Science.gov

Sample records for peptide labeled fluorescein-5-isothiocyanate

  1. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.

    PubMed

    Oltolina, Francesca; Gregoletto, Luca; Colangelo, Donato; Gómez-Morales, Jaime; Delgado-López, José Manuel; Prat, Maria

    2015-02-10

    Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.

  2. Stoichiometry of phosphorylation to fluorescein 5-isothiocyanate binding in the Ca2+-ATPase of sarcoplasmic reticulum vesicles.

    PubMed

    Nakamura, S; Suzuki, H; Kanazawa, T

    1997-03-07

    In an attempt to establish the stoichiometry of phosphorylation in the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles, phosphorylation by ATP (or Pi) or labeling by fluorescein 5-isothiocyanate (FITC) was performed with the SR vesicles under the conditions in which almost all the phosphorylation sites or FITC binding sites are phosphorylated or labeled. The resulting vesicles were solubilized in lithium dodecyl sulfate and then the Ca2+-ATPase was purified by size exclusion high performance liquid chromatography. Peptide mapping and sequencing of the tryptic digest of the purified enzyme showed that Lys-515 of the Ca2+-ATPase was exclusively labeled with FITC, in agreement with the previously reported findings. The content of the phosphoenzyme from ATP (4.57 nmol/mg of Ca2+-ATPase protein) or from Pi (4.94 nmol/mg of Ca2+-ATPase protein) in the purified enzyme was approximately half the content of the FITC binding site (8.17-8.25 nmol/mg of Ca2+-ATPase protein) and also half the content of the Ca2+-ATPase molecule (9.06 nmol/mg of Ca2+-ATPase protein) calculated from its molecular mass (110,331 Da). These results show that there is one specific FITC binding site per molecule of the Ca2+-ATPase (in agreement with the previously reported findings) and that the stoichiometry of phosphorylation to FITC binding is approximately 0. 5:1.0. All the above findings lead to the conclusion that only half of the Ca2+-ATPase molecules present in the SR vesicles can be phosphorylated. FITC binding completely inhibited the ATP-induced phosphorylation before the binding reached its maximum level. This finding indicates that FITC preferentially binds to a part of the Ca2+-ATPase molecules and that this binding is primarily responsible for the inhibition of phosphorylation, suggesting an intermolecular ATPase-ATPase interaction.

  3. Differential binding of tropomyosin isoforms to actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester and fluorescein-5-isothiocyanate.

    PubMed

    Skórzewski, Radosław; Robaszkiewicz, Katarzyna; Jarzebińska, Justyna; Suder, Piotr; Silberring, Jerzy; Moraczewska, Joanna

    2009-11-01

    Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five alphaTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform's affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC-actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee-von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.

  4. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system.

    PubMed

    Ke, Chen-Yi; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-07-15

    This study describes the synthesis of a dual emission probe for the fluorescent ratiometric sensing of hydrogen peroxide (H2O2), enzyme activity, and environmental pH change. Green-emitting fluorescein-5-isothiocyanate (FITC) was conjugated to the amino groups of bovine serum albumin (BSA). This FITC-conjugated BSA acted as a template for the synthesis of red-emitting gold nanoclusters (AuNCs) under alkaline conditions. Under single wavelength excitation, FITC/BSA-stabilized AuNCs (FITC/BSA-AuNCs) emitted fluorescence at 525 and 670nm, which are sensitive to changes in solution pH and H2O2 concentration, respectively. The effective fluorescence quenching of AuNCs by H2O2 enabled FITC/BSA-AuNCs to ratiometrically detect the H2O2 product-related enzyme system and its inhibition, including glucose oxidase-catalyzed oxidation of glucose, acetylcholinesterase/choline oxidase-mediated hydrolysis and oxidation of acetylcholine, and paraoxon-induced inhibition of acetylcholinesterase activity. When pH-insensitive AuNCs were used as an internal standard, FITC/BSA-AuNCs offered a sensitive and reversible ratiometric sensing of a 0.1-pH unit change in the pH range 5.0-8.5. The pH-induced change in FITC fluorescence enabled FITC/BSA-AuNCs to detect an ammonia product-related enzyme system. This was exemplified with the determination of urea in plasma by urease-mediated hydrolysis of urea. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    SciTech Connect

    Liu Min; Guo Youmin . E-mail: mikie0763@126.com; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-08-18

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 {+-} 0.0122 mmol{sup -1} s{sup -1}, higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells.

  6. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro.

    PubMed

    Liu, Min; Guo, You-min; Wu, Qi-fei; Yang, Jun-le; Wang, Peng; Wang, Si-cen; Guo, Xiao-juan; Qiang, Yong-qian; Duan, Xiao-yi

    2006-08-18

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 +/- 0.0122 m mol(-1) s(-1), higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells.

  7. An autoinhibitory peptide from the erythrocyte Ca-ATPase aggregates and inhibits both muscle Ca-ATPase isoforms.

    PubMed Central

    Reddy, L G; Shi, Y; Kutchai, H; Filoteo, A G; Penniston, J T; Thomas, D D

    1999-01-01

    We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences. PMID:10354431

  8. Neutron encoded labeling for peptide identification.

    PubMed

    Rose, Christopher M; Merrill, Anna E; Bailey, Derek J; Hebert, Alexander S; Westphall, Michael S; Coon, Joshua J

    2013-05-21

    Metabolic labeling of cells using heavy amino acids is most commonly used for relative quantitation; however, partner mass shifts also detail the number of heavy amino acids contained within the precursor species. Here, we use a recently developed metabolic labeling technique, NeuCode (neutron encoding) stable isotope labeling with amino acids in cell culture (SILAC), which produces precursor partners spaced ~40 mDa apart to enable amino acid counting. We implement large scale counting of amino acids through a program, "Amino Acid Counter", which determines the most likely combination of amino acids within a precursor based on NeuCode SILAC partner spacing and filters candidate peptide sequences during a database search using this information. Counting the number of lysine residues for precursors selected for MS/MS decreases the median number of candidate sequences from 44 to 14 as compared to an accurate mass search alone (20 ppm). Furthermore, the ability to co-isolate and fragment NeuCode SILAC partners enables counting of lysines in product ions, and when the information is used, the median number of candidates is reduced to 7. We then demonstrate counting leucine in addition to lysine results in a 6-fold decrease in search space, 43 to 7, when compared to an accurate mass search. We use this scheme to analyze a nanoLC-MS/MS experiment and demonstrate that accurate mass plus lysine and leucine counting reduces the number of candidate sequences to one for ~20% of all precursors selected, demonstrating an ability to identify precursors without MS/MS analysis.

  9. Neutron Encoded Labeling for Peptide Identification

    PubMed Central

    Rose, Christopher M.; Merrill, Anna E.; Bailey, Derek J.; Hebert, Alexander S.; Westphall, Michael S.; Coon, Joshua J.

    2013-01-01

    Metabolic labeling of cells using heavy amino acids is most commonly used for relative quantitation; however, partner mass shifts also detail the number of heavy amino acids contained within the precursor species. Here, we use a recently developed metabolic labeling technique, NeuCode (neutron encoding) stable isotope labeling with amino acids in cell culture (SILAC), which produces precursor partners spaced ~40 mDa apart to enable amino acid counting. We implement large scale counting of amino acids through a program, “Amino Acid Counter”, which determines the most likely combination of amino acids within a precursor based on NeuCode SILAC partner spacing and filters candidate peptide sequences during a database search using this information. Counting the number of lysine residues for precursors selected for MS/MS decreases the median number of candidate sequences from 44 to 14 as compared to an accurate mass search alone (20 ppm). Furthermore, the ability to co-isolate and fragment NeuCode SILAC partners enables counting of lysines in product ions, and when the information is used, the median number of candidates is reduced to 7. We then demonstrate counting leucine in addition to lysine results in a 6-fold decrease in search space, 43 to 7, when compared to an accurate mass search. We use this scheme to analyze a nanoLC-MS/MS experiment and demonstrate that accurate mass plus lysine and leucine counting reduces the number of candidate sequences to one for ~20% of all precursors selected, demonstrating an ability to identify precursors without MS/MS analysis. PMID:23638792

  10. New method of iodine labelling of peptide hormones

    SciTech Connect

    Escher, E.

    1984-01-01

    Usually peptide hormones and related compounds are radioactively labelled with iodine on tyrosine residues of the peptide. However many peptide hormones do not contain tyrosine or the iodinated tyrosine interferes with the biological properties. In order to circumvent these and other problems, a general method is proposed which allows the introduction of iodine into the para-position of phenylalanine with a modified Sandmeyer procedure. This last-step modification together with HPLC purification permits the obtention of carrier-free and metabolically stable labelled products with maximal specific activity possible. The model has been carried out on several peptide-models like angiotensin II, endorphine and head activator peptide.

  11. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.

    PubMed

    Chen, Yi-Ming; Cheng, Tian-Lu; Tseng, Wei-Lung

    2009-10-01

    Selective turn-on fluorescence detection of I(-) was accomplished using fluorescein isothiocyanate-decorated gold nanoparticles (FITC-AuNPs). FITC molecules, which fluoresce strongly in an alkaline solution, were severely quenched when they were attached to the surface of AuNPs through their isothiocyanate group. Upon the addition of I(-), FITC molecules were detached because of I(-) adsorption on the surface of AuNPs. As a result, released FITC molecules were restored to their original fluorescence intensity. Because I(-) has a higher binding affinity to the surface of Au than do Br(-), Cl(-), or F(-), the FITC-AuNPs obviously have a higher selectivity toward I(-) than toward these other anions. Meanwhile, after IO(3)(-) was reduced to I(-) with ascorbic acid, the detection of IO(3)(-) was successfully achieved using the FITC-AuNPs. Under an optimum pH and AuNP concentration, the lowest detectable concentrations of I(-) and IO(3)(-) using this probe were 10.0 and 50.0 nM, respectively. The FITC-AuNPs provide a number of advantages, including easy preparation, selectivity, sensitivity, and low cost. This unique probe was applied to an analysis of the total iodine in edible salt and seawater.

  12. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides.

    PubMed Central

    Archer, S J; Ellena, J F; Cafiso, D S

    1991-01-01

    Two spin-labeled derivatives of the ion conductive peptide alamethicin were synthesized and used to examine its binding and state of aggregation. One derivative was spin labeled at the C-terminus and the other, a leucine analogue, was spin labeled at the N-terminus. In methanol, both the C and N terminal labeled peptides were monomeric. In aqueous solution, the C-terminal derivative was monomeric at low concentrations, but aggregated at higher concentrations with a critical concentration of 23 microM. In the membrane, the C-terminal label was localized to the membrane-aqueous interface using 13C-NMR, and could assume more than one orientation. The membrane binding of the C-terminal derivative was examined using EPR, and it exhibited a cooperativity seen previously for native alamethicin. However, this cooperativity was not the result of an aggregation of the peptide in the membrane. When the spectra of either the C or N-terminal labeled peptide were examined over a wide range of membrane lipid to peptide ratios, no evidence for aggregation could be found and the peptides remained monomeric under all conditions examined. Because electrical measurements on this peptide provide strong evidence for an ion-conductive aggregate, the ion-conductive form of alamethicin likely represents a minor fraction of the total membrane bound peptide. PMID:1717016

  13. Peptide-membrane Interactions by Spin-labeling EPR

    PubMed Central

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  14. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao

    2017-06-01

    Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.

  15. New Methods for Labeling RGD Peptides with Bromine-76

    PubMed Central

    Lang, Lixin; Li, Weihua; Jia, Hong-Mei; Fang, De-Cai; Zhang, Shushu; Sun, Xilin; Zhu, Lei; Ma, Ying; Shen, Baozhong; Kiesewetter, Dale O.; Niu, Gang; Chen, Xiaoyuan

    2011-01-01

    Direct bromination of the tyrosine residues of peptides and antibodies with bromine-76, to create probes for PET imaging, has been reported. For peptides that do not contain tyrosine residues, however, a prosthetic group is required to achieve labeling via conjugation to other functional groups such as terminal α-amines or lysine ε-amines. The goal of this study was to develop new strategies for labeling small peptides with Br-76 using either a direct labeling method or a prosthetic group, depending on the available functional group on the peptides. A new labeling agent, N-succinimidyl-3-[76Br]bromo-2,6-dimethoxybenzoate ([76Br]SBDMB) was prepared for cyclic RGD peptide labeling. N-succinimidyl-2, 6-dimethoxybenzoate was also used to pre-attach a 2, 6-dimethoxybenzoyl (DMB) moiety to the peptide, which could then be labeled with Br-76. A competitive cell binding assay was performed to determine the binding affinity of the brominated peptides. PET imaging of U87MG human glioblastoma xenografted mice was performed using [76Br]-BrE[c(RGDyK)]2 and [76Br]-BrDMB-E[c(RGDyK)]2. An ex vivo biodistribution assay was performed to confirm PET quantification. The mechanisms of bromination reaction between DMB-c(RGDyK) and the brominating agent CH3COOBr were investigated with the SCRF-B3LYP/6-31G* method with the Gaussian 09 program package. The yield for direct labeling of c(RGDyK) and E[c(RGDyK)]2 using chloramine-T and peracetic acid at ambient temperature was greater than 50%. The yield for [76Br]SBDMB was over 60% using peracetic acid. The conjugation yields for labeling c(RGDfK) and c(RGDyK) were over 70% using the prosthetic group at room temperature. Labeling yield for pre-conjugated peptides was over 60%. SDMB conjugation and bromination did not affect the binding affinity of the peptides with integrin receptors. Both [76Br]Br-E[c(RGDyK)]2 and [76Br]BrDMB-E[c(RGDyK)]2 showed high tumor uptake in U87MG tumor bearing mice. The specificity of the imaging tracers was

  16. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing.

    PubMed

    Zhang, Shen; Shan, Yichu; Zhang, Shurong; Sui, Zhigang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2017-02-10

    A simple and effective de novo sequencing strategy assisted by non-isobaric peptide termini labeling, NIPTL-Novo, was established. The y-series ions and b-series ions of peptides can be clearly distinguished according to the different mass tags incorporated in N-terminus and C-terminus. This is helpful for improving the accuracy of peptide sequencing and increasing the sequencing speed. For the spectra commonly identified by both de novo sequencing and database searching software (Mascot or Maxquant), NIPTL-Novo gave identical result to more than 85% of these spectra. Furthermore, the quantitative profiling of the sample can be performed simultaneously along with de novo sequencing. Finally, this strategy can be applied to discover the peptides with potential mutation sites by combining with mass-defect based isotopic labeling.

  17. Somatostatin receptor PET imaging with Gallium-68 labeled peptides.

    PubMed

    Win, Z; Al-Nahhas, A; Rubello, D; Gross, M D

    2007-09-01

    Imaging somatostatin receptor status with 68Ga labeled peptides has progressed rapidly over the last several years. It has generated great interest, and stimulated further research into the development of DOTA-derivative peptides. It has expanded our knowledge of receptor imaging and enhanced our appreciation of the difference between receptor-based and metabolic imaging, as well as more in-depth evaluation of tumor biology. The availability of the 68Ge/68Ga generator provides an attractive alternative to cyclotron-based positron-emitters, especially if kit-based radiopharmaceutical formulations based upon 68Ga are developed in the future.

  18. Feasibility and availability of ⁶⁸Ga-labelled peptides.

    PubMed

    Decristoforo, Clemens; Pickett, Roger D; Verbruggen, Alfons

    2012-02-01

    (68)Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from (68)Ge/(68)Ga generators, making it independent of cyclotron production. (68)Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of (68)Ga-labelled peptides, including generator technology, (68)Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. (68)Ge/(68)Ga generators based on SnO(2), TiO(2) or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for (68)Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of (68)Ga-labelled peptides outside the marketing authorization track are also discussed.

  19. A method for the 32P labeling of peptides or peptide nucleic acid oligomers

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.

  20. Lutetium-177 Labeled Peptides: The European Institute of Oncology Experience.

    PubMed

    Carollo, Angela; Papi, Stefano; Chinol, Marco

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) using radiolabeled somatostatin analogues has shown encouraging results in various somatostatin receptor positive tumors. Partial remission rates up to 30% have been documented as well as significant improvements in quality of life and survival. This treatment takes advantage of the high specific binding of the radiolabeled peptide to somatostatin receptors overexpressed by the tumors thus being more effective on the tumor cells with less systemic side-effects. The development of macrocyclic chelators conjugated to peptides made possible the stable binding with various radionuclides. In particular 177Lu features favourable physical characteristics with a half-life of 6.7 days, emission of β- with energy of 0.5 MeV for treatment and γ-emissions suitable for imaging. The present contribution describes the learning process achieved at the European Institute of Oncology (IEO) since the first application of 90Y labeled peptides to the therapy of neuroendocrine tumors back in 1997. Continuous improvements led to the preparation of a safe 177Lu labeled peptide for human use. Our learning curve began with the identification of the optimal characteristics of the isotope paying attention to its chemical purity and specific activity along with the optimization of the parameters involved in the radiolabeling procedure. Also the radiation protection issues have been improved along the years and recently more and more attention has been devoted to the pharmaceutical aspects involved in the preparation. The overall issue of the quality has now been completed by drafting an extensive documentation with the goal to deliver a safe and reliable product to our patients.

  1. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlöffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements.

  2. ZoomQuant: an application for the quantitation of stable isotope labeled peptides.

    PubMed

    Halligan, Brian D; Slyper, Ronit Y; Twigger, Simon N; Hicks, Wayne; Olivier, Michael; Greene, Andrew S

    2005-03-01

    The main goal of comparative proteomics is the quantitation of the differences in abundance of many proteins between two different biological samples in a single experiment. By differentially labeling the peptides from the two samples and combining them in a single analysis, relative ratios of protein abundance can be accurately determined. Protease catalyzed (18)O exchange is a simple method to differentially label peptides, but the lack of robust software tools to analyze the data from mass spectra of (18)O labeled peptides generated by common ion trap mass spectrometers has been a limitation. ZoomQuant is a stand-alone computational tool that analyzes the mass spectra of (18)O labeled peptides from ion trap instruments and determines relative abundance ratios between two samples. Starting with a filtered list of candidate peptides that have been successfully identified by Sequest, ZoomQuant analyzes the isotopic forms of the peptides using high-resolution zoom scan spectrum data. The theoretical isotope distribution is determined from the peptide sequence and is used to deconvolute the peak areas associated with the unlabeled, partially labeled, and fully labeled species. The ratio between the labeled and unlabeled peptides is then calculated using several different methods. ZoomQuant's graphical user interface allows the user to view and adjust the parameters for peak calling and quantitation and select which peptides should contribute to the overall abundance ratio calculation. Finally, ZoomQuant generates a summary report of the relative abundance of the peptides identified in the two samples.

  3. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage.

    PubMed

    Nishihara, Toshio; Kitada, Hidekazu; Fujiwara, Daisuke; Fujii, Ikuo

    2016-11-04

    Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016. © 2016 Wiley Periodicals, Inc.

  4. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    PubMed

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  5. Lutetium-177 Labeled Bombesin Peptides for Radionuclide Therapy.

    PubMed

    Reynolds, Tamila Stott; Bandari, Rajendra P; Jiang, Zongrun; Smith, Charles J

    2016-01-01

    in 177Lu-labeled bombesin peptides for targeted radiotherapy that includes agonist, antagonist, and multivalent cell-targeting agents. In vitro, in vivo translational, and in vivo human clinical investigations are described.

  6. Lutetium-labelled peptides for therapy of neuroendocrine tumours.

    PubMed

    Kam, B L R; Teunissen, J J M; Krenning, E P; de Herder, W W; Khan, S; van Vliet, E I; Kwekkeboom, D J

    2012-02-01

    Treatment with radiolabelled somatostatin analogues is a promising new tool in the management of patients with inoperable or metastasized neuroendocrine tumours. Symptomatic improvement may occur with (177)Lu-labelled somatostatin analogues that have been used for peptide receptor radionuclide therapy (PRRT). The results obtained with (177)Lu-[DOTA(0),Tyr(3)]octreotate (DOTATATE) are very encouraging in terms of tumour regression. Dosimetry studies with (177)Lu-DOTATATE as well as the limited side effects with additional cycles of (177)Lu-DOTATATE suggest that more cycles of (177)Lu-DOTATATE can be safely given. Also, if kidney-protective agents are used, the side effects of this therapy are few and mild and less than those from the use of (90)Y-[DOTA(0),Tyr(3)]octreotide (DOTATOC). Besides objective tumour responses, the median progression-free survival is more than 40 months. The patients' self-assessed quality of life increases significantly after treatment with (177)Lu-DOTATATE. Lastly, compared to historical controls, there is a benefit in overall survival of several years from the time of diagnosis in patients treated with (177)Lu-DOTATATE. These findings compare favourably with the limited number of alternative therapeutic approaches. If more widespread use of PRRT can be guaranteed, such therapy may well become the therapy of first choice in patients with metastasized or inoperable neuroendocrine tumours.

  7. Spin-labelled diketopiperazines and peptide-peptoid chimera by Ugi-multi-component-reactions.

    PubMed

    Sultani, Haider N; Haeri, Haleh H; Hinderberger, Dariush; Westermann, Bernhard

    2016-12-28

    For the first time, spin-labelled coumpounds have been obtained by isonitrile-based multi component reactions (IMCRs). The typical IMCR Ugi-protocols offer a simple experimental setup allowing structural variety by which labelled diketopiperazines (DKPs) and peptide-peptoid chimera have been synthesized. The reaction keeps the paramagnetic spin label intact and offers a simple and versatile route to a large variety of new and chemically diverse spin labels.

  8. Biosynthesized (/sup 35/S)methionine-labeled pro-opiomelanocortin peptides as novel recovery markers in radioimmunoassay of peptide hormones

    SciTech Connect

    Rosendale, B.E.; Jarrett, D.B.

    1985-12-01

    Hormones are extracted from plasma with varying efficiency. Thus, markers or internal standards are often needed, to monitor and correct for extraction losses. To do so is difficult in the case of peptide hormones because radioactive recovery markers either have a low specific activity or, if labeled with iodine, may not be fully representative because of alterations in their size and charge. More importantly, markers labeled with /sup 125/I can interact in, and thus compromise, the subsequent radioimmunoassay. AtT-20 mouse pituitary tumor cells, which can be stimulated to synthesize and secrete pro-opiomelanocortin peptides, can biosynthetically label beta-lipotropin (beta-LPH) with (/sup 35/S)methionine. The labeled peptide, which is co-eluted with unlabeled beta-LPH in high-performance liquid chromatography, is fully immunoprecipitable and has a specific activity of 34 Ci/g. We use this labeled peptide to monitor the recovery of beta-LPH in silicic acid extraction from plasma. This peptide is an ideal marker of analytical recovery because it does not interfere in subsequent radioimmunoassays.

  9. Monitoring membrane binding and insertion of peptides by two-color fluorescent label.

    PubMed

    Postupalenko, V Y; Shvadchak, V V; Duportail, G; Pivovarenko, V G; Klymchenko, A S; Mély, Y

    2011-01-01

    Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.

  10. Development of a Small Peptide Tag for Covalent Labeling of Proteins

    PubMed Central

    Tanaka, Fujie; Fuller, Roberta; Asawapornmongkol, Lily; Warsinke, Axel; Gobuty, Sarah; Barbas, Carlos F.

    2008-01-01

    A 21-mer peptide that can be used to covalently introduce synthetic molecules into proteins has been developed. Phage displayed peptide libraries were subjected to reaction-based selection with 1,3-diketones. The peptide was further evolved by addition of a randomized region and reselection for improved binding. The resulting 21-mer peptide had a reactive amino group that formed an enaminone with 1,3-diketone and was used as a tag for labeling of maltose binding protein. Using this peptide tag and 1,3-diketone derivatives, a variety of molecules such as reporter probes and functionalities may be covalently introduced into proteins of interest. PMID:17602682

  11. A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies.

    PubMed

    Subiros-Funosas, Ramon; Mendive-Tapia, Lorena; Sot, Jesus; Pound, John D; Barth, Nicole; Varela, Yaiza; Goñi, Felix M; Paterson, Margaret; Gregory, Christopher D; Albericio, Fernando; Dransfield, Ian; Lavilla, Rodolfo; Vendrell, Marc

    2017-01-10

    The rational design and synthesis of a Trp-BODIPY cyclic peptide for the fluorescent labelling of apoptotic bodies is described. Affinity assays, confocal microscopy and flow cytometry analysis confirmed the binding of the peptide to negatively-charged phospholipids associated with apoptosis, and its applicability for the detection and characterisation of subcellular structures released by apoptotic cells.

  12. Rhenium labeled peptides and antibodies for cancer therapy. CRADA final report

    SciTech Connect

    Knapp, Jr., F. F.; Rhodes, B. A.

    1996-08-12

    This CRADA involved development of optimal methods for attachment of rhenium radioisotopes to antibodies and peptides which can be used for cancer treatment. Rhenium-186 and the tungsten-188/rhenium-188 generators were provided from ORNL to RhoMed for peptide labeling studies. The rhenium-186 and carrier-free rhenium-188 were then used to optimize the labeling of various small peptides....A system has been developed at ORNL which provides the rhenium-188 radioisotope, which has excellent therapeutic properties for cancer treatment.

  13. Full automation of (68)Ga labelling of DOTA-peptides including cation exchange prepurification.

    PubMed

    Ocak, M; Antretter, M; Knopp, R; Kunkel, F; Petrik, M; Bergisadi, N; Decristoforo, C

    2010-02-01

    Here we describe a fully automated approach for the synthesis of (68)Ga-labelled DOTA-peptides based on pre-concentration and purification of the generator eluate by using a cation exchange-cartridge and its comparison with fully automated direct labelling applying fractionated elution. Pre-concentration of the eluate on a cation exchange cartridge both using a resin-based and a disposable cation-exchange cartridge efficiently removed (68)Ge as well as major metal contaminations with Fe and Zn. This resulted in a high labelling efficiency of DOTA-peptides at high specific activity (SA) with short synthesis times. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Evaluation of a PACAP Peptide Analogue Labeled with (68)Ga Using Two Different Chelating Agents.

    PubMed

    Kumar, Pardeep; Tripathi, Sushil Kumar; Chen, Chang-Po; Mehta, Neil; Paudyal, Bishnuhari; Wickstrom, Eric; Thakur, Mathew L

    2016-02-01

    The authors have conjugated chelating agents (DOTA and NODAGA) with a peptide (pituitary adenylate cyclase-activating peptide [PACAP] analogue) that has a high affinity for VPAC1 receptors expressed on cancer cells. To determine a suitable chelating agent for labeling with (68)Ga, they have compared the labeling kinetics and stability of these peptide conjugates. For labeling, (68)GaCl3 was eluted in 0.1 M HCl from a [(68)Ge-(68)Ga] generator. The influences of peptide concentration, pH, and temperature on the radiolabeling efficiency were studied. The stability was evaluated in saline, human serum, DTPA, transferrin, and metallic ions (FeCl3, CaCl2, and ZnCl2). Cell binding assay was performed using human breast cancer cells (T47D). Tissue biodistribution was studied in normal athymic nude mice. Optimal radiolabeling (>95.0%) of the DOTA-peptide conjugates required a higher (50°C-90°C) temperature and 10 minutes of incubation at pH 2-5. The NODAGA-peptide conjugate needed incubation only at 25°C for 10 minutes. Both radiocomplexes were stable in saline, serum, as well as against transchelation and transmetallation. Cell binding at 37°C for 15 minutes of incubation with (68)Ga-NODAGA-peptide was 34.0% compared to 24.5% for (68)Ga-DOTA-peptide. Tissue biodistribution at 1 hour postinjection of both (68)Ga-labeled peptide conjugates showed clearance through the kidneys. NODAGA-peptide showed more convenient radiolabeling features than that of DOTA-peptide.

  15. Multi-label Learning for Predicting the Activities of Antimicrobial Peptides.

    PubMed

    Wang, Pu; Ge, Ruiquan; Liu, Liming; Xiao, Xuan; Li, Ye; Cai, Yunpeng

    2017-05-19

    Antimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance but imposes challenges on prediction methods due to label interactions. In this paper we propose a novel multi-label learning model to address this problem. A weighted K-nearest neighbor classifier is adopted for efficient representation learning of the sequence data. A multiple linear regression model is then employed to learn a mapping from the classifier score vectors to the target labels, with label correlations considered. Several popular multi-label learning algorithms and feature extraction methods were tested on a comprehensive, up-to-date AMP dataset with twelve biological activities covered and its filtered version with five activities covered. The experimental results showed that our proposed method has competitive performance with previous works and could be used as a powerful engine for activity prediction of AMPs.

  16. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling.

    PubMed

    Wu, Yuteng; Olsen, Lasse B; Lau, Yu Heng; Jensen, Claus Hatt; Rossmann, Maxim; Baker, Ysobel R; Sore, Hannah F; Collins, Súil; Spring, David R

    2016-04-15

    Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo-crosslinking motif and a peptide stapling reagent. Using double-click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo-crosslinking amino acid. When applied to a p53-derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull-down assays, and can be used to investigate the target selectivity of stapled peptides.

  17. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling

    PubMed Central

    Wu, Yuteng; Olsen, Lasse B.; Lau, Yu Heng; Jensen, Claus Hatt; Rossmann, Maxim; Baker, Ysobel R.; Sore, Hannah F.; Collins, Súil

    2016-01-01

    Abstract Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo‐crosslinking motif and a peptide stapling reagent. Using double‐click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo‐crosslinking amino acid. When applied to a p53‐derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull‐down assays, and can be used to investigate the target selectivity of stapled peptides. PMID:26919579

  18. Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals.

    PubMed

    Zhang, Shen; Wu, Qi; Shan, Yichu; Zhou, Yuan; Zhang, Lihua; Zhang, Yukui

    2015-01-30

    Isotopic labeling and isobaric labeling are two kinds of the typical quantification method that have been widely used in proteomics analysis. Herein, a novel quantitative strategy, partially isobaric peptide termini labeling (PITL), was developed to overcome the drawbacks of each above-mentioned labeling strategy, by simultaneously collecting the quantitative information from both MS and MS/MS spectrum. PITL is based on the site-selective N-terminus dimethylation labeling of peptide α-N-termini and the free ε-amino group of lysines, resulting in the partially isobaric labeling of peptides. The relative quantification can then be achieved by comparing the intensities of precursor ions in MS spectra and a, b and y ions in MS/MS spectra. The quantitative analysis of differently labeled yeast digests pooled with various ratios indicated the good quantitative accuracy, reproducibility, coverage and wide dynamic range of PITL strategy. Furthermore, PITL was applied to the quantitative proteome analysis of two mouse hepatocarcinoma ascites syngeneic cell lines with low and high lymph node metastasis rates (Hca-F and Hca-P). Given its low cost, simple operation and good accuracy, PITL might have great potential in the quantitative proteome analysis of biological samples. The partially isobaric peptide termini labeling (PITL) method enabled to simultaneously obtain the quantitative information from MS and MS/MS spectrum, which combined the advantages of these two strategies. Relative quantification could be achieved by comparing the intensities of parent ions in MS spectra and a, b, y ions in the MS/MS spectra. The quantitative analysis for differently labeled yeast digests mixed at various ratios indicated the good accuracy, reproducibility, quantitative coverage and wide dynamic range of the PITL strategy. Finally, we found 84 differentially expressed proteins in mouse hepatocarcinoma ascites syngeneic cell lines with low and high lymph node metastasis rates with PITL

  19. Tritium labeling of amino acids and peptides with liquid and solid tritium

    SciTech Connect

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins.

  20. Tritium labeling of amino acids and peptides with liquid and solid tritium

    SciTech Connect

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs.

  1. Selective ruthenium labeling of the tryptophan residue in the bee venom Peptide melittin.

    PubMed

    Perekalin, Dmitry S; Novikov, Valentin V; Pavlov, Alexander A; Ivanov, Igor A; Anisimova, Natalia Yu; Kopylov, Alexey N; Volkov, Dmitry S; Seregina, Irina F; Bolshov, Michail A; Kudinov, Alexander R

    2015-03-23

    Melittin is a membrane-active peptide from bee venom with promising antimicrobial and anticancer activity. Herein we report on a simple and selective method for labeling of the tryptophan residue in melittin by the organometallic fragment [(C5 H5 )Ru](+) in aqueous solution and in air. Ruthenium coordination does not disturb the secondary structure of the peptide (as verified by 2D NMR spectroscopy), but changes the pattern of its intermolecular interactions resulting in an 11-fold decrease of hemolytic activity. The high stability of the organometallic conjugate allowed the establishment of the biodistribution of the labeled melittin in mice by inductively coupled plasma MS analysis of ruthenium.

  2. Photoaffinity labeling of Ras converting enzyme using peptide substrates that incorporate benzoylphenylalanine (Bpa) residues: improved labeling and structural implications.

    PubMed

    Kyro, Kelly; Manandhar, Surya P; Mullen, Daniel; Schmidt, Walter K; Distefano, Mark D

    2011-12-15

    Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-l-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design.

  3. Photoaffinity Labeling of Ras Converting Enzyme using Peptide Substrates that Incorporate Benzoylphenylalanine (Bpa) Residues: Improved Labeling and Structural Implications

    PubMed Central

    Kyro, Kelly; Manandhar, Surya P.; Mullen, Daniel; Schmidt, Walter K.; Distefano, Mark D.

    2012-01-01

    Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-L-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design. PMID:22079863

  4. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    NASA Astrophysics Data System (ADS)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  5. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  6. Rapid biosynthesis of stable isotope-labeled peptides from a reconstituted in vitro translation system for targeted proteomics.

    PubMed

    Xian, Feng; Li, Shuwei; Liu, Siqi

    2015-01-01

    Stable isotope-labeled peptides are routinely used as internal standards (a.k.a. reference peptides) for absolute quantitation of proteins in targeted proteomics. These peptides can either be synthesized chemically on solid supports or expressed biologically by concatenating multiple peptides together to a large protein. Neither method, however, has required versatility, convenience, and economy for making a large number of reference peptides. Here, we describe the biosynthesis of stable isotope-labeled peptides from a reconstituted Escherichia coli in vitro translation system. We provide a detailed protocol on how to express these peptides with high purity and how to determine their concentrations with easiness. Our strategy offers a general, fast, and scalable approach for the easy preparation of labeled reference peptides, which will have broad application in both basic research and translational medicine.

  7. Metabolic flux analysis using 13C peptide label measurements

    USDA-ARS?s Scientific Manuscript database

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  8. Rational Conversion of Affinity Reagents into Label-Free Sensors for Peptide Motifs by Designed Allostery

    SciTech Connect

    Huang, Jin; Koide, Shohei

    2010-05-25

    Optical biosensors for short peptide motifs, an important class of biomarkers, have been developed based on 'affinity clamps', a new class of recombinant affinity reagents. Affinity clamps are engineered by linking a peptide-binding domain and an antibody mimic domain based on the fibronectin type III scaffold, followed by optimization of the interface between the two. This two-domain architecture allows for the design of allosteric coupling of peptide binding to fluorescence energy transfer between two fluorescent proteins attached to the affinity clamp. Coupled with high affinity and specificity of the underlying affinity clamps and rationally designed mutants with different sensitivity, peptide concentrations in crude cell lysate were determined with a low nanomolar detection limit and over 3 orders of magnitude. Because diverse affinity clamps can be engineered, our strategy provides a general platform to generate a repertoire of genetically encoded, label-free sensors for peptide motifs.

  9. A fully automated synthesis for the preparation of 68Ga-labelled peptides.

    PubMed

    Decristoforo, Clemens; Knopp, Roger; von Guggenberg, Elisabeth; Rupprich, Marco; Dreger, Thorsten; Hess, Andre; Virgolini, Irene; Haubner, Roland

    2007-11-01

    Generator-produced Ga has attracted increasing interest for radiolabelling peptides used in PET applications. So far, the synthesis of Ga-peptide radiopharmaceuticals is mainly based on semi-automated systems. Here we describe a fully automated approach for the synthesis of Ga-labelled peptides. A commercially available Ga generator was eluted with 0.1 mol . l HCl. Reaction parameters such as buffer conditions, pH range, reaction temperature and time, volume of reaction solution and generator fraction were optimized for labelling DOTA-Tyr-octreotide (DOTATOC). Reaction yields, pH, radiochemical purity, sterility, endotoxins, breakthrough of Ge and final Ge content were determined. A fully automated radiopharmaceutical synthesis device based on a modular concept for remote-controlled processing was developed and evaluated for a number of DOTA-derivatized peptides. DOTATOC could be labelled in almost quantitative yields by heating 10-50 nmol peptide at pH 3.5-4.0 for 5 min at 95 degrees C in 1.5 ml. Purification using a reversed-phase cartridge was required to avoid any potential Ge breakthrough: final activities of Ge were below 100 Bq . ml. Automated synthesis resulted in overall decay-corrected reaction yields of about 60% within 10 min. Even after 1 year using a 1110 MBq generator more than 130 MBq Ga-DOTATOC could be obtained. Moreover, it was demonstrated that a variety of DOTA-derivatized peptides can be labelled using identical reaction conditions with high yields. The system described allows the fully automated, efficient and rapid preparation of Ga-DOTA-derivatized peptides. It has been used successfully and reliably for routine preparations in clinical studies.

  10. Established theory of radiation-induced decay is not generalizable to Bolton-Hunter labeled peptides.

    PubMed

    Doran, Amanda C; Wan, Yieh-Ping; Kopin, Alan S; Beinborn, Martin

    2003-05-01

    Peptide hormones radiolabeled with 125I are widely used for the pharmacological characterization of cognate receptors. As a prerequisite for calculating ligand affinities from competition binding assays, and for estimating receptor densities from such studies, it is necessary to know the concentration of bioactive radioligand that is used in respective experiments. It has been demonstrated previously that radioiodinated peptides undergo decay catastrophe, i.e. disintegration of the radioactive label leads to the concomitant destruction of the carrier peptide. Here, we demonstrate that decay catastrophe does not apply to two peptide hormones that are iodinated by Bolton-Hunter conjugation: cholecystokinin octapeptide and glucagon-like peptide 2. The function of aged samples of these radioligands at corresponding recombinantly expressed receptors was assessed by measuring ligand-induced inositol phosphate production or generation of cyclic AMP, respectively. Both of the tested compounds, although predicted by decay catastrophe to contain little or subthreshold remaining bioactivity, stimulated an unexpectedly high level of receptor-mediated second messenger signaling. Quantitative comparison of observed functions with those of corresponding unlabeled peptides suggested that the bioactivity of each radioligand had been largely conserved despite the radioactive decay of the iodine label. Consistent with an apparent absence of decay catastrophe, we noted that the specific radioactivity, when determined immediately following peptide iodination, was close to the theoretical maximum but exponentially decreased over time. These findings raise the possibility that attachment of a Bolton-Hunter conjugate may shield labeled peptides from radiation-induced damage, a scenario that should be considered when performing radioligand binding experiments.

  11. Targeted therapy of colorectal neoplasia with rapamycin in peptide-labeled pegylated octadecyl lithocholate micelles.

    PubMed

    Khondee, Supang; Rabinsky, Emily F; Owens, Scott R; Joshi, Bishnu P; Qiu, Zhen; Duan, Xiyu; Zhao, Lili; Wang, Thomas D

    2015-02-10

    Many powerful drugs have limited clinical utility because of poor water solubility and high systemic toxicity. Here, we formulated a targeted nanomedicine, rapamycin encapsulated in pegylated octadecyl lithocholate micelles labeled with a new ligand for colorectal neoplasia, LTTHYKL peptide. CPC;Apc mice that spontaneously develop colonic adenomas were treated with free rapamycin, plain rapamycin micelles, and peptide-labeled rapamycin micelles via intraperitoneal injection for 35days. Endoscopy was performed to monitor adenoma regression in vivo. We observed complete adenoma regression at the end of therapy. The mean regression rate for peptide-labeled rapamycin micelles was significantly greater than that for plain rapamycin micelles, P<0.01. On immunohistochemistry, we observed a significant reduction in phospho-S6 but not β-catenin expression and reduced tumor cell proliferation, suggesting greater inhibition of downstream mTOR signaling. We observed significantly reduced renal toxicity for peptide-labeled rapamycin micelles compared to that of free drug, and no other toxicities were found on chemistries. Together, this unique targeted micelle represents a potential therapeutic for colorectal neoplasia with comparable therapeutic efficacy to rapamycin free drug and significantly less systemic toxicity.

  12. A simplified method for peptide de novo sequencing using (18)O labeling.

    PubMed

    Voráĉ, Aleš; Sedo, Ondrej; Havliš, Jan; Zdráhal, Zbyněk

    2014-01-01

    Incorporation of an (18)O atom into a peptide C-terminus by proteolytic cleavage in the presence of H2(18)O is one of the most effective ways of enhancing tandem mass spectrometry (MS/MS)-based de novo sequencing. Incorporation is usually accomplished by procedures including vacuum-assisted drying of tryptic peptides extracted from gels, their subsequent reconstitution in a H2(16)O/H2(18)O mixture and re-treatment with trypsin. In the present work, we propose a simplified procedure for (18)O incorporation into tryptic peptides by adding H2(18)O and trypsin to the original digest solution. In comparison to published methods, the proposed protocol for peptide de novo sequencing brings significant advantages in analysis and workflow with no deterioration in method performance. We show that labeling by this simplified method leads to a highlighting of the y-ion fragment series in the peptide matrix-assisted laser desorption/ionization (MALDI)- MS/MS data, which facilitates MS/MS data interpretation. We also prove that eliminating acid extraction of peptides from gels does not result in a decrease in sequence coverage or a qualitative loss of particular peptides detectable by MALDI-MS. The method was examined by MALDI-MS/MS on bovine serum albumin and recombinant histidine kinase CKI1 from Arabidopsis thaliana, and was verified by de novo sequencing of tryptic peptides originating from Apodemus sylvaticus salivary proteins.

  13. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides.

    PubMed

    Fedoreyeva, L I; Smirnova, T A; Kolomijtseva, G Ya; Khavinson, V Kh; Vanyushin, B F

    2013-02-01

    Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2B, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind predominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.

