. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  4. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  5. Synthetic peptides.

    PubMed

    Francis, M J

    1996-01-01

    Efforts to produce more stable and defined vaccines have concentrated on studying, in detail, the immune response to many infectious diseases in order to identify the antigenic sites on the pathogens that are involved in stimulating protective immumty. Armed with this knowledge, it is possible to mimic such sites by producing short chains of amino acids (peptides) and to use these as the basis for novel vaccines. The earliest documented work on peptide immunization is actually for a plant virus, tobacco mosaic virus. In 1963, Anderer (1) demonstrated that rabbit antibodies to an isolated hexapeptide fragment from the virus-coat protein coupled to bovine serum albumm would neutralize the infectious vn-us in culture. Two years later, he used a synthetically produced copy of the same peptide to confirm this observation. This was pioneering work, and it was over 10 years before the next example of a peptide that elicited antivirus antibody appeared following work by Sela and his colleagues (2) on a virus, MS2 bacteriophage, which infects bacteria. The emergence of more accessible techniques for sequencing proteins in 1977, coupled with the ability to synthesize readily peptides already developed in 1963, heralded a decade of intensive research into experimental peptide vaccines. The first demonstration that peptides could elicit protective immunity in vivo, in addition to neutralizing activity in vitro, was obtained using a peptide from the VP1 coat protein of foot-and-mouth disease virus (FMDV) in 1982, with the guinea pig as a laboratory animal model (3, 4). PMID:21359696

  6. Hydrolytic activity of vanadate toward serine-containing peptides studied by kinetic experiments and DFT theory.

    PubMed

    Ho, Phuong Hien; Mihaylov, Tzvetan; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2012-08-20

    Hydrolysis of dipeptides glycylserine (Gly-Ser), leucylserine (Leu-Ser), histidylserine (His-Ser), glycylalanine (Gly-Ala), and serylglycine (Ser-Gly) was examined in vanadate solutions by means of (1)H, (13)C, and (51)V NMR spectroscopy. In the presence of a mixture of oxovanadates, the hydrolysis of the peptide bond in Gly-Ser proceeds under the physiological pH and temperature (37 °C, pD 7.4) with a rate constant of 8.9 × 10(-8) s(-1). NMR and EPR spectra did not show evidence for the formation of paramagnetic species, excluding the possibility of V(V) reduction to V(IV) and indicating that the cleavage of the peptide bond is purely hydrolytic. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest hydrolysis observed at pD 7.4. Combined (1)H, (13)C, and (51)V NMR experiments revealed formation of three complexes between Gly-Ser and vanadate, of which only one complex, designated Complex 2, formed via coordination of amide oxygen and amino nitrogen to vanadate, is proposed to be hydrolytically active. Kinetic experiments at pD 7.4 performed by using a fixed amount of Gly-Ser and increasing amounts of Na(3)VO(4) allowed calculation of the formation constant for the Gly-Ser/VO(4)(3-) complex (K(f) = 16.1 M(-1)). The structure of the hydrolytically active Complex 2 is suggested also on the basis of DFT calculations. The energy difference between Complex 2 and the major complex detected in the reaction mixture, Complex 1, is calculated to be 7.1 kcal/mol in favor of the latter. The analysis of the molecular properties of Gly-Ser and their change upon different modes of coordination to the vanadate pointed out that only in Complex 2 the amide carbon is suitable for attack by the hydroxyl group in the Ser side chain, which acts as an effective nucleophile. The origin of the hydrolytic activity of vanadate is most likely a combination of the polarization of amide oxygen in Gly-Ser due to the binding to vanadate, followed by the intramolecular

  7. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  8. Bonds Boom.

    ERIC Educational Resources Information Center

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar outlines…

  9. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  10. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity

    PubMed Central

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  11. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.

  12. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  13. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  14. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  15. Refoldable Peptide Barrel -- Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Titov, Alexey; Wang, Boyang; Kral, Petr

    2008-03-01

    We design hybrid bio-nano-junctions formed by cylindrical peptide structures covalently attached to carbon nanotubes. The cylinders are composed of 5 pairs of antiparallel peptide strands that are ``one-to-one'' matched and covalently bonded through ester and amide bonds to the terminal C atoms in two (20,0) carbon nanotubes. The remaining terminal carbons in the CNTs are replaced by nitrogens, forming embedded quinoline-like structures. The used peptide strands are composed of charged amino acids that form cylindrical patterns with preferred stable configurations. By applying a torque to the nanotubes, we can reversibly fold and control the overall structure of the peptide barrels. The junctions might allow the collection and delivery of drugs and activation of biological molecules attached to them.

  16. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  17. Antioxidant peptides from corn gluten meal: Orthogonal design evaluation.

    PubMed

    Zhou, Cunshan; Hu, Jiali; Ma, Haile; Yagoub, Abu ElGasim A; Yu, Xiaojie; Owusu, John; Ma, Haiyan; Qin, Xiaopei

    2015-11-15

    Protamex catalyzed corn gluten meal (CGM) hydrolysis peptides (CHP) were prepared. Orthogonal design L16 (4(5)) was used to optimize processing variables of CGM concentration, CGM heat pretreatment (121 °C) time, and enzymolysis pH, temperature, and time. Degree of hydrolysis (DH), undigested residue ratio, molecular weight (MW) distribution and DPPH radical inhibition were selected as analysis indicators. Optimum variables were CGM concentration of 18%, heat pretreatment time of 40 min, and enzymolysis pH, temperature and time of 7.5, 55 °C and 24h, respectively. Verification test showed that CHP IC50 for scavenging hydroxyl radical was the best and then followed by reducing power. Oligopeptides improved after hydrolysis at the expense of di- and tripeptides, suggesting formation of soluble aggregates from low MW peptides. The increase in the DH, oligopeptides, Alanyl-Tyrosine, and antioxidant free amino acids coincided with the improvement in the antioxidant activity of CHP. PMID:25977026

  18. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  19. Crystal structure, ferromagnetostructural behavior and evidence of cooperative Jahn-Teller interactions of the complex [CuL]Cl·H 2O (L= N-glycyl-2(aminomethyl)benzimidazol), synthesized by a novel simple method of peptide bond formation.

    NASA Astrophysics Data System (ADS)

    García-Orozco, Ivan; Tapia-Benavides, Antonio Rafael; Alvarez-Toledano, Cecilio; Toscano, Ruben A.; Ramírez-Rosales, Daniel; Zamorano-Ulloa, Rafael; Reyes-Ortega, Yasmi

    2002-01-01

    [CuL]Cl·H 2O 1 (L= N-glycyl-2(aminomethyl)benzimidazol) compound crystallizes in the orthorhombic space group Pna2 1 with unit cell parameters a=7.140(5) Å, b=17.621(5) Å, c=9.941(5) Å. Its structure shows that the copper(II) ion is tetra coordinated with a square planar geometry. The ligand acts as a tridentate and the chloride ion is the fourth ligand. Symmetry related units stack into helicoidal columns along the ā direction producing weakly bonded strips with dihedral angles of 2.6° between two consecutive molecular planes. UV/VIS spectrum of 1 shows one broad and weak band at 622 nm, characteristic of d-d transitions, indicative of low local Cu(II) symmetry. X band ESR spectra of 1 at 300 and 77 K are axial exchange narrow lines with g∥=2.135 and g⊥=2.028. However, the axial spectrum at 6.4 K shows an increment Δ g∥=0.076(6) and Δ g⊥=0.028(4) which suggests a cooperative Jahn-Teller interactions between complexes via the hydrogen-bonding network. Magnetic susceptibility data at 18-300 K and fitted to the modified Bleany-Bowers equation indicate a weak ferromagnetic coupling with 2J≅+17 cm-1, which is compatible with the helium temperature ESR results and with the helicoidal stacking into columns of the molecules along the a-axis with 78.9° Cu'-Cl'-Cu and 81.2° Cu'-N( 1)-Cu bonds angles. The synthesis is a novel, simple and efficient method: in aqueous conditions and heterogeneous phase with basic copper(II) carbonate, which carries out the formation of the stable peptide bond.

  20. Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel.

    PubMed

    Sun, Binzhe; Duan, Lian; Peng, Gege; Li, Xiaoxia; Xu, Aihua

    2015-09-01

    To improve the production of glucose from cellulose, a simple and effective route was developed. This process uses a combination of a step of cellulose dissolution in aqueous NaOH/urea solution and then regeneration with water, followed by an acid hydrolysis step under microwave irradiation. The method is effective to obtain glucose from α-cellulose, microcrystalline cellulose, filter paper, ramie fiber and absorbent cotton. Increased with the acid concentration the glucose yield from hydrogel hydrolysis increased from 0.42% to 44.6% at 160 °C for 10 min. Moreover, the ozone treatment of cellulose in NaOH/urea solution before regeneration significantly enhanced the hydrolysis efficiency with a glucose yield of 59.1%. It is believed that the chains in cellulose hydrogel are relatively free approached, making that the acids easily access the β-glycosidic bonds.

  1. Ring Substituent Effects on the Thiol Addition and Hydrolysis Reactions of N-Arylmaleimides.

    PubMed

    Chen, Yingche; Tsao, Kelvin; De Francesco, Élise; Keillor, Jeffrey W

    2015-12-18

    Maleimide groups are used extensively in bioconjugation reactions, but limited kinetic information is available regarding their thiol addition and hydrolysis reactions. We prepared a series of fluorogenic coumarin maleimide derivatives that differ by the substituent on their maleimide C═C bond. Fluorescence-based kinetic studies of the reaction with β-mercaptoethanol (BME) yielded the second-order rate constants (k2), while pH-rate studies from pH 7 to 9 gave base-catalyzed hydrolysis rate constants (kOH). Linear free-energy relationships were studied through the correlation of log k2 and log kOH to both electronic (σ(+)) and steric (Es(norm)) parameters of the C═C substituent. These correlations revealed the thiol addition reaction is primarily sensitive to the electronic effects, while steric effects dominate the hydrolysis reaction. These mechanistic studies provide the basis for the design of novel bioconjugation reactants or fluorogenic labeling agents.

  2. Solvent influence on cellulose 1,4-β-glycosidic bond cleavage: a molecular dynamics and metadynamics study.

    PubMed

    Loerbroks, Claudia; Boulanger, Eliot; Thiel, Walter

    2015-03-27

    We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent. PMID:25689773

  3. Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2016-01-01

    Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly(butylene succinate) (PBS) and the lipase of Rhizopus oryzae (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly(butylene adipate), poly(lactic acid), and poly(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure.

  4. Chalcogen bond: a sister noncovalent bond to halogen bond.

    PubMed

    Wang, Weizhou; Ji, Baoming; Zhang, Yu

    2009-07-16

    A sister noncovalent bond to halogen bond, termed chalcogen bond, is defined in this article. By selecting the complexes H(2)CS...Cl(-), F(2)CS...Cl(-), OCS...Cl(-), and SCS...Cl(-) as models, the bond-length change, interaction energy, topological property of the electron charge density and its Laplacian, and the charge transfer of the chalcogen bond have been investigated in detail theoretically. It was found that the similar misshaped electron clouds of the chalcogen atom and the halogen atom result in the similar properties of the chalcogen bond and the halogen bond. Experimental results are in good agreement with the theoretical predictions.

  5. Understanding Lipid Recognition by Protein-Mimicking Cyclic Peptides.

    PubMed

    Hosseini, Azade S; Zheng, Hong; Gao, Jianmin

    2014-10-21

    This paper describes our investigation of the structural determinants of a designed cyclic peptide (cLac, cyclic peptide mimicking lactadherin)(1) for phosphatidylserine (PS) recognition. A highly efficient strategy that takes advantage of the native chemical ligation (NCL) chemistry has been developed for the synthesis and labeling of cyclic peptides in general. Ala scanning of the cLac peptide revealed a sophisticated model for PS binding, in which the peptide scaffold assembles multiple polar residues to balance the desolvation and electrostatic interactions (salt bridge and hydrogen bonding) to achieve lipid selectivity. The results suggest that cLac effectively mimics the membrane binding mechanism of the parent protein lactadherin.

  6. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  7. How Nature Morphs Peptide Scaffolds into Antibiotics

    PubMed Central

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  8. Polyoxometalates as a novel class of artificial proteases: selective hydrolysis of lysozyme under physiological pH and temperature promoted by a cerium(IV) Keggin-type polyoxometalate.

    PubMed

    Stroobants, Karen; Moelants, Eva; Ly, Hong Giang T; Proost, Paul; Bartik, Kristin; Parac-Vogt, Tatjana N

    2013-02-18

    Hen-egg-white lysozyme (HEWL) is specifically cleaved at the Trp28-Val29 and Asn44-Arg45 peptide bonds in the presence of a Keggin-type [Ce(α-PW(11)O(39))(2)](10-) polyoxometalate (POM; 1) at pH 7.4 and 37 °C. The reactivity of 1 towards a range of dipeptides was also examined and the calculated reaction rates were comparable to those observed for the hydrolysis of HEWL. Experiments with α-lactalbumin (α-LA), a protein that is structurally highly homologous to HEWL but has a different surface potential, showed no evidence of hydrolysis, which indicates the importance of electrostatic interactions between 1 and the protein surface for the hydrolytic reaction to occur. A combination of spectroscopic techniques was used to reveal the molecular interactions between HEWL and 1 that lead to hydrolysis. NMR spectroscopy titration experiments showed that on protein addition the intensity of the (31)P NMR signal of 1 gradually decreased due to the formation of a large protein/polyoxometalate complex and completely disappeared when the HEWL/1 ratio reached 1:2. Circular dichroism (CD) measurements of HEWL indicate that addition of 1 results in a clear decrease in the signal at λ=208 nm, which is attributed to changes in the α-helical content of the protein. (15)N-(1)H heteronuclear single quantum coherence (HSQC) NMR measurements of HEWL in the presence of 1 reveal that the interaction is mainly observed for residues that are located in close proximity to the first site in the α-helical part of the structure (Trp28-Val29). The less pronounced NMR spectroscopic shifts around the second cleavage site (Asn44-Arg45), which is found in the β-strand region of the protein, might be caused by weaker metal-directed binding, compared with strong POM-directed binding at the first site.

  9. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin.

    PubMed

    Inouye, K

    1992-09-01

    It has been reported that neutral salts such as NaCl activate the thermolysin-catalyzed hydrolysis of substrates containing glycine at the P1 position (carboxylic side of the cleavage bond) [Holmquist, B. & Vallee, B.L. (1976) Biochemistry 15, 101-107]. In this paper, we demonstrate that high concentrations (1-4 M) of neutral salts greatly enhance the thermolysin activity in both hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZAPM), a precursor of a peptide sweetener, aspartame, in which the L-aspartyl residue is the P1 residue. The enzyme activity is enhanced with an increase in salt concentration in a pseudo-exponential fashion. The degree of activation by salts was in the order LiCl > NaCl > KCl. The rate of ZAPM hydrolysis in the presence of 3.8 M NaCl was 6-7 times higher than that in its absence, and 50 times or more activation is expected in saturated NaCl solution. The activation is brought about solely through an increase in the catalytic constant (kcat), and the Michaelis constant (Km) is not affected at all by the presence of NaCl. On mixing thermolysin with NaCl, a unique absorption difference spectrum suggesting a conformational change of the enzyme was observed. The intensity increased in a pseudo-exponential fashion with increase of NaCl concentration up to 3 M, and this dependence is similar to that of the enzyme activity.

  10. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  11. Strength of Multiple Parallel Biological Bonds

    SciTech Connect

    Sulchek, T A; Friddle, R W; Noy, A

    2005-12-07

    Multivalent interactions play a critical role in a variety of biological processes on both molecular and cellular levels. We have used molecular force spectroscopy to investigate the strength of multiple parallel peptide-antibody bonds using a system that allowed us to determine the rupture forces and the number of ruptured bonds independently. In our experiments the interacting molecules were attached to the surfaces of the probe and sample of the atomic force microscope with flexible polymer tethers, and unique mechanical signature of the tethers determined the number of ruptured bonds. We show that the rupture forces increase with the number of interacting molecules and that the measured forces obey the predictions of a Markovian model for the strength of multiple parallel bonds. We also discuss the implications of our results to the interpretation of force spectroscopy measurements in multiple bond systems.

  12. Resolving Apparent Conflicts between Theoretical and Experimental Models of Phosphate Monoester Hydrolysis

    PubMed Central

    2014-01-01

    Understanding phosphoryl and sulfuryl transfer is central to many biochemical processes. However, despite decades of experimental and computational studies, a consensus concerning the precise mechanistic details of these reactions has yet to be reached. In this work we perform a detailed comparative theoretical study of the hydrolysis of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model systems for understanding phosphoryl and sulfuryl transfer reactions, respectively. We demonstrate the existence of energetically similar but mechanistically distinct possibilities for phosphate monoester hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate- and solvent-assisted pathways of phosphate monoester hydrolysis, and show that the solvent-assisted pathway dominates in solution. This preferred mechanism for p-nitrophenyl phosphate hydrolysis is difficult to find computationally due to the limitations of compressing multiple bonding changes onto a 2-dimensional energy surface. This problem is compounded by the need to include implicit solvation to at least microsolvate the system and stabilize the highly charged species. In contrast, methyl phosphate hydrolysis shows a preference for a substrate-assisted mechanism. For p-nitrophenyl sulfate hydrolysis there is only one viable reaction pathway, which is similar to the solvent-assisted pathway for phosphate hydrolysis, and the substrate-assisted pathway is not accessible. Overall, our results provide a unifying mechanistic framework that is consistent with the experimentally measured kinetic isotope effects and reconciles the discrepancies between theoretical and experimental models for these biochemically ubiquitous classes of reaction. PMID:25423607

  13. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases.

    PubMed

    Rodriguez, J A; Mendoza, L D; Pezzotti, F; Vanthuyne, N; Leclaire, J; Verger, R; Buono, G; Carriere, F; Fotiadu, F

    2008-04-15

    In the present study, we propose a general and accessible method for the resolution of enantiomeric 1,2-sn- and 2,3-sn-diacylglycerols based on derivatization by isocyanates, which can be easily used routinely by biochemists to evaluate the stereopreferences of lipases in a time course of triacylglycerol (TAG) hydrolysis. Diacylglycerol (DAG) enantiomers were transformed into carbamates using achiral and commercially available reagents. Excellent separation and resolution factors were obtained for diacylglycerols present in lipolysis reaction mixtures. This analytical method was then applied to investigate the stereoselectivity of three model lipases (porcine pancreatic lipase, PPL; lipase from Rhizomucor miehei, MML; and recombinant dog gastric lipase, rDGL) in the time course of hydrolysis of prochiral triolein as a substrate. From the measurements of the diglyceride enantiomeric excess it was confirmed that PPL was not stereospecific (position sn-1 vs sn-3 of triolein), whereas MML and rDGL preferentially hydrolyzed the ester bond at position sn-1 and sn-3, respectively. The enantiomeric excess of DAGs was not constant with time, decreasing with the course of hydrolysis. This was due to the fact that DAGs can be products of the stereospecific hydrolysis of TAGs and substrates for stereospecific hydrolysis into monoacylglycerols.

  14. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  15. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2013-12-01

    It has been proposed recently that ATP hydrolysis in ATPase enzymes proceeds via an initial intermediate in which the dissociated γ-phosphate of ATP is bound in the protein as a metaphosphate (PγO3(-)). A combined quantum/classical analysis of this dissociated nucleotide state inside myosin provides a quantitative understanding of how the enzyme stabilizes this unusual metaphosphate. Indeed, in vacuum, the energy of the ADP(3-) · PγO3(-) · Mg(2+) complex is much higher than that of the undissociated ATP(4-). The protein brings it to a surprisingly low value. Energy decomposition reveals how much each interaction in the protein stabilizes the metaphosphate state; backbone peptides of the P-loop contribute 50% of the stabilization energy, and the side chain of Lys-185(+) contributes 25%. This can be explained by the fact that these groups make strong favorable interactions with the α- and β-phosphates, thus favoring the charge distribution of the metaphosphate state over that of the ATP state. Further stabilization (16%) is achieved by a hydrogen bond between the backbone C=O of Ser-237 (on loop Switch-1) and a water molecule perfectly positioned to attack the PγO3(-) in the subsequent hydrolysis step. The planar and singly negative PγO3(-) is a much better target for the subsequent nucleophilic attack by a negatively charged OH(-) than the tetrahedral and doubly negative PγO4(2-) group of ATP. Therefore, we argue that the present mechanism of metaphosphate stabilization is common to the large family of nucleotide-hydrolyzing enzymes. Methodologically, this work presents a computational approach that allows us to obtain a truly quantitative conception of enzymatic strategy. PMID:24165121

  16. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  17. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  18. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    PubMed

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences.

  19. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    PubMed

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. PMID:27132822

  20. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  1. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  2. Antimicrobial peptides.

    PubMed

    Bahar, Ali Adem; Ren, Dacheng

    2013-11-28

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill "superbugs" emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).

  3. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  4. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  5. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    PubMed

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  6. Enzymes involved in triglyceride hydrolysis.

    PubMed

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  7. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties.

    PubMed

    de Oliveira, Cibele Freitas; Corrêa, Ana Paula Folmer; Coletto, Douglas; Daroit, Daniel Joner; Cladera-Olivera, Florencia; Brandelli, Adriano

    2015-05-01

    Soybean proteins are widely used as nutritional and functional food ingredients. This investigation evaluated through a 2(3) central composite design the effect of three variables (pH, temperature and enzyme/substrate (E/S) ratio) on the production of soy protein isolate (SPI) hydrolysates with a microbial protease. Soluble peptides, antioxidant activity, and foaming and emulsifying capabilities of the hydrolysates were analyzed. All variables, as well as their interactions, were significant for the soluble peptides content of SPI hydrolysates. Optimal conditions for obtaining soluble peptides were around 30-35 °C, pH 6.5-9.5, and E/S ratios of 1,650-6,300 U g(-1). SPI hydrolysates produced at 30-45 °C, pH 8.0-9.5, and E/S ratios of 4,000-8,000 U g(-1) showed higher capacity to scavenge the 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical. Models for soluble peptides and ABTS activity of hydrolysates were obtained. In the range studied, the variables had not significant influence on the ability of hydrolysates to scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. SPI hydrolysates also presented reducing power and ability to chelate iron. Hydrolysis temperature was significant for the Fe(2+)-chelating ability of hydrolysates. Temperature of hydrolysis was significant for the foaming capacity of hydrolysates, with higher values observed at 45 °C and 8,000 U g(-1). For emulsifying capacity, only E/S ratio presented a significant effect. Temperature and E/S ratio appeared to be more significant variables influencing the properties of the SPI hydrolysates. The results of this study indicate that specific hydrolysis conditions should be selected to obtain SPI hydrolysates with preferred characteristics.

  8. Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP).

    PubMed Central

    Williamson, R A; Marston, F A; Angal, S; Koklitis, P; Panico, M; Morris, H R; Carne, A F; Smith, B J; Harris, T J; Freedman, R B

    1990-01-01

    Disulphide bonds in human recombinant tissue inhibitor of metalloproteinases (TIMP) were assigned by resolving proteolytic digests of TIMP on reverse-phase h.p.l.c. and sequencing those peaks judged to contain disulphide bonds by virtue of a change in retention time on reduction. This procedure allowed the direct assignment of Cys-145-Cys-166 and the isolation of two other peptides containing two disulphide bonds each. Further peptide cleavage in conjunction with fast-atom-bombardment m.s. analysis permitted the assignments Cys-1-Cys-70, Cys-3-Cys-99, Cys-13-Cys-124 and Cys-127-Cys-174 from these peptides. The sixth bond Cys-132-Cys-137 was assigned by inference, as the native protein has no detectable free thiol groups. Images Fig. 1. PMID:2163605

  9. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    PubMed

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  10. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism.

    PubMed

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2016-03-01

    Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures.

  11. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism.

    PubMed

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2016-03-01

    Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures. PMID:26558996

  12. Detection of trans–cis flips and peptide-plane flips in protein structures

    SciTech Connect

    Touw, Wouter G.; Joosten, Robbie P.; Vriend, Gert

    2015-07-28

    A method is presented to detect peptide bonds that need either a trans–cis flip or a peptide-plane flip. A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT-CHECK.

  13. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    PubMed

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.

  14. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    SciTech Connect

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; Yano, Shinichi; Sawayama, Shigeki

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and

  15. Enhanced rigid-bond restraints

    SciTech Connect

    Thorn, Andrea; Dittrich, Birger; Sheldrick, George M.

    2012-07-01

    An extension is proposed to the rigid-bond description of atomic thermal motion in crystals. The rigid-bond model [Hirshfeld (1976 ▶). Acta Cryst. A32, 239–244] states that the mean-square displacements of two atoms are equal in the direction of the bond joining them. This criterion is widely used for verification (as intended by Hirshfeld) and also as a restraint in structure refinement as suggested by Rollett [Crystallographic Computing (1970 ▶), edited by F. R. Ahmed et al., pp. 167–181. Copenhagen: Munksgaard]. By reformulating this condition, so that the relative motion of the two atoms is required to be perpendicular to the bond, the number of restraints that can be applied per anisotropic atom is increased from about one to about three. Application of this condition to 1,3-distances in addition to the 1,2-distances means that on average just over six restraints can be applied to the six anisotropic displacement parameters of each atom. This concept is tested against very high resolution data of a small peptide and employed as a restraint for protein refinement at more modest resolution (e.g. 1.7 Å)

  16. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    PubMed Central

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2013-01-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno) phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se–S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen (m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se–S cleavage, analogous to the S–S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se–S of the tag to the S–S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se–S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes. PMID:21953264

  17. Confinement-dependent friction in peptide bundles.

    PubMed

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity.

  18. Instability of Amide Bond Comprising the 2-Aminotropone Moiety: Cleavable under Mild Acidic Conditions.

    PubMed

    Balachandra, Chenikkayala; Sharma, Nagendra K

    2015-08-21

    An unusual hydrolysis/solvolysis of the classical acyclic amide bond, derived from N-troponylaminoethylglycine (Traeg) and α-amino acids, is described under mild acidic conditions. The reactivity of this amide bond is possibly owed to the protonation of the troponyl carbonyl functional group. The results suggest that the Traeg amino acid is a potential candidate for protecting and caging of the amine functional group of bioactive molecules via a cleavable amide bond.

  19. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA.

    PubMed Central

    Diamond, G; Zasloff, M; Eck, H; Brasseur, M; Maloy, W L; Bevins, C L

    1991-01-01

    Extracts of the bovine tracheal mucosa have an abundant peptide with potent antimicrobial activity. The 38-amino acid peptide, which we have named tracheal antimicrobial peptide (TAP), was isolated by a sequential use of size-exclusion, ion-exchange, and reverse-phase chromatographic fractionations using antimicrobial activity as a functional assay. The yield was approximately 2 micrograms/g of wet mucosa. The complete peptide sequence was determined by a combination of peptide and cDNA analysis. The amino acid sequence of TAP is H-Asn-Pro-Val-Ser-Cys-Val-Arg-Asn-Lys-Gly-Ile-Cys-Val-Pro-Ile-Arg-Cys-Pr o- Gly-Ser-Met-Lys-Gln-Ile-Gly-Thr-Cys-Val-Gly-Arg-Ala-Val-Lys-Cys-Cys-Arg- Lys-Lys - OH. Mass spectral analysis of the isolated peptide was consistent with this sequence and indicated the participation of six cysteine residues in the formation of intramolecular disulfide bonds. The size, basic charge, and presence of three intramolecular disulfide bonds is similar to, but clearly distinct from, the defensins, a well-characterized class of antimicrobial peptides from mammalian circulating phagocytic cells. The putative TAP precursor is predicted to be relatively small (64 amino acids), and the mature peptide resides at the extreme carboxyl terminus and is bracketed by a short putative propeptide region and an inframe stop codon. The mRNA encoding this peptide is more abundant in the respiratory mucosa than in whole lung tissue. The purified peptide had antibacterial activity in vitro against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. In addition, the peptide was active against Candida albicans, indicating a broad spectrum of activity. This peptide appears to be, based on structure and activity, a member of a group of cysteine-rich, cationic, antimicrobial peptides found in animals, insects, and plants. The isolation of TAP from the mammalian respiratory mucosa may provide insight into our understanding of host defense of

  20. Synthesis and conformation of fluorinated β-peptidic compounds.

    PubMed

    Peddie, Victoria; Butcher, Raymond J; Robinson, Ward T; Wilce, Matthew C J; Traore, Daouda A K; Abell, Andrew D

    2012-05-21

    Experimental and theoretical data indicate that, for α-fluoroamides, the F-C-C(O)-N(H) moiety adopts an antiperiplanar conformation. In addition, a gauche conformation is favoured between the vicinal C-F and C-N(CO) bonds in N-β-fluoroethylamides. This study details the synthesis of a series of fluorinated β-peptides (1-8) designed to use these stereoelectronic effects to control the conformation of β-peptide bonds. X-ray crystal structures of these compounds revealed the expected conformations: with fluorine β to a nitrogen adopting a gauche conformation, and fluorine α to a C=O group adopting an antiperiplanar conformation. Thus, the strategic placement of fluorine can control the conformation of a β-peptide bond, with the possibility of directing the secondary structures of β-peptides.

  1. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series.

  2. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  3. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The chicken and goose egg white lysozymes (ChEWL and GoEWL) are homologues, but differ in substrate specificity. ChEWL catalyzes the hydrolysis of the glycosidic bonds of bacterial peptidoglycans and chitin-derived substrates, while GoEWL is specific for bacterial peptidoglycans. The active-site aspartate 52 residue of ChEWL, which is postulated to stabilize the oxocarbenium ion intermediate, has no counterpart in GoEWL. The substrate specificity of the D52A ChEWL mutant was compared with those of wild-type ChEWL and GoEWL. D52A ChEWL retains approximately 4% of the wild-type catalytic activity in reactions with three different bacterial cell suspensions. Asp52 therefore is not essential to the catalytic mechanism, accounting for only a 2 kcal/mol decrease in AG. The function of Asp52 in D52A ChEWL- and GoEWL-catalyzed cleavage of (carboxymethyl)chitin may be partially fulfilled by an appropriately positioned carboxyl group on the substrate (substrate-assisted catalysis). D52A ChEWL and GoEWL, unlike wild-type ChEWL, exhibit biphasic kinetics in the clearing of Micrococcus luteus cell suspensions, suggesting preferences for subsets of the linkages in the M. luteus peptidoglycan. These subsets do not exist in the peptidoglycans of Escherichia coli or Sarcina lutea, since neither D52A ChEWL nor GoEWL exhibits initial bursts in reactions with suspensions of these bacteria. We propose that substrate-assisted catalysis occurs in reactions of D52A ChEWL and GoEWL with M. luteus peptidoglycans, with the glycine carboxyl group of uncross-linked peptides attached to N-acetylmuramic acid partially substituting the function of the missing Asp52. 52 refs., 6 figs., 1 tab.