  14. Photodamage of Lipid Bilayers by Irradiation of a Fluorescently Labeled Cell-Penetrating Peptide

    PubMed Central

    Meerovich, Igor; Muthukrishnan, Nandhini; Johnson, Gregory A.; Erazo-Oliveras, Alfredo; Pellois, Jean-Philippe

    2013-01-01

    Background Fluorescently labeled cell-penetrating peptides can translocate into cells by endocytosis and upon light irradiation, lyse the endocytic vesicles. This photo-inducible endosomolytic activity of Fl-CPPs can be used to efficiently deliver macromolecules such as proteins and nucleic acids and other small organic molecules into the cytosol of live cells. The requirement of a light trigger to induce photolysis provides a more spatial and temporal control to the intracellular delivery process. Methods In this report, we examine the molecular level mechanisms by which cell-penetrating peptides such as TAT when labeled with small organic fluorophore molecules acquire a photo-induced lytic activity using a simplified model of lipid vesicles. Results The peptide TAT labeled with 5(6)-carboxy-tetramethylrhodamine binds to negatively charged phospholipids, thereby bringing the fluorophore in close proximity to the membrane of liposomes. Upon light irradiation, the excited fluorophore produces reactive oxygen species at the lipid bilayer and oxidation of the membrane is achieved. In addition, the fluorescent peptide causes aggregation of photo-oxidized lipids, an activity that requires the presence of arginine residues in the peptide sequence. Conclusions These results suggest that the cell penetrating peptide plays a dual role. On one hand, TAT targets a conjugated fluorophore to membranes. On the other hand, TAT participates directly in the destabilization of photosensitized membranes. Peptide and fluorophore therefore appear to act in synergy to destroy membranes efficiently. General Significance Understanding the mechanism behind Fl-CPP mediated membrane photodamage will help to design optimally photo-endosomolytic compounds. PMID:24135456

  15. Sustained Analgesic Peptide Secretion and Cell Labeling Using a Novel Genetic Modification

    PubMed Central

    Gajavelli, Shyam; Castellanos, Daniel A.; Furmanski, Orion; Schiller, Paul C.; Sagen, Jacqueline

    2009-01-01

    Cell-based therapy for neuropathic pain could provide analgesics to local pain modulatory regions in a sustained, renewable fashion. In order to provide enhanced analgesic efficacy, transplantable cells may be engineered to produce complementary or increased levels of analgesic peptides. In addition, genetic labeling of modified cells is desirable for identification and tracking, but it should be retained intracellularly as desired analgesic peptides are secreted. Usually constructs encode proteins destined for either extra- or intra-cellular compartments, as these pathways do not cross. However, interactions between intracellular destinations provide a window of opportunity to overcome this limitation. In this report, we have explored this approach using a potential supplementary analgesic peptide, [Ser1]-histogranin (SHG), the stable synthetic derivative of a naturally occurring peptide with N-methyl D-aspartate (NMDA) antagonistic properties. A synthetic SHG gene was combined with (i) nerve growth factor-β (NGF-β) amino-terminal signal peptide to enable secretion, and (ii) a fluorescent cellular label (mRFP) with intervening cathepsin L cleavage site, and subcloned into a lentiviral vector. In addition, an endoplasmic retention signal, KDEL, was added to enable retrieval of mRFP. Using immunocytochemistry and confocal microscopic profile analysis, cells transduced by such lentiviruses were shown to synthesize a single SHG-mRFP polypeptide that was processed, targeted to expected subcellular destinations in several cell types. Dot blot and Western analysis revealed stable transduction and long-term secretion of SHG from PC12 cells in vitro. Transplantation of such cells provided modest analgesia in a rodent pain model consistent with low levels of SHG peptide in the cerebrospinal fluid (CSF). These results suggest that it is possible to deliver proteins with different final destinations from a single construct, such as pharmacologically active peptide for

  16. Sustained analgesic peptide secretion and cell labeling using a novel genetic modification.

    PubMed

    Gajavelli, Shyam; Castellanos, Daniel A; Furmanski, Orion; Schiller, Paul C; Sagen, Jacqueline

    2008-01-01

    Cell-based therapy for neuropathic pain could provide analgesics to local pain modulatory regions in a sustained, renewable fashion. In order to provide enhanced analgesic efficacy, transplantable cells may be engineered to produce complementary or increased levels of analgesic peptides. In addition, genetic labeling of modified cells is desirable for identification and tracking, but it should be retained intracellularly as desired analgesic peptides are secreted. Usually constructs encode proteins destined for either extra- or intracellular compartments, as these pathways do not cross. However, interactions between intracellular destinations provide a window of opportunity to overcome this limitation. In this report, we have explored this approach using a potential supplementary analgesic peptide, [Ser1]-histogranin (SHG), the stable synthetic derivative of a naturally occurring peptide with N-methyl D-aspartate (NMDA) antagonistic properties. A synthetic SHG gene was combined with (i) nerve growth factor-beta (NGF-beta) amino-terminal signal peptide to enable secretion, and (ii) a fluorescent cellular label (mRFP) with intervening cathepsin L cleavage site, and subcloned into a lentiviral vector. In addition, an endoplasmic retention signal, KDEL, was added to enable retrieval of mRFP. Using immunocytochemistry and confocal microscopic profile analysis, cells transduced by such lentiviruses were shown to synthesize a single SHG-mRFP polypeptide that was processed, targeted to expected subcellular destinations in several cell types. Dot blot and Western analysis revealed stable transduction and long-term secretion of SHG from PC12 cells in vitro. Transplantation of such cells provided modest analgesia in a rodent pain model consistent with low levels of SHG peptide in the cerebrospinal fluid (CSF). These results suggest that it is possible to deliver proteins with different final destinations from a single construct, such as pharmacologically active peptide for

  17. Peptides Labeled with Pyridinium Salts for Sensitive Detection and Sequencing by Electrospray Tandem Mass Spectrometry

    PubMed Central

    Waliczek, Mateusz; Kijewska, Monika; Rudowska, Magdalena; Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2016-01-01

    Mass spectrometric analysis of trace amounts of peptides may be problematic due to the insufficient ionization efficiency resulting in limited sensitivity. One of the possible ways to overcome this problem is the application of ionization enhancers. Herein we developed new ionization markers based on 2,4,6-triphenylpyridinium and 2,4,6-trimethylpyridinium salts. Using of inexpensive and commercially available pyrylium salt allows selective derivatization of primary amino groups, especially those sterically unhindered, such as ε-amino group of lysine. The 2,4,6-triphenylpyridinium modified peptides generate in MS/MS experiments an abundant protonated 2,4,6-triphenylpyridinium ion. This fragment is a promising reporter ion for the multiple reactions monitoring (MRM) analysis. In addition, the fixed positive charge of the pyridinium group enhances the ionization efficiency. Other advantages of the proposed ionization enhancers are the simplicity of derivatization of peptides and the possibility of convenient incorporation of isotopic labels into derivatized peptides. PMID:27892962

  18. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques.

    PubMed

    Delehanty, James B; Bradburne, Christopher E; Susumu, Kimihiro; Boeneman, Kelly; Mei, Bing C; Farrell, Dorothy; Blanco-Canosa, Juan B; Dawson, Philip E; Mattoussi, Hedi; Medintz, Igor L

    2011-07-13

    Multicolor fluorescent labeling of both intra- and extracellular structures is a powerful technique for simultaneous monitoring of multiple complex biochemical processes. This approach remains extremely challenging, however, as it often necessitates the combinatorial use of numerous targeting probes (e.g., antibodies), multistep bioconjugation chemistries, different delivery strategies (e.g., electroporation or transfection reagents), cellular fixation coupled with membrane permeabilization, and complex spectral deconvolution. Here, we present a nanoparticle-based fluorescence labeling strategy for the multicolor labeling of distinct subcellular compartments within live cells without the need for antibody conjugation or cellular fixation/permeabilization. This multipronged approach incorporates an array of delivery strategies, which localize semiconductor quantum dots (QDs) to various subcellular structures. QD uptake is implemented in a spaciotemporal manner by staggering the delivery of QD-peptide composites and exploiting various innate (peptide-mediated endocytosis, peptide-membrane interaction, polymer-based transfection) along with physical (microinjection) cellular delivery modalities to live cells growing in culture over a 4 day period. Imaging of the different intracellular labels is simplified by the unique photophysical characteristics of the QDs in combination with Förster resonance energy transfer sensitization, which allow for multiple spectral windows to be accessed with one excitation wavelength. Using this overall approach, QDs were targeted to both early and late endosomes, the cellular cytosol, and the plasma membrane in live cells, ultimately allowing for simultaneous five-color fluorescent imaging.

  19. ACE-linked peptides: a convergent approach for peptide macrocyclization and labeling

    PubMed Central

    Assem, Naila; Ferreira, David J.; Wolan, Dennis W.

    2016-01-01

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. For example, significant efforts have been developed to stabilize α-helical structures, through tethering proximal side chains. While these approaches successfully mimic protein α-helices, the structural requirements of the tether typically prevent further synthetic modifications to the non-binding face of the helix. Here we demonstrate the utility of dichloroacetone (DCA) to enhance helical secondary structure when introduced between peptide nucleophiles, such as thiols, to yield an acetone (ACE)-linked bridge. In addition to stabilizing helical structures, the ketone moiety embedded into the linker can be modified using oxime ligation with diverse molecular tags. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of ACE-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that ACE-linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. PMID:26096515

  20. Synthesis and characterization of a 'fluorous' (fluorinated alkyl) affinity reagent that labels primary amine groups in proteins/peptides.

    PubMed

    Qian, Jiang; Cole, Richard B; Cai, Yang

    2011-01-01

    Strong non-covalent interactions such as biotin-avidin affinity play critical roles in protein/peptide purification. A new type of 'fluorous' (fluorinated alkyl) affinity approach has gained popularity due especially to its low level of non-specific binding to proteins/peptides. We have developed a novel water-soluble fluorous labeling reagent that is reactive (via an active sulfo-N-hydroxylsuccinimidyl ester group) to primary amine groups in proteins/peptides. After fluorous affinity purification, the bulky fluorous tag moiety and the long oligoethylene glycol (OEG) spacer of this labeling reagent can be trimmed via the cleavage of an acid labile linker. Upon collision-induced dissociation, the labeled peptide ion yields a characteristic fragment that can be retrieved from the residual portion of the fluorous affinity tag, and this fragment ion can serve as a marker to indicate that the relevant peptide has been successfully labeled. As a proof of principle, the newly synthesized fluorous labeling reagent was evaluated for peptide/protein labeling ability in phosphate-buffered saline (PBS). Results show that both the aqueous environment protein/peptide labeling and the affinity enrichment/separation process were highly efficient.

  1. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label.

    PubMed

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong; Wagenknecht, Hans-Achim; Vilaivan, Tirayut

    2014-01-01

    DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV-vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA-DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes.

  2. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label

    PubMed Central

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong

    2014-01-01

    Summary DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV–vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA–DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes. PMID:25246975

  3. Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors.

    PubMed

    Kennel, S J; Mirzadeh, S; Hurst, G B; Foote, L J; Lankford, T K; Glowienka, K A; Chappell, L L; Kelso, J R; Davern, S M; Safavy, A; Brechbiel, M W

    2000-11-01

    To develop targeting molecules to be used for vascular targeting of short half-lived alpha-emitters for radioimmunotherapy, linear peptide phage display libraries were selected in vivo for binding to IC-12 rat tracheal tumors growing in severe combined immune deficient mice. After three rounds of selection, 15 phage clones were analyzed for DNA sequence, and the deduced translation products of cDNA inserts were compared. Three consensus sequences were chosen from three separate experimental selection series and peptides of these sequences with added -gly-gly-tyr were obtained. Peptides were radiolabeled on tyrosine with (125)I and the biodistribution in tumor-bearing mice was determined. The radioiodinated peptides were stable in vitro and when injected in tumor-bearing mice approximately 3.0 %ID/g accumulated in the tumor; however, much of the (125)I was found in the gastrointestinal tract and thyroid, indicative of dehalogenation of the labeled peptide. Radiolabeling peptide 2 with N-succinimidyl-3-(125)I-iodobenzoate resulted in faster excretion, which in turn resulted in lower levels in tumor and other organs, especially thyroid and gastrointestinal tract. Peptide 2 was derivatized with the bifunctional isothiocyanates of cyclohexyl-B diethylenetriaminepentaacetic acid (DTPA) or CHX-A" DTPA by direct conjugation or with a hydroxylamine derivative of 1B4M-DTPA (2-(p-[O-(carboxamylmethyl)hydroxylamine]benzyl)-6-methyl-diethylenetriamine-N,N,N',N",N"-pentaacetic acid ) coupled at the N-terminus. The primary molecular species in the conjugated products were shown by mass spectrometry to have one DTPA per peptide. Peptide chelate conjugates were radiolabeled with (213)Bi and the products tested for biodistribution in tumor-bearing mice. The data show that chelation of (213)Bi to peptides was accomplished by both the direct method of DTPA attachment and by the method using the linker at the N-terminus. Only small amounts of peptide accumulated at tumor sites. We

  4. Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups.

    PubMed

    Richter, Susan; Wuest, Melinda; Bergman, Cody N; Way, Jenilee D; Krieger, Stephanie; Rogers, Buck E; Wuest, Frank

    2015-02-18

    Current translational cancer research is directed to the development of high affinity peptide ligands for targeting neuropeptide receptors overexpressed in different types of cancer. Besides their desired high binding affinity to the receptor, the suitability of radiolabeled peptides as targeting vectors for molecular imaging and therapy depends on additional aspects such as high tumor-to-background ratio, favorable clearance pattern from nontarget tissue, and sufficient metabolic stability in vivo. This study reports how a switch from the prosthetic group, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), to 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) effects the metabolic pathway of an (18)F-labeled bombesin derivative, QWAV-Sar-H-FA01010-Tle-NH2. (18)F-Labeled bombesin derivatives represent potent peptide ligands for selective targeting of gastrin-releasing peptide (GRP) receptor-expressing prostate cancer. Radiosynthesis of (18)F-labeled bombesin analogues [(18)F]FBz-Ava-BBN2 and [(18)F]FDG-AOAc-BBN2 was achieved in good radiochemical yields of ~50% at a specific activity exceeding 40 GBq/μmol. Both nonradioactive compounds FBz-Ava-BBN2 and FDG-AOAc-BBN2 inhibited binding of [(125)I]Tyr(4)-bombesin(1-14) in PC3 cells with IC50 values of 9 and 16 nM, respectively, indicating high inhibitory potency. Influence of each prosthetic group was further investigated in PC3 mouse xenografts using dynamic small animal PET imaging. In comparison to [(18)F]FBz-Ava-BBN2, total tumor uptake levels were doubled after injection of [(18)F]FDG-AOAc-BBN2 while renal elimination was increased. Blood clearance and in vivo metabolic stability were similar for both compounds. The switch from [(18)F]SFB to [(18)F]FDG as the prosthetic group led to a significant reduction in lipophilicity which resulted in more favorable renal clearance and increased tumor uptake. The presented single step radiolabeling-glycosylation approach represents an innovative strategy for site

  5. Quantification of peptide m/z distributions from 13C-labeled cultures with high-resolution mass spectrometry.

    PubMed

    Allen, Doug K; Goldford, Joshua; Gierse, James K; Mandy, Dominic; Diepenbrock, Christine; Libourel, Igor G L

    2014-02-04

    Isotopic labeling studies of primary metabolism frequently utilize GC/MS to quantify (13)C in protein-hydrolyzed amino acids. During processing some amino acids are degraded, which reduces the size of the measurement set. The advent of high-resolution mass spectrometers provides a tool to assess molecular masses of peptides with great precision and accuracy and computationally infer information about labeling in amino acids. Amino acids that are isotopically labeled during metabolism result in labeled peptides that contain spatial and temporal information that is associated with the biosynthetic origin of the protein. The quantification of isotopic labeling in peptides can therefore provide an assessment of amino acid metabolism that is specific to subcellular, cellular, or temporal conditions. A high-resolution orbital trap was used to quantify isotope labeling in peptides that were obtained from unlabeled and isotopically labeled soybean embryos and Escherichia coli cultures. Standard deviations were determined by estimating the multinomial variance associated with each element of the m/z distribution. Using the estimated variance, quantification of the m/z distribution across multiple scans was achieved by a nonlinear fitting approach. Observed m/z distributions of uniformly labeled E. coli peptides indicated no significant differences between observed and simulated m/z distributions. Alternatively, amino acid m/z distributions obtained from GC/MS were convolved to simulate peptide m/z distributions but resulted in distinct profiles due to the production of protein prior to isotopic labeling. The results indicate that peptide mass isotopologue measurements faithfully represent mass distributions, are suitable for quantification of isotope-labeling-based studies, and provide additional information over existing methods.

  6. Low-pH Solid-Phase Amino Labeling of Complex Peptide Digests with TMTs Improves Peptide Identification Rates for Multiplexed Global Phosphopeptide Analysis.

    PubMed

    Böhm, Gitte; Prefot, Petra; Jung, Stephan; Selzer, Stefan; Mitra, Vikram; Britton, David; Kuhn, Karsten; Pike, Ian; Thompson, Andrew H

    2015-06-05

    We present a novel tandem mass tag solid-phase amino labeling (TMT-SPAL) protocol using reversible immobilization of peptides onto octadecyl-derivatized (C18) solid supports. This method can reduce the number of steps required in complex protocols, saving time and potentially reducing sample loss. In our global phosphopeptide profiling workflow (SysQuant), we can cut 24 h from the protocol while increasing peptide identifications (20%) and reducing side reactions. Solid-phase labeling with TMTs does require some modification to typical labeling conditions, particularly pH. It has been found that complete labeling equivalent to standard basic pH solution-phase labeling for small and large samples can be achieved on C18 resins under slightly acidic buffer conditions. Improved labeling behavior on C18 compared to that with standard basic pH solution-phase labeling is demonstrated. We analyzed our samples for histidine, serine, threonine, and tyrosine labeling to determine the degree of overlabeling and observed higher than expected levels (25% of all peptide spectral matches (PSMs)) of overlabeling at all of these amino acids (predominantly at tyrosine and serine) in our standard solution-phase labeling protocol. Overlabeling at all of these sites is greatly reduced (4-fold, to 7% of all PSMs) by the low-pH conditions used in the TMT-SPAL protocol. Overlabeling seems to represent a so-far overlooked mechanism causing reductions in peptide identification rates with NHS-activated TMT labeling compared to that with label-free methods. Our results also highlight the importance of searching data for overlabeling when labeling methods are used.

  7. Catalytic center of lecithin:cholesterol acyltransferase: isolation and sequence of diisopropyl fluorophosphate-labeled peptides

    SciTech Connect

    Park, Y.B.; Yueksel, U.G.; Gracy, R.W.; Lacko, A.G.

    1987-02-27

    Lecithin:cholesterol acyltransferase (LCAT) was purified from hog plasma and subsequently reacted with (/sup 3/H)-Diisopropyl fluorophosphate (DFP). The labeled enzyme was digested with pepsin and the peptides separated by high performance liquid chromatography (HPLC). Two radioactive peptides were isolated, subjected to automated amino acid sequencing and yielded the following data: A) Ile-Ser-Leu-Gly-Ala-Pro-Trp-Gly-Gly-Ser, and B) Tyr-Ile-Phe-Asp-x-Gly-Phe-Pro-Tyr-x-Asp-Pro-Val. Both of these sequences represent very highly conserved regions of the enzyme when compared to the sequence of human LCAT. Peptide (A) is considered to represent the catalytic center of LCAT based on comparisons with data reported in the literature.

  8. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides.

    PubMed

    Dong, Zong-Mu; Zhao, Guang-Chao

    2015-05-01

    A novel label-free strategy for the detection of bacteria was developed by using a specific antimicrobial peptide (AMP)-functionalized quartz crystal microbalance (QCM) electrode. This electrode interface was successfully applied to detect pathogenic Escherichia coli O157:H7 based on the specific affinity between the small synthetic antimicrobial peptide and the bacterial cell of pathogenic E. coli O157:H7. The concentrations of pathogenic E. coli O157:H7 were sensitively measured by the frequency response of the QCM with a detection limit of 0.4 cfu μL(-1). The detection can be fulfilled within 10 min because it does not require germiculture process. On the other hand, if the specific antimicrobial peptides were immobilized on a gold electrode, this label-free strategy can also be performed by electrochemical impedance spectroscopy (EIS). Compared with QCM technique, the EIS measurement gives a lower sensitivity and needs a longer assay time. The combination of antimicrobial peptides with the real-time responses of QCM, as well as electronic read-out monitoring of EIS, may open a new way for the direct detection of bacteria.

  9. Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex

    PubMed Central

    McBride, William J.; D’Souza, Christopher A.; Sharkey, Robert M.; Karacay, Habibe; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    We reported previously the feasibility to radiolabel peptides with fluorine-18 (18F) using a rapid, one-pot, method that first mixes 18F− with Al3+, and then binds the (Al18F)2+ complex to a NOTA ligand on the peptide. In this report, we examined several new NOTA ligands and determined how temperature, reaction time, and reagent concentration affected the radiolabeling yield. Four structural variations of the NOTA ligand had isolated radiolabeling yields ranging from 5.8% to 87% under similar reaction conditions. All of the Al18F NOTA complexes were stable in vitro in human serum and those that were tested in vivo also were stable. The radiolabeling reactions were performed at 100°C and the peptides could be labeled in as little as five minutes. The IMP467 peptide could be labeled up to 115 GBq/μmol (3100 Ci/mmol), with a total reaction and purification time of 30 min without chromatographic purification. PMID:20540570

  10. Technetium-99m labeled peptides--an investigation of multiple HPLC peaks.

    PubMed

    Hnatowich, D J; Chang, F; Qu, T; Rusckowski, M

    1999-05-01

    This laboratory, and others, have reported multiple radioactive peaks in the size exclusion high performance liquid chromatographic (HPLC) analysis of 99mTc-labeled peptides. In the case of one 99mTc-MAG3-labeled peptide studied in this laboratory, human neutrophil elastase inhibitor, all five radioactive peaks were shown to be due to active peptide rather than radiocontaminants. By a variety of experiments, the nature of these peaks have now been examined. A high molecular weight UV peak could be generated by heating the MAG3 coupled, but not the native, peptide. Furthermore, this UV peak did not appear upon heating the peptide if the sulfur within the MAG3 chelator was replaced with oxygen. This peak may therefore be due to polymers resulting from intermolecular disulfide bond formation between sulfurs in the MAG3 chelate and the peptide. Several peaks with apparent lower molecular weights were absent on analysis with a different size exclusion column with superior resolution in their molecular weight range. More importantly, they were also absent on analysis by SDS polyacrylamide gel electrophoresis. These "low" molecular weight radioactive peaks may therefore be due to interactions between the 99mTc-MAG3 chelate and the peptide which produce multiple molecular configurations of identical molecular weight but differing in shape, charge, isomerism or lipophilicity such that they are resolved under the conditions of certain analyses. In support of this possibility, lengthening the linker between MAG3 and the peptide reduced the number of radioactive peaks, while encouraging the interaction by replacing MAG3 with the shorter MAG2 seemed to increase the number of radioactive peaks. Finally, that the three "low" molecular weight radioactive peaks reappeared when a single peak fraction was reanalyzed suggests that the species responsible are in rapid equilibrium. One conclusion from this investigation is that the appearance of a single peak by any HPLC analysis offers

  11. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    PubMed Central

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. PMID:23412478

  12. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells.

    PubMed

    Sheridan, Erin J; Austin, Christopher J D; Aitken, Jade B; Vogt, Stefan; Jolliffe, Katrina A; Harris, Hugh H; Rendina, Louis M

    2013-03-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells.

  13. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptide analogs

    SciTech Connect

    Fischman, A.J.; Pike, M.C.; Kroon, D.; Fucello, A.J.; Rexinger, D.; ten Kate, C.; Wilkinson, R.; Rubin, R.H.; Strauss, H.W. )

    1991-03-01

    Four DTPA-derivatized chemotactic peptide analogs: ForNleLFNleYK-DTPA (P1), ForMLFNH(CH2)6NH-DTPA (P2), ForNleLFK(NH2)-DTPA (P3), and ForNleLFK-DTPA (P4), were synthesized and evaluated for in vitro bioactivity and receptor binding. The peptides were radiolabeled with 111In by transchelation and their biodistribution determined in rats at 5, 30, 60 and 120 min after injection. Localization at sites of infection was determined by scintillation camera imaging in animals with deep-thigh infection due to Escherichia coli. Images were recorded from 5 min to 2 hr after injection. All peptides maintained biologic activity (EC50 for O2-production by human PMN's: 3-150 nM) and the ability to bind to the oligopeptide chemoattractant receptor on human PMN's (EC50 for binding: 7.5-50 nM); biologic activity and receptor binding were highly correlated (r = 0.99). For all the peptides, blood clearance was rapid (half-lives: 21.5, 33.1, 31.6, and 28.7 min for P1, P2, P3, and P4, respectively). Biodistributions of the individual peptides were similar with low levels of accumulation in the heart, lung, liver, spleen, and gastrointestinal tract. In the kidney, P1 had much greater accumulation than other organs. All peptides yielded high quality images of the infection sites within 1 hr of injection. This study demonstrates that 111In-labeled chemotactic peptide analogs were effective agents for the external imaging of focal sites of infection.

  14. Metabolic flux analysis using ¹³C peptide label measurements.

    PubMed

    Mandy, Dominic E; Goldford, Joshua E; Yang, Hong; Allen, Doug K; Libourel, Igor G L

    2014-02-01

    ¹³C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady-state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady-state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable 'single-sample' spatially and temporally resolved steady-state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC-MS measurement-based approach. Deconvolution of PMDs of the storage protein β-conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC-MS-derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.

  15. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    PubMed

    Keiderling, Timothy A

    2017-10-04

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  17. Development of MAG3 p-nitrophenyl ester for technetium-99m and rhenium-188 labeling of amines and peptides

    SciTech Connect

    Guhlke, S.; Diekmann, D.; Biersack, H.J.; Zamora, P.O.; Knapp, F.F. Jr.

    1994-09-01

    Conjugate labeling by active ester chemistry is a well-established method for labeling peptides and proteins with technetium and rhenium. The easy preparation and high conjugations yields presented in this paper show that both {sup 188}Re and {sup 99m}Tc-MAG{sub 3} p-nitrophenyl esters are promising agents for labeling a wide range of biomolecules for radio therapy or diagnostic imaging.

  18. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET.

    PubMed

    Notni, Johannes; Pohle, Karolin; Wester, Hans-Jürgen

    2012-06-09

    Currently, 68Ga-labeled 1,4,7,10-tetraazacyclododecane-tetraacetic acid (DOTA)-peptides are the most widely used class of 68Ga radiotracers for PET, although DOTA is not optimal for 68Ga complexation. More recently, 1,4,7-triazacyclononane-triacetic acid (NOTA) and particularly triazacyclononane-phosphinate (TRAP) chelators have been shown to possess superior 68Ga binding ability. Here, we report on the efficiency, reproducibility, and achievable specific activity for fully automated 68Ga labeling of DOTA-, NOTA-, and TRAP-peptide conjugates. Compared to NOTA- and DOTA-peptides, achievable specific activity (AS) for TRAP-peptide is approximately 10 and 20 times higher, respectively. AS values in the range of 5,000 GBq/μmol were routinely obtained using 1 GBq of 68Ga, equivalent to 0.11 μg of cold mass for a 185-MBq patient dose of a 3-kDa conjugate. The TRAP-peptide could be 68Ga-labeled with excellent reproducibility and > 95% radiochemical yield for precursor amounts as low as 1 nmol. High 68Ga labeling efficiency of TRAP-peptides could facilitate realization of kit labeling procedures. The good reproducibility of the automated synthesis is of relevance for GMP production, and the possibility to provide very high specific activities offers a high degree of safety in first clinical trials, due to reduction of cold mass content in tracer formulations.

  19. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET

    PubMed Central

    2012-01-01

    Background Currently, 68Ga-labeled 1,4,7,10-tetraazacyclododecane-tetraacetic acid (DOTA)-peptides are the most widely used class of 68Ga radiotracers for PET, although DOTA is not optimal for 68Ga complexation. More recently, 1,4,7-triazacyclononane-triacetic acid (NOTA) and particularly triazacyclononane-phosphinate (TRAP) chelators have been shown to possess superior 68Ga binding ability. Here, we report on the efficiency, reproducibility, and achievable specific activity for fully automated 68Ga labeling of DOTA-, NOTA-, and TRAP-peptide conjugates. Findings Compared to NOTA- and DOTA-peptides, achievable specific activity (AS) for TRAP-peptide is approximately 10 and 20 times higher, respectively. AS values in the range of 5,000 GBq/μmol were routinely obtained using 1 GBq of 68Ga, equivalent to 0.11 μg of cold mass for a 185-MBq patient dose of a 3-kDa conjugate. The TRAP-peptide could be 68Ga-labeled with excellent reproducibility and > 95% radiochemical yield for precursor amounts as low as 1 nmol. Conclusions High 68Ga labeling efficiency of TRAP-peptides could facilitate realization of kit labeling procedures. The good reproducibility of the automated synthesis is of relevance for GMP production, and the possibility to provide very high specific activities offers a high degree of safety in first clinical trials, due to reduction of cold mass content in tracer formulations. PMID:22682112

  20. Synthesis of fluorescein-labelled O-mannosylated peptides as components for synthetic vaccines: comparison of two synthetic strategies.

    PubMed

    Brimble, Margaret A; Kowalczyk, Renata; Harris, Paul W R; Dunbar, P Rod; Muir, Victoria J

    2008-01-07

    Mannose-binding proteins on the surface of antigen-presenting cells (APCs) are capable of recognizing and internalizing foreign agents in the early stages of immune response. These receptors offer a potential target for synthetic vaccines, especially vaccines designed to stimulate T cells. We set out to synthesize a series of fluorescein-labelled O-mannosylated peptides using manual solid phase peptide synthesis (SPPS) on pre-loaded Wang resin, in order to test their ability to bind mannose receptors on human APCs in vitro. A flexible and reliable method for the synthesis of fluorescein-labelled O-mannosylated glycopeptides was desired in order to study their lectin-binding properties using flow cell cytometry. Two synthetic strategies were investigated: incorporation of a fluorescein label into the peptide chain via a lysine side chain epsilon-amino group at the final stage of standard Fmoc solid phase peptide synthesis or attachment of the fluorescein label to the N(alpha)-amino group of a lysine with further incorporation of a mannosylated peptide unit through the side chain N(epsilon)-amino group. The latter strategy proved more effective in that it facilitated SPPS by positioning the growing mannosylated peptide chain further removed from the fluorescein label.

  1. Fluorescence-labeled peptides as isoelectric point (pI) markers in capillary isoelectric focusing with fluorescence detection.

    PubMed

    Shimura, K; Kasai, K

    1995-08-01

    Commercially available peptides, mostly angiotensin derivatives, were labeled at their N-terminal amino group with 5-carboxytetramethylrhodamine succinimidyl ester, to obtain fluorescent pI markers for capillary isoelectric focusing with fluorescence detection. The labeled peptides were purified by reversed-phase chromatography. They were well separated on isoelectric focusing in a polyacrylamide gel slab and their pIs were determined by comigration with protein-pI markers. The fluorescent markers could be detected as sharp peaks in capillary isoelectric focusing with laser-induced fluorescence detection (He-Ne laser, 1 mW, 543.5 nm). The detection limit was found to be around 3 x 10(-12) M (0.8 amol). Tetramethylrhodamine-labeled pea lectin (3 pg) was subjected to capillary isoelectric focusing and the pIs of the fluorescent derivatives of the lectin were determined by using the fluorescence-labeled peptides as pI markers.

  2. Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides.

    PubMed

    Gottschlich, N; Culbertson, C T; McKnight, T E; Jacobson, S C; Ramsey, J M

    2000-08-04

    A microchip device was demonstrated that integrated enzymatic reactions, electrophoretic separation of the reactants from the products and post-separation labeling of proteins and peptides prior to detection. A tryptic digestion of oxidized insulin B-chain was performed in 15 min under stopped flow conditions in a heated channel, and the separation was completed in 1 min. Localized thermal control of the reaction channel was achieved using a resistive heating element. The separated reaction products were then labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and detected by laser-induced fluorescence. A second reaction at elevated temperatures was also demonstrated for the on-chip reduction of disulfide bridges using insulin as a model protein. This device represents one of the highest levels, to date, of monolithic integration of chemical processes on a microchip.

  3. Tc-99m-labeled somatostatin receptor-binding peptide imaging for a pulmonary nodule.

    PubMed

    Morehead, R S; Shih, W J

    2001-11-01

    A 76-year-old man with chronic obstructive pulmonary disease and a smoking history had a 2-cm solitary pulmonary nodule that was likely to be malignant. He underwent Tc-99m-labeled somatostatin receptor-binding peptide SPECT. A computed tomographic-guided transthoracic needle biopsy performed before the SPECT was nondiagnostic. SPECT showed increased uptake of the tracer by the nodule, which was subsequently found to be adenocarcinoma by surgical resection. Differentiation of malignant from benign nodules by Tc-99m-labeled somatostatin imaging may be a reasonable approach in patients at high risk for cancer and concurrently at increased risk for complications from invasive diagnostic procedures or surgical resection.

  4. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-02

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.

  5. Methodology for Labeling Proteins and Peptides with Lead-212 (212Pb)

    PubMed Central

    Baidoo, Kwamena E.; Milenic, Diane E.; Brechbiel, Martin W.

    2013-01-01

    Introduction Alpha particles possess an exquisite degree of cytotoxicity when employed for targeted α–particle therapy (TAT) or radioimmunotherapy (RIT). 212Pb, which acts as an in vivo generator of the α-emitting nuclide 212Bi has shown great promise in pre-clinical studies when used to label the HER2 binding antibody, trastuzumab. Currently, the first RIT clinical trial employing 212Pb radiolabeled trastuzumab is in progress. This report provides detailed current protocol operations and steps that were generated for use in the clinical trial as well as the relevant pre-clinical experimentation, and describes in detail the labeling of proteins or peptides with 212Pb as provided via a 224Ra based generator system. Methods 212Pb was eluted from the 224Ra/212Pb generator using hydrochloric acid (2 M). The generator eluate was evaporated and digested with nitric acid (8M) followed by extraction of the 212Pb with dilute nitric acid (0.1 M). The dilute nitric acid solution of 212Pb was used to label the immunoconjugate Trastuzumab-TCMC (2-(4-isothiocyanatobenzyl-1,4,7,10-tetraaza-1,4,7,10,tetra-(2-carbamonylmethyl)-cyclododecane) at pH 5.5. Results Elution of 212Pb from the generator was efficient yielding > 90% of available 212Pb. Trastuzumab-TCMC was efficiently labeled with a radiochemical yield of 94 +/− 4% (n = 7) by ITLC and an isolated yield of 73 +/− 3 % (n = 7). Conclusions The results show the feasibility of generating radioimmunoconjugates and peptide conjugates for use as in vivo α generator systems in the clinic. The technology holds promise in applications involving the treatment of minimal disease such as micrometastases and residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers, such as ovarian cancer. PMID:23602604

  6. Measurement of protein synthesis using heavy water labeling and peptide mass spectrometry: Discrimination between major histocompatibility complex allotypes

    PubMed Central

    De Riva, Alessandra; Deery, Michael J.; McDonald, Sarah; Lund, Torben; Busch, Robert

    2010-01-01

    Methodological limitations have hampered the use of heavy water (2H2O), a convenient, universal biosynthetic label, for measuring protein synthesis. Analyses of 2H-labeled amino acids are sensitive to contamination; labeling of peptides has been measured for a few serum proteins, but this approach awaits full validation. Here we describe a method for quantifying protein synthesis by peptide mass spectrometry (MS) after 2H2O labeling, as applied to various proteins of the major histocompatibility complex (MHC). Human and murine antigen-presenting cells were cultured in medium containing 5% 2H2O; class I and class II MHC proteins were immunoprecipitated, bands were excised, and Ala-/Gly-rich, allele-specific tryptic peptides were identified by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Mass isotopomer distributions were quantified precisely by LC–MS and shifted markedly on 2H2O labeling. Experimental data agreed closely with models obtained by mass isotopomer distribution analysis (MIDA) and were consistent with contributions from Ala, Gly, and other amino acids to labeling. Estimates of fractional protein synthesis from peptides of the same protein were precise and internally consistent. The method was capable of discriminating between MHC isotypes and alleles, applicable to primary cells, and readily extendable to other proteins. It simplifies measurements of protein synthesis, enabling novel applications in physiology, in genotype/phenotype interactions, and potentially in kinetic proteomics. PMID:20406617

  7. Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yamazaki, Yoji; Ebina, Keiichi

    2014-10-01

    The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.

  8. Fluorescent-labeled bioconjugates of the opioid peptides biphalin and DPDPE incorporating fluorescein-maleimide linkers.

    PubMed

    Stefanucci, Azzurra; Lei, Wei; Hruby, Victor J; Macedonio, Giorgia; Luisi, Grazia; Carradori, Simone; Streicher, John M; Mollica, Adriano

    2017-06-01

    The conjugation of fluorescent labels to opioid peptides is an extremely challenging task, which needs to be overcome to create new classes of probes for biological assays. Three opioid peptide analogs of biphalin and [D-Pen2,5]-Enkephalin (DPDPE) containing a fluorescein-maleimide motif were synthesized. The biphalin analog 17 binds to opioid receptors with Ki(μ) = 530 ± 90 nM and Ki(δ) = 69.8 ± 16.4 nM. We then tested the ability of the compounds to stimulate G-protein-coupling, 17 activated μ-receptor expressing cells (EC50 = 16.7 ± 6.7 nM, EMax = 76 ± 4%) as well as δ-receptor expressing cells (EC50 = 42 ± 10 nM, EMax = 34 ± 8%). However, 17 was not able to fluorescently label receptor in live or fixed cells. Our data suggest that the biphalin scaffold could be employed to develop fluorescent ligands with the appropriate fluorescent motif, and suggest a means for further probe development.

  9. A class of novel nitronyl nitroxide labeling basic and acidic amino acids: synthesis, application for preparing ESR optionally labeling peptides, and bioactivity investigations.

    PubMed

    Zhang, Jianwei; Zhao, Ming; Cui, Guohui; Peng, Shiqi

    2008-04-01

    Aimed at optional ESR label 2-(4'-hydroxyl)phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl was introduced into the guanido of L-Arg-OH, the omega-amino group of L-Lys-OH with methylcarboxyl as a linker, and into the beta-carboxyl of L-Asp-OH and the gamma-carboxyl of L-Glu-OH with ethylamino as a linker. It was explored that the synthetic 30 novel ESR labeling amino acid derivatives were stable enough to the reaction conditions of peptide synthesis. Their incorporation led to 12 novel ESR optionally labeling PAK, RGDS, RGDV, and ECG. A series of NO related chemical tests, the in vitro and in vivo assays of these peptides confirmed that this strategy was practical.

  10. A novel approach to infection imaging using a synthetic Tc-99m-labeled leukotactic peptide

    SciTech Connect

    Som, P.; Oster, Z.H.; Sharma, S. ||

    1996-05-01

    RMT1, a synthetic peptide binding to PMN and macrophage receptors was labeled with Tc-99m and investigated as a potential imaging agent for abscess and inflammation. Experimental abscesses were induced in rabbits and dogs by turpentine and E.coli injection. After injection of Tc-99m-RMT1 two and twelve day old abscesses were visualized within 20 min. In initial studies, a dose of 30 {mu}g of peptide/3 mCi was used. This amount was subsequently reduced to 1.5 {mu}g peptide with same amount of Tc-99m yielding similar imaging results. Technetium-99m-IgG and Tc-99m-MAG-3 were used as positive and negative controls, respectively. After injection of IgG abscesses were visualized but activity in blood was always higher than in abscess. When using Tc-99m RMT1 rapid abscess visualization and faster blood clearance was observed. The accumulation of RMT1 was monophasic, i.e., following the initial visualization, activity continued to build up continuously for 1{1/2} hr. Tc-99m-MAG3 accumulated initially in abscess, but activity washed out. In dogs, RMT1 blood clearance showed three components: a fast component with t{1/2}=1.9 min, 73%, intermediate t{1/2}=22 min, 24.5% and slow component, t{1/2}=115, 9.5% with 3 hours cumulative urine excretion of 40-51%. RMT1 appears to be more advantageous than currently available methods because of rapidity of imaging, simpler preparation before injection and will probably be less expensive and time consuming compared to labeled WBC. These results indicate that clinical experiments are warranted.

  11. Affinity fluorescence-labeled peptides for the early detection of cancer in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Li, Meng; Lu, Shaoying; Piraka, Cyrus; Appelman, Henry; Kwon, Rich; Soetikno, Roy; Kaltenbach, Tonya; Wang, Thomas D.

    2009-02-01

    Fluorescence-labeled peptides that affinity bind to neoplastic mucsosa are promising for use as a specific contrast agent in the detection of pre-malignant tissue in the esophagus. This method is can be used to identify expression of biological markers associated with dysplasia on endoscopic imaging as a guide for biopsy and represents a novel method for the early detection and prevention of cancer. We demonstrate the use of phage display to select affinity peptides and identify the sequence "ASYNYDA" that binds with high target-to-background ratio to dysplastic esophageal mucosa compared to that of intestinal metaplasia. Validation of preferential binding is demonstrated for neoplasia in the setting of Barrett's esophagus. An optimal tradeoff between sensitivity and specificity of 82% and 85% was found at the relative threshold of 0.60 with a target-to-background ratio of 1.81 and an area under the ROC curve of 0.87. Peptides are a novel class of ligand for targeted detection of pre-malignant mucosa for purposes of screening and surveillance.

  12. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone

    PubMed Central

    Coggins, John R.; Kray, William; Shaw, Elliott

    1974-01-01

    Methods are described for the synthesis of peptides terminating in Lys-CH2Cl. The products were examined as affinity labels for several enzymes of trypsin-like specificity which are resistant to Tos-Lys-CH2Cl. In part, the inertness of the latter may be due to the sulphonamide group, since Z-Lys-CH2Cl was more effective. However, a number of tripeptides with C-terminal Lys-CH2Cl were superior in their ability to inactivate subtilisin, thrombin and plasma kallikrein. The possibility of developing enzyme-specific reagents selective for members within the trypsin-like group is demonstrated by Ala-Phe-Lys-CH2Cl, which readily inactivates plasma kallikrein but not thrombin. PMID:4422496

  13. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  14. Gd(III)-Labeled Peptide Nanofibers for Reporting on Biomaterial Localization in Vivo

    PubMed Central

    2015-01-01

    Bioactive supramolecular nanostructures are of great importance in regenerative medicine and the development of novel targeted therapies. In order to use supramolecular chemistry to design such nanostructures, it is extremely important to track their fate in vivo through the use of molecular imaging strategies. Peptide amphiphiles (PAs) are known to generate a wide array of supramolecular nanostructures, and there is extensive literature on their use in areas such as tissue regeneration and therapies for disease. We report here on a series of PA molecules based on the well-established β-sheet amino acid sequence V3A3 conjugated to macrocyclic Gd(III) labels for magnetic resonance imaging (MRI). These conjugates were shown to form cylindrical supramolecular assemblies using cryogenic transmission electron microscopy and small-angle X-ray scattering. Using nuclear magnetic relaxation dispersion analysis, we observed that thermal annealing of the nanostructures led to a decrease in water exchange lifetime (τm) of hundreds of nanoseconds only for molecules that self-assemble into nanofibers of high aspect ratio. We interpret this decrease to indicate more solvent exposure to the paramagnetic moiety on annealing, resulting in faster water exchange within angstroms of the macrocycle. We hypothesize that faster water exchange in the nanofiber-forming PAs arises from the dehydration and increase in packing density on annealing. Two of the self-assembling conjugates were selected for imaging PAs after intramuscular injections of the PA C16V3A3E3-NH2 in the tibialis anterior muscle of a murine model. Needle tracts were clearly discernible with MRI at 4 days postinjection. This work establishes Gd(III) macrocycle-conjugated peptide amphiphiles as effective tracking agents for peptide amphiphile materials in vivo over the timescale of days. PMID:24937195

  15. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, E.N.; Kettner, C.A.