  4. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  5. Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms.

    PubMed

    López-Canut, Violeta; Ruiz-Pernía, J Javier; Castillo, Raquel; Moliner, Vicent; Tuñón, Iñaki

    2012-07-27

    A theoretical study on the alkaline hydrolysis of paraoxon, one of the most popular organophosphorus pesticides, in aqueous solution and in the active site of Pseudomonas diminuta phosphotriesterase (PTE) is presented. Simulations by means of hybrid quantum mechanics/molecular mechanics (QM/MM) potentials show that the hydrolysis of paraoxon takes place through an A(N)D(N) or associative mechanism both in solution and in the active site of PTE. The results correctly reproduce the magnitude of the activation free energies and can be used to rationalize the observed kinetic isotope effects (KIEs) for the hydrolysis of paraoxon in both media. Enzymatic hydrolysis of O,O-diethyl p-chlorophenyl phosphate, a phosphotriester having a leaving group with higher pK(a) than paraoxon, was also simulated. Hydrolysis of this phosphotriester by PTE follows a A(N)+D(N) mechanism with a pentacoordinate intermediate. Moreover, the leaving group of this new substrate coordinates to one of the zinc ions of the bimetallic active site in order to stabilize the large negative charge developed on the oxygen atom of the leaving group when the P-O bond is broken in the products state. To accommodate this new ligand in the coordination shell, carbamylated Lys169 must be displaced from one zinc ion to the other, which in turn affects the acidity of Asp301, a residue originally bound to the second zinc ion. This ability to displace some of the ligands of the coordination shell of the zinc centers would explain the promiscuity of this enzyme, which is capable of catalyzing hydrolysis of different substrate by means of different mechanisms. PMID:22745111

  6. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  7. Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing.

    PubMed

    Margatan, Wynnie; Ruud, Kirsten; Wang, Qian; Markowski, Todd; Ismail, Baraem

    2013-04-10

    Soy protein isolate (SPI) and β-conglycinin- and glycinin-rich fractions were hydrolyzed using papain and pepsin. Protein denaturation, profiling, and peptide identification were carried out following DSC, SDS-PAGE, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The in vitro antihypertensive activity of the hydrolysates was compared by determining the angiotensin converting enzyme (ACE) inhibitory activity. SDS-PAGE and LC-MS/MS analysis confirmed pepsin selectivity to glycinin and papain partial selectivity to β-conglycinin when the protein is least denatured. Both the papain-hydrolyzed SPI and the papain-hydrolyzed β-conglycinin-rich fraction had more than double the ACE inhibitory activity of that of pepsin-hydrolyzed SPI and pepsin-hydrolyzed glycinin-rich fraction. This observation indicated that β-conglycinin is a better precursor for antihypertensive peptides than glycinin. Additionally, the inhibitory activity of the papain-hydrolyzed SPI was thermally stable. This work demonstrated, for the first time, that selective hydrolysis to release peptides with ACE inhibitory activity can be accomplished without inducing extensive hydrolysis and performing unnecessary fractionation. PMID:23514371

  8. Atomic scale insights into urea-peptide interactions in solution.

    PubMed

    Steinke, Nicola; Gillams, Richard J; Pardo, Luis Carlos; Lorenz, Christian D; McLain, Sylvia E

    2016-02-01

    The mechanism by which proteins are denatured by urea is still not well understood, especially on the atomic scale where these interactions occur in vivo. In this study, the structure of the peptide GPG has been investigated in aqueous urea solutions in order to understand the combination of roles that both urea and water play in protein unfolding. Using a combination of neutron diffraction enhanced by isotopic substitution and computer simulations, it was found, in opposition with previous simulations studies, that urea is preferred over water around polar and charged portions of the peptides. Further, it appears that while urea directly replaces water around the nitrogen groups on GPG that urea and water occupy different positions around the peptide bond carbonyl groups. This suggests that urea may in fact weaken the peptide bond, disrupting the peptide backbone, thus ultimately causing denaturation.

  9. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  10. Silica coating of zirconia by silicon nitride hydrolysis on adhesion promotion of resin to zirconia.

    PubMed

    Lung, Christie Ying Kei; Liu, Dan; Matinlinna, Jukka Pekka

    2015-01-01

    In this study, the effect of silica coating on zirconia by silicon nitride hydrolysis in resin zirconia bonding was investigated. The silica coated zirconia samples were prepared in silicon nitride dispersion at 90 °C under different immersion times followed by a thermal treatment at 1400 °C. Four test groups were prepared: 1) zirconia samples treated by sandblasting, 2) zirconia samples treated by immersion in silicon nitride dispersion for 6 h, 3) zirconia samples treated by immersion in silicon nitride dispersion for 24 h and 4) zirconia samples treated by immersion in silicon nitride dispersion for 48 h. The coatings were characterized by SEM, EDX, XRD and Raman. The resin zirconia bond strengths of the four test groups were evaluated under three storage conditions: dry storage, water storage in deionized water at 37 °C for 30 days and thermo-cycling for 6000 cycles between 5.0 and 55.0 °C. Surface morphology and composition of zirconia were changed after surface treatments. Phase transformation was observed for zirconia surface by sandblasting treatment but was not observed for zirconia surface treated with silicon nitride hydrolysis. Significant differences in bond strengths were found under different surface treatments (p<0.001) and under three storage conditions (p<0.005). The highest bond strength values were obtained by sandblasting treatment.

  11. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  12. A density functional theory model of mechanically activated silyl ester hydrolysis

    SciTech Connect

    Pill, Michael F.; Schmidt, Sebastian W.; Beyer, Martin K.; Clausen-Schaumann, Hauke; Kersch, Alfred

    2014-01-28

    To elucidate the mechanism of the mechanically activated dissociation of chemical bonds between carboxymethylated amylose (CMA) and silane functionalized silicon dioxide, we have investigated the dissociation kinetics of the bonds connecting CMA to silicon oxide surfaces with density functional calculations including the effects of force, solvent polarizability, and pH. We have determined the activation energies, the pre-exponential factors, and the reaction rate constants of candidate reactions. The weakest bond was found to be the silyl ester bond between the silicon and the alkoxy oxygen atom. Under acidic conditions, spontaneous proton addition occurs close to the silyl ester such that neutral reactions become insignificant. Upon proton addition at the most favored position, the activation energy for bond hydrolysis becomes 31 kJ mol{sup −1}, which agrees very well with experimental observation. Heterolytic bond scission in the protonated molecule has a much higher activation energy. The experimentally observed bi-exponential rupture kinetics can be explained by different side groups attached to the silicon atom of the silyl ester. The fact that different side groups lead to different dissociation kinetics provides an opportunity to deliberately modify and tune the kinetic parameters of mechanically activated bond dissociation of silyl esters.

  13. Bioactive peptides released by in vitro digestion of standard and hydrolyzed infant formulas.

    PubMed

    Wada, Yasuaki; Lönnerdal, Bo

    2015-11-01

    Hydrolyzed infant formulas serve as appropriate nutritional sources for infants afflicted with cow's milk allergy, and milk proteins in hydrolyzed formulas are industrially hydrolyzed extensively or partially. To investigate whether industrial hydrolysis may modulate the digestive trajectory of milk proteins, thereby releasing different profiles of bioactive peptides compared with standard formulas, both standard and hydrolyzed formulas were subjected to in vitro digestion and formation of bioactive peptides were compared. One standard, one extensively hydrolyzed, and one partially hydrolyzed infant formula were digested in vitro with pepsin and pancreatin, taking into account the higher gastric pH of infants, and the digesta were subjected to peptidomic analysis. The standard formula released a larger variety of bioactive peptides than from the hydrolyzed formulas, indicating that industrial hydrolysis of milk proteins may generally attenuate their indigenous bioactivities such as antibacterial, immuno-regulatory, and anti-oxidative activities. Conversely, industrial hydrolysis may facilitate the formation of bioactive peptides from hydrophobic proteins/regions such as β-LG and the "strategic zone" of β-CN, which encrypt bioactive peptides including a dipeptidyl dipeptidase-4-inhibitory, hypocholesterolemic, and opioid peptides. Infants fed hydrolyzed infant formulas may be influenced by milk protein-derived bioactive peptides in a manner different from those fed standard formula.

  14. Pseudoprolines as removable turn inducers: tools for the cyclization of small peptides.

    PubMed

    Skropeta, Danielle; Jolliffe, Katrina A; Turner, Peter

    2004-12-10

    The cyclization of small peptides which do not incorporate turn inducers is often difficult. We have developed a method involving the use of removable turn inducers, in the form of pseudoprolines, for the cyclization of difficult peptide sequences. The pseudoprolines induce a cisoid amide bond in the peptide backbone which facilitates cyclization. They are then readily removed to yield a cyclic peptide that does not contain any turn inducers.

  15. Hydrolysis of iodine: equilibria at high temperatures

    SciTech Connect

    Palmer, D.A.; Ramette, R.W.; Mesmer, R.E.

    1984-01-01

    The hydrolysis (or disproportionation) of molecular iodine to form iodate and iodide ions has been studied by emf measurements over the temperature range, 3.8/sup 0/ to 209.0/sup 0/C. The interpretation of these results required a knowledge of the formation constant for triiodide ion and the acid dissociation constant of iodic acid, both of which were measured as a function of temperature. The resulting thermodynamic data have been incorporated into a general computer model describing the hydrolysis equilibria of iodine as a function of initial concentration, pH and temperature.

  16. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE PAGESBeta

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; Yano, Shinichi; Sawayama, Shigeki

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A

  17. Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties

    PubMed Central

    2013-01-01

    Background Antioxidant, one of the most important food additives, is widely used in food industry. At present, antioxidant is mostly produced by chemical synthesis, which would accumulate to be pathogenic. Therefore, a great interest has been developed to identify and use natural antioxidants. It was showed that there are a lot of antioxidative peptides in protein hydrolysates, possessing strong capacity of inhibiting peroxidation of macro-biomolecular and scavenging free redicals in vivo. Enzymatic hydrolysis used for preparation of antioxidative peptides is a new hot-spot in the field of natural antioxidants. It reacts under mild conditions, with accurate site-specific degradation, good repeatability and few damages to biological activity of protein. Substrates for enzymatic hydrolysis are usually plants and aqua-animals. Insects are also gaining attention because of their rich protein and resource. Antioxidative peptides are potential to be exploited as new natural antioxidant and functional food. There is a huge potential market in medical and cosmetic field as well. Result Protein hydrolysate with antioxidant activity was prepared from housefly larvae, by a two-step hydrolysis. Through orthogonal optimization of the hydrolysis conditions, the degree of hydrolysis was determined to be approximately 60%. Fractionated hydrolysate at 25 mg/mL, 2.5 mg/mL and 1 mg/mL exhibited approximately 50%, 60% and 50% of scavenging capacity on superoxide radicals, 1, 1-Diphenyl-2-picrylhydrazyl radicals and hydroxyl radicals, respectively. Hydrolysate did not exhibit substantial ion chelation. Using a linoneic peroxidation system, the inhibition activity of hydrolysate at 20 mg/mL was close to that of 20 μg/mL tertiary butylhydroquinone, suggesting a potential application of hydrolysate in the oil industry as an efficient antioxidant. The lyophilized hydrolysate presented almost 100% solubility at pH 3-pH 9, and maintained nearly 100% activity at pH 5-pH 8 at 0

  18. Constant enthalpy change value during pyrophosphate hydrolysis within the physiological limits of NaCl.

    PubMed

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-10-11

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 M NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 M NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of -35 kJ/mol was obtained for the halophile and non-halophiles at 1.5-4.0 and 0.1-2.0 M NaCl, respectively. These results show that solvation changes caused by up to 4.0 M NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl.

  19. Chain Length and Grafting Density Dependent Enhancement in the Hydrolysis of Ester-Linked Polymer Brushes.

    PubMed

    Melzak, Kathryn A; Yu, Kai; Bo, Deng; Kizhakkedathu, Jayachandran N; Toca-Herrera, José L

    2015-06-16

    Poly(N,N-dimethylacrylamide) (PDMA) brushes with different grafting density and chain length were grown from an ester group-containing initiator using surface-initiated polymerization. Hydrolysis of the PDMA chains from the surface was monitored by measuring thickness of the polymer layer by ellipsometry and extension length by atomic force microscopy. It was found that the initial rate of cleavage of one end-tethered PDMA chains was dependent on the grafting density and chain length; the hydrolysis rate was faster for high grafting density brushes and brushes with higher molecular weights. Additionally, the rate of cleavage of polymer chains during a given experiment changed by up to 1 order of magnitude as the reaction progressed, with a distinct transition to a lower rate as the grafting density decreased. Also, polymer chains undergo selective cleavage, with longer chains in a polydisperse brush being preferentially cleaved at one stage of the hydrolysis reaction. We suggest that the enhanced initial hydrolysis rates seen at high grafting densities and high chain lengths are due to mechanical activation of the ester bond connecting the polymer chains to the surface in association with high lateral pressure within the brush. These results have implications for the preparation of polymers brushes, their stability under harsh conditions, and the analysis of polymer brushes from partial hydrolysates. PMID:26010390

  20. Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta

    PubMed Central

    Jung, Kyung-Hun; Choi, Ye-Chul; Chun, Ji-Yeon; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at 90 ℃ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and 200 ℃ of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment (90 ℃ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique. PMID:26760932

  1. Identification of peptides in functional Scamorza ovine milk cheese.

    PubMed

    Albenzio, M; Santillo, A; Marino, R; Della Malva, A; Caroprese, M; Sevi, A

    2015-12-01

    Ovine bulk milk was used to produce Scamorza cheese with probiotics: either a mix of Bifidobacterium longum and Bifidobacterium lactis or Lactobacillus acidophilus as the probiotic strains. Peptides obtained from reverse phase-HPLC water-soluble extract of Scamorza cheeses were analyzed using a quadrupole time-of-flight liquid chromatography-mass spectrometry system. Identified fragments were derived from casein hydrolysis or probiotic bacterial enzymes; some of the fragments showed encrypted peptide sequences that shared structural homology with previously described bioactive peptides in ovine milk and dairy products. Bifidobacterium longum and B. lactis showed greater proteolytic potential both in terms of level of pH 4.6 water-soluble nitrogen extract and ability to generate peptides with potential biofunctionality. Fragments deriving from microbial enzymes may be regarded as tracing fragments useful for monitoring probiotic activity in functional Scamorza cheese. PMID:26409967

  2. Peptide analogs of the beef heart mitochondrial F1-ATPase inhibitor protein.

    PubMed

    Stout, J S; Partridge, B E; Dibbern, D A; Schuster, S M

    1993-07-27

    Peptide analogs which correspond to the conserved region of the natural ATPase inhibitor protein from beef heart, Candida utilis, and Saccharomyces cerevisiae mitochondria were synthesized by solid-phase methodologies and tested for ATPase inhibitory activity. These peptides were found to be potent inhibitors of F1-ATPase-catalyzed ATP hydrolysis in acidic reaction media, having I50 values of 1.1 +/- 0.4 microM, 10 +/- 5 microM, and 48 +/- 19 microM, respectively. These results closely match those obtained for the naturally occurring inhibitor proteins. Additional peptides that correspond to the beef heart beta-subunit near the binding site of the beef heart inhibitor protein and that possess a substantial homology with the conserved region of the inhibitor protein were synthesized. Several of these peptides were found to be inhibitors of the ATPase activity. The best inhibitor, with an I50 value of 20 +/- 3 microM, was the peptide resembling the beef heart beta-subunit comprising amino acids 394-413. This peptide most closely resembles the peptides derived from the conserved region of the inhibitor protein. The insertion of five glycine residues between the charge clusters in the beta-394-413 peptide resulted in a peptide which was able to stimulate the hydrolysis of ATP.

  3. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  4. Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro(X)-Pro(Y)-Gly)6 Incorporating 4(R/S)-Aminoproline.

    PubMed

    Umashankara, Muddegowda; Sonar, Mahesh V; Bansode, Nitin D; Ganesh, Krishna N

    2015-09-01

    Collagens are an important family of structural proteins found in the extracellular matrix with triple helix as the characteristic structural motif. The collagen triplex is made of three left-handed polyproline II (PPII) helices with each PPII strand consisting of repetitive units of the tripeptide motif X-Y-Gly, where the amino acids X and Y are most commonly proline (Pro) and 4R-hydroxyproline (Hyp), respectively. A C4-endo pucker at X-site and C4-exo pucker at Y-site have been proposed to be the key for formation of triplex, and the nature of pucker is dependent on both the electronegativity and stereochemistry of the substituent. The present manuscript describes a new class of collagen analogues-chimeric cationic collagens-wherein both X- and Y-sites in collagen triad are simultaneously substituted by a combination of 4(R/S)-(OH/NH2/NH3(+)/NHCHO)-prolyl units and triplex stabilities measured at different pHs and in EG:H2O. Based on the results a model has been proposed with the premise that any factors which specifically favor the ring puckers of C4-endo at X-site and C4-exo at Y-site stabilize the PPII conformation and hence the derived triplexes. The pH-dependent triplex stability uniquely observed with ionizable 4-amino substituent on proline enables one to define the critical combination of factors C4-(exo/endo), intraresidue H-bonding, stereoelectronic (R/S) and n → π* interactions in dictating the triplex strength. The ionizable NH2 substituent at C4 in R/S configuration is thus a versatile probe for delineating the triplex stabilizing factors and the results have potential for designing of collagen analogues with customized properties for material and biological applications.

  5. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  6. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  7. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    PubMed

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  8. Hydrolysis of DNA by 17 snake venoms.

    PubMed

    de Roodt, Adolfo Rafael; Litwin, Silvana; Angel, Sergio O

    2003-08-01

    DNA hydrolysis caused by venoms of 17 species of snakes was studied by different methodologies. Endonucleolytic activity was tested by incubation of the venoms with the plasmid pBluescript and subsequent visualization of the electrophoretic patterns in 1% agarose gels stained with ethidium bromide. DNA was sequentially degraded, from supercoiled to opened circle, to linear form, in a concentration dependent manner. The highest hydrolytic activity was observed in Bothrops (B.) neuwiedii and Naja (N.) siamensis venoms. Exonucleolytic activity was analyzed on pBluescript digested with SmaI or EcoRI. All venoms caused complete hydrolysis after 2 h of incubation. SDS-PAGE analysis in gels containing calf thymus DNA showed that the hydrolytic bands were located at approximately 30 kDa. DNA degradation was studied by radial hydrolysis in 1% agarose gels containing calf thymus DNA plus ethidium bromide and visualized by UV light. Venom of B. neuwiedii showed the highest activity whereas those of B. ammodytoides and Ovophis okinavensis (P<0.05) showed the lowest activity. Antibodies against venom of B. neuwiedii or N. siamensis neutralized the DNAse activity of both venoms. In conclusion, venom from different snakes showed endo- and exonucleolytic activity on DNA. The inhibition of DNA hydrolysis by EDTA and heterologous antibodies suggests similarities in the structure of the venom components involved.

  9. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  10. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  11. Ordering double perovskite hydroxides by kinetically controlled aqueous hydrolysis.

    PubMed

    Neilson, James R; Kurzman, Joshua A; Seshadri, Ram; Morse, Daniel E

    2011-04-01

    The precipitation of crystals with stoichiometric and ordered arrangements of distinct metal cations often requires carefully designed molecular precursors and/or sufficient activation energy in addition to the necessary mass transport. Here, we study the formation of ordered double perovskite hydroxides, MnSn(OH)(6) and CoSn(OH)(6), of the generic chemical formula, BB'(OH)(6) (no A site), using kinetic control of aqueous hydrolysis from simple metal salt solutions. We find that the precipitation yields ordered compounds only when the B ion is Mn(II) or Co(II), and not when it is any other divalent transition metal ion, or Zn(II). The key step in forming the compounds is the prevention of rapid and uncontrolled hydrolysis of Sn(IV), and this is achieved by a fluoride counteranion. The two compounds, MnSn(OH)(6) and CoSn(OH)(6), are studied by high-resolution synchrotron X-ray diffraction and from the temperature dependence of magnetic behavior. From maximum entropy image restoration of the electron density and from Rietveld analysis, the degree of octahedral distortion and tilting and the small extent of anti-site disorder are determined. From the nonoverlapping electron density, we infer strongly ionic character of bonding. As the first magnetic study of such materials, we report simple paramagnetic behavior with no long-range magnetic order down to 2 K for the Mn(II) compound, while the cobalt compound presents uncompensated antiferromagnetic interactions, attributed to the single-ion anisotropy of octahedral Co(II).

  12. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed. PMID:26485903

  13. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  14. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis.

    PubMed

    Kim, In Jung; Nam, Ki Hyun; Yun, Eun Ju; Kim, Sooah; Youn, Hak Jin; Lee, Hee Jin; Choi, In-Geol; Kim, Kyoung Heon

    2015-10-01

    Auxiliary activity family 9 (AA9, formerly known as glycoside hydrolase family 61 or polysaccharide monooxygenase) is a group of fungal proteins that were recently found to have a significant synergism with cellulase in cellulose hydrolysis via the oxidative cleavage of glycosidic bonds of cellulose chains. In this study, we report the active expression of a recombinant fungal AA9 from Chaetomium globosum (CgAA9) in a bacterial host, Escherichia coli, and the optimization of its synergistic activity in cellulose hydrolysis by using cellulase. The recombinant CgAA9 (0.9 mg/g cellulose) exhibited 1.7-fold synergism in the hydrolysis of Avicel when incubated with 0.9 filter paper units of Celluclast 1.5 L/g cellulose. The first study of the active expression of AA9 using a bacterial host and its synergistic optimization could be useful for the industrial application of AA9 for the saccharification of lignocellulose.

  15. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  16. Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis.

    PubMed

    Li, Li; Lelyveld, Victor S; Prywes, Noam; Szostak, Jack W

    2016-03-30

    Phosphoroimidazolides play a critical role in several enzymatic phosphoryl transfer reactions and have been studied extensively as activated monomers for nonenzymatic nucleic acid replication, but the detailed mechanisms of these phosphoryl transfer reactions remain elusive. Some aspects of the mechanism can be deduced by studying the hydrolysis reaction, a simpler system that is amenable to a thorough mechanistic treatment. Here we characterize the transition state of phosphoroimidazolide hydrolysis by kinetic isotope effect (KIE) and linear free energy relationship (LFER) measurements, and theoretical calculations. The KIE and LFER observations are best explained by calculated loose transition structures with extensive scissile bond cleavage. These three-dimensional models of the transition state provide the basis for future mechanistic investigations of phosphoroimidazolide reactions. PMID:26974265

  17. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  18. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    NASA Astrophysics Data System (ADS)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  19. The Dicyclopropylmethyl (Dcpm) Peptide Backbone Protectant†

    PubMed Central

    Carpino, Louis A.; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-01-01

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106–126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit. PMID:19719204

  20. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.

  1. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.

    1992-10-05

    This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).

  2. Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13.

    PubMed

    Che, Yuanyuan; Lu, Yinghu; Zha, Xiangdong; Huang, Huoqing; Yang, Peilong; Ma, Lijuan; Xu, Xuejiao

    2016-03-01

    G13 is a 19-residue cationic antimicrobial peptide derived from granulysin. In order to achieve high-level expression of G13 in Escherichia coli cells, and to reduce downstream processing costs, we introduced an Asp-Pro acid labile bond between the His-Patch thioredoxin and G13 and constructed the recombinant plasmid pThiohisA-DP-G13. The plasmid was transformed into E. coli BL21 (DE3). After induction with isopropyl-β-d-thiogalactopyranoside for 5 h, the fusion protein accumulated up to 200 mg/L in soluble form. The fusion protein was released by a high pressure homogenizer, cleaved using 13% acetic acid at 50 °C hydrolysis for 72 h. The recombinant G13 (r-G13) was then successively purified by fractional precipitation with ammonium sulfate and trichloroacetic acid, followed by one-step cation exchange chromatography. The purified r-G13 displayed a single band (about 2.2 kDa) as analyzed by Tris-Tricine buffered SDS-PAGE, and its precise molecular weight was confirmed using tandem mass spectrometry. Analysis of r-G13 by circular dichroism (CD) indicated that r-G13 contained predominantly β-sheet and random coil. Agar plate diffusion assay revealed that the r-G13 exhibited antibacterial activity against both Bacillus subtilis and E. coli.

  3. Functional region identification in proteins by accumulative-quantitative peptide mapping using RP-HPLC-MS.

    PubMed

    Kuipers, Bas J H; Bakx, E J; Gruppen, Harry

    2007-11-14

    A new method was developed to identify regions in proteins from which peptides are derived with specific functional properties. This method is applicable for systems in which peptides of a hydrolyzed protein possess specific functional properties, but are too large to be sequenced directly and/or the peptide mixture is too complex to purify and characterize each peptide individually. In the present work, aggregating peptides obtained by proteolytic hydrolysis of soy glycinin were used as a case study. The aggregating peptides are isolated and subsequently further degraded with trypsin to result in peptides with a mass <5000 Da to enable sequence identification using RP-HPLC-MS in combination with MS/MS. Prior to RP-HPLC the peptides are fractionated using anion and cation exchange chromatography. The fractions obtained are analyzed with RP-HPLC-MS. The peptides, with identified sequences, were quantified using the peak areas of the RP-HPLC chromatograms measured at 214 nm. Next, the peak areas were corrected for the molar extinction coefficient of the individual peptides, followed by accumulative-quantitative peptide mapping. The results show that in complex systems, based on the method described, the regions in the parental protein from which the functional peptides originate can be properly identified.

  4. Observation of reduced cytotoxicity of aggregated amyloidogenic peptides with chaperone-like molecules.

    PubMed

    Liu, Lei; Zhang, Lan; Niu, Lin; Xu, Meng; Mao, Xiaobo; Yang, Yanlian; Wang, Chen

    2011-07-26

    The pathogenesis of many neurodegenerative diseases is associated with different types of aggregates of amyloidogenic peptides, including senile plaques, fibrils, protofibrils, and oligomers. It is therefore valuable to explore diversity of approaches toward reducing the cytotoxicity of amyloidogenic peptides by modulating aggregation behaviors. Herein we report an approach toward reducing the neuronal cytotoxicity of amyloidogenic peptides by accelerating the aggregation process, which is different from prevalent methods via inhibiting the aggregation of peptides. The pyridyl derivatives behave like chaperones to dramatically change the assembling characteristics of the peptides via strong hydrogen bond formation with C-termini of amyloid β (Aβ) peptides, which is revealed by using scanning probe microscopy. The light scattering experiments demonstrated the effect of the chaperone-like molecules on accelerating the aggregation process of Aβ peptides, accompanied by the reduced neuronal cytotoxicity of amyloidogenic peptides. These results would give rise to a complementary approach for modulating biological effects of the aggregates of amyloidogenic peptides.

  5. A caged substrate peptide for matrix metalloproteinases.

    PubMed

    Decaneto, Elena; Abbruzzetti, Stefania; Heise, Inge; Lubitz, Wolfgang; Viappiani, Cristiano; Knipp, Markus

    2015-02-01

    Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.

  6. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products.

  7. Fatty acid specificity of hormone-sensitive lipase. Implication in the selective hydrolysis of triacylglycerols.

    PubMed

    Raclot, T; Holm, C; Langin, D

    2001-12-01

    The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of

  8. Aluminum Nitride Hydrolysis Enabled by Hydroxyl-Mediated Surface Proton Hopping.

    PubMed

    Bartel, Christopher J; Muhich, Christopher L; Weimer, Alan W; Musgrave, Charles B

    2016-07-20

    Aluminum nitride (AlN) is used extensively in the semiconductor industry as a high-thermal-conductivity insulator, but its manufacture is encumbered by a tendency to degrade in the presence of water. The propensity for AlN to hydrolyze has led to its consideration as a redox material for solar thermochemical ammonia (NH3) synthesis applications where AlN would be intentionally hydrolyzed to produce NH3 and aluminum oxide (Al2O3), which could be subsequently reduced in nitrogen (N2) to reform AlN and reinitiate the NH3 synthesis cycle. No quantitative, atomistic mechanism by which AlN, and more generally, metal nitrides react with water to become oxidized and generate NH3 yet exists. In this work, we used density-functional theory (DFT) to examine the reaction mechanisms of the initial stages of AlN hydrolysis, which include: water adsorption, hydroxyl-mediated proton diffusion to form NH3, and NH3 desorption. We found activation barriers (Ea) for hydrolysis of 330 and 359 kJ/mol for the cases of minimal adsorbed water and additional adsorbed water, respectively, corroborating the high observed temperatures for the onset of steam AlN hydrolysis. We predict AlN hydrolysis to be kinetically limited by the dissociation of strong Al-N bonds required to accumulate protons on surface N atoms to form NH3. The hydrolysis mechanism we elucidate is enabled by the diffusion of protons across the AlN surface by a hydroxyl-mediated Grotthuss mechanism. A comparison between intrinsic (Ea = 331 kJ/mol) and mediated proton diffusion (Ea = 89 kJ/mol) shows that hydroxyl-mediated proton diffusion is the predominant mechanism in AlN hydrolysis. The large activation barrier for NH3 generation from AlN (Ea = 330 or 359 kJ/mol, depending on water coverage) suggests that in the design of materials for solar thermochemical ammonia synthesis, emphasis should be placed on metal nitrides with less covalent metal-nitrogen bonds and, thus, more-facile NH3 liberation.