    1982-03-09

    A peptide affinity label is disclosed of the formula (I): as given in the patent wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C[sub 1]--C[sub 4] alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C[sub 1]--C[sub 6] acyl, and Q--(A)--[sub n], wherein Q = hydrogen, aroyl, or C[sub 1]--C[sub 6] acyl, n = 1--10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereofcontaining, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH[sub 2]--, --CH[sub 2]--CH[sub 2]--, --CH[sub 2]--CH[sub 2]--CH[sub 2]--, --CH[double bond]CH-- and --CH(OH)--CH[sub 2]. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent. 2 figs.

  16. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, Elliott N.; Kettner, Charles A.

    1982-03-09

    A peptide affinity label of the formula (I): ##STR1## wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C.sub.1 -C.sub.4 alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C.sub.1 -C.sub.6 acyl, and Q--(A)--.sub.n, wherein Q=hydrogen, aroyl, or C.sub.1 -C.sub.6 acyl, n=1-10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereof-containing, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH.sub.2 --, --CH.sub.2 --CH.sub.2 --,--CH.sub.2 --CH.sub.2 --CH.sub.2 --, --CH.dbd.CH-- and --CH(OH)--CH.sub.2. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent.

  17. Peptide labeling with photoactivatable trifunctional cadaverine derivative and identification of interacting partners by biotin transfer.

    PubMed

    App, Christine; Knop, Jana; Huff, Thomas; Seebahn, Angela; Becker, Cord-Michael; Iavarone, Federica; Castagnola, Massimo; Hannappel, Ewald

    2014-07-01

    A new photoactivatable trifunctional cross-linker, cBED (cadaverine-2-[6-(biotinamido)-2-(p-azidobenzamido) hexanoamido]ethyl-1,3'-dithiopropionate), was synthesized by chemical conversion of sulfo-SBED (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido) hexanoamido]ethyl-1,3'-dithiopropionate) with cadaverine. This cross-linker was purified by reversed-phase high-performance liquid chromatography (RP-HPLC) and characterized using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. cBED is based on sulfo-SBED that has a photoactivatable azido group, a cleavable disulfide bond for label transfer methods, and a biotin moiety for highly sensitive biotin/avidin detection. By ultraviolet (UV) light, the azido group is converted to a reactive nitrene, transforming transient bindings of interacting structures to covalent bonds. In contrast to the sulfo-N-hydroxysuccinimide (sulfo-NHS) moiety of sulfo-SBED, which attaches quite unspecifically to amino groups, cBED includes a cadaverine moiety that can be attached by transglutaminase more specifically to certain glutamine residues. For instance, thymosin β4 can be labeled with cBED using tissue transglutaminase. By high-resolution HPLC/ESI-MS (electrospray ionization-mass spectrometry) and tandem MS (MS/MS) of the trypsin digest, it was established that glutamine residues at positions 23 and 36 were labeled, whereas Q39 showed no reactivity. The covalent binding of cBED to thymosin β4 did not influence its G-actin sequestering activity, and the complex could be used to identify new interaction partners. Therefore, cBED can be used to better understand the multifunctional role of thymosin β4 as well as of other proteins and peptides.

  18. Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state

    NASA Astrophysics Data System (ADS)

    Petkova, Aneta T.; Baldus, Marc; Belenky, Marina; Hong, Mei; Griffin, Robert G.; Herzfeld, Judith

    2003-01-01

    We demonstrate that the SPECIFIC CP technique can be used to obtain heteronuclear correlation (HETCOR) spectra of peptide backbones with greater efficiency than conventional HETCOR methods. We show that similar design principles can be employed to achieve selective homonuclear polarization transfer mediated through dipolar or scalar couplings. Both approaches are demonstrated in a tripeptide with uniform 15N and 13C labeling, and with uniform 15N labeling and natural abundance 13C. In other applications, the high efficiency of the heteronuclear SPECIFIC CP transfer allows discrimination of single amide signals in the 248-residue membrane protein bacteriorhodopsin (bR). In particular, variations are detected in the ordering of the Ala81-Arg82 peptide bond among the photocycle intermediates of bR and SPECIFIC CP is used to correlate 15N and 13C signals from the three Val-Pro peptide bonds.

  19. Water-soluble phosphines for direct labeling of peptides with technetium and rhenium: insights from electrospray mass spectrometry.

    PubMed

    Greenland, William E P; Blower, Philip J

    2005-01-01

    Direct labeling of salmon calcitonin (sCT) is possible in one step using water-soluble phosphines (sulfonated triphenylphosphines) as the reducing agent both for disulfide and for pertechnetate. Phosphines were the most efficient reducing agent for disulfide bonds among those examined. The phosphines both reduced the pertechnetate to Tc(III), and contributed to the technetium coordination sphere in the labeled product. In contrast, the phosphines did not reduce rhenium below oxidation state V, nor did they participate in the rhenium coordination sphere in the labeled peptide. Instead, the expected oxorhenium(V) moiety was incorporated. Both Tc and Re labeling processes gave rise to dimers with two peptides linked by the metal center, as well as simple monomeric species. Positive mode electrospray mass spectrometry not only revealed the presence of phosphine bound to technetium and oxygen bound to rhenium in the metallopeptides but also revealed the oxidation states of the metals. Electrospray mass spectrometry is proving to be an exceptionally valuable technique for characterizing radiopharmaceuticals. Although the one-step direct labeling method described gives mixed products and poor receptor affinity when applied to the small peptide sCT, it might be readily adapted to monoclonal antibodies.

  20. Quantitative Analysis of Single Amino Acid Variant Peptides Associated with Pancreatic Cancer in Serum by an Isobaric Labeling Quantitative Method

    PubMed Central

    2015-01-01

    Single amino acid variations are highly associated with many human diseases. The direct detection of peptides containing single amino acid variants (SAAVs) derived from nonsynonymous single nucleotide polymorphisms (SNPs) in serum can provide unique opportunities for SAAV associated biomarker discovery. In the present study, an isobaric labeling quantitative strategy was applied to identify and quantify variant peptides in serum samples of pancreatic cancer patients and other benign controls. The largest number of SAAV peptides to date in serum including 96 unique variant peptides were quantified in this quantitative analysis, of which five variant peptides showed a statistically significant difference between pancreatic cancer and other controls (p-value < 0.05). Significant differences in the variant peptide SDNCEDTPEAGYFAVAVVK from serotransferrin were detected between pancreatic cancer and controls, which was further validated by selected reaction monitoring (SRM) analysis. The novel biomarker panel obtained by combining α-1-antichymotrypsin (AACT), Thrombospondin-1 (THBS1) and this variant peptide showed an excellent diagnostic performance in discriminating pancreatic cancer from healthy controls (AUC = 0.98) and chronic pancreatitis (AUC = 0.90). These results suggest that large-scale analysis of SAAV peptides in serum may provide a new direction for biomarker discovery research. PMID:25393578

  1. Stable isotope N-phosphorylation labeling for Peptide de novo sequencing and protein quantification based on organic phosphorus chemistry.

    PubMed

    Gao, Xiang; Wu, Hanzhi; Lee, Kim-Chung; Liu, Hongxia; Zhao, Yufen; Cai, Zongwei; Jiang, Yuyang

    2012-12-04

    In this paper, we describe the development of a novel stable isotope N-phosphorylation labeling (SIPL) strategy for peptide de novo sequencing and protein quantification based on organic phosphorus chemistry. The labeling reaction could be performed easily and completed within 40 min in a one-pot reaction without additional cleanup procedures. It was found that N-phosphorylation labeling reagents were activated in situ to form labeling intermediates with high reactivity targeting on N-terminus and ε-amino groups of lysine under mild reaction conditions. The introduction of N-terminal-labeled phosphoryl group not only improved the ionization efficiency of peptides and increased the protein sequence coverage for peptide mass fingerprints but also greatly enhanced the intensities of b ions, suppressed the internal fragments, and reduced the complexity of the tandem mass spectrometry (MS/MS) fragmentation patterns of peptides. By using nano liquid chromatography chip/time-of-flight mass spectrometry (nano LC-chip/TOF MS) for the protein quantification, the obtained results showed excellent correlation of the measured ratios to theoretical ratios with relative errors ranging from 0.5% to 6.7% and relative standard deviation of less than 10.6%, indicating that the developed method was reproducible and precise. The isotope effect was negligible because of the deuterium atoms were placed adjacent to the neutral phosphoryl group with high electrophilicity and moderately small size. Moreover, the SIPL approach used inexpensive reagents and was amenable to samples from various sources, including cell culture, biological fluids, and tissues. The method development based on organic phosphorus chemistry offered a new approach for quantitative proteomics by using novel stable isotope labeling reagents.

  2. CW Dipolar Broadening EPR Spectroscopy and Mechanically Aligned Bilayers Used to Measure Distance and Relative Orientation between Two TOAC Spin Labels on an Antimicrobial Peptide

    PubMed Central

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-01-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single-and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer. PMID:25462949

  3. CW dipolar broadening EPR spectroscopy and mechanically aligned bilayers used to measure distance and relative orientation between two TOAC spin labels on an antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-12-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.

  4. Preprocessing Significantly Improves the Peptide/Protein Identification Sensitivity of High-resolution Isobarically Labeled Tandem Mass Spectrometry Data*

    PubMed Central

    Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong

    2015-01-01

    Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994. PMID:25435543

  5. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    PubMed Central

    Zhuo, Cai-Xia; Wang, Li-Hui; Feng, Jing-Jing; Zhang, Yao-Dong

    2016-01-01

    Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs) by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO), thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases. PMID:27834849

  6. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

    PubMed

    Dong, Maoqing; Miller, Laurence J

    2013-08-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe¹²⁰ in the first extracellular loop. This was in contrast to its covalent attachment to Glu³⁴⁵ in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.

  7. Photoaffinity labeling of Ras converting enzyme 1 (Rce1p) using a benzophenone-containing peptide substrate.

    PubMed

    Kyro, Kelly; Manandhar, Surya P; Mullen, Daniel; Schmidt, Walter K; Distefano, Mark D

    2010-08-01

    Isoprenylation is a post-translational modification that increases protein hydrophobicity and helps target certain proteins to membranes. Ras converting enzyme 1 (Rce1p) is an endoprotease that catalyzes the removal of a three residue fragment from the C-terminus of isoprenylated proteins. To obtain structural information about this membrane protein, photoaffinity labeling agents are being prepared and employed. Here, we describe the synthesis of a benzophenone-containing peptide substrate analogue for Rce1p. Using a continuous spectrofluorometric assay, this peptide was shown to be a substrate for Rce1p. Mass spectrometry was performed to confirm the site of cleavage and structure of the processed probe. Photolysis of the biotinylated compound in the presence of membranes containing Rce1p followed by streptavidin pull-down and Western blot analysis indicated that Rce1p had been labeled by the probe. Photolysis in the presence of both the biotinylated, benzophenone-containing probe and a farnesylated peptide competitor reduced the extent of labeling, suggesting that labeling is occurring in the active site.

  8. Photoaffinity Labeling of Ras Converting Enzyme 1 (Rce1p) using a Benzophenone-Containing Peptide Substrate

    PubMed Central

    Kyro, Kelly; Manandhar, Surya P.; Mullen, Daniel; Schmidt, Walter K.; Distefano, Mark D.

    2010-01-01

    Isoprenylation is a post-translational modification that increases protein hydrophobicity and helps target certain proteins to membranes. Ras Converting Enzyme 1 (Rce1p) is an endoprotease that catalyzes the removal of a three residue fragment from the C-terminus of isoprenylated proteins. To obtain structural information about this membrane protein, photoaffinity labeling agents are being prepared and employed. Here, we describe the synthesis of a benzophenone-containing peptide substrate analogue for Rce1p. Using a continuous spectrofluorometric assay, this peptide was shown to be a substrate for Rce1p. Mass spectrometry was performed to confirm the site of cleavage and structure of the processed probe. Photolysis of the biotinylated compound in the presence of membranes containing Rce1p followed by streptavidin pull-down and Western blot analysis indicated that Rce1p had been labeled by the probe. Photolysis in the presence of both the biotinylated, benzophenone-containing probe and a farnesylated peptide competitor reduced the extent of labeling, suggesting that labeling is occurring in the active site. PMID:20619662

  9. Lutetium-177-labeled gastrin releasing peptide receptor binding analogs: a novel approach to radionuclide therapy.

    PubMed

    Panigone, S; Nunn, A D

    2006-12-01

    Optimization of therapy for individual patients remains a goal of clinical practice. Radionuclide imaging can identify those patients who may benefit from subsequent targeted therapy by providing regional information on the distribution of the target. An ideal situation may be when the imaging and the therapeutic compounds are the same agent. Two antibodies ([ [90Y]ibritumomab, [131I]tositumomab) are now approved for the systemic radiotherapy of non-Hodgkin's lymphoma. The main hurdle is to deliver higher absorbed doses to the more refractory solid tumors paying particular regard to the bone marrow toxicity. The low dose is thought to be a result of the large size of antibodies slowing delivery to the target. Peptides having high affinity to receptors expressed on cancer cells are a promising alternative. They are usually rapidly excreted from the body through renal and/or hepatobiliary excretion thus creating a prolonged accumulation of the radioactivity in the kidneys, which represents a recognized issue for systemic radiotherapy. The first radiopeptide developed was a somatostatin analogue, which led to a major breakthrough in the field. Beside the kidney issue, somatostatin use remains limited to few cancers that express receptors in sufficiently large quantities, mainly neuroendocrine tumors. The gastrin releasing peptide (GRP) receptor is an attractive target for development of new radiopeptides with diagnostic and therapeutic potential. This is based upon the functional expression of GRP receptors in several of the more prevalent cancers including prostate, breast, and small cell lung cancer. This review covers the efforts currently underway to develop new and clinically promising GRP-receptor specific molecules labeled with imageable and therapeutic radionuclides.

  10. Development of fluorine-18 labeled peptidic PET tracers for imaging active tissue transglutaminase.

    PubMed

    van der Wildt, Berend; Wilhelmus, Micha M M; Kooijman, Esther J M; Jongenelen, Cornelis A M; Schuit, Robert C; Büchold, Christian; Pasternack, Ralf; Lammertsma, Adriaan A; Drukarch, Benjamin; Windhorst, Albert D

    2017-01-01

    The protein-protein crosslinking activity of the enzyme tissue transglutaminase (TG2; EC 2.3.2.13) is associated with the pathogenesis of various diseases, including celiac disease, lung-, liver- and kidney fibrosis, cancer and neurodegenerative diseases. This study aims at developing a TG2 PET tracer based on the peptidic irreversible TG2 inhibitor Z006. Initially, the carbon-11 labeling of Z006 at the diazoketone position was explored. Subsequently, a set of analogues that allow for fluorine-18 labeling was synthesized. Two potent analogues, 6f and 6g, were radiolabeled with fluorine-18 and biodistribution and metabolite analysis in Wistar rats was performed. The identity of the main metabolite of [(18)F]6g was elucidated using LC-MS/MS. In vitro binding to isolated TG2 and in vitro autoradiography on MDA-MB-231 breast cancer tissue using [(18)F]6g was performed. [(18)F]6f and [(18)F]6g were obtained in 20 and 9% yields, respectively. Following administration to healthy Wistar rats, rapid metabolism of both tracers was observed. Remarkably, full conversion to just one single metabolite was observed for one of the tracers, [(18)F]6g. By LC-MS/MS analysis this metabolite was identified as C-terminally saponified [(18)F]6g. This metabolite was also found to be a potent TG2 inhibitor in vitro. In vitro binding to isolated TG2 and in vitro autoradiography on MDA-MB-231 tumor sections using [(18)F]6g demonstrated high specific and selective binding of [(18)F]6g to active TG2. Whereas based on the intensive metabolism [(18)F]6f seems unsuitable as a TG2 PET tracer, the results warrant further evaluation of [(18)F]6gin vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Kongpeth, Jutatip; Jampasa, Sakda; Chaumpluk, Piyasak; Chailapakul, Orawon; Vilaivan, Tirayut

    2016-01-01

    Electrochemical detection provides a simple, rapid, sensitive and inexpensive method for DNA detection. In traditional electrochemical DNA biosensors, the probe is immobilized onto the electrode. Hybridization with the DNA target causes a change in electrochemical signal, either from the intrinsic signal of the probe/target or through a label or a redox indicator. The major drawback of this approach is the requirement for probe immobilization in a controlled fashion. In this research, we take the advantage of different electrostatic properties between PNA and DNA to develop an immobilization-free approach for highly sequence-specific electrochemical DNA sensing on a screen-printed carbon electrode (SPCE) using a square-wave voltammetric (SWV) technique. Anthraquinone-labeled pyrrolidinyl peptide nucleic acid (AQ-PNA) was employed as a probe together with an SPCE that was modified with a positively-charged polymer (poly quaternized-(dimethylamino-ethyl)methacrylate, PQDMAEMA). The electrostatic attraction between the negatively-charged PNA-DNA duplex and the positively-charged modified SPCE attributes to the higher signal of PNA-DNA duplex than that of the electrostatically neutral PNA probe, resulting in a signal change. The calibration curve of this proposed method exhibited a linear range between 0.35 and 50 nM of DNA target with a limit of detection of 0.13 nM (3SD(blank)/Slope). The sub-nanomolar detection limit together with a small sample volume required (20 μL) allowed detection of <10 fmol (<1 ng) of DNA. With the high specificity of the pyrrolidinyl PNA probe used, excellent discrimination between complementary and various single-mismatched DNA targets was obtained. An application of this new platform for a sensitive and specific detection of isothermally-amplified shrimp's white spot syndrome virus (WSSV) DNA was successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Novel indium-111 labeled gastrin peptide analogues (MG-CL1-4): synthesis and quality control.

    PubMed

    Naqvi, Syed Ali-Raza; Khan, Zulfiqar Ali; Nagra, Saeed Ahmad; Yar, Muhammad; Sherazi, Tauqir A; Shahzad, Sohail Shahzad; Shah, Syed Qaiser; Mahmood, Nasir; Ishfaq, Malik Muhammad; Mather, Stephen John

    2013-03-01

    Radiolabeled neuropeptides are widely investigated to diagnose and therapy of tumors. These peptides get internalization after binding with particular receptors at the surface of cells and finally move to lysosome. Internalization into tumor cells helps in mapping the infected site. Minigastrin peptide analogues (MG-CL1-4) were synthesised and labeled with 111-In radioisotope under different sets of conditions for imaging CCk-2 receptor bearing tumors. Different parameters such as temperature (80-100°C), pH (4-12), incubation time (5-30 minutes) and dilution effect were investigated to get the maximum labeling yield and stability. The results indicated that MG-CL1-4 is successfully labeled with indium-111 at pH 4.5 with heating at 98°C for 15 minute. At these conditions i.e. heating, pH and incubation minimum oxidized and maximum labeling yield, more than 94 %, was obtained. The labeling stability was studied by incubating the radiolabeled complex for predefined time points in PBSA and blood serum. Results show that more than 90% radiolabeled MG-CL1-4 remained intact.

  13. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ *

    PubMed Central

    Cox, Jürgen; Hein, Marco Y.; Luber, Christian A.; Paron, Igor; Nagaraj, Nagarjuna; Mann, Matthias

    2014-01-01

    Protein quantification without isotopic labels has been a long-standing interest in the proteomics field. However, accurate and robust proteome-wide quantification with label-free approaches remains a challenge. We developed a new intensity determination and normalization procedure called MaxLFQ that is fully compatible with any peptide or protein separation prior to LC-MS analysis. Protein abundance profiles are assembled using the maximum possible information from MS signals, given that the presence of quantifiable peptides varies from sample to sample. For a benchmark dataset with two proteomes mixed at known ratios, we accurately detected the mixing ratio over the entire protein expression range, with greater precision for abundant proteins. The significance of individual label-free quantifications was obtained via a t test approach. For a second benchmark dataset, we accurately quantify fold changes over several orders of magnitude, a task that is challenging with label-based methods. MaxLFQ is a generic label-free quantification technology that is readily applicable to many biological questions; it is compatible with standard statistical analysis workflows, and it has been validated in many and diverse biological projects. Our algorithms can handle very large experiments of 500+ samples in a manageable computing time. It is implemented in the freely available MaxQuant computational proteomics platform and works completely seamlessly at the click of a button. PMID:24942700

  14. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.

    PubMed

    Song, Liang; Wang, Fei; Dong, Zhaoming; Hua, Xiaoting; Xia, Qingyou

    2017-02-10

    Paralytic peptide (PP) participates in diverse physiological processes as an insect cytokine, such as immunity control, paralysis induction, regulation of cell morphology and proliferation. To investigate the molecular mechanism underlying those physiological activities, we systematically investigated the global phosphorylation events in fat body of silkworm larvae induced by PP through label-free quantitative phosphoproteomics. 2534 phosphosites were finally identified, of which the phosphorylation level of 620 phosphosites on 244 proteins was significantly up-regulated and 67 phosphosites on 43 proteins was down-regulated. Among those proteins, 13 were protein kinases (PKs), 13 were transcription factors (TFs) across 10 families and 17 were metabolism related enzymes. Meanwhile, Motif-X analysis of the phosphorylation sites showed that 16 motifs are significantly enriched, including 8 novel phosphorylation motifs. In addition, KEGG and functional interacting network analysis revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways, and highlighted the potential central position of the mitogen-activated protein kinases (MAPKs) in them. These analyses provide direct insights into the molecule mechanisms of cellular response induced by PP.

  15. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  16. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    PubMed

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  17. Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.

    PubMed

    Altai, Mohamed; Honarvar, Hadis; Wållberg, Helena; Strand, Joanna; Varasteh, Zohreh; Rosestedt, Maria; Orlova, Anna; Dunås, Finn; Sandström, Mattias; Löfblom, John; Tolmachev, Vladimir; Ståhl, Stefan

    2014-11-24

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs. Copyright © 2014 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. [The Qualitative Analysis of the Amide Derivative of HLDF-6 Peptide and Its Metabolites with the Use of Tritium- and Deuterium-Labeled Derivatives].

    PubMed

    Zolotarev, A; Dadayan, A K; Kost, N V; Voevodina, M E; Sokolov, O Y; Kozik, V S; Shram, S I; Azev, V N; Bocharov, E V; Bogachouk, A P; Lipkin, V M; Myasoedov, N F

    2015-01-01

    The goal of the study was to elaborate the pharmacokinetics methods of the amide derivative of peptide HLDF-6 (TGENHR-NH2) and its range of nootropic and neuroprotective activity is wide. The hexapeptide 41TGENHR46 is a fragment of the HDLF differentiation factor. It forms the basis for the development of preventive and therapeutic preparations for treating cerebrovascular and neurodegenerative conditions. Pharmacokinetic and molecular mechanisms of the action of the HLDF-6 peptide were studied using tritium- and deuterium-labeled derivatives of this peptide, produced with the use of the high-temperature solid-state catalytic isotope exchange reaction (HSCIE). This reaction was employed to produce the tritium-labeled peptide [3H]TGENHR-NH2 with a molar radioactivity of 230 Ci/mmol and the deuterium-labeled peptide [2H]TGENHR-NH2 with an average deuterium incorporation equal to 10.5 atoms. It was shown by the NMR spectroscopy that the isotope label distribution over the labeled peptide's molecule was uniform, which allowed qualitative analysis ofboth the peptide itself and its fragments in the organism's tissues to be conducted. The newly developed pharmacokinetics method makes it possible to avoid almost completely losses of the peptides under study due to biodegradation during the analysis of tissues. These labeled peptides were used in mice, rats and rabbits to study the pharmacokinetics of the peptide and to calculate the values of its principal pharmacokinetic parameters. Characteristics of its pharmacokinetic profile in the blood were obtained, the hypothesis of pharmacokinetics linearity tested, its metabolism analyzed and its bioavailability value, 34%, calculated. It has been shown that the studied TGENHR-NH2 peptide shows high resistance to hydrolysis in the blood plasma, with dipeptidyl aminopeptidases making the largest contribution to its hydrolysis.

  19. Stable isotope labeling tandem mass spectrometry (SILT): integration with peptide identification and extension to data-dependent scans.

    PubMed

    Elbert, Donald L; Mawuenyega, Kwasi G; Scott, Evan A; Wildsmith, Kristin R; Bateman, Randall J

    2008-10-01

    Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments.

  20. Stable isotope labeling tandem mass spectrometry (SILT): Integration with peptide identification and extension to data-dependent scans

    PubMed Central

    Elbert, Donald L.; Mawuenyega, Kwasi G.; Scott, Evan A.; Wildsmith, Kristin R.; Bateman, Randall J.

    2009-01-01

    Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments. PMID:18774841

  1. The Effect of Superparamagnetic Iron Oxide with iRGD Peptide on the Labeling of Pancreatic Cancer Cells In Vitro: A Preliminary Study

    PubMed Central

    Zuo, Hou Dong; Yao, Wei Wu; Chen, Tian Wu; Zhu, Jiang; Zhang, Juan Juan; Pu, Yu; Liu, Gang; Zhang, Xiao Ming

    2014-01-01

    The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging. PMID:24977163

  2. The effect of superparamagnetic iron oxide with iRGD peptide on the labeling of pancreatic cancer cells in vitro: a preliminary study.

    PubMed

    Zuo, Hou Dong; Yao, Wei Wu; Chen, Tian Wu; Zhu, Jiang; Zhang, Juan Juan; Pu, Yu; Liu, Gang; Zhang, Xiao Ming

    2014-01-01

    The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging.

  3. A novel heterotrifunctional peptide-based cross-linking reagent for facile access to bioconjugates. Applications to peptide fluorescent labelling and immobilisation.

    PubMed

    Clavé, Guillaume; Boutal, Hervé; Hoang, Antoine; Perraut, François; Volland, Hervé; Renard, Pierre-Yves; Romieu, Anthony

    2008-09-07

    A convenient, versatile and straightforward synthesis of a novel heterotrifunctional peptide-based linker molecule is described. This generic bio-labelling reagent contains an amine-reactive N-hydroxysuccinimidyl carbamate moiety, an aldehyde/ketone-reactive aminooxy group and a thiol group with a propensity to form urea, oxime and thioether linkages respectively. The full chemical orthogonality between the free aminooxy and thiol functionalities was demonstrated through the preparation of a fluorescent reagent suitable for the selective staining of a carboxaldehyde-modified surface by means of oxime ligation. The absence of reactivity of these two functions toward the nucleophile-sensitive active carbamate was obtained by using temporary aminooxy- and thiol-protecting groups removable under mild conditions. The utility of the linker molecule to cross-link three different molecular partners has been illustrated by the preparation of fluorescent tripod-functionalised surfaces which may be useful in developing new peptide microarrays and related immunosensors.

  4. PICquant: A Quantitative Platform to Measure Differential Peptide Abundance Using Dual-Isotopic Labeling with 12C6- and 13C6-Phenylisocyanate

    PubMed Central

    Lyons, Charles E.; Victor, Ken G.; Moshnikov, Sergey A.; Bachmann, Lorin M.; Baras, Alexander S.; Dettmann, Kathleen M.; Cross, Janet V.; Templeton, Dennis J.

    2011-01-01

    We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, 12C6- and 13C6-phenylisocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS2 data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups. PMID:21192683

  5. Evaluation of individual aging degree by standard-free, label-free LC-MS/MS quantification of formaldehyde-modified peptides.

    PubMed

    Zhang, Mei; Xu, Wei; Ke, Ming; Xu, Jianguo; Deng, Yulin

    2015-06-21

    In this study, a standard-free, label-free LC-MS/MS method is proposed to evaluate aging based on the cross-linkage theory. First, an aging-biomarker screening model was set up in vitro with formaldehyde and the most abundant protein in plasma, human serum albumin (HSA), based on the Maillard reaction. The modification level of peptides cleaved from HSA was investigated using a liquid chromatography tandem mass spectrometry (LC-MS/MS) method with an (18)O-labeling technique. One formaldehyde-insensitive peptide and six formaldehyde-sensitive peptides that would be verified for being putative peptide-biomarkers were screened via the in vitro aging model. These six putative biomarkers were then preliminarily verified by plasma samples with the aldehyde-insensitive peptide serving as the internal standard. The verification results indicated that the peptides LDELRDEGK and VFDEFKPLVEEPQNLIK showed a significant quantitative difference among young/mid-aged/elderly groups of people.

  6. Development of single vial kits for preparation of (68)Ga-labelled peptides for PET imaging of neuroendocrine tumours.

    PubMed

    Mukherjee, Archana; Pandey, Usha; Chakravarty, Rubel; Sarma, Haladhar Dev; Dash, Ashutosh

    2014-08-01

    The present work was aimed at the formulation and evaluation of freeze-dried kits of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptides for the preparation of (68)Ga-labelled peptides for PET imaging of neuroendocrine tumours. The (68)GaCl3 was obtained from the locally produced nanoceria-PAN, composite-sorbent-based (68)Ge/(68)Ga generator. Single vial kits of somatostatin analogues DOTA-[Tyr(3)]-octreotide (DOTA-TOC), DOTA-[NaI(3)]-octreotide (DOTA-NOC) and DOTA-Tyr(3)-Thre(8)-octreotide (DOTA-TATE) were formulated. Optimization of radiolabelling with (68)Ga from the in-house generator, characterization, long term evaluation of stability of kits and bioevaluation studies in animals was carried out. DOTA-TOC, DOTA-NOC and DOTA-TATE kits could be successfully formulated. Consistently high radiochemical yields (>95 %) were obtained on radiolabelling with (68)Ga. The radiolabelled peptides exhibited excellent in vitro stability. Biodistribution studies in normal non-tumour bearing Swiss mice revealed fast clearance of activity via renal route as reported for the respective peptides. Availability of ready to use DOTA-peptide kits in conjunction with (68)Ge/(68)Ga generators would pave way for the establishment of (68)Ga radiopharmacy, a long-felt need of the nuclear medicine community.

  7. Evaluating Kinase ATP Uptake and Tyrosine Phosphorylation using Multiplexed Quantification of Chemically Labeled and Post-Translationally Modified Peptides

    PubMed Central

    Fang, Bin; Hoffman, Melissa A.; Mirza, Abu-Sayeef; Mishall, Katie M.; Li, Jiannong; Peterman, Scott M.; Smalley, Keiran S. M.; Shain, Kenneth H.; Weinberger, Paul M.; Wu, Jie; Rix, Uwe; Haura, Eric B.; Koomen, John M.

    2015-01-01

    Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease. PMID:25782629

  8. Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR spectroscopy and isotopic labeling.

    PubMed

    Hauser, Karin; Krejtschi, Carsten; Huang, Rong; Wu, Ling; Keiderling, Timothy A

    2008-03-12

    Two antiparallel beta-strands connected by a turn make beta-hairpins an ideal model system to analyze the interactions and dynamics of beta-sheets. Site-specific conformational dynamics were studied by temperature-jump IR spectroscopy and isotopic labeling in a model based on the tryptophan zipper peptide, Trpzip2, developed by Cochran et al. (Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5578). The modified Trpzip2C peptides have nearly identical equilibrium spectral behavior as Trpzip2 showing that they also form well-characterized beta-hairpin conformations in aqueous solution. Selective introduction of 13C=O groups on opposite strands lead to distinguishable cross-strand coupling of the labeled residues as monitored in the amide I' band. These frequency patterns reflect theoretical predictions, and the coupled 13C=O band loses intensity with increase in temperature and unfolding of the hairpin. Thermal relaxation kinetics were analyzed for unlabeled and cross-strand isotopically labeled variants. T-jumps of approximately 10 degrees C induce relaxation times of a few microseconds that decrease with increase of the peptide temperature. Differences in kinetic behavior for the loss of beta-strand and gain of disordered structure can be used to distinguish localized structure dynamics by comparison of nonlabeled and labeled amide I' components. Analysis of the data supports multistate dynamic and equilibrium behavior, but because of this process it is not possible to clearly define a folding and unfolding rate. Nonetheless, site-specific relaxation kinetics could be seen to be consistent with a hydrophobic collapse hypothesis for hairpin folding.

  9. 188Re- and 99mTc-MAG3 as prosthetic groups for labeling amines and peptides: approaches with pre- and postconjugate labeling.

    PubMed

    Guhlke, S; Schaffland, A; Zamora, P O; Sartor, J; Diekmann, D; Bender, H; Knapp, F F; Biersack, H J

    1998-10-01

    Either radiolabeled Tc-99m- or Re-188-labeled MAG3-4-nitrophenylester or unlabeled Bz-MAG3-4-nitrophenylester was reacted with amines and peptides to follow a pre- or a postconjugate radiolabeling route, respectively. The model compounds were N'-t-butyloxycarbonyl-1,6-diaminohexane (DH-Boc) and a Lys-protected derivative of the somatostatin analog RC-160 (cyclic D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2). In the case of labeling DH-Boc, both the preconjugate labeling and the postconjugate labeling were found by using analytical HPLC to provide identical radiolabeled compounds regardless whether Re-188 or Tc-99m was used. The results are supported by infrared and mass-spectral data obtained from compounds synthesized using stable rhenium. The 188Re- or 99mTc-MAG3-RC-160 somatostatin analog were synthesized following the preconjugate labeling route and subsequent removal of the protecting group. Biodistributions of 188Re-and 99mTc-MAG3-RC-160 were evaluated in normal and tumor-bearing mice, and were similar to those of radioiodinated 131-RC-160. All radiolabeled analogs of RC-160 were rapidly cleared from the blood and were excreted through the hepatobiliary system with very little normal organ uptake. The tumor uptake (PC-3, human prostate adenocarcinoma) of systemically administered Re-188-MAG3-RC160 was very low, and it reached only 0.28% injected dose/g (%IDg) at 24 h postinjection, similar to what was obtained with I-131-RC-160. Intratumor injections resulted in significant tumor retentions (9.3% ID/g at 24 h).

  10. A Tc-99m labeled laminin derived peptide, Tc-99m-YIGSR for thrombus specific imaging

    SciTech Connect

    Wang, G.J.; Oster, Z.H.; Som, P.

    1994-05-01

    Laminin derived adhesive peptides were studied as potential agents for thrombus specific imaging. Using a novel peptide Tc-99m labeling method studies were performed in vitro using human whole blood clots and platelets, and in vivo scintigraphy in animals with experimental thrombi. Aliquots of 0.1 ml human blood were placed in inclined Petri dishes until clot was well formed. Clots were rinsed 3x with phosphate buffer and 10 {mu}Ci Tc-99m YIGSR II was added. After incubation at room temperature for 1 hr, clots were again washed 3x. Residual activity was measured. Platelets were harvested using routine methods and incubated with Tc-99m YIGSR II, washed and assayed. Blocking experiments using cold YIGSR II showed that the Tc-99m labeled peptide preparation YIGSR II binds specifically and selectively to clot and platelets as compared to control experiments using nonspecific human Tc-99m IgG. Tissue distribution studies showed rapid blood clearance, urinary excretion and to a lesser degree GI tract excretion. Tc-99m YIGSR II was lower in all organs except kidneys compared to Tc-99m 50 H.19, Tc-99m IgG and Tc-99m YIGSR I. Tc-99m-YIGSR II consistently visualized thrombi within 30 min p.i. In vivo scintigraphic (thrombus/contralateral side) ratio was 3:1 and ex vivo direct counting (thrombosed to nonthrombosed vessel segment) was 5.4: 1. Compared to monoclonal antibodies peptide preparations are non- or minimally immunogenic, preparation is probably less expensive and there is also less danger of viral DNA contamination. These considerations and our data indicate that the Tc-99m-YIGSR II peptide has significant potential as a thrombus imaging agent.

  11. A facile method for expression and purification of 15N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis

    PubMed Central

    Armand, Tara; Ball, K. Aurelia; Chen, Anna; Pelton, Jeffrey G.; Wemmer, David E.; Head-Gordon, Teresa

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality 15N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with 15N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the 15N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure 15N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼6 mg/L culture for 15N isotope-labeled Aβ42 peptide. Mass spectrometry and 1H–15N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with 15N and 13C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  12. The interactions with solvent, heat stability, and 13C-labelling of alamethicin, an ion-channel-forming peptide.

    PubMed

    Yee, A A; Marat, K; O'Neil, J D

    1997-01-15

    The peptide alamethicin was labelled with 13C and 15N by growing the fungus Trichoderma viride in a medium containing [U-13C] glucose and K15NO3. Spin-echo difference spectroscopy showed that 13C was incorporated to a level of about 50% and 15N to about 98%. Incorporation of 13C into the peptide provided residue-specific probes of the interactions with solvent and heat stability of this ion-channel-forming peptide. All of the carbonyl carbons and the alpha-carbons of the alpha-aminoisobutyric acid [Ala(Me)] residues of alamethicin in methanol were assigned using two-dimensional and three-dimensional heteronuclear correlation experiments. Measurements of 1JC'N revealed hydrogen bonding with solvent at residues 1 and 19 at the ends of the peptide and at Gly11 in the middle. The data also support the thesis [see Juranic, N., Ilich, P. K. & Macara, S. (1995) J. Am. Chem. Soc. 117, 405-410 that intramolecular hydrogen bonds in proteins and peptides are weaker than hydrogen bonds to solvent. The sensitivity of alamethicin carbonyl and proton chemical shifts to perturbation by dimethyl sulfoxide correlates well with the calculated solvent accessibilities of the carbonyls in the crystal structures and reveals residues in the middle of the peptide and at the C-terminus which interact with solvent. Taken together with the 1JC'N measurements, the data support a model in which hydrogen bonding to solvent at the Gly11/Leu12 amide could provide a site of hydration in the interior of the alamethicin channel structure. The temperature dependencies of the carbonyl chemical shifts support the suggestion that the peptide is flexible in the regions where solvent interacts with the backbone of the peptide. The linear temperature dependence of the carbonyl chemical shifts and molar ellipticity indicate that, due to steric constraints at the Ala(Me) residues, the peptide folding/unfolding transition is non-cooperative and that the peptide is remarkably heat stable.

  13. Optimization of hapten-peptide labeling for pretargeted immunoPET of bispecific antibody using generator-produced 68Ga.

    PubMed

    Karacay, Habibe; Sharkey, Robert M; McBride, William J; Rossi, Edmund A; Chang, Chien-Hsing; Goldenberg, David M

    2011-04-01

    Bispecific antibody pretargeting is highly sensitive and specific for cancer detection by PET. In this study, the preparation of a high-specific-activity (68)Ga-labeled hapten-peptide, IMP288, was evaluated. IMP288 (DOTA-D-Tyr-D-Lys(histamine-succinyl-glycine [HSG])-D-glu-D-Lys(HSG)-NH(2)) was added to buffered (68)Ga and then heated in boiling water and purified on a reversed-phase cartridge. Tumor-bearing nude mice were used for biodistribution and tumor localization studies. (68)Ga-IMP288 was prepared at a starting specific activity up to 1.78 GBq/nmol, with final yields of 0.74 GBq/nmol (decay-corrected) and less than 1% unbound (68)Ga. Purification was essential to remove unbound (68)Ga and (68)Ge breakthrough. Pretargeted animals showed a high (68)Ga-IMP288 uptake (27.5 ± 5.8 percentage injected dose per gram), with ratios of 13.6 ± 4.8, 66.8 ± 14.5, and 325.9 ± 61.9 for the kidneys, liver, and blood, respectively, at 1.5 h after peptide injection. High-specific-activity labeling of DOTA-hapten-peptide was obtained from the (68)Ga/(68)Ge generator for approximately 1 y, yielding products suitable for immunoPET.

  14. New strategy for the preparation of clickable peptides and labeling with 1-(azidomethyl)-4-[(18)F]-fluorobenzene for PET.

    PubMed

    Thonon, David; Kech, Cécile; Paris, Jérôme; Lemaire, Christian; Luxen, André

    2009-04-01

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click type reaction was used to label a peptide with fluorine-18. A novel solid phase synthesis approach for the preparation of clickable peptides has been developed and has also permitted the straightforward preparation of reference compounds. A complementary azide labeling agent (1-(azidomethyl)-4-[(18)F]-fluorobenzene) has been produced in a four step procedure in 75 min with a 34% radiochemical yield (decay corrected). Conjugation of [(18)F]fluoroazide with a model alkyne-neuropeptide produced the desired (18)F-radiolabeled peptide in less than 15 min with a yield of 90% and excellent radiochemical purity.

  15. Identification and Quantitation of Newly Synthesized Proteins in Escherichia coli by Enrichment of Azidohomoalanine-labeled Peptides with Diagonal Chromatography

    PubMed Central

    Kramer, Gertjan; Sprenger, Richard R.; Back, JaapWillem; Dekker, Henk L.; Nessen, Merel A.; van Maarseveen, Jan H.; de Koning, Leo J.; Hellingwerf, Klaas J.; de Jong, Luitzen; de Koster, Chris G.

    2009-01-01

    A method is presented to identify and quantify several hundreds of newly synthesized proteins in Escherichia coli upon pulse labeling cells with the methionine analogue azidohomoalanine (azhal). For the first 30 min after inoculation, a methionine-auxotrophic strain grows equally well on azhal as on methionine. Upon a pulse of 15 min and digestion of total protein, azhal-labeled peptides are isolated by a retention time shift between two reversed phase chromatographic runs. The retention time shift is induced by a reaction selective for the azido group in labeled peptides using tris(2-carboxyethyl)phosphine. Selectively modified peptides are identified by reversed phase liquid chromatography and on-line tandem mass spectrometry. We identified 527 proteins representative of all major Gene Ontology categories. Comparing the relative amounts of 344 proteins synthesized in 15 min upon a switch of growth temperature from 37 to 44 °C showed that nearly 20% increased or decreased more than 2-fold. Among the most up-regulated proteins many were chaperones and proteases in accordance with the cells response to unfolded proteins due to heat stress. Comparison of our data with results from previous microarray experiments revealed the importance of regulation of gene expression at the level of transcription of the most elevated proteins under heat shock conditions and enabled identification of several candidate genes whose expression may predominantly be regulated at the level of translation. This work demonstrates for the first time the use of a bioorthogonal amino acid for proteome-wide detection of changes in the amounts of proteins synthesized during a brief period upon variations in cellular growth conditions. Comparison of such data with relative mRNA levels enables assessment of the separate contributions of transcription and translation to the regulation of gene expression. PMID:19321432

  16. Alpha-melanocyte-stimulating hormone peptide analogs labeled with technetium-99m and indium-111 for malignant melanoma targeting.