  9. Aluminum Nitride Hydrolysis Enabled by Hydroxyl-Mediated Surface Proton Hopping.

    PubMed

    Bartel, Christopher J; Muhich, Christopher L; Weimer, Alan W; Musgrave, Charles B

    2016-07-20

    Aluminum nitride (AlN) is used extensively in the semiconductor industry as a high-thermal-conductivity insulator, but its manufacture is encumbered by a tendency to degrade in the presence of water. The propensity for AlN to hydrolyze has led to its consideration as a redox material for solar thermochemical ammonia (NH3) synthesis applications where AlN would be intentionally hydrolyzed to produce NH3 and aluminum oxide (Al2O3), which could be subsequently reduced in nitrogen (N2) to reform AlN and reinitiate the NH3 synthesis cycle. No quantitative, atomistic mechanism by which AlN, and more generally, metal nitrides react with water to become oxidized and generate NH3 yet exists. In this work, we used density-functional theory (DFT) to examine the reaction mechanisms of the initial stages of AlN hydrolysis, which include: water adsorption, hydroxyl-mediated proton diffusion to form NH3, and NH3 desorption. We found activation barriers (Ea) for hydrolysis of 330 and 359 kJ/mol for the cases of minimal adsorbed water and additional adsorbed water, respectively, corroborating the high observed temperatures for the onset of steam AlN hydrolysis. We predict AlN hydrolysis to be kinetically limited by the dissociation of strong Al-N bonds required to accumulate protons on surface N atoms to form NH3. The hydrolysis mechanism we elucidate is enabled by the diffusion of protons across the AlN surface by a hydroxyl-mediated Grotthuss mechanism. A comparison between intrinsic (Ea = 331 kJ/mol) and mediated proton diffusion (Ea = 89 kJ/mol) shows that hydroxyl-mediated proton diffusion is the predominant mechanism in AlN hydrolysis. The large activation barrier for NH3 generation from AlN (Ea = 330 or 359 kJ/mol, depending on water coverage) suggests that in the design of materials for solar thermochemical ammonia synthesis, emphasis should be placed on metal nitrides with less covalent metal-nitrogen bonds and, thus, more-facile NH3 liberation. PMID:27341277

  10. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; Carne, Alan; McConnell, Michelle A

    2015-06-01

    Plasma separated from deer, sheep and pig blood, obtained from abattoirs, was hydrolysed using protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources. Antioxidant and antimicrobial activities of the peptide hydrolysates obtained after 1, 2, 4 and 24h of hydrolysis, were investigated. The release of trichloroacetic acid-soluble peptides over the hydrolysis period was monitored using the o-phthaldialdehyde (OPA) assay, while the hydrolysis profiles were visualised using SDS-PAGE. The major plasma proteins in the animal plasmas were identified using MALDI-TOF-TOF MS. Hydrolysates of plasma generated with fungal proteases exhibited higher DPPH radical-scavenging, oxygen radical-scavenging capacity (ORAC) and ferric reducing antioxidant power (FRAP) than those generated with plant proteases for all three animal plasmas. No antimicrobial activity was detected in the hydrolysates. The results indicated that proteolytic hydrolysis of animal blood plasmas, using fungal protease preparations in particular, produces hydrolysates with high antioxidant properties.

  11. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; Carne, Alan; McConnell, Michelle A

    2015-06-01

    Plasma separated from deer, sheep and pig blood, obtained from abattoirs, was hydrolysed using protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources. Antioxidant and antimicrobial activities of the peptide hydrolysates obtained after 1, 2, 4 and 24h of hydrolysis, were investigated. The release of trichloroacetic acid-soluble peptides over the hydrolysis period was monitored using the o-phthaldialdehyde (OPA) assay, while the hydrolysis profiles were visualised using SDS-PAGE. The major plasma proteins in the animal plasmas were identified using MALDI-TOF-TOF MS. Hydrolysates of plasma generated with fungal proteases exhibited higher DPPH radical-scavenging, oxygen radical-scavenging capacity (ORAC) and ferric reducing antioxidant power (FRAP) than those generated with plant proteases for all three animal plasmas. No antimicrobial activity was detected in the hydrolysates. The results indicated that proteolytic hydrolysis of animal blood plasmas, using fungal protease preparations in particular, produces hydrolysates with high antioxidant properties. PMID:25624206

  12. Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate.

    PubMed

    Luong, Thi Kim Nga; Absillis, Gregory; Shestakova, Pavletta; Parac-Vogt, Tatjana N

    2015-09-21

    The reactivity and solution behaviour of the binuclear Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2 : 2) towards phosphoester bond hydrolysis of the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) was investigated at different reaction conditions (pD, temperature, concentration, and ionic strength). The hydrolysis of the phosphoester bond of HPNP, followed by means of (1)H NMR spectroscopy, proceeded with an observed rate constant, kobs = 11.5(±0.42) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 530-fold rate enhancement in comparison with the spontaneous hydrolysis of HPNP. (1)H and (31)P NMR spectra indicate that at these reaction conditions the only products of hydrolysis are p-nitrophenol and the corresponding cyclic phosphate ester. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 455 M(-1)) and catalytic rate constant (kc = 42 × 10(-5) s(-1)) for the HPNP-ZrK 2 : 2 complex, activation energy (Ea) of 63.35 ± 1.82 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 60.60 ± 2.09 kJ mol(-1), entropy of activation (ΔS(‡)) of -133.70 ± 6.13 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 102.05 ± 0.13 kJ mol(-1) at 37 °C were calculated from kinetic experiments. Binding between ZrK 2 : 2 and the P-O bond of HPNP was evidenced by the change in the (31)P chemical shift and signal line-broadening of the (31)P atom in HPNP upon addition of ZrK 2 : 2. Based on (31)P NMR experiments and isotope effect studies, a mechanism for HPNP hydrolysis in the presence of ZrK 2 : 2 was proposed.

  13. A dash of protons: A theoretical study on the hydrolysis mechanism of 1-substitued silatranes and their protonated analogs

    SciTech Connect

    Sok, Sarom; Gordon, Mark

    2011-08-17

    Ab initio calculations were carried out to study the hydrolysis mechanism of 1-substituted silatranes in the presence of an acid (acid-catalyzed) and an additional water (water-assisted). Compared with the neutral hydrolysis mechanism involving one water, use of an acid catalyst reduces the barrier associated with the rate-limiting step by approximate to 14 kcal/mol. A modest decrease of approximate to 5 kcal/mol is predicted when an additional water molecule is added to the neutral hydrolysis mechanism involving one water. The combination of an acid catalyst and an additional water molecule reduces the barrier by approximate to 27 kcal/mol. Bond order analysis suggests ring cleavage involving the bond breaking of a siloxane and silanol group during the neutral and acid-catalyzed hydrolysis of 1-substituted silatranes. respectively. Solvent effects, represented by the PCM continuum model, do not qualitatively alter computational gas-phase results. (C) 2011 Elsevier B.V. All rights reserved.

  14. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  15. Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactivation of bioactive peptides.

    PubMed

    Mäkinen, P L; Mäkinen, K K; Syed, S A

    1995-09-01

    The ability of washed whole cells of Treponema denticola ATCC 35405 to hydrolyze (inactivate) substance P, bradykinin, and angiotensin I was studied. Substance P was attacked primarily at the Phe-8-Gly-9 bond by a chymotrypsin-like proteinase (CTLP), at Pro-4-Gln-5 by an endo-acting prolyl oligopeptidase (POPase), and at Gln-5-Gln-6 by an endopeptidase (FALGPA-peptidase). Bradykinin was cleaved at Phe-5-Ser-6 by the FALGPA-peptidase and at Pro-7-Phe-8 by the POPase. Angiotensin I was rapidly converted to angiotensin II by the CTLP, and both angiotensin I and angiotensin II were further hydrolyzed at Pro-7-Phe-8 by the POPase. All these enzymes were assumed to be cell associated and were easily extracted with a mild (0.05 to 0.1%) Triton X-100 treatment. Because it was conceivable that the hydrolysis of substance P at the Phe-8-Gly-9 bond was catalyzed by a CTLP described earlier (V.-J. Uitto, D. Grenier, E. C. S. Chan, and B. C. McBride, Infect. Immun. 56:2717-2722, 1988), the enzyme was purified to homogeneity by means of conventional fast protein liquid chromatography procedures. For kinetic studies, Phe-8(4-nitro)-substance P (NSP) (absorption maximum at 309.2 nm, epsilon = 545 M-1 cm-1) was synthesized to replace substance P as a substrate in kinetic studies. In reversed-phase chromatography, both NSP and substance P gave identical results with both whole cells and the purified enzyme. The CTLP has a mass of 95 kDa, and its activity is suggested to be based on an active seryl residue, on an active imidazole group, and on an active carboxyl group but not on metal cations. The enzyme hydrolyzes N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroaniline (SAAPFNA, a typical chymotrypsin substrate) at a high rate and several proteins, such as calf thymus histone, human plasma fibrinogen, milk caseins, and gelatin. Among the substrates tested, substance P showed the highest affinity (Km = 0.22 mM) for the purified enzyme. Depending on conditions, clinically applicable

  16. Peptide Toxins in Solitary Wasp Venoms.

    PubMed

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-04-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  17. Peptide Toxins in Solitary Wasp Venoms

    PubMed Central

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  18. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.

  19. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192. PMID:26505999

  20. Pathway of processive ATP hydrolysis by kinesin

    PubMed Central

    Gilbert, Susan P.; Webb, Martin R.; Brune, Martin; Johnson, Kenneth A.

    2007-01-01

    Direct measurement of the kinetics of kinesin dissociation from microtubules, the release of phosphate and ADP from kinesin, and rebinding of kinesin to the microtubule have defined the mechanism for the kinesin ATPase cycle. The processivity of ATP hydrolysis is ten molecules per site at low salt concentration but is reduced to one ATP per site at higher salt concentration. Kinesin dissociates from the microtubule after ATP hydrolysis. This step is rate-limiting. The subsequent rebinding of kinesin · ADP to the microtubule is fast, so kinesin spends only a small fraction of its duty cycle in the dissociated state. These results provide an explanation for the motility differences between skeletal myosin and kinesin. PMID:7854446

  1. Enzymatic hydrolysis of poly(ethylene furanoate).

    PubMed

    Pellis, Alessandro; Haernvall, Karolina; Pichler, Christian M; Ghazaryan, Gagik; Breinbauer, Rolf; Guebitz, Georg M

    2016-10-10

    The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling. PMID:26854948

  2. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  3. Coupling of ultrafiltration and enzymatic hydrolysis aiming at valorizing shrimp wastewater.

    PubMed

    Tonon, Renata V; dos Santos, Bianca A; Couto, Cinthia C; Mellinger-Silva, Caroline; Brígida, Ana Iraidy S; Cabral, Lourdes M C

    2016-05-01

    The objective of this work was to obtain a protein hydrolysate from the wastewater generated during shrimp cooking, by coupling ultrafiltration and enzymatic hydrolysis processes. Initially, the effluent was concentrated by ultrafiltration, reaching a protein concentration factor of 3.2. The concentrated effluent was then enzymatically hydrolyzed, aiming at obtaining peptides with antioxidant capacity. The effects of some process variables--temperature (55-75 °C), pH (7-9) and enzyme/substrate (E/S) ratio (0.1-2.5%)--on the degree of hydrolysis and the antioxidant capacity were evaluated. The increase in temperature and pH resulted in lower degree of hydrolysis and higher antioxidant capacity. The conditions selected as the most suitable were: temperature of 75 °C, pH of 9.0 and E/S ratio of 0.1%. The hydrolysates produced at these conditions were also evaluated for total amino acid content and electrophoretic profile, showing a suitable amount of essential amino acids that covers the recommended daily needs.

  4. Enzymatic hydrolysis of starry triggerfish (Abalistes stellaris) muscle using liver proteinase from albacore tuna (Thunnus alalunga).

    PubMed

    Sripokar, P; Chaijan, M; Benjakul, S; Kishimura, H; Klomklao, S

    2016-02-01

    Proteinases from liver extract from albacore tuna (Thunnus alalunga) were used to produce protein hydrolysate from starry triggerfish (Abalistes stellaris) muscle. Hydrolysis conditions for preparing protein hydrolysate from starry triggerfish muscle were optimized. Enzyme level, reaction time and fish muscle/buffer ratio significantly affected the hydrolysis (p < 0.05). Optimum conditions for triggerfish muscle hydrolysis were 5.5 % liver extract, 40 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). The freeze-dried protein hydrolysate was characterized with respect to chemical composition, amino acid composition and color. The product contained 91.73 % protein, 2.04 % lipid and 6.48 % ash. The protein hydrolysate exhibited high amount of essential amino acids (45.62 %). It was light yellow in color (L (*) = 82.94, a (*) = 0.84, b (*) = 22.83). The results indicate that the extract from liver of albacore tuna could be used to produce fish protein hydrolysate and protein hydrolysate from starry triggerfish muscle may potentially serve as a good source of desirable peptide and amino acids. PMID:27162384

  5. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter.

    PubMed

    Lu, Shuo; Zgurskaya, Helen I

    2012-12-01

    MacB is a founding member of the Macrolide Exporter family of transporters belonging to the ATP-Binding Cassette superfamily. These proteins are broadly represented in genomes of both Gram-positive and Gram-negative bacteria and are implicated in virulence and protection against antibiotics and peptide toxins. MacB transporter functions together with MacA, a periplasmic membrane fusion protein, which stimulates MacB ATPase. In Gram-negative bacteria, MacA is believed to couple ATP hydrolysis to transport of substrates across the outer membrane through a TolC-like channel. In this study, we report a real-time analysis of concurrent ATP hydrolysis and assembly of MacAB-TolC complex. MacB binds nucleotides with a low millimolar affinity and fast on- and off-rates. In contrast, MacA-MacB complex is formed with a nanomolar affinity, which further increases in the presence of ATP. Our results strongly suggest that association between MacA and MacB is stimulated by ATP binding to MacB but remains unchanged during ATP hydrolysis cycle. We also found that the large periplasmic loop of MacB plays the major role in coupling reactions separated in two different membranes. This loop is required for MacA-dependent stimulation of MacB ATPase and at the same time, contributes to recruitment of TolC into a trans-envelope complex. PMID:23057817

  6. Structural selection of ionic-complementary peptides with electrostatic interactions.

    PubMed

    Yan, Zhiqiang; Wang, Jun; Zhang, Jian; Qin, Meng; Wang, Wei

    2010-09-01

    The structures of the peptides and their assembly are largely modulated by the environment. To discover the physical principles governing the structural modulations of peptides by the environment would be useful for many applications. As the typical examples, the structures of three kinds of ionic-complementary EAK16-family peptides under various environmental conditions are studied with simulations in this work. A model with intermediate resolution is used, in which both the backbone hydrogen bonds and electrostatic interactions are explicitly considered. The thermodynamics of these peptides (including the free energy and heat capacity) are described for various strengths of the electrostatic interactions which reflect the variation of environment. With these results, the phase diagrams of these peptides related to the temperature and the strength of electrostatic interactions are presented and compared. Based on the differences in the phase structures of the peptide, the different aggregation behaviors are explained based on the monomeric structural features of the peptides. Through the analysis on the stability of various secondary structures of these peptides, it is demonstrated that the charge pattern is the basic reason of the different responses of the EAK16-family peptides to the environmental changes. These results provide some examples and insights for the principles of structural selection by environment and may be helpful for further analysis and designs of peptide systems. PMID:21230118

  7. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  8. Cooperative effect of water molecules in the self-catalyzed neutral hydrolysis of isocyanic acid: a comprehensive theoretical study.

    PubMed

    Wei, Xi-Guang; Sun, Xiao-Ming; Wu, Xiao-Peng; Geng, Song; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2011-08-01

    The detailed reaction mechanism for the water-assisted hydrolysis of isocyanic acid, HNCO + (n + 1) H(2)O → CO(2) + NH(3) + nH(2)O (n = 0-6), taking place in the gas phase, has been investigated. All structures were optimized and characterized at the MP2/6-31 + G level of theory, and then re-optimized at MP2/6-311++G. The seven explicit water molecules participating in the hydrolysis can be divided into two groups, one directly involved in the proton relay, and the other located in the vicinity of the substrate playing the cooperative role by engaging in hydrogen-bonding to HN = C = O. Two possible reaction pathways, the addition of water molecule across the C = N bond or across the C = O bond, are discussed, and the former is proved to be more favorable energetically. Our calculations suggest that, in the most kinetically favorable pathway for the titled hydrolysis, three water molecules are directly participating in the hydrogen transfer via an eight-membered cyclic transition state, while the other four water molecules catalyze the hydrolysis of HN = C = O by forming three eight-membered cooperative loops near the substrate. This strain-free hydrogen-bond network leads to the best estimated rate-determining activation energy of 24.9 kJ mol(-1) at 600 K, in excellent agreement with the gas-phase kinetic experimental result, 25.8 kJ mol(-1). PMID:21161555

  9. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  10. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  11. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load.