    PubMed

    Chen, JianQing; Cheng, Zhen; Miao, Yubin; Jurisson, Silvia S; Quinn, Thomas P

    2002-02-15

    Previous studies have shown that the compact structure of a rhenium-cyclized alpha--melanocyte-stimulating hormone peptide analog, [Cys3410,D-Phe7]alpha-MSH(3--13), or Re-CCMSH, significantly enhanced its in vivo tumor uptake and retention. In this study, the metal chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminus of Re-CCMSH in order to develop a melanoma-targeting peptide that could be labeled with a wider variety of imaging and therapeutic radionuclides. Biodistribution properties of indium-111 ((111)In)--labeled DOTA-Re-CCMSH were compared with the non-DOTA-containing technetium-99m ((99m)Tc)--CCMSH in murine melanoma--bearing C57 mice to determine the effects of DOTA on tumor uptake and whole-body clearance. The tumor targeting capacity and clearance kinetics of (111)In-DOTA-Re-CCMSH were also compared with other related cyclic and linear (111)In-labeled DOTA-alpha-MSH complexes. The in vivo distribution data showed that the conjugation of DOTA to Re-CCMSH did not reduce its initial tumor uptake kinetics but did enhance its tumor retention and renal clearance properties. The tumor uptake of (111)In-DOTA-Re-CCMSH was significantly higher than the other (111)In-DOTA--coupled cyclic or linear alpha-MSH analogs used in this study. Moreover, (111)In-DOTA-Re-CCMSH displayed lower radioactivity accumulation in normal tissues of interest than its non-Re-cyclized counterpart, (111)In-DOTA-CCMSH; the disulfide bond--cyclized (111)In-DOTA-CMSH; or the linear (111)In-DOTA-NDP. Peptide cyclization via rhenium coordination significantly enhanced the tumor targeting and renal clearance properties of DOTA-Re-CCMSH, making it an excellent candidate for melanoma radiodetection and radiotherapy. Copyright 2002 American Cancer Society.

  17. (68)Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging.

    PubMed

    Liu, Zhaofei; Niu, Gang; Wang, Fan; Chen, Xiaoyuan

    2009-09-01

    Radiolabeled Arg-Gly-Asp (RGD) and bombesin (BBN) peptide analogs have been extensively investigated for the imaging of tumor integrin alpha(v)beta(3) and gastrin-releasing peptide receptor (GRPR) expression, respectively. Recently, we designed and synthesized a RGD-BBN heterodimeric peptide from c(RGDyK) and BBN(7-14) through a glutamate linker. The goal of this study was to investigate the dual receptor-targeting property and tumor diagnostic value of RGD-BBN heterodimeric peptide labeled with generator-eluted (68)Ga (t(1/2) 68 min, beta(+) 89% and EC 11%), (68)Ga-NOTA-RGD-BBN. RGD-BBN heterodimer was conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with (68)Ga. The dual receptor binding affinity was investigated by a radioligand competition binding assay. The in vitro and in vivo dual receptor targeting of (68)Ga-NOTA-RGD-BBN was evaluated and compared with that of (68)Ga-NOTA-RGD and (68)Ga-NOTA-BBN. NOTA-RGD-BBN had integrin alpha(v)beta(3) and GRPR binding affinities comparable to those of the monomeric RGD and BBN, respectively. The dual receptor targeting property of (68)Ga-NOTA-RGD-BBN was validated by blocking studies in a PC-3 tumor model. (68)Ga-NOTA-RGD-BBN showed higher tumor uptake than (68)Ga-NOTA-RGD and (68)Ga-NOTA-BBN. (68)Ga-NOTA-RGD-BBN can also image tumors with either integrin or GRPR expression. (68)Ga-NOTA-RGD-BBN exhibited dual receptor targeting properties both in vitro and in vivo. The favorable characterizations of (68)Ga-NOTA-RGD-BBN such as convenient synthesis, high specific activity, and high tumor uptake, warrant its further investigation for clinical cancer imaging.

  18. An assessment tumor targeting ability of (177)Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor.

    PubMed

    Cho, Eun-Ha; Lim, Jae Cheong; Lee, So-Young; Jung, Sung-Hee

    2016-07-01

    The cholecystokinin (CCK) receptor is known as a receptor that is overexpressed in many human tumors. The present study was designed to investigate the targeting ability of cyclic CCK analogue in AR42J pancreatic cells. The CCK analogues, DOTA-K(glucose)-Gly-Trp-Nle-Asp-Phe (DOTA-glucose-CCK) and DOTA-Nle-cyclo(Glu-Trp-Nle-Asp-Phe-Lys-NH2) (DOTA-[Nle]-cCCK), were synthesized and radiolabeled with (177)Lu, and competitive binding was evaluated. The binding appearance of synthesized peptide with AR42J cells was evaluated by confocal microscopy. And bio-distribution was performed in AR42J xenografted mice. Synthesized peptides were prepared by a solid phase synthesis method, and their purity was over 98%. DOTA is the chelating agent for (177)Lu-labeling, in which the peptides were radiolabeled with (177)Lu by a high radiolabeling yield. A competitive displacement of (125)I-CCK8 on the AR42J cells revealed that the 50% inhibitory concentration value (IC50) was 12.3 nM of DOTA-glucose-CCK and 1.7 nM of DOTA-[Nle]-cCCK. Radio-labeled peptides were accumulated in AR42J tumor in vivo, and %ID/g of the tumor was 0.4 and 0.9 at 2 h p.i. It was concluded that (177)Lu-DOTA-[Nle]-cCCK has higher binding affinity than (177)Lu-DOTA-glucose-CCK and can be a potential candidate as a targeting modality for a CCK receptor over-expressing tumors. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    PubMed Central

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.

    2017-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time (< 15 min) and removal of organic solvents. The method produces high peptide-bound % (> 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223

  20. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides.

    PubMed

    Schultz, Michael K; Mueller, Dirk; Baum, Richard P; Leonard Watkins, G; Breeman, Wouter A P

    2013-06-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [(68)Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time (<15 min) and removal of organic solvents. The method produces high peptide-bound % (>97%), and specific activity (>40 MBq nmole(-1) [(68)Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. sup 18 F-labeled insulin: A prosthetic group methodology for incorporation of a positron emitter into peptides and proteins

    SciTech Connect

    Shai, Y.; Kirk, K.L.; Channing, M.A.; Dunn, B.B.; Lesniak, M.A.; Eastman, R.C.; Finn, R.D.; Roth, J.; Jacobson, K.A. )

    1989-05-30

    In the present study we synthesize {sup 18}F-labeled insulin of high specific radioactivity. A new prosthetic group methodology, in which ({sup 18}F)fluoride displaces a bromide group of 4-(bromomethyl)-benzoylamine intermediates, was used. The 4-(fluoromethyl)benzoyl product was chemically stable. {sup 18}F-Labeled insulin retains the essential biological properties of native insulin, as measured in vitro by binding to insulin receptors on human cells and stimulation of glucose metabolism in rat adipocytes. The overall process can be carried out speedily to yield a product of sufficient purity to permit in vivo studies. The method appears to be applicable to a wide variety of peptides.

  2. 18F-Labeled Insulin: A Prosthetic Group Methodology for Incorporation of a Positron Emitter into Peptides and Proteins†

    PubMed Central

    Shai, Yechiel; Kirk, Kenneth L.; Channing, Michael A.; Dunn, Bonnie B.; Lesniak, Maxine A.; Eastman, Richard C.; Finn, Ronald D.; Roth, Jesse; Jacobson, Kenneth A.

    2012-01-01

    In the present study we synthesize 18F-labeled insulin of high specific radioactivity. A new prosthetic group methodology, in which [18F]fluoride displaces a bromide group of 4-(bromomethyl)-benzoylamine intermediates, was used. The 4-(fluoromethyl)benzoyl product was chemically stable. 18F-Labeled insulin retains the essential biological properties of native insulin, as measured in vitro by binding to insulin receptors on human cells and stimulation of glucose metabolism in rat adipocytes. The overall process can be carried out speedily to yield a product of sufficient purity to permit in vivo studies. The method appears to be applicable to a wide variety of peptides. PMID:2669963

  3. Probing the Secondary Structure of Membrane Peptides Using (2)H-Labeled d(10)-Leucine via Site-Directed Spin-Labeling and Electron Spin Echo Envelope Modulation Spectroscopy.

    PubMed

    Liu, Lishan; Sahu, Indra D; McCarrick, Robert M; Lorigan, Gary A

    2016-02-04

    Previously, we reported an electron spin echo envelope modulation (ESEEM) spectroscopic approach for probing the local secondary structure of membrane proteins and peptides utilizing (2)H isotopic labeling and site-directed spin-labeling (SDSL). In order to probe the secondary structure of a peptide sequence, an amino acid residue (i) side chain was (2)H-labeled, such as (2)H-labeled d10-Leucine, and a cysteine residue was strategically placed at a subsequent nearby position (denoted as i + 1 to i + 4) to which a nitroxide spin label was attached. In order to fully access and demonstrate the feasibility of this new ESEEM approach with (2)H-labeled d10-Leu, four Leu residues within the AChR M2δ peptide were fully mapped out using this ESEEM method. Unique (2)H-ESEEM patterns were observed with the (2)H-labeled d10-Leu for the AChR M2δ α-helical model peptide. For proteins and peptides with an α-helical secondary structure, deuterium modulation can be clearly observed for i ± 3 and i ± 4 samples, but not for i ± 2 samples. Also, a deuterium peak centered at the (2)H Larmor frequency of each i ± 4 sample always had a significantly higher intensity than the corresponding i + 3 sample. This unique feature can be potentially used to distinguish an α-helix from a π-helix or 310-helix. Moreover, (2)H modulation depth for ESEEM samples on Leu10 were significantly enhanced which was consistent with a kinked or curved structural model of the AChR M2δ peptide as suggested by previous MD simulations and NMR experiments.

  4. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy.

    PubMed

    Ding, Bei; Laaser, Jennifer E; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T; Chen, Zhan

    2013-11-27

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.

  5. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.

    PubMed

    Hillar, Alexander; Tripet, Brian; Zoetewey, David; Wood, Janet M; Hodges, Robert S; Boggs, Joan M

    2003-12-30

    Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer

  6. Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with (177)Lu and Conjugated to Peptides.

    PubMed

    Ferro-Flores, Guillermina; Ocampo-García, Blanca E; Santos-Cuevas, Clara L; de María Ramírez, Flor; Azorín-Vega, Erika P; Meléndez-Alafort, Laura

    2015-01-01

    Gold nanoparticles (AuNPs) have been proposed for a variety of medical applications such as localized heat sources for cancer treatment and drug delivery systems. The conjugation of peptides to AuNPs produces stable multimeric systems with target-specific molecular recognition. Lutetium- 177 ((177)Lu) has been successfully used in peptide radionuclide therapy. Recently, (177)Lu-AuNPs conjugated to different peptides have been proposed as a new class of theranostic radiopharmaceuticals. These radioconjugates may function simultaneously as molecular imaging agents, radiotherapy systems and thermal-ablation systems. This article covers advancements in the design, synthesis, physicochemical characterization, molecular recognition assessment and preclinical therapeutic efficacy of gold nanoparticles radiolabeled with (177)Lu and conjugated to RGD (-Arg-Gly-Asp-), Lys(3)-Bombesin and Tat(49-57) peptides.

  7. Recombinant production, isotope labeling and purification of ENOD40B: a plant peptide hormone.

    PubMed

    Chae, Young Kee; Tonneli, Marco; Markley, John L

    2012-08-01

    The plant peptide hormone ENOD40B was produced in a protein production strain of Escherichia coli harboring an induction controller plasmid (Rosetta(DE3)pLysS) as a His6-tagged ubiquitin fusion protein. The fusion protein product was denatured and refolded as part of the isolation procedure and purified by immobilized metal ion chromatography. The peptide hormone was released from its fusion partner by adding yeast ubiquitin hydrolase (YUH) and subsequently purified by reversed phase chromatography. The purity of the resulting peptide fragment was assayed by MALDITOF mass spectrometry and NMR spectroscopy. The final yields of the target peptide were 7.0 mg per liter of LB medium and 3.4 mg per liter of minimal medium.

  8. Detection of genetic variation using dual-labeled peptide nucleic acid (PNA) probe-based melting point analysis.

    PubMed

    Hur, Deokhwe; Kim, Myoung Sug; Song, Minsik; Jung, Jinwook; Park, Heekyung

    2015-01-01

    Thermal denaturation of probe-target hybrid is highly reproducible, and which makes probe melting point analysis reliable in the detection of mutations, polymorphisms and epigenetic differences in DNA. To improve resolution of these detections, we used dual-labeled (quencher and fluorescence), full base of peptide nucleic acid (PNA) probe for fluorescence probe based melting point analysis. Because of their uncharged nature and peptide bond-linked backbone, PNA probes have more favorable hybridization properties, which make a large difference in the melting temperature between specific hybridization and partial hybridization. Here, we have shown that full base dual-labeled PNA is apt material for fluorescence probe-based melting point analysis with large difference in the melting temperature between full specific hybridization and that of partial hybridization, including insertion and deletion. In case of narrowly distributed mutations, PNA probe effectively detects three mutations in a single reaction tube with three probes. Moreover, we successfully diagnose virus analogues with amplification and melting temperature signal. Lastly, Melting temperature of PNA oligomer can be easily adjusted just by adding gamma-modified PNA probe. The PNA probes offer advantage of improved flexibility in probe design, which could be used in various applications in mutation detection among a wide range of spectrums.

  9. Site-specific labeling of proteins and peptides with trans-cyclooctene containing handles capable of tetrazine ligation.

    PubMed

    Wollack, James W; Monson, Benjamin J; Dozier, Jonathan K; Dalluge, Joseph J; Poss, Kristina; Hilderbrand, Scott A; Distefano, Mark D

    2014-08-01

    There is a growing library of functionalized non-natural substrates for the enzyme protein farnesyltransferase (PFTase). PFTase covalently attaches these functionalized non-natural substrates to proteins ending in the sequence CAAX, where C is a cysteine that becomes alkylated, A represents an aliphatic amino acid, and X is Ser, Met, Ala, or Gln. Reported substrates include a variety of functionalities that allow modified proteins to undergo subsequent bioconjugation reactions. To date the most common strategy used in this approach has been copper catalyzed azide-alkyne cycloaddition (CuAAC). While being fast and bioorthogonal CuAAC has limited use in live cell experiments due to copper's toxicity.(1) Here, we report the synthesis of trans-cyclooctene geranyl diphosphate. This substrate can be synthesized from geraniol in six steps and be enzymatically transferred to peptides and proteins that end in a CAAX sequence. Proteins and peptides site-specially modified with trans-cyclooctene geranyl diphosphate were subsequently targeted for further modification via tetrazine ligation. As tetrazine ligation is bioorthogonal, fast, and is contingent on ring strain rather than the addition of a copper catalyst, this labeling strategy should prove useful for labeling proteins where the presence of copper may hinder solubility or biological reactivity.

  10. A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

    PubMed Central

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Hajiramazanali, Maliheh; Fallahi, Babak

    2016-01-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude mice were thoroughly investigated. Radiolabeling with 99mTc was performed at high specific activities (163MBq/nmol) with an acceptable labeling yield (>98%). The radioligand showed specific internalization into B16/F10 cells (13.35 ± 0.9% at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor positive organ so that after 4 h the tumor uptake was 4.51 ± 0.11 % ID/g. Predominant renal excretion pathway with a highest accumulation of activity in tumor was observed for this radiopeptide. Obtained results show that the new designed labeled peptide conjugate can be a suitable candidate for diagnosis of metastatic melanomas. PMID:27980570

  11. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels.

    PubMed

    Glaser, Ralf W; Sachse, Carsten; Dürr, Ulrich H N; Wadhwani, Parvesh; Ulrich, Anne S

    2004-05-01

    A highly sensitive solid state (19)F-NMR strategy is described to determine the orientation and dynamics of membrane-associated peptides from specific fluorine labels. Several analogues of the antimicrobial peptide PGLa were synthesized with the non-natural amino acid 4-trifluoromethyl-phenylglycine (CF(3)-Phg) at different positions throughout the alpha-helical peptide chain. A simple 1-pulse (19)F experiment allows the simultaneous measurement of both the anisotropic chemical shift and the homonuclear dipolar coupling within the rotating CF(3)-group in a macroscopically oriented membrane sample. The value and sign of the dipolar splitting determines the tilt of the CF(3)-rotational axis, which is rigidly attached to the peptide backbone, with respect to the external magnetic field direction. Using four CF(3)-labeled peptide analogues (with L-CF(3)-Phg at Ile9, Ala10, Ile13, and Ala14) we confirmed that PGLa is aligned at the surface of lipid membranes with its helix axis perpendicular to the bilayer normal at a peptide:lipid ratio of 1:200. We also determined the azimuthal rotation angle of the helix, which agrees well with the orientation expected from its amphiphilic character. Peptide analogues with a D-CF(3)-Phg label resulting from racemization of the amino acid during synthesis were separately collected by HPLC. Their spectra provide additional information about the PGLa structure and orientation but allow only to discriminate qualitatively between multiple solutions. The structural and functional characterization of the individual CF(3)-labeled peptides by circular dichroism and antimicrobial assays showed only small effects for our four substitutions on the hydrophobic face of the helix, but a significant disturbance was observed in a fifth analogue where Ala8 on the hydrophilic face had been replaced. Even though the hydrophobic CF(3)-Phg side chain cannot be utilized in all positions, it allows highly sensitive NMR measurements over a wide range of

  12. Technetium 99m-labeled VQ peptide: a new imaging agent for the early detection of tumors or premalignancies.

    PubMed

    Shi, Jiyun; Cui, Liyang; Jia, Bing; Liu, Zhaofei; He, Peng; Dong, Chengyan; Jin, Xiaona; Zhao, Huiyun; Li, Fang; Wang, Fan

    2013-01-01

    There is a critical need to develop diagnostic procedures enabling early detection of tumors while at a curable stage. Technetium 99m (99mTc)-labeled VQ peptide (99mTc-HYNIC-VQ) identified through screening phage display peptide libraries against fresh human colonic adenomas was prepared and evaluated for tumor detection. 99mTc-HYNIC-VQ was prepared by a non-SnCl2 method with more than 99% radiochemical purity. The biodistribution in the HT-29 tumor model showed that although the absolute tumor uptake values were relatively low (0.60 ± 0.09, 0.41 ± 0.09, 0.36 ± 0.18, and 0.19 ± 0.08 %ID/g at 0.5, 1, 2, and 4 hours postinjection, respectively), the tumor uptake was higher than that of any of the other organs except for the kidneys at any time point examined, which led to the high tumor to nontarget ratios. The tumors and inflammation were clearly visualized with high contrast. Although the mechanism of accumulation of radiolabeled VQ peptide in tumors and inflammation needs to be further investigated, 99mTc-HYNIC-VQ is a promising imaging agent for the early detection of tumors or premalignancies, at least for screening patients with a high risk of developing cancers.

  13. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    SciTech Connect

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  14. Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.

    PubMed

    Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M

    2016-05-15

    Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients.

  15. Targeted antisense radiotherapy and dose fractionation using a (177)Lu-labeled anti-bcl-2 peptide nucleic acid-peptide conjugate.

    PubMed

    Liu, Dijie; Balkin, Ethan R; Jia, Fang; Ruthengael, Varyanna C; Smith, C Jeffrey; Lewis, Michael R

    2015-09-01

    The overall goal of these studies was to test the hypothesis that simultaneous down-regulation of a tumor survival gene and delivery of internally emitted cytotoxic radiation will be more effective than either treatment modality alone. The objectives were to evaluate the therapeutic efficacy of a (177)Lu-labeled anti-bcl-2-PNA-Tyr(3)-octreotate antisense conjugate in a mouse model bearing human non-Hodgkin's lymphoma (NHL) tumor xenografts and to optimize targeted antisense radiotherapy by dose fractionation. In the initial therapy studies, tumor-bearing mice were given saline, nonradioactive DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate, (177)Lu-DOTA-Tyr(3)-octreotate, (177)Lu-DOTA-PNA-peptide alone, or (177)Lu-DOTA-PNA-peptide followed by a chase dose of nonradioactive PNA-peptide. The MTD of (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate was then determined. Subsequently single dose MTD and four weekly fractionated doses were directly compared, followed by histopathologic evaluation. Antisense radiotherapy using 4.44 MBq of the (177)Lu-DOTA-PNA-peptide followed by nonradioactive PNA-peptide was significantly more effective than other low dose treatment regimens. A dose of 18.5 MBq of (177)Lu-DOTA-PNA-peptide was determined to be the approximate maximum tolerated dose (MTD). The median times to progression to a 1cm(3) tumor volume were 32 and 49 days for single dose MTD and fractionated dose (4 × 4.63 MBq) groups, respectively. Histopathology revealed metastases in the single dose groups, but not in the dose fractionation group. Targeted antisense radiotherapy using (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate and DOTA-PNA-peptide conjugate effectively inhibited tumor progression in a mouse model of NHL. Furthermore, a dose fractionation regimen had a significant advantage over a single high dose, in terms of tumor growth inhibition and prevention of metastasis. Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism to reverse chemotherapy resistance or

  16. An (125)I-labeled octavalent peptide fluorescent nanoprobe for tumor-homing imaging in vivo.

    PubMed

    Luo, Haiming; Shi, Jiyun; Jin, Honglin; Fan, Di; Lu, Lisen; Wang, Fan; Zhang, Zhihong

    2012-06-01

    Targeting radiopeptides are promising agents for radio-theranostics. However, in vivo evaluation of their targeting specificity is often obscured by their short biologic half-lives and low binding affinities. Here, we report an approach to efficiently examine targeting radiopeptides with a new class of octavalent peptide fluorescent nanoprobe (Octa-FNP) platform, which is composed of candidate targeting peptides and a tetrameric far-red fluorescent protein (tfRFP) scaffold. To shed light on this process, (125)I-Octa-FNP, (125)I-tfRFP and (125)I-peptide were synthesized, and their targeting functionalities were compared. Both fluorescence imaging and radioactive quantification results confirmed that (125)I-Octa-FNP had a significantly higher cellular binding capability than (125)I-tfRFP. In vivo biodistribution studies show that at 6 h post-injection, (125)I-Octa-FNP had 2-fold and 30-fold higher tumor uptake than that of (125)I-tfRFP and (125)I-peptide, respectively. Moreover, γ-imaging at 24 h post-injection revealed a remarkable accumulation of (125)I-Octa-FNP in the tumor while maintaining an extremely low background contrast, which was further confirmed by immunofluorescence analysis. These data suggested that, as an engineered and multivalent platform, Octa-FNP could enhance the tumor targeting of a designed peptide and provide excellent contrast radioimaging, making it a valuable tool for the evaluation of the targeting ability of specifically designed radiopeptides for cancer theranostics.

  17. Heavy-Atom Labeled Transmembrane β-Peptides: Synthesis, CD-Spectroscopy, and X-ray Diffraction Studies in Model Lipid Multilayer.

    PubMed

    Rost, Ulrike; Xu, Yihui; Salditt, Tim; Diederichsen, Ulf

    2016-08-18

    Transmembrane β-peptides are promising candidates for the design of well-controlled membrane anchors in lipid membranes. Here, we present the synthesis of transmembrane β-peptides with and without tryptophan anchors, as well as a novel iodine-labeled d-β(3) -amino acid. By using one or more of the heavy-atom labeled amino acids as markers, the orientation of the helical peptide was inferred based on the electron-density profile determined by X-ray reflectivity. The β-peptides were synthesized through manual Fmoc-based solid-phase peptide synthesis (SPPS) and reconstituted in unilamellar vesicles forming a right-handed 314 -helix secondary structure, as shown by circular dichroism spectroscopy. We then integrated the β-peptide into solid-supported membrane stacks and carried out X-ray reflectivity and grazing incidence small-angle X-ray scattering to determine the β-peptide orientation and its effect on the membrane bilayers. These β-peptides adopt a well-ordered transmembrane motif in the solid-supported model membrane, maintaining the basic structure of the original bilayer with some distinct alterations. Notably, the helical tilt angle, which accommodates the positive hydrophobic mismatch, induces a tilt of the acyl chains. The tilted chains, in turn, lead to a membrane thinning effect.

  18. Label-free mass spectrometry exploits dozens of detected peptides to quantify lamins in wildtype and knockdown cells.

    PubMed

    Swift, Joe; Harada, Takamasa; Buxboim, Amnon; Shin, Jae-Won; Tang, Hsin-Yao; Speicher, David W; Discher, Dennis E

    2013-01-01

    Label-free quantitation and characterization of proteins by mass spectrometry (MS) is now feasible, especially for moderately expressed structural proteins such as lamins that typically yield dozens of tryptic peptides from tissue cells. Using standard cell culture samples, we describe general algorithms for quantitative analysis of peptides identified in liquid chromatography tandem mass spectrometry (LC-MS/MS). The algorithms were foundational to the discovery that the absolute stoichiometry of A-type to B-type lamins scales with tissue stiffness (Swift et al., Science 2013). Isoform dominance helps make sense of why mutations and changes with age of mechanosensitive lamin-A,C only affect "stiff" tissues such as heart, muscle, bone, or even fat, but not brain. A Peak Ratio Fingerprinting (PRF) algorithm is elaborated here through its application to lamin-A,C knockdown. After demonstrating the large dynamic range of PRF using calibrated mixtures of human and mouse lysates, we validate measurements of partial knockdown with standard cell biology analyses using quantitative immunofluorescence and immunoblotting. Optimal sets of MS-detected peptides as determined by PRF demonstrate that the strongest peptide signals are not necessarily the most reliable for quantitation. After lamin-A,C knockdown, PRF computes an invariant set of "housekeeping" proteins as part of a broader proteomic analysis that also shows the proteome of mesenchymal stem cells (MSCs) is more broadly perturbed than that of a human epithelial cancer line (A549s), with particular variation in nuclear and cytoskeletal proteins. These methods offer exciting prospects for basic and clinical studies of lamin-A,C as well as other MS-detectable proteins.

  19. A New Strategy for Early Diagnosis of Type 2 Diabetes by Standard-Free, Label-Free LC-MS/MS Quantification of Glycated Peptides

    PubMed Central

    Zhang, Mei; Xu, Wei; Deng, Yulin

    2013-01-01

    The early diagnosis of diabetes, one of the top three chronic incurable diseases, is becoming increasingly important. Here, we investigated the applicability of an 18O-labeling technique for the development of a standard-free, label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the early diagnosis of type 2 diabetes mellitus (T2DM). Rather than attempting to identify quantitative differences in proteins as biomarkers, glycation of the highest abundance protein in human plasma, human serum albumin (HSA), was monitored through quantitative analysis of HSA characteristic peptides using the 18O-labeling technique. Eight glucose-sensitive peptides and one glucose-insensitive peptide were discovered. The glucose-insensitive peptide served as the internal standard, and a standard-free, label-free LC-MS/MS method was developed. This method was then used to select putative biomarkers for T2DM in a clinical trial with 389 human plasma samples. As a result, three of the eight glucose-sensitive peptides (FKDLGEENFK, LDELRDEGK, and KVPQVSTPTLVEVSR) were selected and could be used as potential biomarkers for the early diagnosis of T2DM. PMID:23894188

  20. EPR Studies of Functionally Active, Nitroxide Spin-Labeled Peptide Analogs of the C-terminus of a G-Protein Alpha Subunit

    PubMed Central

    Van Eps, Ned; Anderson, Lori L.; Kisselev, Oleg G.; Baranski, Thomas J.; Hubbell, Wayne L.; Marshall, Garland R.

    2010-01-01

    The C-terminal tail of the transducin alpha subunit, Gtα(340–350), is known to bind and stabilize the active conformation of rhodopsin upon photoactivation (R*). Five spin-labeled analogs of Gtα(340–350) demonstrated native-like activity in their ability to bind and stabilize R*. The spin label 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was employed at interior sites within the peptide, whereas a Proxyl (3-carboxyl-2,2,5,5-tetramethyl-pyrrolidinyloxy) spin label was employed at the amino terminus of the peptide. Upon binding to R*, the electron paramagnetic resonance spectrum of TOAC343-Gtα(340–350) revealed greater immobilization of the nitroxide when compared to that of the N-terminal modified Proxyl-Gtα(340–350) analog. A double-labeled Proxyl/TOAC348-Gtα(340–350) was examined by DEER spectroscopy to determine the distribution of distances between the two nitroxides in the peptides when in solution and when bound to R*. TOAC and Proxyl spin labels in this GPCR-G-protein α-peptide system provide unique biophysical probes that can be used to explore the structure and conformational changes at the rhodopsin-G-protein interface. PMID:20695526

  1. Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of 2H-labels versus high sensitivity of 19F-NMR.

    PubMed

    Strandberg, Erik; Wadhwani, Parvesh; Tremouilhac, Pierre; Dürr, Ulrich H N; Ulrich, Anne S

    2006-03-01

    The structure and alignment of the amphipathic alpha-helical antimicrobial peptide PGLa in a lipid membrane is determined with high accuracy by solid-state 2H-NMR. Orientational constraints are derived from a series of eight alanine-3,3,3-d3-labeled peptides, in which either a native alanine is nonperturbingly labeled (4x), or a glycine (2x) or isoleucine (2x) is selectively replaced. The concentration dependent realignment of the alpha-helix from the surface-bound "S-state" to a tilted "T-state" by 30 degrees is precisely calculated using the quadrupole splittings of the four nonperturbing labels as constraints. The remaining, potentially perturbing alanine-3,3,3-d3 labels show only minor deviations from the unperturbed peptide structure and help to single out the unique solution. Comparison with previous 19F-NMR constraints from 4-CF3-phenylglycine labels shows that the structure and orientation of the PGLa peptide is not much disturbed even by these bulky nonnatural side chains, which contain CF3 groups that offer a 20-fold better NMR sensitivity than CD3 groups.

  2. Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio

    PubMed Central

    Balti, Eric V.; Keymeulen, Bart; Gillard, Pieter; Lapauw, Bruno; De Block, Christophe; Abrams, Pascale; Weber, Eric; Vermeulen, Ilse; De Pauw, Pieter; Pipeleers, Daniël; Weets, Ilse; Gorus, Frans K.

    2016-01-01

    Background The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release. Methods Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5–39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20–57 months (interquartile range). Results TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96–0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5–7.1 vs 6.7–9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001) with first-phase C-peptide release during clamp (also with second phase release, only available for age 12–39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release. Conclusions The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test. PMID:27907006

  3. Synthesis of a (68)ga-labeled peptoid-Peptide hybrid for imaging of neurotensin receptor expression in vivo.

    PubMed

    Maschauer, Simone; Einsiedel, Jürgen; Hocke, Carsten; Hübner, Harald; Kuwert, Torsten; Gmeiner, Peter; Prante, Olaf

    2010-08-12

    The neurotensin receptor subtype 1 (NTS1) represents an attractive molecular target for imaging various tumors. Positron emission tomography (PET) gained widespread importance due to its sensitivity. We combined the design of a metabolically stable neurotensin analogue with a (68)Ga-radiolabeling approach. The (68)Ga-labeled peptoid-peptide hybrid [(68)Ga]3 revealed high stability, specific tumor uptake (0.7%ID/g, 65 min p.i.), and advantageous biokinetics in vivo using HT29 tumor-bearing nude mice. Because of the ability to internalize into NTS1-expressing tumor cells, [(68)Ga]3 proved to be highly suitable for a reliable and practical visualization of NTS1-expressing tumors in vivo by small animal PET.

  4. Synthesis of a 68Ga-Labeled Peptoid−Peptide Hybrid for Imaging of Neurotensin Receptor Expression in Vivo

    PubMed Central

    2010-01-01

    The neurotensin receptor subtype 1 (NTS1) represents an attractive molecular target for imaging various tumors. Positron emission tomography (PET) gained widespread importance due to its sensitivity. We combined the design of a metabolically stable neurotensin analogue with a 68Ga-radiolabeling approach. The 68Ga-labeled peptoid−peptide hybrid [68Ga]3 revealed high stability, specific tumor uptake (0.7%ID/g, 65 min p.i.), and advantageous biokinetics in vivo using HT29 tumor-bearing nude mice. Because of the ability to internalize into NTS1-expressing tumor cells, [68Ga]3 proved to be highly suitable for a reliable and practical visualization of NTS1-expressing tumors in vivo by small animal PET. PMID:24900199

  5. Comparison of /sup 125/I-labeled and /sup 14/C-Labeled peptides of the major outer membrane protein of Chlamydia Trachomatis Strain L2/434 separated by high-performance liquid chromatography

    SciTech Connect

    Judd, R.C.; Caldwell, H.D.

    1985-01-01

    The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. In addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.

  6. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  7. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    PubMed Central

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-01-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer’s disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers. PMID:26374940

  8. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer.

    PubMed

    Li, Yanyan; Zhao, Manru; Wang, Haiyan

    2017-08-29

    We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.

  9. A systematic approach to the preparation of 125I-labeled gastrointestinal regulatory peptides with high specific radioactivities.

    PubMed

    Burhol, P G; Jorde, R; Florholmen, J; Jenssen, T G; Vonen, B

    1985-05-01

    A systematic approach is outlined for the preparation of a whole series of immunoreactive 125I-labeled gastrointestinal regulatory peptides with high specific radioactivities. In our hands, the theoretically superior Iodo-gen method has no more to offer than the harsher chloramine-T method in the iodination of secretin, vasoactive intestinal polypeptide, gastric inhibitory polypeptide, and motilin; whereas the gentler Iodo-gen method has to be used to obtain fully immunoreactive cholecystokinin39 (CCK39) and Tyr1-somatostatin tracers. By applying the iodination mixtures on a Sephadex G-15 or a Sephadex G-10 column followed by an SP Sephadex C-25 column--being eluted under so-called 'finite adsorption equilibrium' between the peptides to be purified and the adsorbent--highly purified tracers are obtained with unusually high specific radioactivities. Stored at -20 degrees C in diluted aliquots of from 200 to 500 microliter, these tracers can be used for radioimmunoassay purposes without rechromatography for at least 60 days.

  10. Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    SciTech Connect

    Miao, Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-06-15

    The purpose of this study was to improve the tumor-to-kidney uptake ratios of 90Y- and 177Lu-[1,2,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys,D-Phe,Arg]alpha-melanocyte stimulating hormone (DOTA-RE(Arg)CCMSH), through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. A new peptide of DOTA-Re(Glu,Arg)CCMSH was designed, synthesized and labeled with 90Y and 177Lu. Pharmacokinetics of 90Y- and 177Lu-DOTA-RE(Glu,Arg)CCNSH were determined in B16/F1 murine melanoma-bearing C57 mice. Both exhibited significantly less renal uptake than 90Y- and 177Lu-DOTA-Re(Arg)CCMSH at 30 min and at 2, 3, and 24 h after dose administration. The renal uptake values of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH were 28.16% and 28.81% of those of 90Y- and 177Lu-DOTA-RE(Arg)CCMSH, respectively, at 4 hr post-injection. We also showed higher tumor-to-kidney uptake ratios 2.28 and 1.69 times that of 90Y- and 177Lu-DOTA-Re(Arg)CCMSH, respectively, at 4 h post-injection. The90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH activity accumulation was low in normal organs except for kidneys. Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma.

  11. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

    PubMed Central

    Liu, Yuxia; Shen, Hua; Pang, Lifang; Yin, Duanzhi; Wang, Yongxian; Li, Shanqun; Shi, Hongcheng

    2013-01-01

    As large amount of vasoactive intestinal peptide (VIP) receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R8, 15, 21, L17]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R8,15,21, L17]-VIP was produced with the radiochemical yield being as high as 33.6% ± 3% (decay-for-corrected, n = 5) achieved within 100 min, a specific activity of 255 GBq/μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R8,15,21, L17]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor. PMID:24459669

  12. Diagnosis of osteomyelitis and soft tissue infection using a Tc-99m labeled tuftsin-analog peptide

    SciTech Connect

    Som, P.; Oster, Z.H.; Sharma, S.

    1997-05-01

    The localization of infection sites and of osteomyelitis is still an ongoing diagnostic challenge. In joints affected by arthritis, complicated fractures and around prosthetic devices, three-phase bone scans are non-diagnostic because the underlying condition will cause the third phase scan to be positive, while surrounding soft tissue inflammation may cause the first and second phase scans to be positive as well. Currently, the method of choice in these situations is to use radiolabeled white blood cell scans involving lengthy and expensive procedure and need for delayed imaging. We describe a method using a Tc-99m labeled leukotactic peptide for imaging osteomyelitis and soft tissue infections, which appears to be simpler, and enabling fast diagnosis. Abscesses, clean fractures and infected fractures simulating osteomyelitis were induced in rabbits as described earlier. RMT-1, a tuftsin-mimetic synthetic tetrapeptide labeled with Tc-99m was used. Blood clearance, urine excretion and whole body timed scintigraphy were carried out in normal dogs and evaluation of the compound was performed in dogs and rabbits with soft tissue chemical and bacterial abscesses and in rabbits with clean fractures and experimental osteomyelitis.

  13. Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer.

    PubMed

    Shevchenko, A; Chernushevich, I; Ens, W; Standing, K G; Thomson, B; Wilm, M; Mann, M

    1997-01-01

    Protein microanalysis usually involves the sequencing of gel-separated proteins available in very small amounts. While mass spectrometry has become the method of choice for identifying proteins in databases, in almost all laboratories 'de novo' protein sequencing is still performed by Edman degradation. Here we show that a combination of the nanoelectrospray ion source, isotopic end labeling of peptides and a quadrupole/ time-of-flight instrument allows facile read-out of the sequences of tryptic peptides. Isotopic labeling was performed by enzymatic digestion of proteins in 1:1 16O/18O water, eliminating the need for peptide derivatization. A quadrupole/time-of-flight mass spectrometer was constructed from a triple quadrupole and an electrospray time-of-flight instrument. Tandem mass spectra of peptides were obtained with better than 50 ppm mass accuracy and resolution routinely in excess of 5000. Unique and error tolerant identification of yeast proteins as well as the sequencing of a novel protein illustrate the potential of the approach. The high data quality in tandem mass spectra and the additional information provided by the isotopic end labeling of peptides enabled automated interpretation of the spectra via simple software algorithms. The technique demonstrated here removes one of the last obstacles to routine and high throughput protein sequencing by mass spectrometry.

  14. Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry.

    PubMed

    Niu, Mingming; Cho, Ji-Hoon; Kodali, Kiran; Pagala, Vishwajeeth; High, Anthony A; Wang, Hong; Wu, Zhiping; Li, Yuxin; Bi, Wenjian; Zhang, Hui; Wang, Xusheng; Zou, Wei; Peng, Junmin

    2017-02-22

    Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from coisolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection, and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT)-labeled Escherichia coli peptides at 1:3:10 ratios and added in ∼20-fold more rat peptides as background, followed by the analysis of two-dimensional liquid chromatography (LC)-MS/MS. Systematic investigation shows that quantitative interference was impacted by LC fractionation depth, MS isolation window, and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10 000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.

  15. Cerenkov Luminescence Imaging for Radiation Dose Calculation of a 90Y-Labeled Gastrin-Releasing Peptide Receptor Antagonist

    PubMed Central

    Lohrmann, Christian; Zhang, Hanwen; Thorek, Daniel L.J.; Desai, Pooja; Zanzonico, Pat B.; O’Donoghue, Joseph; Irwin, Christopher P.; Reiner, Thomas; Grimm, Jan; Weber, Wolfgang A.

    2015-01-01

    90Y has been used to label various new therapeutic radiopharmaceuticals. However, measuring the radiation dose delivered by 90Y is challenging because of the absence of suitable γ emissions and its low abundance of positron emissions. For the treatment of prostate cancer, radiolabeled gastrin-releasing peptide receptor (GRPr) antagonists have yielded promising results in mouse models. In this study, we evaluated whether Cerenkov luminescence imaging (CLI) could be used to determine radiation doses of a 90Y-labeled GRPr antagonist in nude mice. Methods Mice bearing subcutaneous prostate cancer xenografts were injected with 0.74–18.5 MBq of the 90Y-labeled GRPr antagonist DOTA-AR and underwent in vivo and ex vivo CLI at 1–48 h after injection. After imaging, animals were sacrificed, their tumors and organs were harvested, and the activity concentration was measured by liquid scintillation counting. In a second set of experiments, Cerenkov photon counts for tumor and kidney on in vivo CLI were converted to activity concentrations using conversion factors determined from the first set of experiments. Results 90Y-DOTA-AR concentration in the 3 tumor models ranged from 0.5% to 4.8% of the injected activity per gram at 1 h after injection and decreased to 0.05%–0.15 injected activity per gram by 48 h after injection. A positive correlation was found between tumor activity concentrations and in vivo CLI signal (r2 = 0.94). A similar correlation was found for the renal activity concentration and in vivo Cerenkov luminescence (r2 = 0.98). Other organs were not distinctly visualized on the in vivo images, but ex vivo CLI was also correlated with the radioactivity concentration (r2 = 0.35–0.94). Using the time–activity curves from the second experiment, we calculated radiation doses to tumor and kidney of 0.33 ± 0.12 (range, 0.21–0.66) and 0.06 ± 0.01 (range, 0.05–0.08) Gy/MBq, respectively. Conclusion CLI is a promising, low-cost modality to measure

  16. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages.

    PubMed

    Li, Li; Song, Jun; Kalt, Wilhelmina; Forney, Charles; Tsao, Rong; Pinto, Devanand; Chisholm, Kenneth; Campbell, Leslie; Fillmore, Sherry; Li, Xihong

    2013-12-06

    A quantitative proteomic investigation of strawberry fruit ripening employing stable isotope labeling by peptide dimethylation was conducted on 'Mira' and 'Honeoye' strawberry fruit. Postharvest physiological quality indices, including volatile production, total phenolics, total anthocyanins, antioxidant capacity, soluble solids and titratable acidity, were also characterized in white, pink and red fruit. More than 892 and 848 proteins were identified and quantified in the 'Mira' and 'Honeoye' fruit, respectively, using at least two peptides for each protein identification. Using the normalized ratio of protein abundance changes, proteins that changed two-fold or more were identified as proteins that are up- or down-regulated during fruit ripening. Among the quantified proteins, 111 proteins were common to both cultivars and represented five significant clusters based on quantitative changes. Among the up-regulated proteins were proteins involved in metabolic pathways including flavonoid/anthocyanin biosynthesis, volatile biosynthesis, antioxidant metabolism, stress responses and allergen formation. Proteins that decreased during fruit ripening were found to be responsible for methionine metabolism, antioxidant-redox, energy metabolism and protein synthesis. Our results show that strawberry ripening is a highly complex system involving multi-physiological processes made possible through changes in protein expression. This study provides new insights on the regulation of proteins during strawberry fruit ripening that lay the foundation for further targeted studies. Research on the postharvest physiology and biochemistry of strawberry fruit as a model of non-climacteric fruit ripening has been conducted for many years. However, the mechanism(s) for the initiation and metabolic regulation of non-climacteric fruit ripening remains unknown. Little information on strawberry fruit ripening is available at the proteome level. This paper is the first report of a

  17. Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye.