  12. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    PubMed

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

  13. Angiotensin I Converting enzyme inhibitory peptides from commercial wet- and dry-milled corn germ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioprocesses were developed to enhance the value of proteins from de-oiled corn germ. Proteins were hydrolyzed with trypsin, GC106, Flavourzyme or thermolysin in order to free the bioactive peptide sequences. Protein hydrolysis, at an enzyme to substrate ratio of 1:250, was greater for wet- than d...

  14. An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate

    NASA Astrophysics Data System (ADS)

    Collins, Richard N.; Rosso, Kevin M.; Rose, Andrew L.; Glover, Chris J.; David Waite, T.

    2016-03-01

    Using a novel combination of in situ potentiometric experiments and quick-scanning XAS we present Fe K-edge XAS spectra (to k = 12 Å-1) during FeIII hydrolysis and precipitation in 0.33 M Fe(ClO4)3, Fe(NO3)3, FeCl3 and Fe2(SO4)3 solutions up to pH 4.8. Edge-sharing FeIII polymers appeared almost immediately upon hydrolysis with strong evidence for a μ-oxo dimer species forming in the Fe(ClO4)3, Fe(NO3)3 and FeCl3 solutions. The effects of SO4 on hydrolysis and polymerization pathways included inhibition of both the formation of the μ-oxo dimer and double corner FeIII bonding, ultimately resulting in the precipitation of schwertmannite. As such, under these experimental conditions, double corner FeIII bonding appears to be critical to the formation of ferrihydrite. The spectral trends indicated that the decomposition/transformation of the dimer was sudden and broadly coincident with shortening average Fe-O bond distances, increased Fe neighbors at ∼3.43 Å and a pre-edge energy transformation suggestive of decreased ligand field strength as well as increasing proportions of tetrahedral FeIII. This result suggests that the incorporation of tetrahedral FeIII into ferrihydrite occurs only at the latter stages of extended polymerization.

  15. Intestinal hydrolysis of aspartylphenylalanine--the metabolic product of aspartame.

    PubMed

    Tobey, N A; Heizer, W D

    1986-10-01

    Aspartame [Nutrasweet, Equal (Searle Consumer Products, Chicago, Ill.)] is the methyl ester of the dipeptide aspartylphenylalanine (Asp-Phe). After hydrolysis of the ester bond in the intestinal lumen, the dipeptide is apparently absorbed and digested in the same manner as dipeptides derived from protein digestion. We observed that Asp-Phe is hydrolyzed approximately equally well by three previously reported brush border dipeptidases. However, these enzymes have very low affinity for Asp-Phe, and a substantial amount of the dipeptide may be transported intact and hydrolyzed in the cytosol. Starch gel electrophoresis and ion-exchange chromatography of the cytosol of intestinal mucosa and of red blood cell lysate revealed only one peak with Asp-Phe hydrolase activity. This activity was distinct from the seven cytosolic peptidases that have been described previously. The reduction in Asp-Phe hydrolase activity in the brush border and cytosol of diseased intestinal mucosa was similar to the reduction in levels of other brush border and cytosol enzyme activities. If double-blind studies confirm that some people have symptoms caused by aspartame ingestion, it would be appropriate to test such individuals for deficiency of cytosolic Asp-Phe hydrolase activity.

  16. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  17. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  18. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  19. Hierarchical organization of ferrocene-peptides.

    PubMed

    Beheshti, Samaneh; Martić, Sanela; Kraatz, Heinz-Bernhard

    2012-07-16

    Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues.

  20. Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation

    PubMed Central

    Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding. PMID:21220360

  1. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  2. Bond percolation in films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  3. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  4. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  5. Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis

    SciTech Connect

    Knappert, D.; Grethlein, H.; Converse, A.

    1981-01-01

    Partial acid hydrolysis was studied as a pretreatment to enhance glucose yields from enzymatic hydrolysis of poplar. The pretreatments were carried out in a continuous flow reactor at temperatures ranging from 162 to 222/sup 0/C, acid concentrations ranging from 0 to 1.5%, and treatment times from 3.6 to 12.7 s. The pretreated slurries were hydrolyzed with Trichoderma reesei C30 cellulase at 50/sup 0/C and a pH of 4.8 for 48 h. Increased yields of glucose were achieved when poplar was pretreated at temperatures higher than 180/sup 0/C. By increasing the cellobiase activity of the cellulase with the addition of NOVO cellobiase, in some cases 100% of the potential glucose content of the substrate was converted to glucose after only 24 h of enzymatic hydrolysis.

  6. Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization.

    PubMed

    Nikolaev, I V; Sforza, S; Lambertini, F; Ismailova, D Yu; Khotchenkov, V P; Volik, V G; Dossena, A; Popov, V O; Koroleva, O V

    2016-04-15

    Peptide hydrolysate (PH) was produced by deep controllable bioconversion of poultry processing leftovers (broiler necks), by means of a multienzyme composition, containing four commercially available enzyme preparations (Alcalase, Neutrase, Flavourzyme, Protamex). The design of multienzyme composition (MEC) was applied to yield a hydrolysate with adjusted properties, including minimized antigenicity and bitterness. The protein recovery was optimized using Box-Behnken response surface design. The individual and interactive effects of hydrolysis conditions (time, hydromodule and MEC dosage) were studied. The experimental data were analyzed by ANOVA method and a well-predictive, second order polynomial model was developed using multiple regression analysis. Optimal hydrolysis conditions were found to be: hydrolysis time 3 h, hydromodule 2.25 l/kg and dosage of MEC 0.25%. The corresponding predicted value for protein recovery was 75.34%, 2 times higher compared to traditional long-term heating hydrolysis. The PH obtained is a low allergenic product with high antioxidant capacity.

  7. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  8. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  9. ATP selection in a random peptide library consisting of prebiotic amino acids.

    PubMed

    Kang, Shou-Kai; Chen, Bai-Xue; Tian, Tian; Jia, Xi-Shuai; Chu, Xin-Yi; Liu, Rong; Dong, Peng-Fei; Yang, Qing-Yong; Zhang, Hong-Yu

    2015-10-23

    Based upon many theoretical findings on protein evolution, we proposed a ligand-selection model for the origin of proteins, in which the most ancient proteins originated from ATP selection in a pool of random peptides. To test this ligand-selection model, we constructed a random peptide library consisting of 15 types of prebiotic amino acids and then used cDNA display to perform six rounds of in vitro selection with ATP. By means of next-generation sequencing, the most prevalent sequence was defined. Biochemical and biophysical characterization of the selected peptide showed that it was stable and foldable and had ATP-hydrolysis activity as well.

  10. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  11. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles.

    PubMed

    Hansen, J; Diness, F; Meldal, M

    2016-03-28

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed. PMID:26924021

  12. Utilization of positional isotope exchange experiments to evaluate reversibility of ATP hydrolysis catalyzed by Escherichia coli Lon protease.

    PubMed

    Thomas, Jennifer; Fishovitz, Jennifer; Lee, Irene

    2010-02-01

    Lon protease, also known as protease La, is an ATP-dependent serine protease. Despite the presence of a proteolytic Ser-Lys dyad, the enzyme only catalyzes protein degradation in the presence of ATP. Lon possesses an intrinsic ATPase activity that is stimulated by protein and certain peptide substrates. Through sequence alignment and analysis, it is concluded that Lon belongs to the AAA+ protein family. Previous kinetic characterization of the ATPase domain of Escherichia coli Lon protease implicates a half-site reactivity model in which only 50% of the ATP bound to Lon are hydrolyzed to yield ADP; the remaining ATPase sites remain bound with ATP and are considered non-catalytic. In this model, it is implied that ATP hydrolysis is irreversible. To further evaluate the proposed half-site reactivity model, the reversibility of the ATPase activity of E. coli Lon was evaluated by positional isotope exchange experiments. The ATPase reactions were conducted in the 18O-enriched buffer such that the extent of 18O incorporation into inorganic phosphate generated from ATP hydrolysis could be used to evaluate the extent of reversibility in ATP hydrolysis. Collectively, our experimental data reveal that the ATPase reaction catalyzed by E. coli Lon in the presence and absence of peptide substrate that stimulated the enzyme's ATPase activity is irreversible. Therefore, the half-site ATPase reactivity of E. coli Lon is validated, and can be used to account for the kinetic mechanism of the ATP-dependent peptidase activity of the enzyme.

  13. Caseinophosphopeptides released after tryptic hydrolysis versus simulated gastrointestinal digestion of a casein-derived by-product.

    PubMed

    Cruz-Huerta, E; García-Nebot, M J; Miralles, B; Recio, I; Amigo, L

    2015-02-01

    The production of caseinophosphopeptides from a casein-derived by-product generated during the manufacture of a functional ingredient based on antihypertensive peptides was attempted. The casein by-product was submitted to tryptic hydrolysis for 30, 60 and 120min and further precipitated with calcium chloride and ethanol at pH 4.0, 6.0 and 8.0. Identification and semi quantification of the derived products by tandem mass spectrometry revealed some qualitative and quantitative changes in the released caseinophosphopeptides over time at the different precipitation pHs. The by-product was also subjected to simulated gastrointestinal digestion. Comparison of the resulting peptides showed large sequence homology in the phosphopeptides released by tryptic hydrolysis and simulated gastrointestinal digestion. Some regions, specifically αS1-CN 43-59, αS1-CN 60-74, β-CN 1-25 and β-CN 30-50 showed resistance to both tryptic hydrolysis and simulated digestion. The results of the present study suggest that this casein-derived by-product can be used as a source of CPPs.

  14. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  15. Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid

    NASA Astrophysics Data System (ADS)

    Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco

    2003-04-01

    DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.

  16. Insights into the Chemomechanical Coupling of the Myosin Motor from Simulation of Its ATP Hydrolysis Mechanism

    SciTech Connect

    Schwarzl, S.M.; Smith, Jeremy C; Fischer, S.

    2006-03-01

    The molecular motor myosin converts chemical energy from ATP hydrolysis into mechanical work, thus driving a variety of essential motility processes. Although myosin function has been studied extensively, the catalytic mechanism of ATP hydrolysis and its chemomechanical coupling to the motor cycle are not completely understood. Here, the catalysis mechanism in myosin II is examined using quantum mechanical/molecular mechanical reaction path calculations. The resulting reaction pathways, found in the catalytically competent closed/closed conformation of the Switch-1/Switch-2 loops of myosin, are all associative with a pentavalent bipyramidal oxyphosphorane transition state but can vary in the activation mechanism of the attacking water molecule and in the way the hydrogens are transferred between the heavy atoms. The coordination bond between the Mg2+ metal cofactor and Ser237 in the Switch-1 loop is broken in the product state, thereby facilitating the opening of the Switch-1 loop after hydrolysis is completed, which is required for subsequent strong rebinding to actin. This reveals a key element of the chemomechanical coupling that underlies the motor cycle, namely, the modulation of actin unbinding or binding in response to the ATP or ADP{circle_dot}Pi state of nucleotide-bound myosin.

  17. The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data

    PubMed Central

    2013-01-01

    Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem.10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data. PMID:24279349

  18. Mechanistic studies of the base-catalyzed hydrolysis of pyridine nucleotides

    SciTech Connect

    Johnson, R.W.; Marschner, T.M.; Malver, O.; Sleath, P.R.; Oppenheimer, N.J.

    1986-05-01

    The pH dependence of base-catalyzed hydrolysis of ..beta..-NAD has been determined over the range from pH 8.5 to 13.5. Below pH 10.5 the reaction rate constant is linearly dependent on hydroxide concentration whereas above pH 12.5 the reaction becomes pH independent. A nonlinear least squares fit of the data yields a pK/sub a/ of 12.2, corresponding to the ionization of the 2'-OH of the nicotinamide ribose as determined by /sup 1/H and /sup 13/C NMR. Based on these data, as well as solvent isotope effects and data from previous investigators, the authors propose that ionization of the ribose diol stabilizes an oxonium ion intermediate, thus, facilitating S/sub N/1 hydrolysis of the nicotinamide-glycosyl bond with release of nicotinamide. Further evidence for this mechanism is provided by investigation of the 2',3'-O-isopropylidine nicotinamide riboside. This compound is found to be highly resistant to hydrolysis in base and product analysis by NMR reveals that only 2-hydroxy-3-pyridinecarboxaldehyde is released. The influence on the reaction rate and mechanism resulting from other modifications of the sugar moiety of nicotinamide nucleosides are discussed.

  19. Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides.

    PubMed Central

    Jordan, F; Niv, H

    1977-01-01

    The log kobs vs. pH profiles were determined in the intermediate acidity region for the glycosyl hydrolysis of guanosine and its 8-amino, 8-monomethylamino, 8-dimethylamino and 8-bromo derivatives. The decreased rate of the 8-amino and enhanced rate of the 8-bromo compound compared to guanosine support an A type mechanism: base protonation followed by glycosyl bond cleavage. All three 8-amino guanosines exhibited log kobs - pH profiles clearly showing that both mono and di-base protonated nucleosides undergo hydrolysis. The 700 fold rate acceleration of 8-N(CH3)-guanosine compared to 8-NHCH3-guanosine and the 110 fold rate acceleration of 8-N(CH3)2-adenosine compared to 8-NHCH3-adenosine could be unequivocally attributed to the fixed syn glycosyl conformation of both 8-dimethylamino compounds and relief of steric compression upon hydrolysis in these molecules. The lack of anomerization of all substrates during the course of the reaction supports an A rather than a Schiff-base mechanism. PMID:17100

  20. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  1. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  2. Template-Directed Ligation of Peptides to Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  3. Peptide synthesis in neat organic solvents with novel thermostable proteases.

    PubMed

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    2015-06-01

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80°C and 60°C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40-50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.

  4. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    PubMed

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. PMID:27586339

  5. Analysis of Peptides and Conjugates by Amino Acid Analysis.

    PubMed

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization. Peptides are hydrolyzed, preferably in gas phase, with 6 M HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5% can usually be obtained. PMID:26424264

  6. Computational peptide vaccinology.

    PubMed

    Söllner, Johannes

    2015-01-01

    Immunoinformatics focuses on modeling immune responses for better understanding of the immune system and in many cases for proposing agents able to modify the immune system. The most classical of these agents are vaccines derived from living organisms such as smallpox or polio. More modern vaccines comprise recombinant proteins, protein domains, and in some cases peptides. Generating a vaccine from peptides however requires technologies and concepts very different from classical vaccinology. Immunoinformatics therefore provides the computational tools to propose peptides suitable for formulation into vaccines. This chapter introduces the essential biological concepts affecting design and efficacy of peptide vaccines and discusses current methods and workflows applied to design successful peptide vaccines using computers.

  7. Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(iv) Wells-Dawson polyoxometalate.