    PubMed

    Hnedzko, Dziyana; McGee, Dennis W; Rozners, Eriks

    2016-09-15

    Fluorescently labeled peptide nucleic acids (PNAs) are important tools in fundamental research and biomedical applications. However, synthesis of labeled PNAs, especially using modern and expensive dyes, is less explored than similar preparations of oligonucleotide dye conjugates. Herein, we present a simple procedure for labeling of the PNA N-terminus with HiLyte Fluor 488 as the last step of solid phase PNA synthesis. A minimum excess of 1.25equiv of activated carboxylic acid achieved labeling yields close to 90% providing a good compromise between the price of dye and the yield of product and significant improvement over previous literature procedures. The HiLyte Fluor 488-labeled PNAs retained the RNA binding ability and in live cell fluorescence microscopy experiments were brighter and significantly more photostable than PNA labeled with carboxyfluorescein. In contrast to fluorescein-labeled PNA, the fluorescence of PNAs labeled with HiLyte Fluor 488 was independent of pH in the biologically relevant range of 5-8. The potential of HiLyte Fluor 488-labeling for studies of PNA cellular uptake and distribution was demonstrated in several cell lines.

  18. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations.

    PubMed

    Geiger, Matthew; Bowser, Michael T

    2016-02-16

    Multidimensional separations present a unique opportunity for generating the high peak capacities necessary for the analysis of complex biological mixtures. We have coupled nano liquid chromatography with micro free flow electrophoresis (nLC × μFFE) to produce high peak capacity separations of peptide and amino acid mixtures. Currently, μFFE largely relies on laser-induced fluorescence (LIF) detection. We have demonstrated that the choice of fluorescent label significantly affects the fractional coverage and peak capacity of nLC × μFFE separations of peptides and amino acids. Of the labeling reagents assessed, Chromeo P503 performed the best for nLC × μFFE separations of peptides. A nLC × μFFE analysis of a Chromeo P503-labeled BSA tryptic digest produced a 2D separation that made effective use of the available separation space (48%), generating a corrected peak capacity of 521 in a 5 min separation window (104 peaks/min). nLC × μFFE separations of NBD-F-labeled peptides produced similar fractional coverage and peak capacity, but this reagent was able to react with multiple reaction sites, producing an unnecessarily complex analyte mixture. NBD-F performed the best for nLC × μFFE separations of amino acids. NBD-F-labeled amino acids produced a 2D separation that covered 36% of the available separation space, generating a corrected peak capacity of 95 in a 75 s separation window (76 peaks/min). Chromeo P503 and Alexa Fluor 488-labeled amino acids were not effectively separated in the μFFE dimension, giving 2D separations with poor fractional coverage and peak capacity.

  19. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide.

    PubMed

    Nguyen, Giang K T; Cao, Yuan; Wang, Wei; Liu, Chuan Fa; Tam, James P

    2015-12-21

    An efficient ligase with exquisite site-specificity is highly desirable for protein modification. Recently, we discovered the fastest known ligase called butelase 1 from Clitoria ternatea for intramolecular cyclization. For intermolecular ligation, butelase 1 requires an excess amount of a substrate to suppress the reverse reaction, a feature similar to other ligases. Herein, we describe the use of thiodepsipeptide substrates with a thiol as a leaving group and an unacceptable nucleophile to render the butelase-mediated ligation reactions irreversible and in high yields. Butelase 1 also accepted depsipeptides as substrates, but unlike a thiodesipeptide, the desipeptide ligation was partially reversible as butelase 1 can tolerate an alcohol group as a poor nucleophile. The thiodesipeptide method was successfully applied in N-terminal labeling of ubiquitin and green fluorescent protein using substrates with or without a biotin group in high yields.

  20. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins.

    PubMed

    Chen, Irwin; Choi, Yoon-Aa; Ting, Alice Y

    2007-05-23

    Site-specific protein labeling with Escherichia coli biotin ligase (BirA) has been used to introduce fluorophores, quantum dots (QDs), and photocross-linkers onto recombinant proteins fused to a 15-amino acid acceptor peptide (AP) substrate for BirA and expressed on the surface of living mammalian cells. Here, we used phage display to engineer a new and orthogonal biotin ligase-AP pair for site-specific protein labeling. Yeast biotin ligase (yBL) does not recognize the AP, but we discovered a new 15-amino acid substrate for yBL called the yeast acceptor peptide (yAP), using two generations of phage display selection from 15-mer peptide libraries. The yAP is not recognized by BirA, and thus, we were able to specifically label AP and yAP fusion proteins coexpressed in the same cell with differently colored QDs. We fused the yAP to a variety of recombinant proteins and demonstrated biotinylation by yBL at the N-terminus, C-terminus, and within a flexible internal region. yBL is extremely sequence-specific, as endogenous proteins on the surface of yeast and HeLa cells are not biotinylated. This new methodology expands the scope of biotin ligase labeling to two-color imaging and yeast-based applications.

  1. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification.

    PubMed

    Mouton-Barbosa, Emmanuelle; Roux-Dalvai, Florence; Bouyssié, David; Berger, François; Schmidt, Eric; Righetti, Pier Giorgio; Guerrier, Luc; Boschetti, Egisto; Burlet-Schiltz, Odile; Monsarrat, Bernard; Gonzalez de Peredo, Anne

    2010-05-01

    Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.

  2. Sulfonation of Tyrosine as a Method to Improve Biodistribution of Peptide-Based Radiotracers: Novel (18)F-Labelled Cyclic RGD Analogues.

    PubMed

    Haskali, Mohammad Baqir; Denoyer, Delphine; Noonan, Wayne; Cullinane, Carleen; Rangger, Christine; Pouliot, Normand; Haubner, Roland; Roselt, Peter D; Hicks, Rodney J; Hutton, Craig A

    2017-02-13

    The labeling of peptides with positron emitting radionuclides has long held the promise of a wide range of PET agents possessing high affinity and selectivity. Not surprisingly, controlling the biodistribution of these agents has proven to be a major challenge in their successful application. Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[18F]fluoropropionate and the biodistribution of the radiolabeled peptides was compared with that of their non-sulfonated, clinically relevant counterparts, [18F]GalactoRGD and [18F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da towards the MW, compared with 189 Da for both the 'Galacto' and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabelled peptides.

  3. Autonomous folding of the recombinant large cytoplasmic loop of sarcoplasmic reticulum Ca2+-ATPase probed by affinity labeling and trypsin digestion.

    PubMed

    Moutin, M J; Rapin, C; Miras, R; Vinçon, M; Dupont, Y; McIntosh, D B

    1998-02-01

    Recombinant large cytoplasmic loop (LCL, residues 329-740) of sarcoplasmic reticulum Ca2+-ATPase, expressed in and purified from Escherichia coli, comprises most of the active site and binds ATP [Moutin, M.-J., Cuillel, M., Rapin, C., Miras, R., Anger, M., Lompré, A.-M. & Dupont, Y. (1994) J. Biol. Chem. 269, 11147-11154]. In this study, we show that fluorescein-5' isothiocyanate (FITC) specifically labels the same lysine residue as in the native Ca2+-ATPase (Lys515), with similar kinetics and pH dependence. ATP blocks the reaction with the lysine residue, but at higher concentrations compared with those for the native pump, in agreement with the lower ATP-binding affinity found previously. Graded tryptic digestion of LCL shows that favored cleavage is at the T1 site and that the N-terminal 75% of LCL are resistant to trypsin, as is native Ca2+-ATPase. Other experiments reveal differences to the native pump. (a) FITC derivatizes some -SH groups of LCL. (b) The C-terminal 25% of the polypeptide is susceptible to end-clipping by trypsin. (c) 2',3'-O-(2,4,6-trinitrophenyl)-ATP fails to specifically label the LCL (on the equivalent of Lys492), although it binds tightly (KD = 1.3 microM) and (d) Glutaraldehyde does not specifically cross-link LCL (between the equivalent of Lys492 and Arg678). These results could be explained by a flexible and loose structure of the hinge region of LCL (C-terminal 25%). Anchoring this region in the membrane and/or interaction with the missing beta-strand domain may be required for its compact folding and proper interaction with the rest of LCL. The results suggest that the N-terminal 75% of LCL expressed in E. coli folds autonomously to a fairly stable unit and native-like structure, encompassing the phosphorylation and central ATP binding sections. The hinge region does not appear to be part of the FITC-binding site but constitutes portions of the 2',3'-O-(2,4,6-trinitrophenyl)-ATP and, probably, ATP-binding site.

  4. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  5. A convenient method for europium-labeling of a recombinant chimeric relaxin family peptide R3/I5 for receptor-binding assays.

    PubMed

    Zhang, Wei-Jie; Jiang, Qian; Wang, Xin-Yi; Song, Ge; Shao, Xiao-Xia; Guo, Zhan-Yun

    2013-06-01

    Relaxin family peptides have important biological functions, and so far, four G-protein-coupled receptors have been identified as their receptors (RXFP1-4). A chimeric relaxin family peptide R3/I5, containing the B-chain of relaxin-3 and the A-chain of INSL5, is a selective agonist for both RXFP3 and RXFP4. In a previous study, europium-labeled R3/I5, as a nonradioactive and low-background receptor-binding tracer, was prepared through a chemical synthesis approach. In the present study, we established a convenient alternative approach for preparing the europium-labeled R3/I5 tracer based on a recombinant R3/I5 designed to carry a solubilizing tag at the A-chain N-terminus and a pyroglutamate residue at the B-chain N-terminus. Because of the presence of a single primary amine moiety, the recombinant R3/I5 peptide was site-specifically mono-labeled at the A-chain N-terminus by a diethylenetriaminepentaacetic acid/europium moiety through a convenient one-step procedure. The diethylenetriaminepentaacetic acid/Eu3+-labeled R3/I5 bound both receptors RXFP3 and RXFP4 with high binding affinities and low nonspecific binding. Thus, we have presented a valuable nonradioactive tracer for future interaction studies on RXFP3 and RXFP4 with various natural or designed ligands. The present approach could also be adapted for preparing and labeling of other chimeric relaxin family peptides.

  6. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 2: Peptide Tags and Unnatural Amino Acids

    PubMed Central

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M.

    2016-01-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  7. microPET Imaging of Glioma Integrin (alpha-v, beta-3) Expression Using Cu-64-Labeled Tetrameric RGD Peptide

    SciTech Connect

    Wu, Yun; Zhang, , Xianzhong; Xiong, , Zhengming; Cheng, Zhen; Fisher, Darrell R.; Liu, Shu-hong; Gambhir, Sanjiv S.; Chen, Xiaoyuan

    2005-10-01

    Integrins ?v?3 and ?v?5 play a critical role in tumor-induced angiogenesis and metastasis, and have become promising diagnostic indicators and therapeutic targets of tumors. Radiolabeled RGD peptides that are integrin-specific may be used for non-invasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. We previously conjugated a series of mono- and dimeric RGD peptides with 1,4,7,10-tetraazacyclododecane-N, N?,N??,N???-tetraacetic acid (DOTA) and labeled these with copper-64 for microPET imaging in various mouse xenograft models. The copper-64 tracers showed ?v?3-selective tumor uptake, but the magnitude of tumor uptake was relatively low, the tumor washout was rapid, and non-target organ/tissue retention was high. In this study we developed a tetrameric RGD peptide tracer 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 for positron emission tomography (PET) imaging of integrin ?v?3 expression in a subcutaneous U87MG glioma xenograft model in female athymic nude mice. The RGD tetramer showed significantly higher integrin binding affinity than the corresponding mono- and dimeric RGD analogs, most likely due to polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 ? 0.01%ID/g at 30 min and 0.21 ? 0.01 %ID/g at 4 h postinjection (p.i.), respectively) and predominantly renal excretion. Tumor uptake was rapid and high and the tumor washout was slow (9.93 ? 1.05 %ID/g at 30 min p.i. and 4.56 ? 0.51 %ID/g at 24 h post-injection). The metabolic stability of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70, 58, 51 and 26 percent, respectively. Non-invasive microPET imaging studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution results

  8. 18F-fluorobenzoate-labeled cystine knot peptides for PET imaging of integrin αvβ6.

    PubMed

    Hackel, Benjamin J; Kimura, Richard H; Miao, Zheng; Liu, Hongguang; Sathirachinda, Ataya; Cheng, Zhen; Chin, Frederick T; Gambhir, Sanjiv S

    2013-07-01

    Integrin αvβ6 is a cell surface receptor minimally expressed by healthy tissue but elevated in lung, colon, skin, ovarian, cervical, and pancreatic cancers. A molecular PET agent for integrin αvβ6 could provide significant clinical utility by facilitating both cancer staging and treatment monitoring to more rapidly identify an effective therapeutic approach. Here, we evaluated 2 cystine knot peptides, R01 and S02, previously engineered with a 3-6 nM affinity for integrin αvβ6, for (18)F radiolabeling and PET imaging of BxPC3 pancreatic adenocarcinoma xenografts in mice. Cystine knot peptides were labeled with N-succinimidyl-4-(18)F-fluorobenzoate and evaluated for binding affinity and serum stability. Peptides conjugated with (18)F-fluorobenzoate (2-3 MBq) were injected via the tail vein into nude mice xenografted with BxPC3 (integrin αvβ6-positive) or 293 (integrin αvβ6-negative) tumors. Small-animal PET scans were acquired at 0.5, 1, and 2 h after injection. Ex vivo γ-counting of dissected tissues was performed at 0.5 and 2 h. (18)F-fluorobenzoate peptides were produced in 93% ((18)F-fluorobenzoate-R01) and 99% ((18)F-fluorobenzoate-S02) purity. (18)F-fluorobenzoate-R01 and (18)F-fluorobenzoate-S02 had affinities of 1.1 ± 0.2 and 0.7 ± 0.4 nM, respectively, and were 87% and 94%, respectively, stable in human serum at 37°C for 2 h. (18)F-fluorobenzoate-R01 and (18)F-fluorobenzoate-S02 exhibited 2.3 ± 0.6 and 1.3 ± 0.4 percentage injected dose per gram (%ID/g), respectively, in BxPC3 xenografted tumors at 0.5 h (n = 4-5). Target specificity was confirmed by low tumor uptake in integrin αvβ6-negative 293 tumors (1.4 ± 0.6 and 0.5 ± 0.2 %ID/g, respectively, for (18)F-fluorobenzoate-R01 and (18)F-fluorobenzoate-S02; both P < 0.05; n = 3-4) and low muscle uptake (3.1 ± 1.0 and 2.7 ± 0.4 tumor to muscle for (18)F-fluorobenzoate-R01 and (18)F-fluorobenzoate-S02, respectively). Small-animal PET data were corroborated by ex vivo γ-counting of

  9. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11. 5-kDa peptide containing the putative 25-hydroxyvitamin D sub 3 binding site

    SciTech Connect

    Ray, R.; Holick, M.F. ); Bouillon, R.; Baelen, H.V. )

    1991-07-30

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D{sub 3} for the binding site of the latter in hDBP and (2) {sup 3}H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with {sup 3}H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D{sub 3}.

  10. Membrane position of a basic aromatic peptide that sequesters phosphatidylinositol 4,5 bisphosphate determined by site-directed spin labeling and high-resolution NMR.

    PubMed

    Ellena, Jeffrey F; Moulthrop, Jason; Wu, Jing; Rauch, Michelle; Jaysinghne, Sajith; Castle, J David; Cafiso, David S

    2004-11-01

    The membrane interactions and position of a positively charged and highly aromatic peptide derived from a secretory carrier membrane protein (SCAMP) are examined using magnetic resonance spectroscopy and several biochemical methods. This peptide (SCAMP-E) is shown to bind to membranes containing phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, and sequester PI(4,5)P2 within the plane of the membrane. Site-directed spin labeling of the SCAMP-E peptide indicates that the position and structure of membrane bound SCAMP-E are not altered by the presence of PI(4,5)P2, and that the peptide backbone is positioned within the lipid interface below the level of the lipid phosphates. A second approach using high-resolution NMR was used to generate a model for SCAMP-E bound to bicelles. This approach combined oxygen enhancements of nuclear relaxation with a computational method to dock the SCAMP-E peptide at the lipid interface. The model for SCAMP generated by NMR is consistent with the results of site-directed spin labeling and places the peptide backbone in the bilayer interfacial region and the aromatic side chains within the lipid hydrocarbon region. The charged side chains of SCAMP-E lie well within the interface with two arginine residues lying deeper than a plane defined by the position of the lipid phosphates. These data suggest that SCAMP-E interacts with PI(4,5)P2 through an electrostatic mechanism that does not involve specific lipid-peptide contacts. This interaction may be facilitated by the position of the positively charged side chains on SCAMP-E within a low-dielectric region of the bilayer interface.

  11. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform.

    PubMed

    Landry, J P; Ke, Yaohuang; Yu, Guo-Liang; Zhu, X D

    2015-02-01

    Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare the results obtained from the microarray-based platform with those from a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000).

  12. [(68)Ga-labeled peptides for clinical trials - production according to the German Drug Act: the Göttingen experience].

    PubMed

    Meller, Birgit; Angerstein, C; Liersch, T; Ghadimi, M; Sahlmann, C-O; Meller, J

    2012-01-01

    The AMG implies far-reaching implications for the synthesis of new radiopharmaceuticals for clinical trials. As a part of the DFG-funded Clinical Research Group (KFO 179) a project designated "Immuno-PET for assessment of early response to radiochemotherapy of advanced rectal cancer" was initiated. This trial is focused on a trivalent bispecific humanized monoclonal antibody, and a 68Ga-labeled peptide. Following the new regulatory framework we established a GMP-compliant cleanroom laboratory and applied for a manufacturing permission. During the project constructural, personnel and organizational conditions for a successful application were established, including a quality management system. A GMP-conform cleanroom laboratory class C was constructed, equipped with a two-chamber lock. The actual manufacturing is performed in a closed system with subsequent sterile filtration. The manufacturing processes have been automatised and validated as well as the necessary quality controls. The manufacturing permission was granted after an official inspection. The new German Drug Act is considered as a break in the production practice of nuclear medicine. The early involvement and communication with the authorities avoids time-consuming and costly planning errors. It is much to be hoped that the new legal situation in Germany will not cause serious impairments in the realization of clinical trials in German nuclear medicine.

  13. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-01-17

    Fluorogenic probes that signal the presence of specific DNA or RNA sequences are key enabling tools for molecular disease diagnosis and imaging studies. Usually, at least one fluorophore is attached through covalent bonding to an oligonucleotide probe. However, the additional conjugation step increases costs. Here we introduce a method that avoids the requirement for the preparation of fluorescence-labelled oligonucleotides and provides the opportunity to alter the fluorogenic reporter dye without resynthesis. The method is based on adjacent hybridization of two dicysteine-containing peptide nucleic acid (PNA) probes to form a bipartite tetracysteine motif that binds profluorescent bisarsenical dyes such as FIAsH, ReAsH or CrAsH. Binding is accompanied by strong increases in fluorescence emission (with response factors of up to 80-fold and high brightness up to 50 mL mol(-1)  cm(-1) ). The detection system provides sub-nanomolar limits of detection and allows discrimination of single nucleotide variations through more than 20-fold changes in fluorescence intensity. To demonstrate its usefulness, the FIAsH-based readout of the bivalent CysCys-PNA display was interfaced with a rolling-circle amplification (RCA) assay used to detect disease-associated microRNA let-7a. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Differential T cell receptor photoaffinity labeling among H-2Kd restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. Labeling of the alpha-chain correlates with J alpha segment usage

    PubMed Central

    1993-01-01

    Using a direct binding assay based on photoaffinity labeling, we studied the interaction of T cell receptor (TCR) with a Kd-bound photoreactive peptide derivative on living cells. The Kd-restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was reacted NH2-terminally with biotin and at the TCR contact residue Lys259 with photoreactive iodo, 4-azido salicylic acid (IASA) to make biotin-YIPSAEK(IASA)I. Cytotoxic T lymphocyte (CTL) clones derived from mice immunized with this derivative recognized this conjugate, but not a related one lacking the IASA group nor the parental PbCS peptide. The clones were Kd restricted. Recognition experiments with variant conjugates, lacking substituents from IASA, revealed a diverse fine specificity pattern and indicated that this group interacted directly with the TCR. The TCR of four clones could be photoaffinity labeled by biotin-YIPSAEK(125IASA)I. This labeling was dependent on the conjugates binding to the Kd molecule and was selective for the TCR alpha (2 clones) or beta chain (1 clone), or was common for both chains (1 clone). TCR sequence analysis showed a preferential usage of J alpha TA28 containing alpha chains that were paired with V beta 1 expressing beta chains. The TCR that were photoaffinity labeled at the alpha chain expressed these J alpha and V beta segments. The tryptophan encoded by the J alpha TA28 segment is rarely found in other J alpha segments. Moreover, we show that the IASA group interacts preferentially with tryptophan in aqueous solution. We thus propose that for these CTL clones, labeling of the alpha chain occurs via the J alpha-encoded tryptophan residue. PMID:8478607

  15. UV Raman spatially resolved melting dynamics of isotopically labeled polyalanyl peptide: slow alpha-helix melting follows 3(10)-helices and pi-bulges premelting.

    PubMed

    Mikhonin, Aleksandr V; Asher, Sanford A; Bykov, Sergei V; Murza, Adrian

    2007-03-29

    We used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns). In contrast, for a 20 to 40 degrees C T-jump, the central peptide bond relaxation appears to be faster (56 +/- 6 ns) than that of the penultimate peptide bonds (131 +/- 46 ns). We show that, if the data are modeled as a two-state transition, we find that only exterior peptide bonds show anti-Arrhenius folding behavior; the middle peptide bonds show both normal Arrhenius-like folding and unfolding. This anti-Arrhenius behavior results from the involvement of pi-bulges/helices and 3(10)-helix states in the melting. The unusual temperature dependence of the (un)folding rates of the interior and exterior peptide bonds is due to the different relative (un)folding rates of 3(10)-helices, alpha-helices, and pi-bulges/helices. Pure alpha-helix unfolding rates are approximately 12-fold slower (approximately 1 micros) than that of pi-bulges and 3(10)-helices. In addition, we also find that the alpha-helix is most stable at the AdP N-terminus where eight consecutive Ala occur, whereas the three hydrophilic Arg located in the middle and at the C-terminus destabilize the alpha-helix in these regions and induce defects such as pi-bulges and 3(10)-helices.

  16. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis.

    PubMed

    Essler, Markus; Gärtner, Florian C; Neff, Frauke; Blechert, Birgit; Senekowitsch-Schmidtke, Reingard; Bruchertseifer, Frank; Morgenstern, Alfred; Seidl, Christof

    2012-04-01

    Targeted delivery of alpha-particle-emitting radionuclides is a promising novel option in cancer therapy. We generated stable conjugates of the vascular tumour-homing peptide F3 both with (225)Ac and (213)Bi that specifically bind to nucleolin on the surface of proliferating tumour cells. The aim of our study was to determine the therapeutic efficacy of (225)Ac-DOTA-F3 in comparison with that of (213)Bi-DTPA-F3. ID(50) values of (213)Bi-DTPA-F3 and (225)Ac-DOTA-F3 were determined via clonogenic assays. The therapeutic efficacy of both constructs was assayed by repeated treatment of mice bearing intraperitoneal MDA-MB-435 xenograft tumours. Therapy was monitored by bioluminescence imaging. Nephrotoxic effects were analysed by histology. ID(50) values of (213)Bi-DTPA-F3 and (225)Ac-DOTA-F3 were 53 kBq/ml and 67 Bq/ml, respectively. The median survival of control mice treated with phosphate-buffered saline was 60 days after intraperitoneal inoculation of 1 × 10(7) MDA-MB-435 cells. Therapy with 6 × 1.85 kBq of (225)Ac-DOTA-F3 or 6 × 1.85 MBq of (213)Bi-DTPA-F3 prolonged median survival to 95 days and 97 days, respectively. While F3 labelled with short-lived (213)Bi (t (1/2) 46 min) reduced the tumour mass at early time-points up to 30 days after treatment, the antitumour effect of (225)Ac-DOTA-F3 (t (1/2) 10 days) increased at later time-points. The difference in the fraction of necrotic cells after treatment with (225)Ac-DOTA-F3 (43%) and with (213)Bi-DTPA-F3 (36%) was not significant. Though histological analysis of kidney samples revealed acute tubular necrosis and tubular oedema in 10-30% of animals after treatment with (225)Ac-DOTA-F3 or (213)Bi-DTPA-F3, protein casts were negligible (2%), indicating only minor damage to the kidney. Therapy with both (225)Ac-DOTA-F3 and (213)Bi-DTPA-F3 increased survival of mice with peritoneal carcinomatosis. Mild renal toxicity of both constructs favours future therapeutic application.

  17. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    NASA Astrophysics Data System (ADS)

    Hippeläinen, E.; Tenhunen, M.; Sohlberg, A.

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions. Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared. The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  19. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-07

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  20. Studies on gonococcus infection. XVIII. 125I-labeled peptide mapping of the major protein of the gonococcal cell wall outer membrane.

    PubMed Central

    Swanson, J

    1979-01-01

    The major outer membrane proteins from 10 gonococcal strains were examined after 125I-labeling of the proteins as single bands resolved by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. These 125I-proteins were then treated with either trypsin or alpha-chymotrypsin, and the resultant 125I-peptides were visualized by autoradiography after two-dimensional electrophoretic and chromatographic separation on thin-layer cellulose sheets. Several 125I-peptides were present in all the major outer membrane proteins examined. The presence and absence of additional 125I-peptides segregated the major proteins into two pattern groups. One group consisted of major outer membranes with molecular weights of 34,000 or 33,000; major proteins with molecular weights of 32,000 constituted the other group. Two beta-lactamase-producing gonococcal isolates were examined. Their major outer membrane proteins were identical in apparent molecular weights and alpha-chymotryptic 125I-peptide fingerprints; these proteins contained 125I-peptides not found in other gonococcal major proteins. No 125I-peptide differences were found among the major outer membrane proteins of strain F62 gonococci that exhibited differences in piliation and/or colony opacity characteristics. Images PMID:110681

  1. Preferential labeling of alpha-amino N-terminal groups in peptides by biotin: application to the detection of specific anti-peptide antibodies by enzyme immunoassays.

    PubMed

    Sélo, I; Négroni, L; Créminon, C; Grassi, J; Wal, J M

    1996-12-15

    Experimental conditions (pH 6.5, 24 h reaction, peptide:biotin ratio 1:5) were defined for preferential incorporation of the biotin molecule in the N-terminal alpha-amino group of peptides. This strategy could be helpful in numerous applications when an entire peptide chain must remain accessible for antibody or receptor binding. We illustrate this advantage in a solid-phase enzyme immunoassay designed to detect antibodies specific for bovine beta-lactoglobulin present in rabbit or human sera. This test involves synthetic peptides biotinylated in different positions and immobilized on a solid phase. The use of biotin/streptavidin interactions permitted more efficient detection of specific anti-peptide antibodies than solid phases prepared using conventional passive-adsorption techniques. The highest levels of antibody binding were measured when biotinylation occurred at the N-terminal extremity of immobilized peptides.

  2. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  3. Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap.

    PubMed

    Mischerikow, Nikolai; van Nierop, Pim; Li, Ka Wan; Bernstein, Hans-Gert; Smit, August B; Heck, Albert J R; Altelaar, A F Maarten

    2010-10-01

    Isobaric stable isotope labeling of peptides using iTRAQ is an important method for MS based quantitative proteomics. Traditionally, quantitative analysis of iTRAQ labeled peptides has been confined to beam-type instruments because of the weak detection capabilities of ion traps for low mass ions. Recent technical advances in fragmentation techniques on linear ion traps and the hybrid linear ion trap-orbitrap allow circumventing this limitation. Namely, PQD and HCD facilitate iTRAQ analysis on these instrument types. Here we report a method for iTRAQ-based relative quantification on the ETD enabled LTQ Orbitrap XL, which is based on parallel peptide quantification and peptide identification. iTRAQ reporter ion generation is performed by HCD, while CID and ETD provide peptide identification data in parallel in the LTQ ion trap. This approach circumvents problems accompanying iTRAQ reporter ion generation with ETD and allows quantitative, decision tree-based CID/ETD experiments. Furthermore, the use of HCD solely for iTRAQ reporter ion read out significantly reduces the number of ions needed to obtain informative spectra, which significantly reduces the analysis time. Finally, we show that integration of this method, both with existing CID and ETD methods as well as with existing iTRAQ data analysis workflows, is simple to realize. By applying our approach to the analysis of the synapse proteome from human brain biopsies, we demonstrate that it outperforms a latest generation MALDI TOF/TOF instrument, with improvements in both peptide and protein identification and quantification. Conclusively, our work shows how HCD, CID and ETD can be beneficially combined to enable iTRAQ-based quantification on an ETD-enabled LTQ Orbitrap XL.

  4. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers.

    PubMed

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Kiwada, Tatsuto; Shiba, Kazuhiro; Odani, Akira

    2013-01-01

    (68)Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68)Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle (67)Ga, with the previously described (67)Ga-DOTA complex conjugated bisphosphonate, (67)Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with (67)Ga, resulting in (67)Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of (67)Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, (67)Ga-DOTA-(Asp)8, (67)Ga-DOTA-(Asp)11, and (67)Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5 ± 1.5, 15.1 ± 2.6, and 12.8 ± 1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of (67)Ga-DOTA-(Asp)n was lower than that of (67)Ga-DOTA-Bn-SCN-HBP, blood clearance of (67)Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of (67)Ga-DOTA-(Asp)11 and (67)Ga-DOTA-(Asp)14 were comparable with those of (67)Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of (68)Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.

  5. Development of Novel Radiogallium-Labeled Bone Imaging Agents Using Oligo-Aspartic Acid Peptides as Carriers

    PubMed Central

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Kiwada, Tatsuto; Shiba, Kazuhiro; Odani, Akira

    2013-01-01

    68Ga (T1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting 68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle 67Ga, with the previously described 67Ga-DOTA complex conjugated bisphosphonate, 67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with 67Ga, resulting in 67Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of 67Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, 67Ga-DOTA-(Asp)8, 67Ga-DOTA-(Asp)11, and 67Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5±1.5, 15.1±2.6, and 12.8±1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of 67Ga-DOTA-(Asp)n was lower than that of 67Ga-DOTA-Bn-SCN-HBP, blood clearance of 67Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of 67Ga-DOTA-(Asp)11 and 67Ga-DOTA-(Asp)14 were comparable with those of 67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of 68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases. PMID:24391942

  6. Synthesis of (68)Ga-labeled NOTA-RGD-GE11 heterodimeric peptide for dual integrin and epidermal growth factor receptor-targeted tumor imaging.

    PubMed

    Yu, Hung-Man; Chen, Jyun-Hong; Lin, Kun-Liang; Lin, Wuu-Jyh

    2015-06-15

    Radiolabeled Arg-Gly-Asp (RGD) peptide analogs have been extensively studied for αvβ3 integrin-targeted angiogenesis imaging. According to recently presented evidence, the dodecapeptide GE11 has high affinity to the epidermal growth factor receptor (EGFR), which is overexpressed in many types of cancer. Dual-receptor molecular imaging probes with two different heterodimeric peptides exhibit improved cancer targeting efficacy. In the present study, the design and synthesis of a new RGD-GE11 peptide heterodimer for dual αvβ3 integrin/EGFR-targeted cancer imaging are described. The RGD-GE11 heterodimer was linked with 6-aminohexanoic acid (6-Ahx) and cysteine and conjugated with 1,4,7-triazacyclononane-N,N',N″-triacetic acid (NOTA) to form NOTA-RGD-cys-6-Ahx-GE11. The monomeric peptides, NOTA-cys-6-Ahx-GE11 and c(RGDyK), were formed by a peptide synthesizer. The peptide heterodimer NOTA-RGD-GE11 was obtained by NOTA-cys-6-Ahx-GE11 and maleimidopropyl-c(RGDyK) conjugation with a thioether linkage. The NOTA peptide conjugate was labeled with freshly eluted (68)Ga and purified using reversed-phase high-performance liquid chromatography. The (68)Ga-NOTA-RGD-cys-6-Ahx-GE11 was successfully prepared, in this study, with a radiochemical yield of 85% and a radiochemical purity of >98%. These results warrant further investigation of this heterodimeric peptide's binding affinity to the receptors. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Radionuclide imaging of small-cell lung cancer (SCLC) using 99mTc-labeled neurotensin peptide 8-13.

    PubMed

    Zhang, Kaijun; An, Rui; Gao, Zairong; Zhang, Yongxue; Aruva, Mohan R

    2006-05-01

    To prepare 99m technetium (99mTc)-labeled neurotensin (NT) peptide and to evaluate the feasibility of imaging oncogene NT receptors overexpressed in human small-cell lung cancer (SCLC) cells. The NT analogue (Nalpha-His)Ac-NT(8-13) was synthesized such that histidine was attached at the N-terminus. The analogue was labeled with [99mTc(H2O)3(CO)3] at pH 7. 99mTc-(Nalpha-His)Ac-NT(8-13) in vitro stability was determined by challenging it with 100 times the molar excess of DTPA, human serum albumin (HSA) and cysteine. The affinity, 99mTc-(Nalpha-His)Ac-NT(8-13) binding to SCLC cell line NCI-H446, was studied in vitro. Biodistribution and imaging with 99mTc-(Nalpha-His)Ac-NT(8-13) were performed at 4 and 12 h postinjection, and tissue distribution and imaging after receptor blocking were carried out at 4 h in nude mice bearing human SCLC tumor. Blood clearance was determined in normal mice. The affinity constant (Kd) of 99mTc-(Nalpha-His)Ac-NT(8-13) to SCLC cells was 0.56 nmol/L. When challenged with 100 times the molar excess of DTPA, HSA or cysteine, more than 97+/-1.8% radioactivity remained as 99mTc-(Nalpha-His)Ac-NT(8-13). Tumor-to-muscle ratio was 3.35+/-1.01 at 4 h and 4.20+/-1.35 at 12 h postinjection. The excretory route of 99mTc-(Nalpha-His)Ac-NT(8-13) was chiefly through the renal pathway. In the receptor-blocking group treated with unlabeled (Nalpha-His)Ac-NT(8-13), tumor-to-muscle ratio at 4 h was 1.25+/-0.55. The results suggest that 99mTc-(Nalpha-His)Ac-NT(8-13) specifically binds to the SCLC cells and made 99mTc-(Nalpha-His)Ac-NT(8-13) a desirable compound for further studies in planar or SPECT imaging of oncogene receptors overexpressed in SCLC cells.

  8. Synthesis, characterization, and biological evaluation of (99m) Tc(CO)3 -labeled peptides for potential use as tumor targeted radiopharmaceuticals.

    PubMed

    Baishya, Rinku; Nayak, Dipak K; Chatterjee, Nabanita; Halder, Kamal K; Karmakar, Sanmoy; Debnath, Mita C

    2014-01-01

    During the past decade, several peptides containing Arg-Gly-Asp sequence have been conjugated with different chelating agents for labeling with various radionuclides for the diagnosis of tumor development. In this study, we report the synthesis of two tetrapeptides (Asp-Gly-Arg-His and Asp-Gly-Arg-Cys) and one hexapeptide [Asp-Gly-Arg-D-Tyr-Lys-His] by changing the amino acid sequence of the Arg-Gly-Asp motif. Peptide synthesis was initiated from aspartic acid. Aspartic acid placed at C-terminal end of the peptide chain can be conjugated with different drug molecules facilitating their transport to the site of action. The peptides were synthesized in excellent yield and labeled using freshly prepared [(99m) Tc(CO)3 (H2 O)3 ](+) intermediate. A complexation yield of over 97% was achieved under mild conditions even at low ligand concentrations of 10(-2)  m. Radiolabeled peptides were characterized by HPLC and were found to be substantially stable in saline, in His solution as well as in rat serum and tissue (kidney, liver) homogenates. Internalization studies using Ehrlich ascites carcinoma cell line showed rapid and significant internalization (30-35% at 30 min of incubation attaining maximum value of about 40-60% after 2-4 h incubation). A good percentage of quick internalization was also observed in αv β3 -receptor-positive B16F10 mouse melanoma cell line (14-16% after 30 min of incubation and 25-30% after 2-4 h incubation). Imaging and biodistribution studies were performed in Swiss albino mice bearing Ehrlich ascites tumor in right thigh. Radiolabeled peptides exhibited fast blood clearance and rapid elimination through the urinary systems. (99m) Tc(CO)3 -tetra-Pep2 exhibited remarkable localization at tumor site (1.15%, 1.17%, and 1.37% ID/g at 2, 4, and 6 h p.i., respectively) which could be due to slow clearance of the radiolabeled peptide from blood in comparison with the other two radiolabeled peptides. However, (99m) Tc(CO)3 -hexa-Pep exhibited the

  9. Non-invasive longitudinal imaging of tumor progression using an 111indium labeled CXCR4 peptide antagonist

    PubMed Central

    Buckle, Tessa; van Berg, Nynke S; Kuil, Joeri; Bunschoten, Anton; Oldenburg, Joppe; Borowsky, Alexander D; Wesseling, Jelle; Masada, Ryo; Oishi, Shinya; Fujii, Nobutaka; van Leeuwen, Fijs WB

    2012-01-01

    The chemokine receptor 4 (CXCR4) is a biomarker that is over-expressed in ductal carcinoma in situ (DCIS). Hence, CXCR4-targeted (molecular) imaging approaches may have diagnostic value in such a challenging, premalignant lesion. The indium labeled CXCR4 peptide-antagonist, 111In-DTPA-Ac-TZ14011, was used to visualize CXCR4-expression in a mammary intraepithelial neoplastic outgrowth (MIN-O) mouse tumor model resembling human DCIS. MIN-O lesion development was longitudinally monitored using SPET/CT and tracer uptake was compared to uptake in control lesions. Expression of CXCR4 was validated using immunohistochemistry and flow cytometric analysis. The uptake of 111In-DTPA-Ac-TZ14011 was related to tumor angiogenesis using 111In-cDTPA-[RGDfK]. Twenty-four hours after tracer injection, MIN-O lesions could be discriminated from low CXCR4-expressing control tumors, while the degree of angiogenesis based on the αvβ3 integrin expression in both tumor types was similar. The uptake of 111In-DTPA-Ac-TZ14011 in early MIN-O lesions was significantly lower than in larger intermediate and late-stage lesions, two-and-a-half-times (p=0.03) and seven-times (p=0.002), respectively. Intermediate and late stage lesions show a higher degree of membranous CXCR4-staining at immunohistochemistry and flow cytometric analysis. From this study we can conclude that 111In-DTPA-Ac-TZ14011 can be used to visualize the CXCR4-expression in MIN-O lesions longitudinally. PMID:23133805

  10. Rapid Generation of a Nanocrystal-Labeled Peptide Library for Specific Identification of the Bacterium Clostrium Botulinum

    SciTech Connect

    Tok, J B

    2004-11-11

    Several peptide libraries containing up to 2 million unique peptide ligands have been synthesized. The peptides are attached onto a 80 micron resin and the length of these peptide ligands ranges from 5 to 9 amino acid residues. Using a novel calorimetric assay, the libraries were screened for binding to the ganglioside-binding domain of Clostridium Tetanus Toxin, a structural similar analog of the Clostridium Botulinum toxin. Several binding peptide sequences were identified, in which the detailed binding kinetics are currently underway using the Surface Plasmon Resonance (SPR) technique.

  11. N,N-bis(2-mercaptoethyl)methylamine: a new coligand for Tc-99m labeling of hydrazinonicotinamide peptides.

    PubMed

    Banerjee, Sangeeta R; Maresca, Kevin P; Stephenson, Karin A; Valliant, John F; Babich, John W; Graham, Wendy A; Barzana, Marlene; Dong, Qing; Fischman, Alan J; Zubieta, Jon

    2005-01-01

    Hydrazinonicotinamide (HYNIC) forms stable coordination complexes with Tc-99m when reacted with Tc(V)oxo species such as Tc-mannitol or other Tc-polyhydric complexes. However, radio-HPLC of [Tc-For-MLFK-HYNIC] labeled via Tc-polyhydric ligands demonstrated multiple radiochemical species each with unique biodistribution patterns. This is likely due to the fact that Tc can bind to the hydrazino moiety, as well as polyhydric ligands, in a variety of coordination geometries. Tridentate ligands, such as bis(mercaptoethyl)methylamine (NS2), may constrain the possible coordination geometries and improve overall stability. To investigate this, we synthesized NS2, converted the [Tc-mannitol-For-MLFK-HYNIC] to the corresponding NS2-containing complex [Tc-NS2-For-MLFK-HYNIC], and compared its infection imaging and biodistribution properties with [Tc-mannitol-For-MLFK-HYNIC]. Conversion to the NS2 complex was confirmed by HPLC which showed a single unique hydrophobic species with retention time greater than the [Tc-mannitol-For-MLFK-HYNIC] complex. Imaging experiments with both preparations were performed in rabbits with E. coli infections in the left thigh. Tissue radioactivity measurements demonstrated that compared to Tc-mannitol-peptide, accumulation of Tc-NS2-peptide was lower in blood, heart, and normal muscle and higher in spleen, infected muscle, and pus (p < 0.01). These results indicate that the Tc-NS2-peptide complex is chemically more homogeneous and exhibits improved infection localization and biodistribution properties. In an effort to model the interactions of the metal-HYNIC core with NS2 and related ligand types, the reactions of [ReCl3(NNC5H4NH)(NHNC5H4N)] and [99TcCl3(NNC5H4NH)(NHNC5H4N)], effective structural analogues for the [M(NNC5H4NH(x))2] core, with NS2, C5H3N-2,6-(CH2SH)2, O(CH2CH2SH)2, and S(CH2CH2SH)2 were investigated and the compounds [M[CH3N(CH2CH2S)2](NNC5H4N)(NHNC5H4N] (M = 99Tc (5a), Re (5b)), [Re[C5H3N-2,6-(CH2S)2](NNC5H4N)(NHNC5H4N)].CH2Cl2

  12. The effects of shared peptides on protein quantitation in label-free proteomics by LC/MS/MS

    SciTech Connect

    Jin, Shuangshuang; Daly, Don S.; Springer, David L.; Miller, John H.