    PubMed

    Luong, Thi Kim Nga; Shestakova, Pavletta; Parac-Vogt, Tatjana N

    2016-07-26

    The catalytic hydrolysis of a phosphoester bond in the DNA-model substrate 4-nitrophenyl phosphate (NPP) promoted by Zr(iv)-substituted Wells-Dawson Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4]·57H2O polyoxometalate (ZrWD 4 : 2) was followed by means of (1)H and (31)P NMR spectroscopy. The hydrolytic reaction proceeded with a rate constant of 8.44 (±0.36) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 300-fold rate enhancement in comparison with the spontaneous hydrolysis of NPP (kobs = 2.81 (±0.25) × 10(-7) s(-1)) under the same reaction conditions. The ZrWD 4 : 2 was also active towards hydrolysis of bis(4-nitrophenyl) phosphate (BNPP) and the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP). The pD dependence of kobs shows that the rate constants for NPP hydrolysis decrease significantly when the pD values of the reaction mixtures increase. The formation constant (Kf = 190 M(-1)) and catalytic rate constant (kc = 6.40 × 10(-4) s(-1)) for the NPP-ZrWD 4 : 2 complex, activation energy (Ea) of 110.15 ± 7.06 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 109.03 ± 6.86 kJ mol(-1), entropy of activation (ΔS(‡)) of 15.20 ± 2.49 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 104.32 ± 6.09 kJ mol(-1) at 37 °C were calculated from kinetic studies. The recyclability of ZrWD 4 : 2 was examined by adding an extra amount (5.0 mM) of NPP twice to a fully hydrolyzed mixture of 5.0 mM NPP and 1.0 mM ZrWD 4 : 2. The interaction between ZrWD 4 : 2 and the P-O bond of NPP was evidenced by a change in the (31)P chemical shift of the (31)P atom in NPP upon addition of ZrWD 4 : 2. Based on (31)P NMR experiments and the kinetic studies, a mechanism for NPP hydrolysis promoted by ZrWD 4 : 2 has been proposed. PMID:27406623

  8. Peptides@mica: from affinity to adhesion mechanism.

    PubMed

    Gladytz, A; John, T; Gladytz, T; Hassert, R; Pagel, M; Risselada, H J; Naumov, S; Beck-Sickinger, A G; Abel, B

    2016-09-14

    Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound. PMID:27491508

  9. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    SciTech Connect

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. )

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  10. β-Turn sequences promote stability of peptide substrates for kinases within the cytosolic environment.

    PubMed

    Yang, Shan; Proctor, Angela; Cline, Lauren L; Houston, Kaiulani M; Waters, Marcey L; Allbritton, Nancy L

    2013-08-01

    A strategy was developed to extend the lifetime of an peptide-based substrate for Abl kinase in the cytosolic environment. Small β-turn structures were added to the peptide's N-terminus to block entry into peptidase catalytic sites. The influence of the size of the β-turn and two covalent cross-linking strategies on the rate of hydrolysis was assessed. The most peptidase-resistant substrate was degraded at a rate of 0.6 pmol mg(-1) s(-1) and possessed a half-life of 20.3 ± 1.7 min in a Baf/BCR-ABL cytosolic lysate, representing 16- and 40-fold improvements, respectively, over that of a control peptide lacking the β-turn structure. Furthermore, the kcat/KM value of this peptide was 432 μM(-1) min(-1), a 1.25× increase over the unmodified control, verifying that the added β-turn did not hinder the substrate properties of the peptide. This improved peptide was microinjected into single Baf/BCR-ABL cells and substrate phosphorylation measured. Zero to forty percent of the peptide was phosphorylated in the single cells. In contrast, when the control peptide without a β-turn was loaded into cells, the peptide was too rapidly degraded to detect phosphorylation. This work demonstrates that small β-turn structures can render peptides more resistant to hydrolysis while retaining substrate efficacy and shows that these stabilized peptides have the potential to be of high utility in single-cell enzyme assays.

  11. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  12. Dissociation energies of X-H bonds in amino acids.

    PubMed

    Moore, Benjamin N; Julian, Ryan R

    2012-03-01

    In biochemistry, free radicals are versatile species which can perform diverse functions including: signaling, synthesis, and destructive modification. It is of interest to understand how radicals behave within all biomolecules and specifically within peptides and proteins. The 20 standard amino acids contain a wide range of chemical structures, which give proteins their complexity and ultimately their functionality. Many factors influence how radicals interact with these complex molecules, including the bond dissociation energies (BDEs) for homolytically cleaving any X-H bonds. The BDEs provide a simple measure for comparing the thermodynamic favorability of abstracting hydrogen atoms from various sites within a protein. BDEs for abstractable hydrogen atoms have been calculated for each amino acid, the peptide backbone, and peptide termini in order to compile a roadmap of the relative thermodynamics which influence protein radical chemistry. With this information it is possible to gain insight into what contributions both kinetics and thermodynamics will make to various radical mediated reaction pathways.

  13. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  14. Improved method for detection of starch hydrolysis

    SciTech Connect

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  15. Urea hydrolysis and calcium carbonate reaction fronts

    NASA Astrophysics Data System (ADS)

    Fox, D. T.; Redden, G. D.; Henriksen, J.; Fujita, Y.; Guo, L.; Huang, H.

    2010-12-01

    The mobility of toxic or radioactive metal contaminants in subsurface environments can be reduced by the formation of mineral precipitates that form co-precipitates with the contaminants or that isolate them from the mobile fluid phase. An engineering challenge is to control the spatial distribution of precipitation reactions with respect to: 1) the location of a contaminant, and 2) where reactants are introduced into the subsurface. One strategy being explored for immobilizing contaminants, such as Sr-90, involves stimulating mineral precipitation by forming carbonate ions and hydroxide via the in situ, microbially mediated hydrolysis of urea. A series of column experiments have been conducted to explore how the construction or design of such an in situ reactant production strategy can affect the temporal and spatial distribution of calcium carbonate precipitation, and how the distribution is coupled to changes in permeability. The columns were constructed with silica gel as the porous media. An interval midway through the column contained an adsorbed urease enzyme in order to simulate a biologically active zone. A series of influent solutions were injected to characterize hydraulic properties of the column (e.g., bromide tracer), profiles of chemical conditions and reaction products as the enzyme catalyzes urea hydrolysis (e.g., pH, ammonia, urea), and changes that occur due to CaCO3 precipitation with the introduction of a calcium+urea solutions. In one experiment, hydraulic conductivity was reduced as precipitate accumulated in a layer within the column that had a higher fraction of fine grained silica gel. Subsequent reduction of permeability and flow (for a constant head condition) resulted in displacement of the hydrolysis and precipitation reaction profiles upstream. In another experiment, which lacked the physical heterogeneity (fine grained layer), the precipitation reaction did not result in loss of permeability or flow velocity and the reaction profile

  16. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    PubMed

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  17. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: A mechanistic investigation.

    PubMed

    Singh, Shuchi; Agarwal, Mayank; Bhatt, Aditya; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This study has attempted to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis of pretreated and delignified biomass of Parthenium hysterophorus. A dual approach of statistical optimization of hydrolysis followed by application of sonication at optimum conditions has been adopted. The kinetics of hydrolysis shows a marked 6× increase with sonication, while net sugar yield shows marginal rise of ∼ 20%. The statistical experimental design reveals the hydrolysis process to be enzyme limited. Profile of sugar yield in ultrasound-assisted enzymatic hydrolysis has been analyzed using HCH-1 model coupled with Genetic Algorithm optimization. The trends in the kinetic and physiological parameters of HCH-1 model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis. The product inhibition of enzyme in all forms (free, adsorbed, complexed) also reduces with ultrasound. These effects are attributed to intense micro-convection induced by ultrasound and cavitation in the liquid medium.

  18. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  19. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.

    PubMed

    Guerra, Arcadio; Brea, Roberto J; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2012-11-28

    In this study, a novel dimer-forming cyclic peptide composed exclusively by cyclic γ-amino acids with a saccharide-like outer surface is described. The antiparallel β-sheet type hydrogen bonding interactions responsible for the large association constant in non-polar solvents constitute a suitable model for a novel class of self-assembling peptide nanotubes.

  20. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.

    PubMed

    Guerra, Arcadio; Brea, Roberto J; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2012-11-28

    In this study, a novel dimer-forming cyclic peptide composed exclusively by cyclic γ-amino acids with a saccharide-like outer surface is described. The antiparallel β-sheet type hydrogen bonding interactions responsible for the large association constant in non-polar solvents constitute a suitable model for a novel class of self-assembling peptide nanotubes. PMID:23060041

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  2. Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas A.; Jung, Hye R.; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.

  3. Technical bases for precipitate hydrolysis process operating parameters. Revision 1

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  4. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  5. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  6. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    PubMed

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  7. A Novel Reaction Mediated by Human Aldehyde Oxidase: Amide Hydrolysis of GDC-0834

    PubMed Central

    Wong, Susan; Kirkpatrick, Donald S.; Liu, Lichuan; Khojasteh, S. Cyrus; Hop, Cornelis E. C. A.; Barr, John T.; Jones, Jeffrey P.; Halladay, Jason S.

    2015-01-01

    GDC-0834, a Bruton’s tyrosine kinase inhibitor investigated as a potential treatment of rheumatoid arthritis, was previously reported to be extensively metabolized by amide hydrolysis such that no measurable levels of this compound were detected in human circulation after oral administration. In vitro studies in human liver cytosol determined that GDC-0834 (R)-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo- 4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b] thiophene-2-carboxamide) was rapidly hydrolyzed with a CLint of 0.511 ml/min per milligram of protein. Aldehyde oxidase (AO) and carboxylesterase (CES) were putatively identified as the enzymes responsible after cytosolic fractionation and mass spectrometry-proteomics analysis of the enzymatically active fractions. Results were confirmed by a series of kinetic experiments with inhibitors of AO, CES, and xanthine oxidase (XO), which implicated AO and CES, but not XO, as mediating GDC-0834 amide hydrolysis. Further supporting the interaction between GDC-0834 and AO, GDC-0834 was shown to be a potent reversible inhibitor of six known AO substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834. PMID:25845827

  8. Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides

    NASA Astrophysics Data System (ADS)

    Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina

    Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.

  9. Peptide Nanovesicles Formed by the Self-Assembly of Branched Amphiphilic Peptides

    PubMed Central

    Gudlur, Sushanth; Sukthankar, Pinakin; Gao, Jian; Avila, L. Adriana; Hiromasa, Yasuaki; Chen, Jianhan; Iwamoto, Takeo; Tomich, John M.

    2012-01-01

    Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. These peptides undergo supramolecular self-assembly and form solvent-filled, bilayer delimited spheres with 50–200 nm diameters as confirmed by TEM, STEM and DLS. Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these all-peptide structures are stabilized potentially by both hydrophobic interactions and hydrogen bonds and remain intact at low micromolar concentrations and higher temperatures. A linear peptide lacking the branch point showed no self-assembly properties. We have observed that these peptide vesicles can trap fluorescent dye molecules within their interior and are taken up by N/N 1003A rabbit lens epithelial cells grown in culture. These assemblies are thus potential drug delivery systems that can overcome some of the key limitations of the current packaging systems. PMID:23028970

  10. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  11. CD8-dependent CTL require co-engagement of CD8 and the TCR for phosphatidylinositol hydrolysis, but CD8-independent CTL do not and can kill in the absence of phosphatidylinositol hydrolysis.

    PubMed

    Knall, C; Smith, P A; Potter, T A

    1995-06-01

    Most instances of MHC class I recognition and target cell killing by CD8+ CTL require the involvement of CD8. The role of CD8 in these events may be both for adhesion of the CTL with the APC, as well as for signal transduction through the TCR. The precise mechanism by which CD8 mediates signal transduction remains enigmatic. Similarly, it is unclear whether only the CD8 molecules which bind to the same class I molecule as the TCR contribute to signaling in the T cell responding to antigen. We have investigated the requirement for co-engagement of CD8 and the TCR in the induction of the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) during the interaction of CTL and APC transfected with either wild-type or mutant (CD8 non-binding) class I molecules. Our results show that for conventional CD8-dependent killing co-engagement of both CD8 and the TCR is required to initiate PIP2 hydrolysis. This requirement for co-engagement, however, can be overcome by a high density of ligand, such as that provided by high concentrations of exogenous peptide. In such situations, the binding of CD8 to non-antigenic class I molecules can elicit PIP2 hydrolysis. Therefore, during interactions between CTL and APC, which generally occur at low concentrations of antigenic peptide, triggering of PIP2 hydrolysis requires TCR and CD8 co-engagement, and the binding of CD8 to non-antigenic class I molecules does not contribute significantly to signaling within the T cell.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA

    PubMed Central

    2016-01-01

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop. PMID:27800552

  13. Adhesion through single peptide aptamers

    PubMed Central

    Aubin-Tam, Marie-Eve; Appleyard, David C.; Ferrari, Enrico; Garbin, Valeria; Fadiran, Oluwatimilehin O.; Kunkel, Jacquelyn; Lang, Matthew J.

    2014-01-01

    Aptamer and antibody mediated adhesion is central to biological function and valuable in the engineering of “lab on a chip” devices. Single molecule force spectroscopy using optical tweezers enables direct non-equilibrium measurement of these non-covalent interactions for three peptide aptamers selected for glass, polystyrene, and carbon nanotubes. A comprehensive examination of the strong attachment between anti-fluorescein 4-4-20 and fluorescein was also carried out using the same assay. Bond lifetime, barrier width, and free energy of activation are extracted from unbinding histogram data using three single molecule pulling models. The evaluated aptamers appear to adhere stronger than the fluorescein antibody under no- and low-load conditions, yet weaker than antibodies at loads above ~25pN. Comparison to force spectroscopy data of other biological linkages shows the diversity of load dependent binding and provides insight into linkages used in biological processes and those designed for engineered systems. PMID:20795685

  14. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers.

    PubMed

    Wymore, Troy; Field, Martin J; Langan, Paul; Smith, Jeremy C; Parks, Jerry M

    2014-05-01

    Organophosphorus (OP) nerve agents such as (S)-sarin are among the most highly toxic compounds that have been synthesized. Engineering enzymes that catalyze the hydrolysis of nerve agents ("bioscavengers") is an emerging prophylactic approach to diminish their toxic effects. Although its native function is not known, diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris catalyzes the hydrolysis of OP compounds. Here, we investigate the mechanisms of diisopropylfluorophosphate (DFP) and (S)-sarin hydrolysis by DFPase with quantum mechanical/molecular mechanical umbrella sampling simulations. We find that the mechanism for hydrolysis of DFP involves nucleophilic attack by Asp229 on phosphorus to form a pentavalent intermediate. P-F bond dissociation then yields a phosphoacyl enzyme intermediate in the rate-limiting step. The simulations suggest that a water molecule, coordinated to the catalytic Ca(2+), donates a proton to Asp121 and then attacks the tetrahedral phosphoacyl intermediate to liberate the diisopropylphosphate product. In contrast, the calculated free energy barrier for hydrolysis of (S)-sarin by the same mechanism is highly unfavorable, primarily because of the instability of the pentavalent phosphoenzyme species. Instead, simulations suggest that hydrolysis of (S)-sarin proceeds by a mechanism in which Asp229 could activate an intervening water molecule for nucleophilic attack on the substrate. These findings may lead to improved strategies for engineering DFPase and related six-bladed β-propeller folds for more efficient degradation of OP compounds.

  15. In Silico Alkaline Hydrolysis of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Density Functional Theory Investigation.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynska, Danuta; Shukla, Manoj K; Okovytyy, Sergiy I; Hovorun, Dmytro; Leszczynski, Jerzy

    2016-09-20

    HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an energetic material used in military applications, may be released to the environment during manufacturing, transportation, storage, training, and disposal. A detailed investigation of a possible mechanism of alkaline hydrolysis, as one of the most promising methods for HMX remediation, was performed by computational study at PCM(Pauling)/M06-2X/6-311++G(d,p) level. Obtained results suggest that HMX hydrolysis at pH 10 represents a highly exothermic multistep process involving initial deprotonation and nitrite elimination, hydroxide attachment accompanied by cycle cleavage, and further decomposition of cycle-opened intermediate to the products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of HMX hydrolysis such as nitrite, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, formate, and ammonia correspond to experimentally observed species. Based on computed reaction pathways for HMX decomposition by alkaline hydrolysis, the kinetics of the entire process was modeled. Very low efficiency of this reaction at pH 10 was observed. Computations predict significant increases (orders of magnitude) of the hydrolysis rate for hydrolysis reactions undertaken at pH 11, 12, and 13. PMID:27523798

  16. Hydrolysis of DFP and the Nerve Agent (S)-Sarin by DFPase Proceeds Along Two Different Reaction Pathways: Implica-tions for Engineering Bioscavengers

    SciTech Connect

    Wymore, Troy W; Langan, Paul; Smith, Jeremy C; Field, Martin J.; Parks, Jerry M

    2014-01-01

    Organophosphorus (OP) nerve agents such as (S)-sarin are among the most highly toxic compounds that have been synthesized. Engineering enzymes that catalyze the hydrolysis of nerve agents ( bioscavengers ) is an emerging prophylactic approach to diminishing their toxic effects. Although its native function is not known, diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris catalyzes the hydrolysis of OP compounds. Here, we investigate the mechanisms of diisopropylfluorophosphate (DFP) and (S)-sarin hydrolysis by DFPase with quantum mechanical/molecular mechanical (QM/MM) umbrella sampling simulations. We find that the mechanism for hydrolysis of DFP involves nucleophilic attack by Asp229 on phosphorus to form a pentavalent intermediate. P F bond dissociation then yields a phosphoacyl enzyme intermediate in the rate-limiting step. The simulations suggest that a water molecule, coordinated to the catalytic Ca2+, donates a proton to Asp121 and then attacks the tetrahedral phosphoacyl intermediate to liberate the diisopropylphosphate product. In contrast, the calculated free energy barrier for hydrolysis of (S)-sarin by the same mechanism is highly unfavorable, primarily due to the instability of the pentavalent phosphoenzyme species. Instead, simulations suggest that hydrolysis of (S)-sarin proceeds by a mechanism in which Asp229 could activate an intervening water molecule for nucleophilic attack on the substrate. These findings may lead to improved strategies for engineering DFPase and related six-bladed -propeller folds for more efficient degradation of OP compounds.

  17. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers.

    PubMed

    Wymore, Troy; Field, Martin J; Langan, Paul; Smith, Jeremy C; Parks, Jerry M

    2014-05-01

    Organophosphorus (OP) nerve agents such as (S)-sarin are among the most highly toxic compounds that have been synthesized. Engineering enzymes that catalyze the hydrolysis of nerve agents ("bioscavengers") is an emerging prophylactic approach to diminish their toxic effects. Although its native function is not known, diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris catalyzes the hydrolysis of OP compounds. Here, we investigate the mechanisms of diisopropylfluorophosphate (DFP) and (S)-sarin hydrolysis by DFPase with quantum mechanical/molecular mechanical umbrella sampling simulations. We find that the mechanism for hydrolysis of DFP involves nucleophilic attack by Asp229 on phosphorus to form a pentavalent intermediate. P-F bond dissociation then yields a phosphoacyl enzyme intermediate in the rate-limiting step. The simulations suggest that a water molecule, coordinated to the catalytic Ca(2+), donates a proton to Asp121 and then attacks the tetrahedral phosphoacyl intermediate to liberate the diisopropylphosphate product. In contrast, the calculated free energy barrier for hydrolysis of (S)-sarin by the same mechanism is highly unfavorable, primarily because of the instability of the pentavalent phosphoenzyme species. Instead, simulations suggest that hydrolysis of (S)-sarin proceeds by a mechanism in which Asp229 could activate an intervening water molecule for nucleophilic attack on the substrate. These findings may lead to improved strategies for engineering DFPase and related six-bladed β-propeller folds for more efficient degradation of OP compounds. PMID:24720808

  18. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  19. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  20. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  1. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: application to the hydrolysis of triacylglycerols by lipases.

    PubMed

    Mitchell, David Alexander; Rodriguez, Jorge A; Carrière, Frédéric; Baratti, Jacques; Krieger, Nadia

    2008-02-01

    We propose a model for the sequential hydrolysis of ester bonds of triacylglycerols by lipases and use it as the basis for an analytical method for determining the relative specificity of the lipase for the various substrates with which it can react, when the substrates occur simultaneously in a single reaction system. We then apply the method to our own data and literature data involving the hydrolysis of triacylglycerols by lipases. Our model is able to fit well to most of the reaction profiles, enabling the estimation of relative specificities. We discuss the limitations and potential applications of our method.

  2. Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells.

    PubMed Central

    Vigne, P; Marsault, R; Breittmayer, J P; Frelin, C

    1990-01-01

    Endothelin-1 (ET-1) is a novel vasoconstricting and cardiotonic peptide that is synthesized by the vascular endothelium. Bovine aortic endothelial cells which secrete ET in vitro lack membrane receptor sites for the peptide. Endothelial cells from rat brain microvessels that do not secrete ET in vitro express large amounts of high-affinity receptors for 125I-labelled ET-1 (Kd 0.8 nM). The ET receptor is recognized by sarafotoxin S6b and the different ET peptides with the following order of potency: ET-1 (Kd 0.5 nM) approximately equal to ET-2 (Kd 0.7 nM) greater than sarafotoxin S6b (Kd 27 nM) greater than ET-3 (Kd 450 nM). This structure-activity relationship is different from those found in vascular smooth muscle cells, renal cells and cardiac cells. ET-1 stimulates DNA synthesis in brain capillary endothelial cells. It is more potent than basic fibroblast growth factor. The action of ET on endothelial cells from microvessels involves phosphatidylinositol hydrolysis and intracellular Ca2+ mobilization. These observations suggest that brain endothelial cells might be an important target for ET. PMID:2156495

  3. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  4. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  5. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  6. Monocomponent hexa- and dodecaethylene glycol succinyl-tocopherol esters: self-assembly structures, cellular uptake and sensitivity to enzyme hydrolysis.

    PubMed

    Folmer, Britta M; Barron, Denis; Hughes, Eric; Miguet, Laurence; Sanchez, Belén; Heudi, Olivier; Rouvet, Martine; Sagalowicz, Laurent; Callier, Philippe; Michel, Martin; Williamson, Gary

    2009-12-15

    We have chemically synthesized two water-soluble forms of tocopherol succinate linked via an ester bond to hexaethylene glycol and dodecaethylene glycol. The self-assembly structure of the former in water is vesicular, whereas the latter forms elongated micelles. We treated Caco-2 cells with these compounds in these physical forms, in addition to a mixed micelle form. The intact compounds were taken up into the cells, influenced by both the chain length and the physical structure. In addition, the tocopherol derivatives were also metabolized into tocopherol succinate and tocopherol inside the cell. The total hydrolysis and uptake into the cells was two-fold higher from tocopherol hexaethylene glycol succinate in the form of mixed micelles than in vesicular form as assessed by analyzing intracellular tocopherol and tocopherol succinate. The longer polyethylene glycol chain gave a higher intracellular tocopherol succinate/tocopherol ratio. The major intracellular esterase in Caco-2 cells is carboxyl esterase 1 (EC 3.1.1.1), and in silico modelling studies show that the position of docking and hence the site of hydrolysis is influenced by the chain length. The in silico prediction is consistent with the in vitro data, since a longer chain length is predicted to favour hydrolysis of the ester bond between the succinate and polyethylene glycol moieties. PMID:19631613

  7. Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil-water system.

    PubMed

    Hermansyah, Heri; Wijanarko, Anondho; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2010-09-01

    A rigorous kinetic model describing the stepwise triglyceride hydrolysis at the oil-water interface, based on the Ping Pong Bi Bi mechanism using suspended lipase having positional specificity, was constructed. The preference of the enzyme to cleave to the ester bonds at the edge and the center of the glycerol backbone of the substrates (tri-, di- or monoglyceride) was incorporated in the model. This model was applied to the experimental results for triolein hydrolysis using suspended Porcine pancreatic lipase (an sn-1,3 specific lipase) and Candida rugosa lipase (a non-specific lipase) in a biphasic oil-water system under various operating conditions. In order to discuss the model's advantages, other models that do not consider the positional specificity of the lipase were also applied to our experimental results. The model considering the positional specificity of the lipase gave results which fit better with the experimental data and described the effect of the initial enzyme concentration, the interfacial area, and the initial concentrations of triolein on the entire process of the stepwise triolein hydrolysis. This model also gives a good representation of the rate for cleaving the respective ester bonds of each substrate by each type of lipase.

  8. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide.

    PubMed

    Grünenfelder, Claudio E; Kisunzu, Jessica K; Wennemers, Helma

    2016-07-18

    The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.

  9. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  10. Abiotic dealkylation and hydrolysis of atrazine by birnessite.

    PubMed

    Shin, Jin Y; Cheney, Marcos A

    2005-06-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and its degradation products are important contaminants of world water systems and have effects on aquatic life. These effects are modulated by the degradation of atrazine, which depends, in part, on its reactivity with soil minerals. We have studied the degradation reaction of atrazine on synthetic birnessite (delta-MnO2) in the aqueous phase using a batch reactor and a developed high-performance liquid chromatography method. The reaction was studied in the absence of light at 25 degrees C and between pH 2.3 to pH 8.3. The reaction rates increased with decreasing pH and increasing delta-MnO2 loading, and they did not follow simple first-order kinetics. The major products are hydroxylated and mono- and didealkylatrazine. Ammeline and cyanuric acid also were detected. The half-life (t 1/2) for the degradation of atrazine was approximately 16.8 d and independent of oxygen. Manganese(II) evolution was a minor product. The mechanism of dealkylation involved proton transfer to Mn(IV)-stabilized oxo and imido bonds, with no net oxidation and reduction. Oxidation was a secondary reaction. The proposed abiotic pathway for the transformation of atrazine on delta-MnO2 was identical to the reported biotic pathway. Thus, delta-MnO2, a common soil component, facilitated the efficient N-dealkylation and hydrolysis of the herbicide atrazine at 25 degrees C, possibly via a nonoxidative mechanisms. The N-dealkylation has been attributed strictly to a biological process in soils.

  11. Amine-Promoted Organosilicate Hydrolysis Mechanism at Near-Neutral pH

    NASA Astrophysics Data System (ADS)

    Delak, K. M.; Sahai, N.

    2006-12-01

    Proteins bearing polylysine moeities and histidine and serine amino-aicd residues, isolated from diatoms and sponges, are known to promote biological nanoporous silica formation [1, 2]. Using 29Si NMR, we have shown quantitatively that monoamines and small polyamines can chemically accelerate the hydrolysis and condensation rates of organosilicate starting materials, in biomimetic silica synthesis pathways, at circum- neutral pHs and room temperature [3, 4]. The present study is focused on understanding the mechanistic role of these amines in catalyzing the hydrolysis step that precedes condensation [5]. We conducted 29Si NMR experimental studies over a range of temperature and pHs for the hydrolysis rates of trimethylethoxysilane (TMES), a model compound with only one hydrolyzable bond. Experimental results were combined with quantum mechanical hybrid Density Functional Theory calculations of putative intermediate and transition state structures for TMES and tetramethylorthosilicate (TMOS) which has four hydrolyzable bonds. Comparison of calculated energies with experimentally-determined activation energies indicated that amines promote TMES hydrolysis mainly due to the amine's acidity at neutral pH. The proton released by the amine is transferred to the organosilicate, producing a protonated, ethoxy leaving group that can be displaced by water in an SN2 reaction. For TMOS, the activation energy of proton-transfer coupled with SN2 substitution is comparable to that for Corriu's nucleophile-activated nucleophilic displacement mechanism [6], such that the mechanism of amine-catalyzed hydrolysis is mostly dependent on the ambient pH conditions as well as the type of amine. The molecular mechanisms of hydrolysis and aggregation are reflected, ultimately, on the larger scale in the silica morphology where amines promoting faster hydrolysis result in glassy products compared to slower hydrolyzing amines forming particulate silica [7, 8]. REFERENCES [1] Kroger N

  12. Reactor optimization for enzymatic hydrolysis of cellulose

    SciTech Connect

    Lee, Y.H.; Gharpuray, M.M.; Fan, L.T.

    1982-01-01

    Enzymatic hydrolysis of cellulose furnishes sugar which can be subsequently fermented to ethanol. The production of such sugar at relatively low cost is essential for commercially viable production of ethanol. Many processes have been developed for converting cellulosic materials to sugar, and their economic feasibility has been analyzed; however, relatively little has been done to optimize such processes. A comprehensive mechanistic kinetic model for enzymatic degradation was established previously; it takes into account the structure of cellulose, mode of action of celluloytic enzyme, and mode of interaction between the enzyme and the cellulosic substrate. In the present work this model has been applied to the optimal design of cellulose hydrloysis reactors. Both batch and continously stirred reactors have been considered for this purpose. The fractional contributions of various cost parameters to the production cost have been estimated. The sensitivity of sugar cost to the important cost parameters, such as raw material and enzyme costs, have been examined. 8 figures, 7 tables.

  13. Fermentable sugars by chemical hydrolysis of biomass

    PubMed Central

    Binder, Joseph B.; Raines, Ronald T.

    2010-01-01

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70–80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery. PMID:20194793

  14. Storage oil hydrolysis during early seedling growth.

    PubMed

    Quettier, Anne-Laure; Eastmond, Peter J

    2009-06-01

    Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.

  15. Pretreatment and enzymatic hydrolysis of corn fiber

    SciTech Connect

    Grohmann, K.; Bothast, R.J.

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  16. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  17. Ultrasound Enhancement of Enzymatic Hydrolysis of Cellulose Plant Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The work reported here is based on acceleration of enzymatic hydrolysis of plant biomass substrate by introduction of low intensity, uniform ultrasound field into a reaction chamber (bio-reactor). This method may serve as improvement of rates in the hydrolysis of cellulosic materials to sugars, whi...

  18. Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin

    ERIC Educational Resources Information Center

    Marrs, Peter S.

    2004-01-01

    An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.

  19. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of inhibitory compounds by bioabatement, combined with xylan hydrolysis, enables effective cellulose hydrolysis of pretreated corn stover, for fermentation of the sugars to fuel ethanol or other products. The fungus Coniochaeta ligniaria NRRL30616 eliminates most enzyme and fermentation inhi...

  20. Coagulation of peptides and proteins produced by Microcystis aeruginosa: Interaction mechanisms and the effect of Fe-peptide/protein complexes formation.

    PubMed

    Pivokonsky, Martin; Safarikova, Jana; Bubakova, Petra; Pivokonska, Lenka

    2012-11-01

    This paper focuses on elucidation of the mechanisms involved in the coagulation of peptides and proteins contained in cellular organic matter (COM) of cyanobacterium Microcystis aeruginosa by ferric coagulant. Furthermore, coagulation inhibition due to the formation of Fe-peptide/protein surface complexes was evaluated. The results of coagulation testing imply that removability of peptides and proteins is highly dependent on pH value which determines charge characteristics of coagulation system compounds and therefore the mechanisms of interactions between them. The highest peptide/protein removal was obtained in the pH range of 4-6 owing to charge neutralization of peptide/protein negative surface by positively charged hydrolysis products of ferric coagulant. At low COM/Fe ratio (COM/Fe <0.33), adsorption of peptides/proteins onto ferric oxide-hydroxide particles, described as electrostatic patch model, enables the coagulation at pH 6-8. On the contrary, steric stabilization reduces coagulation at pH 6-8 if the ratio COM/Fe is high (COM/Fe >0.33). Coagulation of peptides and proteins is disturbed at pH 6-7 as a consequence of Fe-peptide/protein complexes formation. The maximum ability of peptides/proteins to form soluble complexes with Fe was found just at pH 6, when peptides/proteins bind 1.38 mmol Fe per 1 g of peptide/protein DOC. Complex forming peptides and proteins of relative molecular weights of 1, 2.8, 6, 8, 8.5, 10 and 52 kDa were isolated by affinity chromatography.