    2008-01-02

    Assessment of differential protein abundance from the observed properties of detected peptides is an essential part of protein profiling based on shotgun proteomics. However, the abundance observed for degenerate peptides may be due to contributions from multiple proteins that are affected differently by a given treatment. Excluding degenerate peptides eliminates this ambiguity but may significantly decrease the number of proteins for which abundance estimates can be obtained. Peptide degeneracy within a family of biologically related proteins does not cause ambiguity if family members have a common response to treatment. Based on this concept, we have developed an approach for including degenerate peptides in the analysis of differential protein abundance in protein profiling. Data from a recent proteomics study of lung tissue from mice exposed to lipopolysaccharide, cigarette smoke, and a combination of these agents is used to illustrate our method. Starting from data where about half of the protein identifications involved degenerate peptides, 82% of the affected proteins were grouped into families, based on FASTA annotation, with closure on peptide degeneracy. In many cases, a common abundance relative to control was sufficient to explain ion-current peak areas for peptides, both unique and degenerate, that identified biologically-related proteins in a peptide-degeneracy closure group. Based on these results, we propose that peptide-degeneracy closure groups provide a way to include abundance data for degenerate-peptides in quantitative protein profiling by high throughput mass spectrometry.

  13. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  14. In Vitro and In Vivo Evaluation of a 64Cu-Labeled NOTA-Bn-SCN-Aoc-Bombesin Analogue in Gastrin-Releasing Peptide Receptor Expressing Prostate Cancer

    PubMed Central

    Craft, Jeffrey M.; De Silva1, Ravindra A.; Lears, Kimberly A.; Andrews, Rebecca; Liang, Kexian; Achilefu, Samuel; Rogers, Buck E.

    2012-01-01

    Introduction Bombesin (BN) is an amphibian peptide that binds to the gastrin-releasing peptide receptor (GRPR). It has been demonstrated that BN analogues can be radiolabeled for potential diagnosis and treatment of GRPR-expressing malignancies. Previous studies have conjugated various chelators to the eight C-terminal amino acids of BN (BN(7-14)) for radiolabeling with 64Cu. Recently, (1,4,7-triazacyclononane-1,4,7-triacetic acid) (NOTA) has been evaluated as the five coordinate 64Cu complex with results indicating GRPR-specific tumor uptake. This study aimed to conjugate S-2-(4-isothiocyanatobenzyl)-NOTA (p-SCN-Bn-NOTA) to BN(7-14) such that it could form a six coordinate complex with 64Cu and evaluate the resulting peptide. Methods p-SCN-NOTA was conjugated to 8-aminooctanoic acid (Aoc)-BN(7-14) in solution to yield NOTA-Bn-SCN-Aoc-BN(7-14). The unlabeled peptide was evaluated in a cell binding assay using PC-3 prostate cancer cells and 125I-Tyr4-BN to determine the IC50 value. The peptide was radiolabeled with 64Cu and evaluated for internalization into PC-3 cells and for tumor uptake in mice bearing PC-3 xenografts using biodistribution and microPET imaging studies. Results The binding assay demonstrated that NOTA-Bn-SCN-Aoc-BN(7-14) bound with high affinity to GRPR with an IC50 of 1.4 nM. The radiolabeled peptide demonstrated time-dependent internalization into PC-3 cells. In vivo, the peptide demonstrated tumor-specific uptake and imaging that was comparable to that of previously reported 64Cu-labeled BN analogues. Conclusions These studies demonstrate that 64Cu-NOTA-Bn-SCN-Aoc-BN(7-14) binds to GRPR expressing cells and that it can be used for imaging of GRPR-expressing prostate cancer. PMID:22261146

  15. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives.

    PubMed

    Breeman, Wouter A P; de Blois, Erik; Sze Chan, Ho; Konijnenberg, Mark; Kwekkeboom, Dik J; Krenning, Eric P

    2011-07-01

    In this review we give an overview of current knowledge of (68)Ga-labeled pharmaceuticals, with focus on imaging receptor-mediated processes. A major advantage of a (68)Ge/(68)Ga generator is its continuous source of (68)Ga, independently from an on-site cyclotron. The increase in knowledge of purification and concentration of the eluate and the complex ligand chemistry has led to (68)Ga-labeled pharmaceuticals with major clinical impact. (68)Ga-labeled pharmaceuticals have the potential to cover all today's clinical options with (99m)Tc, with the concordant higher resolution of positron emission tomography (PET) in comparison with single photon emission computed tomography. (68)Ga-labeled analogs of octreotide, such as DOTATOC, DOTANOC, and DOTA-TATE, are in clinical application in nuclear medicine, and these analogs are now the most frequently applied of all (68)Ga-labeled pharmaceuticals. All the above-mentioned items in favor of successful application of (68)Ga-labeled radiopharmaceuticals for imaging in patients are strong arguments for the development of a (68)Ge/(68)Ga generator with Marketing Authorization and thus to provide pharmaceutical grade eluate. Moreover, now not one United States Food and Drug Administration-approved or European Medicines Agency-approved (68)Ga-radiopharmaceutical is available. As soon as these are achieved, a whole new radiopharmacy providing PET radiopharmaceuticals might develop. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A fluorous porous polymer monolith photo-patterned chromatographic column for the separation of a flourous/fluorescently labeled peptide within a microchip.

    PubMed

    Xu, Zhenpo; Oleschuk, Richard D

    2014-02-01

    A fluorous porous polymer stationary phase is photo-patterned within a glass microfluidic chip to conduct CEC. During free radical-initiated polymerization, extraneous polymer forms and contributes to excessive microfluidic channel clogging. Nitrobenzene is explored as free radical quencher to limit clogging by minimizing extraneous polymer formation and a number of initiator to quencher ratios are explored with a 0.5:1 quencher (nitrobenzene): initiator (benzoin methyl ether) molar ratio shown to be optimal. The microchip patterned with a fluorous monolith was used to carry out the electrochromatographic analysis of a mixture containing fluorescent and fluorous labeling products. The fluorous monolithic column shows fluorous selectivity for compounds labeled with perfluoromethylene tags and a custom peptide is synthesized that possesses functional groups that can be both fluorescently and fluorously labeled. MALDI MS was used to identify the labeled fragments and microchip based electrochromatography was used to analyze the resulting labeling mixture. This is the first report to our knowledge that uses fluorous porous polymer monolith within a microchip to separate analytes using fluorous-fluorous interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of the Interactions of Fusarium virguliforme Toxin FvTox1 with Synthetic Peptides by Molecular Simulations and a Label-Free Biosensor.

    PubMed

    Zhang, Bailin; Wang, Bing; Morales, Andres W; Scudder, Jonathan; Bhattacharyya, Madan K; Ye, Jing Yong

    2016-03-15

    Fusarium virguliforme is a soil borne pathogen that causes sudden death syndrome (SDS) in soybean plants. This pathogenic disease may result in severe soybean yield suppression and can cause serious economic harm. It has been shown that the FvTox1 toxin produced by the pathogen may be the root cause of foliar SDS. Anti-FvTox1 single-chain variable fragment antibody expressed in transgenic soybean plants was shown to neutralize the FvTox1 toxin involved in foliar SDS development. Here, we have investigated the binding affinities of FvTox1 with four FvTox1-interacting peptides of 7 to 12 amino acids identified from phage display libraries using both bioinformatics-based molecular simulations and label-free bioassays with a unique photonic crystal biosensor. Results from the molecular simulations have predicted the interaction energies and 3-dimensional (3D) structures of FvTox1 and FvTox1-interacting peptide complexes. Our label-free binding assays have further provided the interaction strength of FvTox1 with four different FvTox1-interacting peptides and experimentally confirmed the simulation results obtained from bioinformatics-based molecular calculations.

  18. Preparation of 18F-labeled peptides using the copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.

    PubMed

    Gill, Herman S; Marik, Jan

    2011-10-13

    An optimized procedure for preparing fluorine-18 ((18)F)-labeled peptides by the copper-catalyzed azide-alkyne 1,3-dipolar cyloaddition (CuAAC) is presented here. The two-step radiosynthesis begins with the microwave-assisted nucleophilic (18)F-fluorination of a precursor containing a terminal p-toluenesulfonyl, terminal azide and polyethylene glycol backbone. The resulting (18)F-fluorinated azide-containing building block is coupled to an alkyne-decorated peptide by the CuAAC. The reaction is accelerated by the copper(I)-stabilizing ligand bathophenanthroline disulfonate and can be performed in either reducing or nonreducing conditions (e.g., to preserve disulfide bonds). After an HPLC purification, (18)F-labeled peptide can be obtained with a 31 ± 6% radiochemical yield (n = 4, decay-corrected from (18)F-fluoride elution) and a specific activity of 39.0 ± 12.4 Ci μmol(-1) within 77 ± 4 min.

  19. Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry.

    PubMed

    Riba Garcia, Isabel; Giles, Kevin; Bateman, Robert H; Gaskell, Simon J

    2008-12-01

    The structures of peptide a- and b-type fragment ions were studied using synthetic peptides including a set of isomeric peptides, differing in the sequence location of an alanine residue labeled with (15)N and uniformly with (13)C. The pattern of isotope labeling of second-generation fragment ions derived via a(n) and b(n) ions (where n = 4 or 5) suggested that these intermediates existed in part as macrocyclic structures, where alternative sites of ring opening gave rise to different linear forms whose simple cleavage might give rise to the observed final products. Similar conclusions were derived from combined ion mobility/tandem MS analyses where different fragmentation patterns were observed for isomeric a- or b-type ions that display different ion mobilities. These analyses were facilitated by a new approach to the processing of ion mobility/tandem MS data, from which distinct and separate product ion spectra are derived from ions that are incompletely separated by ion mobility. Finally, an example is provided of evidence for a macrocyclic structure for b(n) ions where n = 8 or 9.

  20. Melanoma targeting with [(99m)Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analogs: Effects of cyclization on the radiopharmaceutical properties.

    PubMed

    Carta, Davide; Salvarese, Nicola; Morellato, Nicolò; Gao, Feng; Sihver, Wiebke; Pietzsch, Hans Jurgen; Biondi, Barbara; Ruzza, Paolo; Refosco, Fiorenzo; Carpanese, Debora; Rosato, Antonio; Bolzati, Cristina

    2016-12-01

    The purpose of this study was to evaluate the effect of cyclization on the biological profile of a [(99m)Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analog. A lactam bridge-cyclized H-Cys-Ahx-βAla(3)-c[Lys(4)-Glu-His-D-Phe-Arg-Trp-Glu(10)]-Arg(11)-Pro-Val-NH2 (NAP-NS2) and the corresponding linear H-Cys-Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2 (NAP-NS1) peptide were synthetized, characterized by ESI-MS spectroscopy and their melanocortin-1 receptor (MC1R) binding affinity was determined in B16/F10 melanoma cells. The consistent [(99m)Tc(N)(PNP3)]-labeled compounds were readily obtained in high specific activity and their stability and biological properties were assessed. As an example, the chemical identity of [(99m)Tc(N)(NAP-NS1)(PNP3)](+) was confirmed by carrier added experiments supported by radio/UV HPLC analysis combined with ESI(+)-MS. Compared with the linear peptide, cyclization negatively affected the biological properties of NAP-NS2 peptide by reducing its binding affinity for MC1R and by decreasing the overall excretion rate of the corresponding [(99m)Tc(N)(PNP3)]-labeled peptide from the body as well as its in vivo stability. [(99m)Tc(N)(NAP-NS1)(PNP3)](+) was evaluated for its potential as melanoma imaging probe in murine melanoma model. Data from in vitro and in vivo studies on B16/F10 melanoma model of [(99m)Tc(N)(NAP-NS1)(PNP3)](+) clearly evidenced that the radiolabeled linear peptide keeps its biological properties up on the conjugation to the [(99m)Tc(N)(PNP3)]-building block. The progressive increase of the tumor-to-nontarget ratios over the time indicates a quite stable interaction between the radio-complex and the MC1R.

  1. 203Pb-Labeled Alpha-Melanocyte-Stimulating Hormone Peptide as an Imaging Probe for Melanoma Detection

    SciTech Connect

    Yubin, Miao; Figueroa, Said D.; Fisher, Darrell R.; Moore, Herbert A.; Testa, Richard F.; Hoffman, Timothy J.; Quinn, Thomas P.

    2008-05-01

    Abbreviations: a-MSH; alpha melanocyte stimulating hormone, DOTA; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, Re(Arg11)CCMSH; DOTA-[Cys3,4,10, D-Phe7, Arg11]a-MSH3-13, NDP; [Nle4,d-Phe7] a-MSH3-13. Abstract Peptide-targeted alpha therapy with 200 mCi of 212Pb-DOTA-Re(Arg11)CCMSH cured 45% of B16/F1 murine melanoma-bearing C57 mice in a 120-day study, highlighting its melanoma treatment potential. However, there is a need to develop an imaging surrogate for patient specific dosimetry and to monitor the tumor response to 212Pb-DOTA-Re(Arg11)CCMSH therapy. The purpose of this study was to evaluate the potential of 203Pb-DOTA-Re(Arg11)CCMSH as a matched-pair SPECT imaging agent for 212Pb-DOTA-Re(Arg11)CCMSH. Method: DOTA-Re(Arg11)CCMSH was labeled with 203Pb in 0.5 M NH4OAc buffer at pH 5.4. The internalization and efflux of 203Pb-DOTA-Re(Arg11)CCMSH were determined in B16/F1 melanoma cells. The pharmacokinetics of 203Pb-DOTA-Re(Arg11)CCMSH were examined in B16/F1 melanoma-bearing C57 mice. A micro-SPECT/CT imaging study was performed with 203Pb-DOTA-Re(Arg11)CCMSH in a B16/F1 melanoma-bearing C57 mouse at 2 h post-injection. Results: 203Pb-DOTA-Re(Arg11)CCMSH was easily prepared in NH4OAc buffer and completely separated from the excess non-radiolabeled peptide by RP-HPLC. 203Pb-DOTA-Re(Arg11)CCMSH displayed fast internalization and extended retention in B16/F1 cells. Approximately 73% of 203Pb-DOTA-Re(Arg11)CCMSH activity internalized after a 20-min incubation at 25C. After incubating the cells in culture media for 20 min, 78% of internalized activity remained in the cells. 203Pb-DOTA-Re(Arg11)CCMSH exhibited similar biodistribution pattern with 212Pb-DOTA-Re(Arg11)CCMSH in B16/F1 melanoma-bearing mice. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor uptake of 12.00 +/- 3.20 %ID/g at 1 h post-injection. The tumor uptake gradually decreased to 3.43 +/- 1.12 %ID/g at 48 h post-injection. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor to kidney

  2. HCD-only fragmentation method balances peptide identification and quantitation of TMT-labeled samples in hybrid linear ion trap/orbitrap mass spectrometers.

    PubMed

    Chiva, Cristina; Sabidó, Eduard

    2014-01-16

    Protein quantitation based on the generation of reporter ions from chemical labels is a widely used quantitative proteomics approach that enables measuring changes in protein abundance in response to biological perturbations. Isobaric labeling strategies at the MS2 level allow simultaneous measurements of different samples but it requires a fine-tuning of the collision energy used in HCD fragmentation to simultaneously obtain confident peptide identifications and highly sensitive and accurate quantitation. Although the recent development of dual CID/HCD fragmentation methods to circumvent these limitations, the fact is that many laboratories still use HCD-only methods for routine TMT protein quantitation experiments. Here, we have explored the effect of the collision energy on peptide identification and quantitation using HCD-only fragmentation methods on a linear ion trap/orbitrap mass spectrometer bearing an axial field HCD fragmentation cell. Our results using the HCD-only method show that a balance between the increase in the number of peptide identifications and the decrease in the precision of peptide quantitation is attained at a normalized collision energy of 40%. The HCD-only method at 40% does not only yield better results than those obtained using a higher collision energies, but it also outperforms the results obtained using the available CID/HCD dual method. In this work we have explored the effect of the collision energy on peptide identification and quantitation using HCD-only fragmentation methods on an Orbitrap Velos Pro mass spectrometer. Our results show that when using a HCD-only method, a balance between the number of peptide identifications and the precision of peptide quantitation is attained at a normalized collision energy (NCE) of 40%. This contrast with the parameters routinely used in many laboratories, which are set at NCE 45%. The single HCD method at 40% does not only yield better results than those obtained using a collision energy

  3. A paired ions scoring algorithm based on Morpheus for simultaneous identification and quantification of proteome samples prepared by isobaric peptide termini labeling strategies.

    PubMed

    Zhang, Shen; Wu, Qi; Shan, Yichu; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-06-01

    The isobaric peptide termini labeling (IPTL) method is a promising strategy in quantitative proteomics for its high accuracy, while the increased complexity of MS2 spectra originated from the paired b, y ions has adverse effect on the identification and the coverage of quantification. Here, a paired ions scoring algorithm (PISA) based on Morpheus, a database searching algorithm specifically designed for high-resolution MS2 spectra, was proposed to address this issue. PISA was first tested on two 1:1 mixed IPTL datasets, and increases in peptide to spectrum matchings, distinct peptides and protein groups compared to Morpheus itself and MASCOT were shown. Furthermore, the quantification is simultaneously performed and 100% quantification coverage is achieved by PISA since each of the identified peptide to spectrum matchings has several pairs of fragment ions which could be used for quantification. Then the PISA was applied to the relative quantification of human hepatocellular carcinoma cell lines with high and low metastatic potentials prepared by an IPTL strategy.

  4. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease.

    PubMed

    Jiang, Nan; Leithold, Leonie H E; Post, Julia; Ziehm, Tamar; Mauler, Jörg; Gremer, Lothar; Cremer, Markus; Schartmann, Elena; Shah, N Jon; Kutzsche, Janine; Langen, Karl-Josef; Breitkreutz, Jörg; Willbold, Dieter; Willuweit, Antje

    2015-01-01

    Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.

  5. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease

    PubMed Central

    Jiang, Nan; Leithold, Leonie H. E.; Post, Julia; Ziehm, Tamar; Mauler, Jörg; Gremer, Lothar; Cremer, Markus; Schartmann, Elena; Shah, N. Jon; Kutzsche, Janine; Langen, Karl-Josef; Breitkreutz, Jörg; Willbold, Dieter; Willuweit, Antje

    2015-01-01

    Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment. PMID:26046986

  6. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    SciTech Connect

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  7. In Vitro Assessment of a Peptide Nucleic Acid (PNA) - Peptide Conjugate Labeled With an Auger-Emitting Radionuclide for Prostate Cell Killing

    DTIC Science & Technology

    2005-02-01

    synthesis of a peptide nucleic acid (PNA) that has an Auger-emitter (1-125) incorporated. By design the PNA will bind with mRNA and DNA associated with...bind with cell surface gastrin -releasing peptide receptors and be internalized (3). Binding with mRNA and nuclear DNA specific to the insulin-like...route proposed to prepare 10 is shown in Figure 1 (compounds 1-10). This synthesis began with the preparation of the base-reactive intermediate 5

  8. PET Imaging of Extracellular pH in Tumors with 64Cu- and 18F-Labeled pHLIP Peptides: A Structure–Activity Optimization Study

    PubMed Central

    2016-01-01

    pH (low) insertion peptides (pHLIP peptides) target acidic extracellular environments in vivo due to pH-dependent cellular membrane insertion. Two variants (Var3 and Var7) and wild-type (WT) pHLIP peptides have shown promise for in vivo imaging of breast cancer. Two positron emitting radionuclides (64Cu and 18F) were used to label the NOTA- and NO2A-derivatized Var3, Var7, and WT peptides for in vivo biodistribution studies in 4T1 orthotopic tumor-bearing BALB/c mice. All of the constructs were radiolabeled with 64Cu or [18F]-AlF in good yield. The in vivo biodistribution of the 12 constructs in 4T1 orthotopic allografted female BALB/c mice indicated that NO2A-cysVar3, radiolabeled with either 18F (4T1 uptake; 8.9 ± 1.7%ID/g at 4 h p.i.) or 64Cu (4T1 uptake; 8.2 ± 0.9%ID/g at 4 h p.i. and 19.2 ± 1.8% ID/g at 24 h p.i.), shows the most promise for clinical translation. Additional studies to investigate other tumor models (melanoma, prostate, and brain tumor models) indicated the universality of tumor targeting of these tracers. From this study, future clinical translation will focus on 18F- or 64Cu-labeled NO2A-cysVar3. PMID:27396694

  9. N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist

    PubMed Central

    1993-01-01

    Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc- FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle- Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl- phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist- induced receptor clustering was

  10. Hybridization-Modulated Ion Fluxes through Peptide-Nucleic-Acid-Functionalized Gold Nanotubules. A New Approach to Quantitative Label-Free DNA Analysis

    PubMed Central

    Jágerszki, Gyula; Gyurcsányi, Róbert E.; Höfler, Lajos; Pretsch, Ernő

    2008-01-01

    The inner walls of gold nanotubules, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA modified nanotubules are shown to decrease the flux of optically detected anionic markers through the nanotubules in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores. PMID:17488052

  11. Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis.

    PubMed

    Jágerszki, Gyula; Gyurcsányi, Róbert E; Höfler, Lajos; Pretsch, Ernö

    2007-06-01

    The inner walls of gold nanotubes, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA-modified nanotubes is shown to decrease the flux of optically detected anionic markers through the nanotubes in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores.

  12. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers.

    PubMed Central

    Hung, S C; Wang, W; Chan, S I; Chen, H M

    1999-01-01

    Custom antibacterial peptides, cecropins B1 (CB1) and B3 (CB3), were synthesized. These peptides have particular sequence characteristics, with CB1 having two amphipathic alpha-helical segments and CB3 having two hydrophobic alpha-helical segments. These differences were exploited for a study of their efficacy in breaking up liposomes, which had different combinations of phosphatidic acid (PA) and phosphatidylcholine (PC), and a study of their lipid binding ability. Binding and nonbinding lysis actions of CB1 and CB3 on liposomes were examined further by electron spin resonance (ESR). The spin-labeled lipids 5'SL-PC, 7'SL-PC, 10'SL-PC, 12'SL-PC, and 16'SL-PC were used as probes. The ESR spectra revealed larger outer hyperfine splittings (2A(max)) for CB1 when the interactions of CB1 and CB3 with liposomes were compared. These observations indicate a larger restriction of the motion of the spin-labeled chains in the presence of CB1. Plots of the effective order parameter at the various probe positions (chain flexibility gradient) versus the peptide-lipid ratio further suggested that the lysis action of CB1 is related to its capacity to bind to the lipid bilayers. In contrast, there is no evidence of binding for CB3. To augment these findings, four spin-labeled peptides, C8SL-CB1, C32SL-CB1, C5SL-CB3, and C30SL-CB3, were also examined for their binding to and their state of aggregation within the lipid bilayers. Association isotherms of the peptides were measured for liposomes containing two molar fractions of PA (0.25 and 0.75). The membrane binding of the CB1 peptides exhibited a cooperative behavior, whereas the association isotherm of CB3 revealed binding to the lipid only for beta = 0.75 liposomes. To further identify the location of CB1 in the lipid bilayers, measurements of the collision rate with chromium oxalate in solution were conducted. Results from ESR power saturation measurements suggested that the NH(2)-terminal alpha-helix of CB1 is located on the

  13. "Click"-cyclized (68)Ga-labeled peptides for molecular imaging and therapy: synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system.

    PubMed

    Martin, Molly E; Sue O'Dorisio, M; Leverich, Whitney M; Kloepping, Kyle C; Walsh, Susan A; Schultz, Michael K

    2013-01-01

    Cyclization techniques are used often to impart higher in vivo stability and binding affinity to peptide targeting vectors for molecular imaging and therapy. The two most often used techniques to impart these qualities are lactam bridge construction and disulfide bond formation. While these techniques have been demonstrated to be effective, orthogonal protection/deprotection steps can limit achievable product yields. In the work described in this chapter, new α-melanocyte stimulating hormone (α-MSH) peptide analogs were synthesized and cyclized by copper-catalyzed terminal azide-alkyne cycloaddition "click" chemistry techniques. The α-MSH peptide and its cognate receptor (melanocortin receptor subtype 1, MC1R) represent a well-characterized model system to examine the effect of the triazole linkage for peptide cyclization on receptor binding in vitro and in vivo. Four new DOTA-conjugated α-MSH analogs were cyclized and evaluated by in vitro competitive binding assays, serum stability testing, and in vivo imaging by positron emission tomography (PET) of tumor-bearing mice. These new DOTA-conjugated click-cyclized analogs exhibited selective high binding affinity (<2 nM) for MC1R on melanoma cells in vitro, high stability in human serum, and produced high-contrast PET/CT images of tumor xenografts. (68)Ga-labeled DOTA bioconjugates displayed rapid pharmacokinetics with receptor-mediated tumor accumulation of up to 16 ± 5% ID/g. The results indicate that the triazole ring is an effective bioisosteric replacement for the standard lactam bridge assemblage for peptide cyclization. Radiolabeling results confirm that Cu catalyst is sufficiently removed prior to DOTA chelator addition to enable insertion of radio metals or stable metals for molecular imaging and therapy. Thus, these click-chemistry-cyclized variants show promise as agents for melanocortin receptor-targeted imaging and radionuclide therapy.

  14. An Open-Label, Randomized Phase II Trial of Personalized Peptide Vaccination in Patients with Bladder Cancer that Progressed after Platinum-Based Chemotherapy.

    PubMed

    Noguchi, Masanori; Matsumoto, Kazumasa; Uemura, Hirotsugu; Arai, Gaku; Eto, Masatoshi; Naito, Seiji; Ohyama, Chikara; Nasu, Yasutomo; Tanaka, Masatoshi; Moriya, Fukuko; Suekane, Shigetaka; Matsueda, Satoko; Komatsu, Nobukazu; Sasada, Tetsuro; Yamada, Akira; Kakuma, Tatsuyuki; Itoh, Kyogo

    2016-01-01

    The prognosis of platinum-based chemotherapy-resistant metastatic urothelial cancer of the bladder remains poor. Personalized selection of the right peptides for each patient could be a novel approach for a cancer vaccine to boost anticancer immunity. In this randomized, open-label, phase II study, patients ages ≥18 years with progressive bladder cancer after first-line platinum-based chemotherapy were randomly assigned (1:1) to receive personalized peptide vaccination (PPV) plus best supportive care (BSC) or BSC. PPV treatment used a maximum of four peptides chosen from 31 candidate peptides according to human leukocyte antigen types and peptide-reactive IgG titers, for 12 s.c. injections (8 injections, weekly; 4 injections, bi-weekly). The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), immune response, and toxicity. Eighty patients were randomly assigned to receive either PPV plus BSC (n = 39) or BSC (n = 41). No significant improvement in PFS was noted [HR, 0.7; 95% confidence interval (CI), 0.4-1.2, P = 0.17]. For the secondary endpoints, PPV plus BSC significantly prolonged OS compared with BSC (HR, 0.58; 95% CI, 0.34-0.99, P = 0.049), with median OS of 7.9 months (95% CI, 3.5-12.0) in the PPV plus BSC and 4.1 months (95% CI, 2.8-6.9) in the BSC. PPV treatment was well tolerated, without serious adverse drug reactions. PPV could not prolong PFS, but OS appeared to be improved with low toxicity and immune responses. Further large-scale, randomized trials are needed to confirm these results. ©2015 American Association for Cancer Research.

  15. “Click” cyclized gallium-68 labeled peptides for molecular imaging and therapy: Synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system

    PubMed Central

    Martin, Molly E.; O'Dorisio, M. Sue; Leverich, Whitney M.; Kloepping, Kyle C.; Schultz, Michael K.

    2013-01-01

    Cyclization techniques are used often to impart higher in vivo stability and binding affinity to peptide targeting vectors for molecular imaging and therapy. The two most often used techniques to impart these qualities are lactam bridge construction and disufide bond formation. While these techniques have been demonstrated to be effective, orthogonal protection/deprotection steps can limit achievable product yields. In this chapter, new α-melanocyte stimulating hormone (α-MSH) peptide analogs were synthesized and cyclized by copper-catalyzed terminal azide-alkyne cycloaddition “click” chemistry techniques. The α-MSH peptide and its cognate receptor (melanocortin receptor subtype 1, MC1R) represents a well-characterized model system to examine the effect of the triazole linkage for peptide cyclization on receptor binding in vitro and in vivo. Four new DOTA-conjugated α-MSH analogs were cyclized and evaluated by in vitro competitive binding assays, serum stability testing, and in vivo imaging by positron emission tomography (PET) of tumor bearing mice. These new DOTA-conjugated click-cyclized analogs exhibited selective high binding affinity (<2 nM) MC1R to melanoma cells in vitro, high stability in human serum, and produced high contrast PET/CT images of tumor xenografts. Gallium-68 labeled DOTA bioconjugates displayed rapid pharmacokinetics with receptor mediated tumor accumulation of up to 16±5 %ID/g. The results indicate that the triazole ring is an effective bioisosteric replacement for the standard lactam bridge assemblage for peptide cyclization. Radiolabeling results confirm that Cu catalyst is sufficiently removed prior to DOTA chelator addition to enable insertion of radiometals or stable metals for molecular imaging and therapy. Thus, these click-chemistry-cyclized variants show promise as agents for melanocortin receptor-targeted imaging and radionuclide therapy. PMID:22918759

  16. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-11-14

    The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.

  17. Continuous on-chip fluorescence labelling, free-flow isoelectric focusing and marker-free isoelectric point determination of proteins and peptides.

    PubMed

    Herzog, Christin; Poehler, Elisabeth; Peretzki, Andrea J; Borisov, Sergey M; Aigner, Daniel; Mayr, Torsten; Nagl, Stefan

    2016-04-26

    We present a microfluidic platform that contains a micro flow reactor for on-chip biomolecule labelling that is directly followed by a separation bed for continuous free-flow electrophoresis and has an integrated hydrogel-based near-infrared fluorescent pH sensor layer. Using this assembly, labelling of protein and peptide mixtures, their separation via free-flow isoelectric focusing and the determination of the isoelectric point (pI) of the separated products via the integrated sensor layer could be carried out within typically around 5 minutes. Spatially-resolved immobilization of fluidic and sensing structures was carried out via multistep photolithography. The assembly was characterized and optimized with respect to their fluidic and pH sensing properties and applied in the IEF of model proteins, peptides and a tryptic digest from physalaemine. We have therefore realized continuous sample preparation and preparative separation, analyte detection, process observation and analyte assignment capability based on pI on a single platform the size of a microscope slide.

  18. In vitro and in vivo evaluation of a 64Cu-labeled NOTA-Bn-SCN-Aoc-bombesin analogue in gastrin-releasing peptide receptor expressing prostate cancer.

    PubMed

    Craft, Jeffrey M; De Silva, Ravindra A; Lears, Kimberly A; Andrews, Rebecca; Liang, Kexian; Achilefu, Samuel; Rogers, Buck E

    2012-07-01

    Bombesin (BN) is an amphibian peptide that binds to the gastrin-releasing peptide receptor (GRPR). It has been demonstrated that BN analogues can be radiolabeled for potential diagnosis and treatment of GRPR-expressing malignancies. Previous studies have conjugated various chelators to the eight C-terminal amino acids of BN [BN(7-14)] for radiolabeling with 64Cu. Recently, (1,4,7-triazacyclononane-1,4,7-triacetic acid) (NOTA) has been evaluated as the five-coordinate 64Cu complex, with results indicating GRPR-specific tumor uptake. This study aimed to conjugate S-2-(4-isothiocyanatobenzyl)-NOTA (p-SCN-Bn-NOTA) to BN(7-14) such that it could form a six-coordinate complex with 64Cu and to evaluate the resulting peptide. p-SCN-NOTA was conjugated to 8-aminooctanoic acid (Aoc)-BN(7-14) in solution to yield NOTA-Bn-SCN-Aoc-BN(7-14). The unlabeled peptide was evaluated in a cell binding assay using PC-3 prostate cancer cells and 125I-Tyr4-BN to determine the IC50 value. The peptide was radiolabeled with 64Cu and evaluated for internalization into PC-3 cells and for tumor uptake in mice bearing PC-3 xenografts using biodistribution and micro-positron emission tomography imaging studies. The binding assay demonstrated that NOTA-Bn-SCN-Aoc-BN(7-14) bound with high affinity to GRPR with an IC50 of 1.4 nM. The radiolabeled peptide demonstrated time-dependent internalization into PC-3 cells. In vivo, the peptide demonstrated tumor-specific uptake and imaging that were comparable to those of previously reported 64Cu-labeled BN analogues. These studies demonstrate that 64Cu-NOTA-Bn-SCN-Aoc-BN(7-14) binds to GRPR-expressing cells and that it can be used for imaging of GRPR-expressing prostate cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Affinity labeling of lysine-149 in the anion-binding exosite of human. alpha. -thrombin with an N sup. alpha. -(dinitrofluorobenzyl)hirudin C-terminal peptide

    SciTech Connect

    Bourdon, P.; Maraganore, J.M. ); Fenton, J.W. II )

    1990-07-10

    In order to define structural regions in thrombin that interact with hirudin, the N{sup {alpha}}-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin (GDFEEIPEEY(O{sup 35}SO{sub 3})L (DNFB-({sup 35}S)Hir{sub 54-64})). DNFB-({sup 35}S)Hir{sub 54-64} was reacted at a 10-fold molar excess with human {alpha}-thrombin in phosphate-buffered saline at pH 7.4 and 23{degree}C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single {sup 35}S-labeled band of M{sub r} {approximately}32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at M{sub r} {approximately}31,000. Incorporation of the {sup 35}S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human {alpha}-thrombin-DNFB-Hir{sub 54-64} complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir{sub 54-64} derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 {angstrom} from the catalytic apparatus.

  20. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the

  1. Cyclic-AMP-dependent protein kinase (PKA) activity assay based on FRET between cationic conjugated polymer and chromophore-labeled peptide.

    PubMed

    Tang, Shiyun; Hu, Yufang; Shen, Qinpeng; Fang, Heting; Li, Wang; Nie, Zhou; Yao, Shouzhuo

    2014-09-21

    A sensitive fluorescence turn-on biosensing platform for protein kinase activity assay has been developed based on fluorescence resonance energy transfer (FRET) between a fluorophore labeled peptide and a water soluble cationic conjugated polymer (CCP). The CCP-based assay is based on the electrostatic interaction between the peptide and the CCP. The FRET efficiency will change with the changing charges around the peptide after phosphorylation. The feasibility of this method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.3 mU μL(-1)). Based on its simple mechanism, this assay is also sensitive and robust enough to be applied to the evaluation of PKA inhibitor H-89. The IC50 value, the half maximal inhibitory concentration, was 40 nM. Furthermore, our method has excellent selectivity. CCP-based assay is sensitive, versatile, cost-effective and easy to operate, so, this method is a promising candidate for kinase activity assay and inhibitor screening.

  2. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers.

    PubMed

    Persson, Morten; Madsen, Jacob; Østergaard, Søren; Ploug, Michael; Kjaer, Andreas

    2012-05-01

    The urokinase-type plasminogen activator receptor (uPAR) is a well-established biomarker for tumor aggressiveness and metastatic potential. DOTA-AE105 and DOTA-AE105-NH(2) labeled with (64)Cu have previously been demonstrated to be able to noninvasively monitor uPAR expression using positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide synthesis protocols using the Fmoc strategy. (68)GaCl(3) was eluted from a (68)Ge/(68)Ga generator. The eluate was either concentrated on a cation-exchange column or fractionated and used directly for labeling. For in vitro characterization of both tracers, partition coefficient, buffer and plasma stability, uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated peptides and identical to AE105. Labeling of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) with (68)Ga was done at 95°C and room temperature, respectively. The highest radiochemical yield and purity were obtained using fractionated elution, whereas a negative effect of acetone on labeling efficiency for NODAGA-AE105-NH(2) was observed. Good stability in phosphate-buffered saline and mouse plasma was observed. High cell uptake was found for both tracers in U87MG tumor cells. Dynamic microPET imaging demonstrated good tumor-to-background ratio for both tracers. Tumor uptake was 2.1% ID/g and 1.3% ID/g 30 min postinjection and 2.0% ID/g and 1.1% ID/g 60 min postinjection for (68)Ga-NODAGA-AE105-NH(2) and (68)Ga-DOTA-AE105-NH(2), respectively. A significantly higher tumor-to-muscle ratio (P<.05) was found for (68)Ga

  3. High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder.

    PubMed

    Hwang, Hye Jin; Ryu, Myung Yi; Park, Chan Young; Ahn, Junki; Park, Hyun Gyu; Choi, Changsun; Ha, Sang-Do; Park, Tae Jung; Park, Jong Pil

    2017-01-15

    Norovirus is known as the major cause of highly infection for gastrointestinal tracts. In this study, robust and highly sensitive biosensors for detecting human norovirus by employing a recognition affinity peptide-based electrochemical platform were described. A series of amino acid-substituted and cysteine-incorporated recognition peptides isolated from evolutionary phage display technique was chemically synthesized and immobilized to a gold sensor layer, the detection performance of the gold-immobilized synthetic peptide-based sensor system was assessed using QCM, CV and EIS. Using EIS, the limit of detection with Noro-1 as a molecular binder was found to be 99.8nM for recombinant noroviral capsid proteins (rP2) and 7.8copies/mL for human norovirus, thereby demonstrating a high degree of sensitivity for their corresponding targets. These results suggest that a biosensor which consists of affinity peptides as a molecular binder and miniaturized microdevices as diagnostic tool could be served as a new type of biosensing platform for point-of-care testing.

  4. Cleavable ester linked magnetic nanoparticles for labeling of solvent exposed primary amine groups of peptides/proteins

    USDA-ARS?s Scientific Manuscript database

    In order to study the solvent exposed lysine residues of peptides/proteins, we previously reported disulfide linked N-hydrosuccinimide ester modified silica coated iron oxide magnetic nanoparticles (NHS-SS-SiO2@Fe3O4 MNPs). The presence of a disulfide bond in the linker limits the use of disulfide r...

  5. Solid-phase synthesis of peptide radiopharmaceuticals using Fmoc-N-epsilon-(hynic-Boc)-lysine, a technetium-binding amino acid: application to Tc-99m-labeled salmon calcitonin.

    PubMed

    Greenland, William E P; Howland, Kevin; Hardy, Judith; Fogelman, Ignac; Blower, Philip J

    2003-04-24

    Labeling of proteins with metallic radionuclides for use in radiopharmaceuticals involves covalently attaching a bifunctional chelator. In principle, use of smaller peptides allows this chelator to be incorporated during solid-phase peptide synthesis (SPPS) with total site specificity. To realize the advantages of this approach, a lysine-hynic conjugate Fmoc-N-epsilon-(Hynic-Boc)-Lys was synthesized for incorporating the well-known technetium-99m-binding hydrazinonicotinamide ligand into peptides during SPPS. It was used to synthesize a technetium-99m-labeled salmon calcitonin with the hynic-linked amino acid in place of lysine-18. A trifluoroacetate group protected the hynic during alkaline oxidation to the cyclic disulfide and was readily removed by mild acid treatment. The peptide was efficiently labeled (91-98% radiochemical yield) with Tc-99m in the presence of tricine and SnCl(2) with high specific activity (>100 MBq/microg). The product showed good serum stability and specific affinity for human calcitonin receptors. Fmoc-N-epsilon-(Hynic-Boc)-Lys is a highly versatile technetium-binding amino acid for incorporation into peptides during SPPS. This allows total flexibility and control in the site of attachment and is suitable for a combinatorial approach to peptide radiopharmaceuticals.

  6. In vivo characterisation of a therapeutically relevant self-assembling (18) F-labelled β-sheet forming peptide and its hydrogel using positron emission tomography.

    PubMed

    Morris, O; Elsawy, M A; Fairclough, M; Williams, K J; Mcmahon, A; Grigg, J; Forster, D; Miller, A F; Saiani, A; Prenant, C

    2017-08-01

    Positron emission tomography (PET) and fluorescence labelling have been used to assess the pharmacokinetics, biodistribution and eventual fate of a hydrogel-forming nonapeptide, FEFKFEFKK (F9), in healthy mice, using (18) F-labelled and fluorescein isothiocyanate (FITC)-labelled F9 analogues. F9 was site-specifically radiolabelled with 2-[(18) F]fluoro-3-pyridinecarboxaldehyde ([(18) F]FPCA) via oxime bond formation. [(18) F]FPCA-F9 in vivo fate was evaluated both as a solution, following intravenous administration, and as a hydrogel when subcutaneously injected. The behaviour of FITC-F9 hydrogel was assessed following subcutaneous injection. [(18) F]FPCA-F9 demonstrated high plasma stability and primarily renal excretion; [(18) F]FPCA-F9 when in solution and injected into the bloodstream displayed prompt bladder uptake (53.4 ± 16.6 SUV at 20 minutes postinjection) and rapid renal excretion, whereas [(18) F]FPCA-F9 hydrogel, formed by co-assembly of [(18) F]FPCA-F9 monomer with unfunctionalised F9 peptide and injected subcutaneously, showed gradual bladder accumulation of hydrogel fragments (3.8 ± 0.4 SUV at 20 minutes postinjection), resulting in slower renal excretion. Gradual disaggregation of the F9 hydrogel from the site of injection was monitored using FITC-F9 hydrogel in healthy mice (60 ± 3 over 96 hours), indicating a biological half-life between 1 and 4 days. The in vivo characterisation of F9, both as a gel and a solution, highlights its potential as a biomaterial. Copyright © 2017 The Authors Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons Ltd.

  7. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling

  8. Binding of pyrene isothiocyanate to the E1ATP site makes the H4-H5 cytoplasmic loop of Na+/K+-ATPase rigid.

    PubMed

    Linnertz, H; Miksik, I; Kvasnicka, P; Bertoli, E; Mazzanti, L; Schoner, W; Amler, E

    1998-01-15

    1-Pyreneisothiocyanate was shown to be an inhibitor of Na+/K+-ATPase. Reverse-phase HPLC and activity studies indicated binding of 1-pyreneisothiocyanate at the H4-H5 loop of the alpha subunit and competition with the fluorescein 5'-isothiocyanate for the E1ATP site. While fluorescein 5'-isothiocyanate, the fluorescent ATP pseudo-analog, was shown to be immobilized at the E1ATP site, there was no possibility to draw any conclusion about the flexibility of the E1ATP site due to its short lifetime. Employing 1-pyreneisothiocyanate as a long-lived fluorophore and a label for the E1ATP site, we found that the ATP-binding site of Na+/K+-ATPase and, in fact, the whole large intracellularly exposed H4-H5 loop of the catalytic alpha subunit is rigid and rotationally immobilized. This has important consequences for the molecular mechanism of the transport function.

  9. In Vitro and In Vivo Evaluation of 64Cu-Labeled SarAr-Bombesin Analogs in Gastrin-Releasing Peptide Receptor–Expressing Prostate Cancer

    PubMed Central

    Lears, Kimberly A.; Ferdani, Riccardo; Liang, Kexian; Zheleznyak, Alexander; Andrews, Rebecca; Sherman, Christopher D.; Achilefu, Samuel; Anderson, Carolyn J.; Rogers, Buck E.

    2011-01-01

    internalization into PC-3 cells. In vivo, the radiolabeled peptides demonstrated tumor-specific uptake (13.0 and 8.5 percentage injected dose per gram for 64Cu-SarAr-SA-Aoc-bombesin(7–14) and 64Cu-SarAr-SA-Aoc-GSG-bombesin(7–14), respectively, at 1 h) and imaging that was comparable to, or better than, that of the previously reported 64Cu-labeled bombesin analogs. The 64Cu-SarAr-SA-Aoc-GSG-bombesin(7–14) had more rapid blood clearance and lower tumor and normal-tissue uptake than 64Cu-SarAr-SA-Aoc-bombesin(7–14), resulting in similar tumor-to-blood ratios for each analog (15.1 vs. 11.3 for 64Cu-SarAr-SA-Aoc-bombesin(7–14) and 64Cu-SarAr-SA-Aoc-GSG-bombesin(7–14), respectively, at 1 h). Conclusion These studies demonstrate that 64Cu-SarAr-SA-Aoc-bombesin(7–14) and 64Cu-SarAr-SA-Aoc-GSG-bombesin(7–14) bound with high affinity to GRPR-expressing cells and that these peptides can be used for PET of GRPR-expressing prostate cancer. PMID:21321264

  10. Rapid De-O-glycosylation Concomitant with Peptide Labeling Using Microwave Radiation and an Alkyl Amine Base

    PubMed Central

    Maniatis, Stephanie; Zhou, Hui; Reinhold, Vernon

    2010-01-01

    Procedures are detailed for a quantitative release of O-linked glycans from peptides that now provide a shorter reaction time, a possible identification of O-linked sites, and a quantification of all reaction products. The release was initiated by a mild base, dimethylamine, and accelerated by microwave radiation. Differential analysis using standard glycoproteins has shown improved release efficiency concurrent with facile incorporation of dimethylamine into the former O-linked sites. In situ glycan reduction insures protection against peeling, and is synchronous with subsequent studies by high performance MSn sequencing. The protocols were established with a synthetic O-GlcNAc peptide that would mimic the linkage chemistry and applied to a well characterized glycoprotein bovine fetuin with both N-, and O-linked glycans and a highly-glycosylated swine mucin. PMID:20178317

  11. Distance measurements in the borderline region of applicability of CW EPR and DEER: A model study on a homologous series of spin-labelled peptides

    NASA Astrophysics Data System (ADS)

    Banham, J. E.; Baker, C. M.; Ceola, S.; Day, I. J.; Grant, G. H.; Groenen, E. J. J.; Rodgers, C. T.; Jeschke, G.; Timmel, C. R.

    2008-04-01

    Inter-spin distances between 1 nm and 4.5 nm are measured by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) methods for a series of nitroxide-spin-labelled peptides. The upper distance limit for measuring dipolar coupling by the broadening of the CW spectrum and the lower distance limit for the present optimally-adjusted double electron electron resonance (DEER) set-up are determined and found to be both around 1.6-1.9 nm. The methods for determining distances and corresponding distributions from CW spectral line broadening are reviewed and further developed. Also, the work shows that a correction factor is required for the analysis of inter-spin distances below approximately 2 nm for DEER measurements and this is calculated using the density matrix formalism.

  12. Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor.

    PubMed

    Werner, Kristin; Kälble, Solveig; Wolter, Sabine; Schneider, Erich H; Buschauer, Armin; Neumann, Detlef; Seifert, Roland

    2015-10-01

    The histamine H2 receptor (H2R) is a Gs protein-coupled receptor. Its activation leads to increases in the second messenger adenosine-3',5'-cyclic monophosphate (cAMP). Presently, several systems are established to characterize the pharmacological profile of the H2R, mostly requiring radioactive material, animal models, or human blood cells. This prompted us to establish a flow cytometric analysis with a fluorescently labeled formyl peptide receptor (FPR) ligand in order to investigate the H2R functionally and pharmacologically. First, we stimulated U937 promonocytes, which mature in a cAMP-dependent fashion upon H2R activation, with histamine (HA) or selective H2R agonists and measured increases in cAMP concentrations by mass spectrometry. Next, indicative for the maturation of U937 promonocytes, we assessed the FPR expression upon incubation with HA or H2R agonists. FPR expression was measured either indirectly by formyl peptide-induced changes in intracellular calcium concentrations ([Ca(2+)]i) or directly with the fluorescein-labeled FPR ligand fNleLFNleYK-Fl. HA and H2R agonists concentration-dependently induced FPR expression, and potencies and efficacies of fMLP-induced increases in [Ca(2+)]i and FPR density correlated linearly. Accordingly, flow cytometric analysis of FPR expression constitutes a simple, inexpensive, sensitive, and reliable method to characterize the H2R pharmacologically. Furthermore, we evaluated FPR expression at the mRNA level. Generally, quantitative real-time polymerase chain reaction confirmed functional data. Additionally, our study supports the concept of functional selectivity of the H2R, since we observed dissociations in the efficacies of HA and H2R agonists in cAMP accumulation and FPR expression.

  13. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with {sup 18}F-Al labeled Cys{sup 39}-exendin-4

    SciTech Connect

    Mi, Baoming; Xu, Yuping; Pan, Donghui; Wang, Lizhen; Yang, Runlin; Yu, Chunjing; Wan, Weixing; Wu, Yiwei; Yang, Min

    2016-02-26

    Purpose: Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, {sup 18}F-Al labeled exendin-4 analog, {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. Methods: The targeting of {sup 18}F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. Results: The pancreas of healthy rats was readily visualized after administration of {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. Conclusion: The favorable preclinical data indicated that {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells.

  14. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with (18)F-Al labeled Cys(39)-exendin-4.

    PubMed

    Mi, Baoming; Xu, Yuping; Pan, Donghui; Wang, Lizhen; Yang, Runlin; Yu, Chunjing; Wan, Weixing; Wu, Yiwei; Yang, Min

    2016-02-26

    Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, (18)F-Al labeled exendin-4 analog, (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. The targeting of (18)F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with (18)F-Al-NOTA-MAL-Cys(39)-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. The pancreas of healthy rats was readily visualized after administration of (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. The favorable preclinical data indicated that (18)F-Al-NOTA-MAL-Cys(39)-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Synthesis and luminescence properties of new red-shifted absorption lanthanide(III) chelates suitable for peptide and protein labelling.

    PubMed

    Maindron, Nicolas; Poupart, Séverine; Hamon, Maxime; Langlois, Jean-Baptiste; Plé, Nelly; Jean, Ludovic; Romieu, Anthony; Renard, Pierre-Yves

    2011-04-07

    The synthesis and photo-physical properties of an original bis-pyridinylpyrazine chromophore efficiently sensitising europium(III) and samarium(III) are described. The corresponding lanthanide(III) complexes display in aqueous solutions a maximum excitation wavelength which is significantly red-shifted compared to the usual terpyridine-based chelates, and a valuable luminescence brightness above 2,000 dm(3) mol(-1) cm(-1) at 345 nm was obtained with a europium(III) derivative. Further functionalisation with three different bioconjugatable handles was also investigated and their ability to efficiently label a model hexapeptide was evaluated and compared. Finally, the best bioconjugatable europium(III) chelate was used in representative labelling experiments involving monoclonal antibodies and the luminescence features of the corresponding bioconjugates remained satisfactory.

  16. GLP-1 and exendin-4 for imaging endocrine pancreas. A review. Labelled glucagon-like peptide-1 analogues: past, present and future.

    PubMed

    Hubalewska-Dydejczyk, A; Sowa-Staszczak, A; Tomaszuk, M; Stefańska, A

    2015-06-01

    Glucagon-like peptide 1 (GLP-1) receptors expression has been found on many types of cancer cells. In case of benign insulinoma the density of those receptors is even higher than the density of somatostatin receptors. This article presents the results of clinical trials proving the utility of GLP-1 receptors imaging. Scintigraphy or positron emission tomography with the use of GLP-1 analogues labelled with appropriate radioisotopes (111In, 99mTc, 68Ga, 18F or 64Cu) seem to be superior compared with other available techniques in diagnosis of hardly detectable benign insulinoma. While surgery is the only effective therapy for insulinoma patients, therefore proper preoperative localization of the tumor allows sparing operation. Glucagon-like peptide 1 receptors might become also a target for imaging of other tumors such as gastrinoma, pheochromocytoma and medullary thyroid cancer (MTC), which also were shown to overexpress this type of receptors. However, studies with larger groups of patients are required to prove the clinical usefulness of this indication. Moreover GLP-1 receptor imaging seems to be a potential tool to evaluate pancreatic beta cell mass (BCM). It may be useful in the early diagnosis of beta cell loss in preclinical phases of diabetes. The panceratic beta cells imaging may influence the prophylaxis of diabetes and management of diabetic patients. Presented results of clinical trials prove that glucagon-like peptide 1 receptor imaging might become helpful diagnostic strategy particularly in case of patients with benign insulinoma tumors, but also patients with gastrinoma, pheochromocytoma, medullary thyroid cancer and diabetes.

  17. A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins.

    PubMed

    Zheng, C F; Simcox, T; Xu, L; Vaillancourt, P

    1997-02-20

    Calmodulin-binding peptide (CBP), a peptide of 26 amino acids derived from muscle myosin light chain kinase (MLCK), binds to calmodulin with nanomolar affinity. Proteins fused in frame with CBP can be purified from crude E. coli lysates in a single step using calmodulin affinity chromatography (Stofko-Hahn et al., 1992). Because the binding between CBP and calmodulin is calcium-dependent, the fusion protein can be eluted from the resin with virtually any buffer containing EGTA (2 mM) and used directly for many applications. To take full advantage of this affinity purification system, we constructed the versatile CBP fusion protein expression vector pCAL-n. The CBP coding sequence was positioned for fusion at the N-terminus, an advantage that ensures consistent high level synthesis of fusion proteins due to the efficient translation of the CBP in E. coli. The production of fusion proteins from pCAL-n is controlled by the tightly regulated T7(lac)O promoter. A versatile multiple cloning site (MCS) was included to facilitate the cloning of genes of interest. The protein coding sequence for the enzyme c-Jun N-terminal kinase (JNK) was inserted into the MCS of pCAL-n, and the resulting fusion protein CBP-JNK synthesized in E. coli cells at 15-20 mg/1 culture. CBP-JNK was purified to near homogeneity in one step with calmodulin affinity resin. Purified CBP-JNK is fully active, and the CBP peptide tag can be removed by cleavage with thrombin. We also show that CBP can be efficiently phosphorylated by cAMP-dependent protein kinase. Hence, the purified fusion proteins can be labeled directly with [gamma-32P]ATP and used to probe protein-protein or protein-nucleic acid interactions.

  18. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    NASA Astrophysics Data System (ADS)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  19. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-05

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined.

  20. Fluorescence melting curve analysis using self-quenching dual-labeled peptide nucleic acid probes for simultaneously identifying multiple DNA sequences.

    PubMed

    Ahn, Jeong Jin; Kim, Youngjoo; Lee, Seung Yong; Hong, Ji Young; Kim, Gi Won; Hwang, Seung Yong

    2015-09-01

    Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2016-11-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αV β3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin αV β3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin αV β3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin αV β3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin αV β3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  3. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H]4+ ions exhibit two major conformer types with collision cross sections of 418 Å2 and 446 Å2; the [M + 3H]3+ ions also yield two different conformer types having collision cross sections of 340 Å2 and 367 Å2. Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H]3+ ions show faster HDX rate contributions compared with [M + 4H]4+ ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H]4+ ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  4. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    PubMed Central

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-01-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 − 2.0 × 108 cells mL−1), a low limit of detection (79 cells mL−1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis. PMID:26908277

  5. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  6. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  7. Influence of biological assay conditions on stability assessment of radiometal-labelled peptides exemplified using a 177Lu-DOTA-minigastrin derivative.

    PubMed

    Ocak, Meltem; Helbok, Anna; von Guggenberg, Elisabeth; Ozsoy, Y; Kabasakal, Levent; Kremser, Leopold; Decristoforo, Clemens

    2011-02-01

    Lack of correlation between in vitro and in vivo stability is a general problem for the development of radiopeptides especially in the case of minigastrin derivatives for therapeutic applications. In this study, we compared the influence of experimental conditions on radiopeptide stability results in vitro using a model Minigastrin (MG) analogue labelled with Lu-177. Additionally, we attempted to characterize the main serum enzymatic cleavage sites by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) analysis. In vitro stability of a DOTA-minigastrin derivative ((177)Lu-DOTA-His-His-Glu-Ala-Tyr-Gly-Trp-NIe-Asp-Phe-NH(2)) was tested in serum, rat tissue homogenates and two different standardised enzymatic mixtures. Quantification of the metabolised radiopeptides at different time intervals was performed using reversed-phase high-performance liquid chromatography (RP-HPLC). Metabolites were characterised by MALDI-TOF-MS. Urine was collected after 15 min p.i. into the mice and compared with in vitro metabolites by RP-HPLC. Faster degradation of the radiopeptide was found in blood in comparison with plasma and serum incubation and in components from rats faster than from human origin. Fast degradation was observed in kidney and liver homogenates as well as in standardised enzymatic mixtures, also revealing variations in the metabolic profile. In urine, no intact peptide was detected already 5 min post injection. MALDI-TOF-MS revealed major cleavage sites at the carboxy terminus of the peptide. Very variable results may be found when different kind of incubation media for testing radiopeptide stabilities is used. Serum incubation studies may overestimate stability; therefore, results should be interpreted with care and combined with alternative in vitro and in vivo investigations. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Synthesis and in vitro/in vivo evaluation of novel mono- and trivalent technetium-99m labeled ghrelin peptide complexes as potential diagnostic radiopharmaceuticals.

    PubMed

    Koźmiński, Przemysław; Gniazdowska, Ewa

    2015-01-01

    Ghrelin is an endogenous hormone present in blood. It is released from the oxyntic cells (X/A-like cells) of the stomach and fundus and can exist in two forms: as an acylated and des-acylated ghrelin. Ghrelin is an endogenous ligand of the growth hormone receptor (growth hormone secretagogue receptor, GHS-R). Overexpression of GHS-R1a receptor was identified in cells of different types of tumors (e.g. pituitary adenoma, neuroendocrine tumors of the thyroid, lung, breast, gonads, prostate, stomach, colorectal, endocrine and non-endocrine pancreatic tumors). This fact suggests that gamma radionuclide labeled ghrelin peptide may be considered as a potential diagnostic radiopharmaceutical. Ghrelin peptide labeled with mono- and trivalent technetium-99m complexes, (99m)Tc-Lys-GHR, has been prepared on the n.c.a. scale. The physicochemical (stability, charge, shape, lipophilicity) and biological (receptor affinity, biodistribution) properties of the conjugates have been studied relevant to use the conjugates as receptor-based diagnostic radiopharmaceuticals. The obtained conjugates [(99m)Tc(CO)3LN,O(CN-Lys-GHR)](+), (99m)Tc(CO)3LS,O(CN-Lys-GHR) and (99m)Tc(NS3)(CN-Lys-GHR) show different shape, charge, lipophilicity and two of them, (99m)Tc(CO)3LS,O(CN-Lys-GHR) and (99m)Tc(NS3)(CN-Lys-GHR), high stability in neutral aqueous solutions, even in the presence of excess concentration of histidine/cysteine competitive standard ligands or human serum. The in vitro binding affinity of (99m)Tc-Lys-GHR conjugates with respect to growth hormone secretagogue receptor (GHS-R1a) present on DU-145 cells was in the range of IC50 from 45 to 54 nM. The conjugate (99m)Tc(CO)3LS,O(CN-Lys-GHR) exhibited excretion route by the liver and kidney in comparable degree, while the more lipophilic conjugate (99m)Tc(NS3)(CN-Lys-GHR)-mainly by the liver. Basing on the results concerning physicochemical and biochemical properties, the conjugates (99m)Tc(CO)3LS,O(CN-Lys-GHR) and (99m)Tc(NS3)(CN

  9. Molecular Targeting of Papillary Thyroid Carcinoma With Fluorescently Labeled Ratiometric Activatable Cell Penetrating Peptides in a Transgenic Murine Model

    PubMed Central

    OROSCO, RYAN K.; SAVARIAR, ELAMPRAKASH N.; WEISSBROD, PHILIP A.; DIAZ-PEREZ, JULIO A.; BOUVET, MICHAEL; TSIEN, ROGER Y.; NGUYEN, QUYEN T.

    2016-01-01

    Background and Objectives Molecularly targeted fluorescent molecules may help detect tumors that are unseen by traditional white-light surgical techniques. We sought to evaluate a fluorescent ratiometric activatable cell penetrating peptide (RACPP) for tumor detection in a transgenic model of PTC. Methods Thirteen BRAFV600E mice with PTC were studied—seven injected intravenously with RACPP, four controls with saline. Total thyroidectomy was performed with microscopic white-light visualization. Fluorescent imaging of post-thyroidectomy fields was performed, and tissue with increased signal was removed and evaluated for PTC. Final samples were analyzed by a pathologist blinded to conditions. Vocal cord function was evaluated postoperatively with video laryngoscopy. Results The average in situ ratiometric (Cy5/Cy7) thyroid tumor-to-background contrast ratio was 2.27 +/−0.91. Fluorescence-guided clean-up following thyroidectomy identified additional tumor in 2 of 7 RACPP animals (smallest dimension 1.2 mm), and decreased the number of animals with residual tumor from 4 to 3. All retained tumor foci on final pathology were smaller than 0.76 mm. Intact vocal abduction was present in all of the RACPP animals. Conclusions RACPPs successfully targeted PTC in a transgenic thyroidectomy model, and allowed for residual tumor detection that reduced positive margins beyond what was possible with white-light surgery alone. PMID:26799257

  10. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  11. Construction of a viral T2A-peptide based knock-in mouse model for enhanced Cre recombinase activity and fluorescent labeling of podocytes.

    PubMed

    Koehler, Sybille; Brähler, Sebastian; Braun, Fabian; Hagmann, Henning; Rinschen, Markus M; Späth, Martin R; Höhne, Martin; Wunderlich, F Thomas; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T

    2017-02-07

    Podocyte injury is a key event in glomerular disease leading to proteinuria and opening the path toward glomerular scarring. As a consequence, glomerular research strives to discover molecular mechanisms and signaling pathways affecting podocyte health. The hNphs2.Cre mouse model has been a valuable tool to manipulate podocyte-specific genes and to label podocytes for lineage tracing and purification. Here we designed a novel podocyte-specific tricistronic Cre mouse model combining codon improved Cre expression and fluorescent cell labeling with mTomato under the control of the endogenous Nphs2 promoter using viral T2A-peptides. Independent expression of endogenous podocin, codon improved Cre, and mTomato was confirmed by immunofluorescence, fluorescent activated cell sorting and protein analyses. Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) mice developed normally and did not show any signs of glomerular disease or off-target effects under basal conditions and in states of disease. Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type)-mediated gene recombination was superior to conventional hNphs2.Cre mice-mediated gene recombination. Last, we compared Cre efficiency in a disease model by mating Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) and hNphs2.Cre mice to Phb2(fl/fl) mice. The podocyte-specific Phb2 knockout by Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) mice resulted in an aggravated glomerular injury as compared to a podocyte-specific Phb2 gene deletion triggered by hNphs2.Cre. Thus, we generated the first tricistronic podocyte mouse model combining enhanced Cre recombinase efficiency and fluorescent labeling in podocytes without the need for additional matings with conventional reporter mouse lines.

  12. In vivo pharmacokinetic analysis for fluorescently labeled RGD peptide targeted to the αvβ3 integrin in Kaposi"s sarcoma

    NASA Astrophysics Data System (ADS)

    Kwon, Sunkuk; Ke, Shi; Houston, Jessica P.; Wang, Wei; Wu, Qingping; Li, Chun; Sevick Muraca, Eva M.

    2005-04-01

    The dose dependence of near-infrared (NIR) fluorescent labeled RGD peptide targeted to the αvβ3 integrin was assessed from xenografts bearing a subcutaneous human Kaposi"s sarcoma (KS1767) with dynamic NIR fluorescence optical imaging. The three-compartment pharmacokinetic (PK) model was used to determine PK parameters from fluorescence images acquired with an intensified charge-coupled device (ICCD) system. Dynamic imaging of Kaposi"s sarcoma bearing animals was conducted with i.v. administration of Cy5.5-c(KRGDf) at doses of 0.75 to 6 nmol/animal and at the doses of 300 or 600 nmol of c(KRGDf) administered 1 hour before the injection of 3 nmol dose of the conjugate. The results show early and rapid uptake of Cy5.5-c(KRGDf), which was mediated by the administration of c(KRGDf) 1 hour before administration at the conjugate agent. From the results we found a linear increase in PK uptake rates at doses of 0.75 to 1.5 nmol, reflecting unsaturated binding to the integrin receptor. However, the results show the dose independence at large dose amounts from 3 to 6 nmol per animal. The effects of cancer treatments as well as diagnostics may be evaluated by in vivo PK analysis with NIR fluorescence optical imaging.

  13. Measuring Affinity Constants of 1,450 Monoclonal Antibodies to Peptide Targets with a Microarray-based Label-Free Assay Platform

    PubMed Central

    Landry, J. P.; Ke, Yaohuang; Yu, Guo-Liang; Zhu, X. D.

    2014-01-01

    Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1,410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare results of the microarray-based platform with those of a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000). PMID:25536073

  14. Differential peptide labeling (iTRAQ) in LC-MS/MS based proteomics in Daphnia reveal mechanisms of an antipredator response.

    PubMed

    Effertz, Christoph; Müller, Stefan; Elert, Eric von

    2015-02-06

    Daphnia, an important model organism for studies on ecology and evolution, has become a textbook example for inducible defenses against predators. Inducible defenses are widespread in nature, and the underlying molecular mechanisms for this plasticity in general and in particular in Daphnia are not fully understood. Here, we provide for the first time a combination of established life-history changes (LHC), which are induced by chemical cues of a predator (fish kairomones), in Daphnia with differential peptide labeling (iTRAQ) in LC-MS/MS based proteomics. The aim of the present study is the elucidation of proteins involved in specific antipredator responses in a predator-prey system of ecological relevance by high-throughput proteomics. To obtain a highly specific antifish response of Daphnia, highly purified fish kairomones were applied in the presence or absence of light. We were able to identify a set of functional proteins, which are likely to explain the kairomone-mediated and light-dependent LHC in Daphnia.

  15. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2016-08-01

    Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Improved PET imaging of uPAR expression using new (64)Cu-labeled cross-bridged peptide ligands: comparative in vitro and in vivo studies.

    PubMed

    Persson, Morten; Hosseini, Masood; Madsen, Jacob; Jørgensen, Thomas J D; Jensen, Knud J; Kjaer, Andreas; Ploug, Michael

    2013-01-01

    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized and characterized two new cross-bridged (64)Cu-labeled peptide conjugates for PET imaging of uPAR and performed a head-to-head comparison with the corresponding and more conventionally used DOTA conjugate. Based on in-source laser-induced reduction of chelated Cu(II) to Cu(I), we now demonstrate the following ranking with respect to the chemical inertness of their complexed Cu ions: DOTA-AE105 < CB-TE2A-AE105 < CB-TE2A-PA-AE105, which is correlated to their corresponding demetallation rate. No penalty in the uPAR receptor binding affinity of the targeting peptide was encountered by conjugation to either of the macrobicyclic chelators (IC50 ~ 5-10 nM) and high yields and radiochemical purities (>95%) were achieved in all cases by incubation at 95ºC. In vivo, they display identical tumor uptake after 1h, but differ significantly after 22 hrs, where the DOTA-AE105 uptake remains surprisingly high. Importantly, the more stable of the new uPAR PET tracers, (64)Cu-CB-TE2A-PA-AE105, exhibits a significantly reduced liver uptake compared to (64)Cu-DOTA-AE105 as well as (64)Cu-CB-TE2A-AE105, (p<0.0001), emphasizing that our new in vitro stability measurements by mass spectrometry predicts in vivo stability in mice. Specificity of the best performing ligand, (64)Cu-CB-TE2A-PA-AE105 was finally confirmed in vivo using a non-binding (64)Cu-labeled peptide as control ((64)Cu-CB-TE2A-PA-AE105(mut)). This control PET-tracer revealed significantly reduced tumor uptake (p<0.0001), but identical hepatic uptake compared to its active counterpart ((64)Cu-CB-TE2A-PA-AE105) after 1h. In conclusion, our new approach using in-source laser-induced reduction of Cu(II)-chelated PET-ligands provides

  17. Improved PET Imaging of uPAR Expression Using new 64Cu-labeled Cross-Bridged Peptide Ligands: Comparative in vitro and in vivo Studies

    PubMed Central

    Persson, Morten; Hosseini, Masood; Madsen, Jacob; Jørgensen, Thomas J. D.; Jensen, Knud J; Kjaer, Andreas; Ploug, Michael

    2013-01-01

    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized and characterized two new cross-bridged 64Cu-labeled peptide conjugates for PET imaging of uPAR and performed a head-to-head comparison with the corresponding and more conventionally used DOTA conjugate. Based on in-source laser-induced reduction of chelated Cu(II) to Cu(I), we now demonstrate the following ranking with respect to the chemical inertness of their complexed Cu ions: DOTA-AE105 << CB-TE2A-AE105 < CB-TE2A-PA-AE105, which is correlated to their corresponding demetallation rate. No penalty in the uPAR receptor binding affinity of the targeting peptide was encountered by conjugation to either of the macrobicyclic chelators (IC50 ~ 5-10 nM) and high yields and radiochemical purities (>95%) were achieved in all cases by incubation at 95ºC. In vivo, they display identical tumor uptake after 1h, but differ significantly after 22 hrs, where the DOTA-AE105 uptake remains surprisingly high. Importantly, the more stable of the new uPAR PET tracers, 64Cu-CB-TE2A-PA-AE105, exhibits a significantly reduced liver uptake compared to 64Cu-DOTA-AE105 as well as 64Cu-CB-TE2A-AE105, (p<0.0001), emphasizing that our new in vitro stability measurements by mass spectrometry predicts in vivo stability in mice. Specificity of the best performing ligand, 64Cu-CB-TE2A-PA-AE105 was finally confirmed in vivo using a non-binding 64Cu-labeled peptide as control (64Cu-CB-TE2A-PA-AE105mut). This control PET-tracer revealed significantly reduced tumor uptake (p<0.0001), but identical hepatic uptake compared to its active counterpart (64Cu-CB-TE2A-PA-AE105) after 1h. In conclusion, our new approach using in-source laser-induced reduction of Cu(II)-chelated PET-ligands provides useful

  18. Characterization of a benzyladenine binding-site peptide isolated from a wheat cytokinin-binding protein: Sequence analysis and identification of a single affinity-labeled histidine residue by mass spectrometry

    SciTech Connect

    Brinegar, A.C.; Cooper, G.; Stevens, A.; Hauer, C.R.; Shabanowitz, J.; Hunt, D.F.; Fox, J.E. )

    1988-08-01

    A wheat embryo cytokinin-binding protein was covalently modified with the radiolabeled photoaffinity ligand 2-azido-N{sup 6}-({sup 14}C)benzyladenine. A single labeled peptide was obtained after proteolytic digestion and isolation by reversed-phase and anion-exchange HPLC. Sequencing by classical Edman degradation identified 11 of the 12 residues but failed to identify the labeled amino acid. Analysis by laser photodissociation Fourier-transform mass spectrometry of 10 pmol of the peptide independently confirmed the Edman data and also demonstrated that the histidine residue nearest the C terminus (underlined) was modified by the reagent in the sequence Ala-Phe-Leu-Gln-Pro-Ser-His-His{und His}-Asp-Ala-Asp-Glu.

  19. Fragmentation of doubly-protonated peptide ion populations labeled by H/D exchange with CD3OD

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristin A.; Kuppannan, Krishna; Wysocki, Vicki H.

    2006-03-01

    Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD3OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD3OD pressure of 4 × 10-7 Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.e., D0, D1, D2, D5, D6, D7, D8, D9, D10, and D11) were each monoisotopically selected and fragmented via sustained off-resonance irradiation (SORI) collision-induced dissociation (CID). The D0-D2 ion populations, which correspond to the slower exchanging population, consistently require lower SORI amplitude to achieve a similar precursor ion survival yield as the faster-reacting (D5-D11) populations. These results demonstrate that conformation/protonation motif has an effect on fragmentation efficiency for bradykinin. Also, the partitioning of the deuterium atoms into fragment ions suggests that the C-terminal arginine residue exchanges more rapidly than the N-terminal arginine. Total deuterium incorporation in the b1/y8 and b2/y7 ion pairs matches very closely the theoretical values for all ion populations studied, indicating that the ions of a complementary pair are likely formed during the same fragmentation event, or that no scrambling occurs upon SORI. Deuterium incorporation into the y1/a8 pseudo-ion pair does not closely match the expected theoretical values. The other peptide, doubly-protonated RVYIFPF, has a trimodal distribution of deuterium incorporation upon H/D exchange with CD3OD at a pressure of 1 × 10-7 Torr for 600 s, indicating at least three distinct ion populations. After 90 s of H/D exchange where at least two distinct populations are detected, the D0-D7 ion populations were monoisotopically selected and fragmented via SORI-CID over a range of SORI

  20. The measurement of a fibrinogen α C-chain 5.9 kDa fragment (FIC 5.9) using MALDI-TOF MS and a stable isotope-labeled peptide standard dilution.

    PubMed

    Sogawa, Kazuyuki; Kodera, Yoshio; Noda, Kenta; Ishizuka, Yusuke; Yamada, Mako; Umemura, Hiroshi; Maruyama, Katsuya; Tomonaga, Takeshi; Yokosuka, Osamu; Nomura, Fumio

    2011-05-12

    We previously identified a 5.9 kDa peptide fragment of fibrinogen α C-chain (FIC 5.9) as a novel biomarker candidate for heavy drinking. In an effort to improve FIC 5.9 measurement for potential use in clinical diagnostics, we combined the ClinProt System and a stable isotope-labeled peptide standard dilution as a simple and reproducible system for measuring FIC 5.9. We analyzed 104 serum samples that were obtained from patients with alcohol dependency, from patients with chronic hepatitis C, and from healthy volunteers. Serum FIC 5.9 levels were measured using the ClinProt system with and without a stable isotope-labeled synthetic FIC 5.9 as an internal standard. The within-day and between-day CVs were significantly smaller with stable isotope dilution mass spectrometry (SID-MS) than with conventional MALDI-TOF MS. Of the two different MALDI-TOF MS platforms, we obtained concordant results with SID-MS. Furthermore, only SID-MS detected a small but significant difference between the serum FIC 5.9 levels in the chronic hepatitis C group and the controls. MALDI-TOF MS with a stable isotope-labeled peptide spike can determine serum FIC 5.9 levels more precisely than conventional MS. This will make inter-laboratory FIC 5.9 comparisons possible. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Characterizing the Epothilone Binding Site on β-Tubulin by Photoaffinity Labeling: Identification of β-Tubulin Peptides TARGSQQY and TSRGSQQY as Targets of an Epothilone Photoprobe for Polymerized Tubulin.

    PubMed

    Ranade, Adwait R; Higgins, LeeAnn; Markowski, Todd W; Glaser, Nicole; Kashin, Dmitry; Bai, Ruoli; Hong, Kwon Ho; Hamel, Ernest; Höfle, Gerhard; Georg, Gunda I

    2016-04-14

    Photoaffinity labeling with an epothilone A photoprobe led to the identification of the β-tubulin peptides TARGSQQY and TSRGSQQY as targets of the photoprobe for polymerized tubulin. These peptides represent residues 274-281 in different β-tubulin isotypes. Placing the carbene producing 21-diazo/triazolo moiety of the photoprobe in the vicinity of the TARGSQQY peptide in a homology model of TBB3 predicted a binding pose and conformation of the photoprobe that are very similar to the ones reported for 1) the high resolution cocrystal structure of epothilone A with an α,β-tubulin complex and for 2) a saturation transfer difference NMR and transferred NOESY NMR study of dimeric and polymerized tubulin. Our findings thus provide additional support for these models as physiologically the most relevant among several modes of binding that have been proposed for epothilone A in the taxane pocket of β-tubulin.

  2. Biological evaluation of (177)Lu-labeled DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 for gastrin-releasing peptide receptor-positive prostate tumor targeting.

    PubMed

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Choi, Sang Mu; Lee, So young; Nam, Sung Soo; Park, Ul Jae; Park, Soo Hyun

    2015-02-01

    Bombesin binds with selectivity and high affinity to a Gastrin-releasing peptide receptor (GRPR), which is highly overexpressed in prostate cancer cells. The present study describes the in vitro and in vivo biological characteristics of DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 (DOTA-sBBNA), an antagonist analogue of bombesin peptide for the targeting of GRPR. DOTA-sBBNA was synthesized and labeled with (177)Lu as previously published. A saturation assay on PC-3 human prostate cancer cells revealed that the Kd value of the radiolabeled peptide was 1.88 nM with a maximum binding capacity (Bmax) of 289.3 fmol/10(6) cells. The radio-peptide slowly internalized, and 24.4±0.5% of the total binding was internalized in 4hr. Biodistribution studies were conducted in healthy and PC-3 xenografted balb/c mice, which showed high uptake and retention of tumor-associated radioactivity in PC-3 xenografted mice. The tumor-to-blood ratio was 126.02±9.36 at 1.5hr p.i., and was increased to 216.33±61.58 at 24hr p.i., which means that the radiolabeled peptide was highly accumulated in a tumor and rapidly cleared from the blood pool. The GRPR is also over-expressed in Korean prostate cancer patients. These results suggest that this (177)Lu-labeled peptide has promising characteristics for application in nuclear medicine, namely for the diagnosis and treatment of GRPR over-expressing prostate tumors. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development of high-specific-activity (68)Ga-labeled DOTA-rhenium-cyclized alpha-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors.

    PubMed

    Cantorias, Melchor V; Figueroa, Said D; Quinn, Thomas P; Lever, John R; Hoffman, Timothy J; Watkinson, Lisa D; Carmack, Terry L; Cutler, Cathy S

    2009-07-01

    A previous report on (68)Ga-1,4,7,10-tetraazacyclodedecane-N,N',N'',N'''-tetraacetic acid (DOTA)-Re(Arg(11))CCMSH was shown to indicate the imaging agent's potency for early detection of metastatic melanoma. However, the main limiting factor to developing high-specific-activity (68)Ga-DOTA-Re(Arg(11))CCMSH is the short half-life of (68)Ga, which precludes further purification of the agent. To circumvent this problem, we incorporated the microwave technique to rapidly radiolabel the peptide with (68)Ga, thereby allowing enough time to include high-performance liquid chromatography (HPLC) purification in the overall procedure. DOTA-Re(Arg(11))CCMSH was radiolabeled with (68)Ga in <1 min using a circular-cavity microwave apparatus. Reverse-phase HPLC purification was accomplished in less than 20 min. (68)Ga-DOTA-Re(Arg(11))CCMSH was then administered on B16/F1 murine melanoma-bearing C57 mice to study its biodistribution and positron emission tomography (PET) imaging capability. The production of high-specific-activity (68)Ga-DOTA-Re(Arg(11))CCMSH resulted in an improved tumor uptake [6.93+/-1.11%ID/g at 30 min postinjection (p.i.) and 6.27+/-1.60%ID/g at 1 h p.i.] and tumor retention (5.85+/-1.32%ID/g at 4 h p.i.). Receptor-mediated tumor uptake was verified by blocking studies. Furthermore, high-resolution PET images of the tumor were obtained, owing to high tumor-to-nontarget organ ratios at an early time point (i.e., at 1 h biodistribution: tumor/blood, 14.3; tumor/muscle, 89.6; tumor/skin, 12.3) and fast clearance of the labeled peptide from kidney and other healthy tissues. High-specific-activity (68)Ga-DOTA-Re(Arg(11))CCMSH may have a potential role in the early diagnosis of metastasized melanoma.

  4. Radioiodinated Exendin-4 Is Superior to the Radiometal-Labelled Glucagon-Like Peptide-1 Receptor Probes Overcoming Their High Kidney Uptake

    PubMed Central

    Läppchen, Tilman; Tönnesmann, Roswitha; Eersels, Jos; Meyer, Philipp T.; Maecke, Helmut R.; Rylova, Svetlana N.

    2017-01-01

    GLP-1 receptors are ideal targets for preoperative imaging of benign insulinoma and for quantifying the beta cell mass. The existing clinical tracers targeting GLP-1R are all agonists with low specific activity and very high kidney uptake. In order to solve those issues we evaluated GLP-1R agonist Ex-4 and antagonist Ex(9–39) radioiodinated at Tyr40 side by side with [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4 (68Ga-Ex-4) used in the clinic. The Kd, Bmax, internalization and binding kinetics of [Nle14,125I-Tyr40-NH2]Ex-4 and [Nle14,125I-Tyr40-NH2]Ex(9–39) were studied in vitro using Ins-1E cells. Biodistribution and imaging studies were performed in nude mice bearing Ins-1E xenografts. In vitro evaluation demonstrated high affinity binding of the [Nle14,125I-Tyr40-NH2]Ex-4 agonist to the Ins-1E cells with fast internalization kinetics reaching a plateau after 30 min. The antagonist [Nle14,125I-Tyr40-NH2]Ex(9–39) did not internalize and had a 4–fold higher Kd value compared to the agonist. In contrast to [Nle14,125I-Tyr40-NH2]Ex(9–39), which showed low and transient tumor uptake, [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated excellent in vivo binding properties with tumor uptake identical to that of 68Ga-Ex-4, but substantially lower kidney uptake resulting in a tumor-to-kidney ratio of 9.7 at 1 h compared to 0.3 with 68Ga-Ex-4. Accumulation of activity in thyroid and stomach for both peptides, which was effectively blocked by irenat, confirms that in vivo deiodination is the mechanism behind the low kidney retention of iodinated peptides. The 124I congener of [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated a similar favourable biodistribution profile in the PET imaging studies in contrast to the typical biodistribution pattern of [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4. Our results demonstrate that iodinated Ex-4 is a very promising tracer for imaging of benign insulinomas. It solves the problem of high kidney uptake of the radiometal-labelled tracers by improving the tumor

  5. Dual receptor-targeting ⁹⁹mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging.

    PubMed

    Xu, Jingli; Yang, Jianquan; Miao, Yubin

    2015-04-01

    The aim of this study was to examine whether the substitution of the Lys linker with the aminooctanoic acid (Aoc) and polyethylene glycol (PEG) linker could substantially decrease the non-specific renal uptake of (99m)Tc-labeled Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. The RGD motif {Arg-Gly-Asp-DTyr-Asp} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH₃₋₁₃ via the Aoc or PEG₂ linker to generate RGD-Aoc-(Arg(11))CCMSH and RGD-PEG-(Arg(11))CCMSH. The biodistribution results of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH were examined in M21 human melanoma-xenografted nude mice. The substitution of Lys linker with Aoc and PEG₂ linker significantly reduced the renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH by 58% and 63% at 2h post-injection. The renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH was 27.93 ± 3.98 and 22.01 ± 9.89% ID/g at 2 h post-injection. (99m)Tc-RGD-Aoc-(Arg(11))CCMSH displayed higher tumor uptake than (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH (2.35 ± 0.12 vs. 1.71 ± 0.25% ID/g at 2 h post-injection). The M21 human melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RGD-Aoc-(Arg(11))CCMSH as an imaging probe. The favorable effect of Aoc and PEG₂ linker in reducing the renal uptake provided a new insight into the design of novel dual receptor-targeting radiolabeled peptides. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evaluation of new Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides for melanoma imaging.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-09-03

    The purpose of this study was to examine the melanoma targeting and imaging properties of two new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg(11))CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg(11))CCMSH peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg(11))CCMSH and RVD-Lys-(Arg(11))CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH displayed high melanoma uptake. (99m)Tc-RTD-Lys-(Arg(11))CCMSH exhibited the highest tumor uptake of 18.77 ± 5.13% ID/g at 2 h postinjection, whereas (99m)Tc-RVD-Lys-(Arg(11))CCMSH reached the highest tumor uptake of 19.63 ± 4.68% ID/g at 4 h postinjection. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h postinjection. The renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h postinjection, respectively. The melanoma lesions were clearly visualized by single-photon emission computed tomography (SPECT)/CT using either (99m)Tc-RTD-Lys-(Arg(11))CCMSH or (99m)Tc-RVD-Lys-(Arg(11))CCMSH as an imaging probe at 2 h postinjection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH. However, high renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH need to be reduced to facilitate their future applications.

  7. Pretargeted Radioimmunotherapy of Prostate Cancer with an Anti-TROP-2×Anti-HSG Bispecific Antibody and a 177Lu-Labeled Peptide

    PubMed Central

    Frielink, Cathelijne; Goldenberg, David M.; Sharkey, Robert M.; Lütje, Susanne; McBride, William J.; Oyen, Wim J.G.; Boerman, Otto C.

    2014-01-01

    Abstract TROP-2 is a pancarcinoma marker that is expressed at high levels in many epithelial cancers, including prostate cancer (PC). The trivalent bispecific antibody TF12 (anti-TROP2×anti-HSG [histamine-succinyl-glycine]) has shown to effectively target PC. In this study, the efficacy of pretargeted radioimmunotherapy (PRIT) with multiple cycles of TF12 and 177Lu-labeled diHSG-peptide (IMP288) in mice with s.c. PC3 tumors was investigated and compared with that of conventional RIT with 177Lu-labeled anti-TROP-2 mAb hRS7. Methods: The potential of one, two, and three cycles of PRIT using the TF12 pretargeted 177Lu-IMP288 (41 MBq per cycle) was determined in mice with s.c. PC3 tumors, and compared with the efficacy and toxicity of RIT with 177Lu-hRS7 dosed at the maximum tolerated dose (11 MBq). Results: PRIT of two and three cycles showed significantly higher median survival (>150 days) compared with PRIT of one cycle of TF12 and 177Lu-IMP288 (111 days, p<0.001) or the controls (76 days, p<0.0001). All mice treated with the mAb 177Lu-hRS7 survived at the end of the experiment (150 days), compared with 80% in the mice that were treated with three cycles of PRIT and 70% in the group that received two cycles of PRIT. Clinically significant hematologic toxicity was found only in the groups that received either three cycles of PRIT (p<0.0009) or RIT (p<0.0001). Conclusions: TROP-2-expressing PC can be targeted efficiently with TF12 and radiolabeled IMP288. 177Lu-IMP288 accumulated rapidly in the tumors. PRIT of multiple cycles inhibited the growth of s.c. PC3 tumors. Clinically relevant hematological toxicity was observed in the group that received three cycles of PRIT; however, conventional RIT with the parent mAb 177Lu-hRS7 was at least as effective with similar toxicity. PMID:25226447

  8. Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides

    PubMed Central

    2015-01-01

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against 125I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2) and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] (99mTc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37–110 GBq/μmol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of 99mTc-P6D-RGD2 was integrin αvβ3-specific. SPECT/CT studies were performed using 99mTc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on the integrin αvβ3 expression levels on tumor cells and neovasculature. It was concluded that

  9. Therapeutic Efficacy of a {sup 188}Re-Labeled {alpha}-Melanocyte-Stimulating Hormone Peptide Analog in Murine and Human Melanoma-Bearing Mouse Models

    SciTech Connect

    Miao, Yubin; Owen, Nellie K.; Fisher, Darrell R.; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-01-01

    The purpose of this study was to examine the therapeutic efficacy of {sup 188}Re-(Arg{sup 11})CCMSH in the B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. Method: (Arg11)CCMSH was synthesized and labeled with {sup 188}Re to form {sup 188}Re-(Agr{sup 11})CCMSH. B16/F1 melanoma tumor bearing mice were administrated with 200 Ci, 600 Ci and 2x400 Ci of {sup 188}Re-(Arg{sup 11})CCMSH via the tail vein, respectively. TXM13 melanoma tumor hearing mice were separately injected with 600 Ci, 2x400 Ci and 1000 Ci of 100Re-(Arg{sup 11})CCMSH through the tail vein. Two groups of 10 mice bearing either B16/F1 or TXM13 tumors were injected with saline as untreated controls. Results: In contrast to the untreated control group, {sup 188}Re(Arg11)CCMSH yielded rapid and lasting therapeutic effects in the treatment groups with either B16/F1 or TXM13 tumors. The tumor growth rate was reduced and the survival rate was prolonged in the treatment groups. Treatment with 2x400 Ci of {sup 188}Re-Arg{sup 11}CCMSH significantly extended the mean life of B16/F1 tumor mice (p<0.05), while the mean life of TXm13 tumor mice was significantly prolonged after treatment with 600 Ci and 1000 Ci doses of {sup 188}Re-(Arg{sup 11})CCMSH (p<0.05 High-dose {sup 188}Re-(Arg{sup 11}))CCMSH produced no observed normal-tissue toxicity. Conclusions: The therapy study results revealed that {sup 188}Re-Arg11 CCMSH yielded significant therapeutic effects in both B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. {sup 188}Re-(Arg{sup 11})CCMSH appears to be a promising radiolabeled peptide for targeted radionuclide therapy of melanoma.

  10. Feasibility of (68)Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome.

    PubMed

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [(15)O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting (68)Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([(68)Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [(68)Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [(68)Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [(68)Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion.

  11. Feasibility of 68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome

    PubMed Central

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [15O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting 68Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([68Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [68Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [68Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [68Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  12. Uptake of biodegradable poly(γ-glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo.

    PubMed

    Uto, Tomofumi; Toyama, Masaaki; Nishi, Yosuke; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru; Baba, Masanori

    2013-01-01

    Poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) carrying antigens have been shown to induce potent antigen-specific immune responses. However, in vivo delivery of γ-PGA NPs to dendritic cells (DCs), a key regulator of immune responses, still remains unclear. In this study, γ-PGA NPs were examined for their uptake by DCs and subsequent migration from the skin to the regional lymph nodes (LNs) in mice. After subcutaneous injection of fluorescein 5-isothiocyanate (FITC)-labeled NPs or FITC-ovalbumin (OVA)-carrying NPs (FITC-OVA-NPs), DCs migrated from the skin to the LNs and maturated, resulting in the upregulation of the costimulatory molecules CD80 and CD86 and the chemokine receptor CCR7. However, the migrated DCs were not detected in the spleen. FITC-OVA-NPs were found to be taken up by skin-derived CD103(+) DCs, and the processed antigen peptides were cross-presented by the major histocompatibility complex (MHC) class I molecule of DCs. Furthermore, significant activation of antigen-specific CD8(+) T cells was observed in mice immunized with OVA-carrying NPs (OVA-NPs) but not with OVA alone or OVA with an aluminum adjuvant. The antigen-specific CD8(+) T cells were induced within 7 days after immunization with OVA-NPs. Thus, γ-PGA NPs carrying various antigens may have great potential as an antigen-delivery system and vaccine adjuvant in vivo.

  13. Active-site peptides of acetylcholinesterase of Electrophorus electricus: labelling of His-440 by 1-bromo-[2-14C]pinacolone and Ser-200 by tritiated diisopropyl fluorophosphate.

    PubMed

    Salih, E; Chishti, S B; Vicedomine, P; Cohen, S G; Chiara, D C; Cohen, J B

    1994-10-19

    To characterize the structure of the active site of acetylcholinesterase (AChE) from the electric organ of E. electricus, we identified sites of incorporation of two active-site affinity labels, [3H]diisopropyl fluorophosphate ([3H]DFP), and 1-bromo-2-[14C]pinacolone ([14C]BrPin). AChE was isolated, purified, inactivated and digested with trypsin, and peptides containing 3H or 14C were purified by reverse-phase HPLC and characterized by N-terminal sequence analysis. [3H]DFP, labelling Ser-200, was found in a single peptide, QVTIFGESAGAASVGMHLLSPDSR, 83% identical with the sequence from Thr-193 to Arg-216 deduced for AChE of T. californica, with Gln, Ala, Leu, and Asp in place of Thr-193, Gly-203, Ile-210 and Gly-214, respectively, and 87% identical with that from bovine and human brain AChEs. Inactivation by [14C]BrPin led to two radioactive peptides. One, ASNLVWPEWMGVIHGYEIEFVFGLPLEK, was 96% identical with that extending from Ala-427 to Lys-454 of T. californica. Release of 14C in cycle 14 established reaction of [14C]BrPin with active-site His-440, protected by 5-trimethylammonio-2-pentanone (TAP). The other peptide, LLXVTENIDDAER, 77% homologous with that of T. californica extending from Leu-531 to Arg-543, had label associated with the third cycle, not protected by TAP, corresponding to Asn-533. The slow inactivation of eel AChE by reaction of [14C]BrPin at His-440 contrasts with that of AChE from T. nobiliana, where it reacts rapidly with a free cysteine, Cys-231, not present in eel AChE. For both AChEs, inactivation by BrPin prevents subsequent reaction with [3H]DFP, and prior inactivation by DFP does not prevent reactions with [14C]BrPin.

  14. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    PubMed

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  15. Effectiveness of quenchers to reduce radiolysis of (111)In- or (177)Lu-labelled methionine-containing regulatory peptides. Maintaining radiochemical purity as measured by HPLC.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Konijnenberg, Mark; de Zanger, Rory; Breeman, Wouter A P

    2012-01-01

    An overview how to measure and to quantify radiolysis by the addition of quenchers and to maintain Radio-Chemical Purity (RCP) of vulnerable methionine-containing regulatory peptides is presented. High RCP was only achieved with a combination of quenchers. However, quantification of RCP is not standardized, and therefore comparison of radiolabelling and RCP of regulatory peptides between different HPLC-systems and between laboratories is cumbersome. Therefore we suggest a set of standardized requirements to quantify RCP by HPLC for radiolabelled DTPA- or DOTA-peptides. Moreover, a dosimetry model was developed to calculate the doses in the reaction vials during radiolabelling and storage of the radiopeptides, and to predict RCP in the presence and absence of quenchers. RCP was measured by HPLC, and a relation between radiation dose and radiolysis of RCP was established. The here described quenchers are tested individually as ƒ(concentration) to investigate efficacy to reduce radiolysis of radiolabelled methionine-containing regulatory peptides.

  16. Absolute Quantification of Prion Protein (90-231) Using Stable Isotope-Labeled Chymotryptic Peptide Standards in a LC-MRM AQUA Workflow

    NASA Astrophysics Data System (ADS)

    Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M.; Pedersen, Joel A.; Li, Lingjun

    2012-09-01

    Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.

  17. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  18. Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the α-MSH peptide's side-chain interactions with a micelle model membrane

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier D.; Levonyak, Nicholas S.; Schneider, Sydney C.; Smith, Matthew J.; Cremeens, Matthew E.

    2014-01-01

    The interactions of α-MSH (Ac-SYSMEHFRWGKPV-NH2) side-chains were biophysically characterized with a micelle model membrane and in model intracellular bacterial conditions using infrared (IR) spectroscopy of a nitrile labeled α-MSH analogue, circular dichroism (CD), and tryptophan fluorescence. Local changes detected by the tryptophan and a nitrile-labeled phenylalanine using fluorescence and infrared spectroscopies, respectively, suggest that the Trp9 side-chain in the conserved core (HisPheArgTrp) of α-MSH is buried in an SDS micellar environment, while Phe(CN)7 does not appear to be buried.

  19. 2-(4-Bromoacetamido)anilino-2-deoxypentitol 1,5-bisphosphate, a new affinity label for ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Determination of reaction parameters and characterization of an active site peptide.

    PubMed

    Herndon, C S; Hartman, F C

    1984-03-10

    A new affinity label for ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum, 2-(4-bromoacetamido)anilino-2-deoxypentitol 1,5-bisphosphate, has been prepared, Reductive amination of ribulose-P2 with p-phenylenediamine in the presence of sodium cyanoborohydride yielded an epimeric mixture which was resolved by chromatography on quaternary aminoethyl-Sephadex. Subsequent bromoacetylation of the isolated amino bisphosphates gave reagents A and B (ribo and arabino epimers of 2-(4-bromoacetamido) anilino-2-deoxypentitol 1,5-bisphosphate) which were competitive inhibitors of the carboxylase with Ki values of 705 and 104 microM, respectively. Reagent A exhibited no time-dependent effects on the carboxylase in either the deactivated or activated state. Incubation of the enzyme with reagent B in the presence of the essential activators CO2 and Mg2+, however, resulted in an irreversible, time-dependent loss of activity, with a Kinact of 125 microM and a minimal half-time of 7.3 min. Covalent incorporation of [14C]reagent B was directly proportional to the loss of activity, with total inactivation correlating with an incorporation of 1.1 mol of reagent/mol of subunit. Inclusion of the competitive inhibitor 2-carboxyribitol 1,5-bisphosphate protected against inactivation with a concomitant reduction in incorporation. Neither reagent affected the activity of spinach carboxylase. Fractionation of [14C]reagent B-modified enzyme on DEAE-cellulose, subsequent to carboxymethylation and tryptic digestion, revealed two major radioactive peaks of approximately equal area. Digestion of each peak with alkaline phosphatase and rechromatography on DEAE-cellulose resulted in pure peptides I and II. The peptides were identical except in the site of labeling: peptide I contained a modified cysteinyl residue while peptide II contained a modified histidyl residue. Automated Edman degradation established the sequence as (sequence in text) which is located near the NH2 terminus

  20. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  1. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study.

    PubMed

    Schumacher, T; Hofer, S; Eichhorn, K; Wasner, M; Zimmerer, S; Freitag, P; Probst, A; Gratzl, O; Reubi, J-C; Maecke, R; Mueller-Brand, J; Merlo, A

    2002-04-01

    We have previously presented preliminary observations on targeting somatostatin receptor-positive malignant gliomas of all grades by local injection of the radiolabelled peptidic vector 90Y-DOTATOC. We now report on our more thorough clinical experience with this novel compound, focussing on low-grade and anaplastic gliomas. Small peptidic vectors have the potential to target invisible infiltrative disease within normal surrounding brain tissue, thereby opening a window of opportunity for early intervention. Five progressive gliomas of WHO grades II and III and five extensively debulked low-grade gliomas were treated with varying fractions of 90Y-DOTATOC. The vectors were locally injected into the resection cavity or into solid tumour. The activity per single injection ranged from 555 to 1,875 MBq, and the cumulative activity from 555 to 7,030 MBq, according to tumour volumes and eloquence of the affected brain area, yielding dose estimates from 76+/-15 to 312+/-62 Gy. Response was assessed by the clinical status, by steroid dependence and, every 4-6 months, by magnetic resonance imaging and fluorine-18 fluorodeoxyglucose positron emission tomography. In the five progressive gliomas, lasting responses were obtained for at least 13-45 months without the need for steroids. Radiopeptide brachytherapy had been the only modality applied to counter tumour progression. Interestingly, we observed the slow transformation of a solid, primarily inoperable anaplastic astrocytoma into a resectable multi-cystic lesion 2 years after radiopeptide brachytherapy. Based on these observations, we also assessed the feasibility of local radiotherapy following extensive debulking, which was well tolerated. Targeted beta-particle irradiation based on diffusible small peptidic vectors appears to be a promising modality for the treatment of malignant gliomas.

  2. Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator

    PubMed Central

    Andersson, Ken G.; Oroujeni, Maryam; Garousi, Javad; Mitran, Bogdan; Ståhl, Stefan; Orlova, Anna; Löfblom, John; Tolmachev, Vladimir

    2016-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo. PMID:27748899

  3. Food Labels

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Food Labels KidsHealth > For Teens > Food Labels Print A ... have at least 95% organic ingredients. continue Making Food Labels Work for You The first step in ...

  4. High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris.

    PubMed

    Laroche, Y; Storme, V; De Meutter, J; Messens, J; Lauwereys, M

    1994-11-01

    Tick anticoagulant peptide (TAP) is a potent and specific inhibitor of the blood coagulation protease Factor Xa. We designed and assembled a synthetic TAP-encoding gene (tapo) based on codons preferentially observed in the highly expressed Pichia pastoris alcohol oxidase 1 gene (AOX1), and fused it to a novel hybrid secretory prepro leader sequence. Expression from this gene yielded biologically active rTAP, which was correctly processed at the amino-terminal fusion site, and accumulated in the medium to approximately 1.7 g/l. This corresponds to a molar concentration of 0.24 mM, and is the highest yet described for a recombinant product secreted from P. pastoris. It also represents a seven-fold improvement in productivity compared to rTAP secretion from Saccharomyces cerevisiae, making P. pastoris an attractive host for the industrial-scale production of this potential therapeutic agent. This system was also used to prepare 21 mg 15N-rTAP, 11 mg 13C-rTAP and 27 mg 15N/13C-rTAP, with isotope incorporation levels higher than 98%, and purities sufficient to allow their use in determining the solution structure of the tick anticoagulant peptide using high field NMR.

  5. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors.

    PubMed

    Zhang, Hanwen; Chen, Jianhua; Waldherr, Christian; Hinni, Karin; Waser, Beatrice; Reubi, Jean Claude; Maecke, Helmut R

    2004-09-15

    Bombesin receptors are overexpressed on a variety of human tumors like prostate, breast, and lung cancer. The aim of this study was to develop radiolabeled (Indium-111, Lutetium-177, and Yttrium-90) bombesin analogues with affinity to the three bombesin receptor subtypes for targeted radiotherapy. The following structures were synthesized: diethylenetriaminepentaacetic acid-gamma-aminobutyric acid-[D-Tyr6, beta-Ala11, Thi13, Nle14] bombesin (6-14) (BZH1) and 1,4,7,10-tetraazacyclododecane-N,N',N",N"' -tetraacetic acid-gamma-aminobutyric acid-[D-Tyr6, beta-Ala11, Thi13, Nle14] bombesin (6-14) (BZH2). [111In]-BZH1 and in particular [90Y]-BZH2 were shown to have high affinity to all three human bombesin receptor subtypes with binding affinities in the nanomolar range. In human serum metabolic cleavage was found between beta-Ala11 and His12 with an approximate half-life of 2 hours. The metabolic breakdown was inhibited by EDTA and beta-Ala11-His12 (carnosine) indicating that carnosinase is the active enzyme. Both 111In-labeled peptides were shown to internalize into gastrin-releasing peptide-receptor-positive AR4-2J and PC-3 cells with similar high rates, which were independent of the radiometal. The biodistribution studies of [111In]-BZH1 and [111In]-BZH2 ([177Lu]-BZH2) in AR4-2J tumor-bearing rats showed specific and high uptake in gastrin-releasing peptide-receptor-positive organs and in the AR4-2J tumor. A fast clearance from blood and all of the nontarget organs except the kidneys was found. These radiopeptides were composed of the first pan-bombesin radioligands, which show great promise for the early diagnosis of tumors bearing not only gastrin-releasing peptide-receptors but also the other two bombesin receptor subtypes and may be of use in targeted radiotherapy of these tumors.

  6. Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties.

    PubMed

    Zhou, Yang; Kim, Young-Seung; Lu, Xin; Liu, Shuang

    2012-03-21

    The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (∼111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ∼ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.

  7. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells.

    PubMed

    Drecoll, Enken; Gaertner, Florian C; Miederer, Matthias; Blechert, Birgit; Vallon, Mario; Müller, Jan M; Alke, Andrea; Seidl, Christof; Bruchertseifer, Frank; Morgenstern, Alfred; Senekowitsch-Schmidtke, Reingard; Essler, Markus

    2009-05-27

    Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213)Bi ((213)Bi-DTPA-[F3](2)). We found (213)Bi-DTPA-[F3](2) to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213)Bi-DTPA-[F3](2) we treated mice bearing intraperitoneally growing xenograft tumors with (213)Bi-DTPA-[F3](2). In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi) of (213)Bi-DTPA-[F3](2) were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213)Bi-DTPA-[F3](2) were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213)Bi-DTPA-[F3](2) to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213)Bi-DTPA-[F3](2) is found due to renal excretion. In conclusion we report that (213)Bi-DTPA-[F3](2) is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology.

  8. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma

    PubMed Central

    Sowa-Staszczak, Anna; Trofimiuk-Müldner, Małgorzata; Stefańska, Agnieszka; Tomaszuk, Monika; Buziak-Bereza, Monika; Gilis-Januszewska, Aleksandra; Jabrocka-Hybel, Agata; Głowa, Bogusław; Małecki, Maciej; Bednarczuk, Tomasz; Kamiński, Grzegorz; Kowalska, Aldona; Mikołajczak, Renata; Janota, Barbara; Hubalewska-Dydejczyk, Alicja

    2016-01-01

    Introduction The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. Materials and Methods Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. Results Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). Conclusions 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective

  9. Substitution of Gly with Ala enhanced the melanoma uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide.

    PubMed

    Yang, Jianquan; Miao, Yubin

    2012-02-15

    The purpose of this study was to determine the melanoma targeting property of (99m)Tc-RAD-Lys-(Arg(11))CCMSH in B16/F1 melanoma-bearing C57 mice and compare with (99m)Tc-RGD-Lys-(Arg(11))CCMSH we previously reported. (99m)Tc-RAD-Lys-(Arg(11))CCMSH exhibited rapid and high tumor uptake (19.91±4.02% ID/g at 2h post-injection) in B16/F1 melanoma-bearing C57 mice. The tumor uptake of (99m)Tc-RAD-Lys-(Arg(11))CCMSH was 1.51, 1.34 and 1.43 times the tumor uptake of (99m)Tc-RGD-Lys-(Arg(11))CCMSH at 0.5, 2 and 4h post-injection, respectively. Flank B16/F1 melanoma lesions were clearly imaged at 2h post-injection using (99m)Tc-RAD-Lys-(Arg(11))CCMSH as an imaging probe. The substitution of Gly with Ala significantly enhanced the melanoma uptake of (99m)Tc-RAD-Lys-(Arg(11))CCMSH compared to (99m)Tc-RGD-Lys-(Arg(11))CCMSH in B16/F1 melanoma-bearing C57 mice, providing a new insight into the design of α-MSH peptides for melanoma targeting.

  10. Peptide receptor radionuclide therapy of Merkel cell carcinoma using (177)lutetium-labeled somatostatin analogs in combination with radiosensitizing chemotherapy: a potential novel treatment based on molecular pathology.

    PubMed

    Salavati, Ali; Prasad, Vikas; Schneider, Claus-Peter; Herbst, Rudolf; Baum, Richard Paul

    2012-05-01

    Few studies have been published on the safety and feasibility of synchronous use of peptide receptor radionuclide therapy (PRRNT), as source of internal radiation therapy, in combination with chemotherapy. In this study we reported a 53-year-old man with stage IV Merkel cell carcinoma (MCC), who underwent synchronous internal radiation therapy and chemotherapy. Based on presumable poor prognosis with chemotherapy only, functional similarities of MCC with other neuroendocrine tumors and available evidence of effectiveness and safety of synchronous use of external beam radiation therapy and chemotherapy in treatment of high-risk MCC patients, our interdisciplinary neuroendocrine tumor board recommended him to add PRRNT to his ongoing chemotherapy. He received 2 courses of (177)Lu-DOTATATE(1, 4, 7, 10-Tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid-1-D-Phe1-Tyr3-Thr8-octreotide) in combination with ongoing 8 cycles of liposomal doxorubicin based on standard protocols. Response to therapy was evaluated by (18)F-FDG and (68)gallium-somatostatin-receptor PET/CT. There was an impressive improvement of the clinical symptoms. However, follow-up PET/CT studies showed mixed pattern of response. Synchronous use of PRRNT and radiosensitizing chemotherapy seems safe and feasible in high risk MCC patients, however, further prospective studies and clinical trials are warranted to provide reliable evidence of possible pitfalls and effectiveness of PRRNT and (68)Ga-somatostatin-receptor PET/CT in the management of MCC.

  11. Replacement of the Lys linker with an Arg linker resulting in improved melanoma uptake and reduced renal uptake of Tc-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptide.

    PubMed

    Yang, Jianquan; Guo, Haixun; Padilla, R Steve; Berwick, Marianne; Miao, Yubin

    2010-09-15

    The purpose of this study was to reduce the non-specific renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (alpha-MSH) hybrid peptide through structural modification or L-lysine co-injection. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), D-Phe7, Arg11] alpha-MSH3-13 {(Arg11)CCMSH} through the Arg linker (substituting the Lys linker) to generate a novel RGD-Arg-(Arg11)CCMSH hybrid peptide. The melanoma targeting and pharmacokinetic properties of 99mTc-RGD-Arg-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The effect of L-lysine co-injection on the renal uptake was determined through the co-injection of L-lysine with 99mTc-RGD-Arg-(Arg11)CCMSH or 99mTc-RGD-Lys-(Arg11)CCMSH. Replacement of the Lys linker with an Arg linker exhibited a profound effect in reducing the non-specific renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, as well as increasing the tumor uptake of 99mTc-RGD-Arg-(Arg11)CCMSH compared to 99mTc-RGD-Lys-(Arg11)CCMSH. 99mTc-RGD-Arg-(Arg11)CCMSH exhibited high tumor uptake (21.41+/-3.74% ID/g at 2 h post-injection) and prolonged tumor retention (6.81+/-3.71% ID/g at 24 h post-injection) in B16/F1 melanoma-bearing mice. The renal uptake values of 99mTc-RGD-Arg-(Arg11)CCMSH were 40.14-64.08% of those of 99mTc-RGD-Lys-(Arg11)CCMSH (p<0.05) at 0.5, 2, 4 and 24 h post-injection. Co-injection of L-lysine was effective in decreasing the renal uptakes of 99mTc-RGD-Arg-(Arg11)CCMSH by 27.7% and 99mTc-RGD-Lys-(Arg11)CCMSH by 52.1% at 2 h post-injection. Substitution of the Lys linker with an Arg linker dramatically improved the melanoma uptake and reduced the renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, warranting the further evaluation of 188Re-labeled RGD-Arg-(Arg11)CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future.

  12. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti-[In-DTPA] bispecific antibody construct and a (99m)Tc-/(188)Re-labeled peptide.

    PubMed

    Karacay, H; McBride, W J; Griffiths, G L; Sharkey, R M; Barbet, J; Hansen, H J; Goldenberg, D M

    2000-01-01

    The aim of this study was to localize (99m)Tc and (188)Re radionuclides to tumors, using a bispecific antibody (bsMAb) in a two-step approach where the radionuclides are attached to novel peptides incorporating moieties recognized by one arm of the bsMAb. A chemically cross-linked human/murine bsMAb, hMN-14 x 734 (Fab' x Fab'), anti-carcinoembryonic antigen [CEA] x anti-indium-DTPA was prepared as a prelude to constructing a fully humanized bsMAb for future clinical application. N,N'-o-Phenylenedimaleimide was used to cross-link the Fab' fragments of the two antibodies at their hinge regions. This construct was shown to be >92% pure and fully reactive with CEA and a divalent (indium)DTPA-peptide. For pretargeting purposes, a peptide, IMP-192 [Ac-Lys(In-DTPA)-Tyr-Lys(In-DTPA)-Lys(TscG-Cys-)-NH(2) ¿TscG = 3-thiosemicarbazonylglyoxyl¿], with two indium-DTPAs and a chelate for selectively binding (99m)Tc or (188)Re, was synthesized. IMP-192 was formulated in a "single dose" kit and later radiolabeled with (99m)Tc (94-99%) at up to 1836 Ci/mmol and with (188)Re (97%) at 459-945 Ci/mmol of peptide. [(99m)Tc]IMP-192 was shown to be stable by extensive in vitro and in vivo testing and had no specific uptake in the tumor with minimal renal uptake. The biodistribution of the hMN-14 x murine 734 bsMAb was compared alone and in a pretargeting setting to a fully murine anti-CEA (F6) x 734 bsMAb that was reported previously [Gautherot, E., Bouhou, J., LeDoussal, J.-M., Manetti, C., Martin, M., Rouvier, E., and Barbet, J. (1997) Therapy for colon carcinoma xenografts with bispecific antibody-targeted, iodine-131-labeled bivalent hapten. Cancer 80 (Suppl.), 2618-2623]. Both bsMAbs maintained their integrity and dual binding specificity in vivo, but the hMN-14 x m734 was cleared more rapidly from the blood. This coincided with an increased uptake of the hMN-14 x m734 bsMAb in the liver and spleen, suggesting an active reticuloendothelial cell recognition mechanism of this mixed

  13. Therapeutic efficacy of a 177Lu-labeled DOTA conjugated alpha-melanocyte-stimulating hormone peptide in a murine melanoma-bearing mouse model.

    PubMed

    Miao, Yubin; Shelton, Tiffani; Quinn, Thomas P

    2007-06-01

    The aim of this study was to examine the therapeutic efficacy of (177)Lu-DOTA-Re(Arg(11))CCMSH in the B16/F1 murine melanoma-bearing mouse model. (177)Lu-DOTA-Re(Arg(11))CCMSH was prepared in 0.5 M NH(4)OAc at a pH of 5.4. Two (2) treatment groups of 10 melanoma-bearing C57 mice were administrated with 2 x 18.5 MBq and 1 x 37.0 MBq of (177)Lu-DOTA-Re(Arg(11))CCMSH through the tail vein, respectively. One (1) group of 10 melanoma-bearing C57 mice was injected with saline placebos as untreated melanoma-bearing controls. In contrast to the untreated melanoma-bearing control group, (177)Lu-DOTA-Re(Arg(11))CCMSH administration yielded rapid and lasting therapeutic effects in the treatment groups. (177)Lu-DOTA-Re(Arg(11))CCMSH treatment decreased the tumor growth rate and significantly (p > 0.05) prolonged the survival time of melanoma-bearing C57 mice. Treatment with 2 x 18.5 MBq or 1 x 37.0 MBq of (177)Lu-DOTA-Re(Arg(11))CCMSH significantly extended the mean survival of tumor-bearing mice from 13.3 to 15.1 and 16.2 days, respectively. (177)Lu-DOTA-Re(Arg(11))CCMSH treatment produced no observed acute renal toxicity. The therapy study results revealed that (177)Lu-DOTA-Re(Arg(11))CCMSH yielded quantitative therapeutic effects in B16/F1 melanoma-bearing mice and appeared to be a promising radiolabeled peptide for the targeted radionuclide therapy of melanoma.

  14. New insights into the coordination of Cu(II) by the amyloid-B 16 peptide from Fourier transform IR spectroscopy and isotopic labeling.

    PubMed

    El Khoury, Youssef; Dorlet, Pierre; Faller, Peter; Hellwig, Petra

    2011-12-15

    Alzheimer's disease is a neurodegenerative disorder in which the formation of amyloid-β (Aβ) aggregates plays a causative role. There is ample evidence that Cu(II) can bind to Aβ and modulate its aggregation. Moreover, Cu(II) bound to Aβ might be involved in the production of reactive oxygen species, a process supposed to be involved in the Alzheimer's disease. The native Aβ40 contains a high affinity binding site for Cu(II), which is comprised in the N-terminal portion. Thus, Aβ16 (amino acid 1-16 of Aβ) has often been used as a model for Cu(II)-binding to monomeric Aβ. The Cu(II)-binding to Aβ is pH dependent and at pH 7.4, two different type of Cu(II) coordinations exist in equilibrium. These two forms are predominant at pH 6.5 and pH 9.0. In either form, a variety of studies show that the N-terminal Asp and the three His play a key role in the coordination, although the exact binding of these amino acids has not been addressed. Therefore, we studied the coordination modes of Cu(II) at pH 6.5 and 9.0 with the help of Fourier transform infrared (FTIR) spectroscopy. Combined with isotopic labeling of the amino acids involved in the coordination sphere, the data points toward the coordination of Cu(II) via the carboxylate of Asp1 at both pH values in a pseudobridging monovalent fashion. At low pH, His6 binds copper via Nτ, while His13 and His14 are bound via Nπ. At high pH, direct evidence is given on the coordination of Cu(II) via the Nτ atom of His6. Additionally, this study clearly shows the effect of Cu(II) binding on the protonation state of the His residues where a proton displacement takes places on the nitrogen atoms of the imidazole ring.

  15. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  16. Investigation of Membrane Peptides by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanco, Emily Ann; Zanni, Martin T.

    2009-06-01

    Two-dimensional infrared spectroscopy (2D IR) is a useful tool for studying the structure of membrane peptides. Isotope labeling individual amino acids with 13C=18O decouples the isotope labeled amide I from the other amide I modes in the peptide. Work has been done on both the M2 ion channel and ovispirin antimicrobial peptide, studying the diagonal linewidths of the isotope labeled amide I. The diagonal linewidth of the isotope labeled amide I gives information about the local environment of that residue, which in turn gives structural information about the membrane peptide.

  17. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    PubMed

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  18. Contrast-Matched Small-Angle X-ray Scattering from a Heavy-Atom-Labeled Protein in Structure Determination: Application to a Lead-Substituted Calmodulin-Peptide Complex

    SciTech Connect

    Grishaev, Alexander; Anthis, Nicholas J; Clore, G Marius

    2012-10-29

    The information content in 1-D solution X-ray scattering profiles is generally restricted to low-resolution shape and size information that, on its own, cannot lead to unique 3-D structures of biological macromolecules comparable to all-atom models derived from X-ray crystallography or NMR spectroscopy. Here we show that contrast-matched X-ray scattering data collected on a protein incorporating specific heavy-atom labels in 65% aqueous sucrose buffer can dramatically enhance the power of conventional small- and wide-angle X-ray scattering (SAXS/WAXS) measurements. Under contrast-matching conditions the protein is effectively invisible and the main contribution to the X-ray scattering intensity arises from the heavy atoms, allowing direct extraction of pairwise distances between them. In combination with conventional aqueous SAXS/WAXS data, supplemented by NMR-derived residual dipolar couplings (RDCs) measured in a weakly aligning medium, we show that it is possible to position protein domains relative to one another within a precision of 1 Å. We demonstrate this approach with respect to the determination of domain positions in a complex between calmodulin, in which the four Ca2+ ions have been substituted by Pb2+, and a target peptide. The uniqueness of the resulting solution is established by an exhaustive search over all models compatible with the experimental data, and could not have been achieved using aqueous SAXS and RDC data alone. Moreover, we show that the correct structural solution can be recovered using only contrast-matched SAXS and aqueous SAXS/WAXS data.

  19. Determination of the mutual orientation of the 15N and 13C NMR chemical shift tensors of 13- 15N double labeled model peptides for silk fibroin from the dipolar-coupled powder patterns

    NASA Astrophysics Data System (ADS)

    Asakura, Tetsuo; Yamazaki, Yasunobu; Seng, Koo Wey; Demura, Makoto

    1998-05-01

    The 15N and 13C chemical shift tensors, and the orientation of the principal axis system relative to the molecular symmetry axes were determined for 15N and 13C carbonyl carbon sites of 13C 15N double labeled model peptides for Bombyx mori silk fibroin, that is, Boc-[1- 13C]Ala[ 15N]Gly-OMe, Boc-[1- 13C]Ala[ 15N]GlyAlaGly-OPac, Boc-AlaGly[1- 13C]Ala[ 15N]GlyAlaGly-OPac, Boc-[1- 13C]Gly[ 15N]AlaGlyAla-OPac, Boc-GlyAla[1- 13C]Gly[ 15N]AlaGlyAla-OPac and Boc-[1- 13C]Gly[ 15N]ValGlyAla-OPac, where Boc is t-butoxycarbonyl, OMe is methyl ester, OPac is phenacyl ester, Ala is alanine, Gly is glycine and Val is valine. From the comparisons of the 15N chemical shift tensors and the orientations of the principal axis system relative to the molecular symmetry axes among three compounds having [1- 13C]Ala[ 15N]Gly units, it is concluded that the intermolecular interactions such as hydrogen bonding are different between Boc-[1- 13C]Ala[ 15N]Gly-OMe and two compounds, Boc-[1- 13C]Ala[ 15N]GlyAlaGly-OPac and Boc-AlaGly[1- 13C]Ala[ 15N]GlyAlaGly-OPac although the latter two compounds have similar structures. A similar conclusion has also been obtained from the 13C chemical shift tensors of these compounds.

  20. Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide.

    PubMed

    Edwards, W Barry; Akers, Walter J; Ye, Yunpeng; Cheney, Philip P; Bloch, Sharon; Xu, Baogang; Laforest, Richard; Achilefu, Samuel

    2009-01-01

    Integrins, particularly the alpha(v)beta(3) heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the alpha(v)beta(3) integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308) bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) and a lipophilic near-infrared (NIR) fluorescent dye cypate. The alpha(v)beta(3) integrin binding affinity and the internalization properties of LS308 mediated by the alpha(v)beta(3) integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of (111)In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT). The results show that LS308 has high affinity for alpha(v)beta(3) integrin and internalized preferentially via the alpha(v)beta(3) integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in alpha(v)beta(3)-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of alpha(v)beta(3) integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.

  1. Nutrition Labeling

    NASA Astrophysics Data System (ADS)

    Metzger, Lloyd E.

    Nutrition labeling regulations differ in countries around the world. The focus of this chapter is on nutrition labeling regulations in the USA, as specified by the Food and Drug Administration (FDA) and the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA). A major reason for analyzing the chemical components of foods in the USA is nutrition labeling regulations. Nutrition label information is not only legally required in many countries, but also is of increasing importance to consumers as they focus more on health and wellness.

  2. Labeled Antimicrobial Peptides for Detection of Microorganisms

    DTIC Science & Technology

    2008-12-01

    sensitivity experiments. Bacterial spores ( Bacillus subtilis (QM 1611), B. stearothermophilus (ATCC 12980), B. megaterium (QMB 1551), B. atrophaeus (NRRL...Parham et aI., 2003), S. typhimurium (Yu and Bruno, 1996) and Bacillus stereothermophilus (Blake and Weimer, 1997). Although detection of single...Free Cy5 dye does not bind non-specifically to the cells. (B) Binding of 5 ug/ml purified Cy5 CPI and Cy5 SMAP to various Bacillus spp spores at 107 CFU

  3. Quantitative Proteomics Using Reductive Dimethylation for Stable Isotope Labeling

    PubMed Central

    Tolonen, Andrew C.; Haas, Wilhelm

    2014-01-01

    Stable isotope labeling of peptides by reductive dimethylation (ReDi labeling) is a method to accurately quantify protein expression differences between samples using mass spectrometry. ReDi labeling is performed using either regular (light) or deuterated (heavy) forms of formaldehyde and sodium cyanoborohydride to add two methyl groups to each free amine. Here we demonstrate a robust protocol for ReDi labeling and quantitative comparison of complex protein mixtures. Protein samples for comparison are digested into peptides, labeled to carry either light or heavy methyl tags, mixed, and co-analyzed by LC-MS/MS. Relative protein abundances are quantified by comparing the ion chromatogram peak areas of heavy and light labeled versions of the constituent peptide extracted from the full MS spectra. The method described here includes sample preparation by reversed-phase solid phase extraction, on-column ReDi labeling of peptides, peptide fractionation by basic pH reversed-phase (BPRP) chromatography, and StageTip peptide purification. We discuss advantages and limitations of ReDi labeling with respect to other methods for stable isotope incorporation. We highlight novel applications using ReDi labeling as a fast, inexpensive, and accurate method to compare protein abundances in nearly any type of sample. PMID:25045933

  4. Quantitative proteomics using reductive dimethylation for stable isotope labeling.

    PubMed

    Tolonen, Andrew C; Haas, Wilhelm

    2014-07-01

    Stable isotope labeling of peptides by reductive dimethylation (ReDi labeling) is a method to accurately quantify protein expression differences between samples using mass spectrometry. ReDi labeling is performed using either regular (light) or deuterated (heavy) forms of formaldehyde and sodium cyanoborohydride to add two methyl groups to each free amine. Here we demonstrate a robust protocol for ReDi labeling and quantitative comparison of complex protein mixtures. Protein samples for comparison are digested into peptides, labeled to carry either light or heavy methyl tags, mixed, and co-analyzed by LC-MS/MS. Relative protein abundances are quantified by comparing the ion chromatogram peak areas of heavy and light labeled versions of the constituent peptide extracted from the full MS spectra. The method described here includes sample preparation by reversed-phase solid phase extraction, on-column ReDi labeling of peptides, peptide fractionation by basic pH reversed-phase (BPRP) chromatography, and StageTip peptide purification. We discuss advantages and limitations of ReDi labeling with respect to other methods for stable isotope incorporation. We highlight novel applications using ReDi labeling as a fast, inexpensive, and accurate method to compare protein abundances in nearly any type of sample.

  5. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  6. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    PubMed

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  7. Improved collision-induced dissociation analysis of peptides by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry through 3-sulfobenzoic acid succinimidyl ester labeling.

    PubMed

    Alley, William R; Mechref, Yehia; Klouckova, Iveta; Novotny, Milos V

    2007-01-01

    The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.

  8. Food labeling

    MedlinePlus

    ... States Food and Drug Administration (FDA) has proposed making changes to the food labels that may correct these problems. AMOUNTS PER SERVING The total calories and the calories from fat are listed. These numbers help consumers make decisions about fat intake. The list of nutrients includes ...

  9. 4-[18F]Fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA): a versatile building block for labeling of peptides, proteins and oligonucleotides with fluorine-18 via Cu(I)-mediated click chemistry.

    PubMed

    Ramenda, Theres; Steinbach, Jörg; Wuest, Frank

    2013-04-01

    Cu(I)-mediated [3+2]cycloaddition between azides and alkynes has evolved into a valuable bioconjugation tool in radiopharmaceutical chemistry. We have developed a simple, convenient and reliable radiosynthesis of 4-[18F]fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA) as a novel aromatic sulfonamide-based click chemistry building block. [18F]F-SA could be prepared in a remotely controlled synthesis unit in 32 ± 5% decay-corrected radiochemical yield in a total synthesis time of 80 min. The determined lipophilicity of [18F]F-SA (logP = 1.7) allows handling of the radiotracer in aqueous solutions. The versatility of [18F]F-SA as click chemistry building block was demonstrated by the labeling of a model peptide (phosphopeptide), protein (HSA), and oligonucleotide (L-RNA). The obtained radiochemical yields were 77% (phosphopeptide), 55-60% (HSA), and 25% (L-RNA), respectively. Despite the recent emergence of a multitude of highly innovative novel bioconjugation methods for 18F labeling of biopolymers, Cu(I)-mediated click chemistry with [18F]F-SA represents a reliable, robust and efficient radiolabeling technique for peptides, proteins, and oligonucleotides with the short-lived positron emitter 18F.

  10. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    EPA Science Inventory

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  11. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    EPA Science Inventory

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  12. Bioactive Peptides

    PubMed Central

    Daliri, Eric Banan-Mwine; Oh, Deog H.; Lee, Byong H.

    2017-01-01

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development. PMID:28445415

  13. Bioactive Peptides.

    PubMed

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  14. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-06

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.

  15. Introduction to Pesticide Labels

    EPA Pesticide Factsheets

    Pesticide product labels provide critical information about how to safely and legally handle and use pesticide products. Unlike most other types of product labels, pesticide labels are legally enforceable. Learn about pesticide product labels.

  16. [Study on oral absorption enhancers of astragalus polysaccharides].

    PubMed

    Chen, Xiao-Yun; Tan, Xiao-Bin; Sun, E; Liu, Dan; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2014-04-01

    Astragalus polysaccharides was lounded to 4-(2-aminoethylphenol), followed by labeling the APS-Tyr with fluorescein-5-isothiocyanate (FITC) at the secondary amino group. The absorption enhancement effects of low molecular weight chitosan and protamine on astragalus polysaccharides were evaluated via Caco-2 cell culture model. The results show that the fluorecent labeling compound has good stability and high sensitivity. On the other hand low molecular weight chitosan and protamine also can promoted absorption of the astragalus polysaccharides without any cytotoxity, and the absorption increase was more significant with increasing the amount of low molecular weight chitosan and protamine. At the same time, the low molecular weight chitosan has slightly better effect. The transepithelial electric resistance (TEER) of Caco-2 cells show that absorption enhancers could improve its membrane transport permeability by opening tight junctions between cells and increasing the cell membrane fluidity.

  17. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  18. Poly-arginine conjugated triarylmethyl radical as intracellular spin label.

    PubMed

    Driesschaert, Benoit; Bobko, Andrey A; Eubank, Timothy D; Samouilov, Alexandre; Khramtsov, Valery V; Zweier, Jay L

    2016-04-01

    Stable triarylmethyl radicals are ideal spin labels used for biomedical electron paramagnetic resonance applications. Previously reported structures exhibit polar charged functions for water solubilization preventing them from crossing the cell membrane. We report the synthesis of a triarylmethyl radical conjugated to poly-arginine peptide allowing intracellular delivery of the paramagnetic label.

  19. Mechanisms of fragmentation of cationic peptide ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Adams, Jeanette

    1993-06-01

    Fragmentation mechanisms for formation of several commonly occurring product ions in high-energy collision-induced induced decomposition spectra of either (M + Cat2+ - H)+ ions of peptides cationized with alkaline earth metal ions, (M + Ca+)+ ions cationized with alkali metal ions, or (M + H)+ ions are evaluated by using deuterium-labelled peptides. The different sources of hydrogen transferred in the reactions are identified. Our study supports some previously proposed mechanisms but also provides evidence for others.

  20. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing.

    PubMed

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2017-01-01

    The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.

  1. Anionic phospholipids modulate peptide insertion into membranes.

    PubMed

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  2. Affinity labeling of the ribosomal P site in Drosophila melanogaster

    SciTech Connect

    North, D.

    1987-01-01

    Several recent studies have probed the peptidyl transferase region of the Drosophila ribosome via the use of reactive site specific analogues (affinity labels). P site proteins adjacent to the 3' end of the amino acid bearing tRNA strand were labeled with modified tRNA fragments. Drugs affecting the binding of these agents were used to further clarify the nature of the region. The nascent peptide region of the P site was not labeled in previous experiments. To label that region radioactive Bromoacetylphenylalanyl-tRNA (BrAcphe-tRNA) was synthesized. The alpha-bromoacetyl group of this analogue is potentially reactive with nucleophiles present in either proteins or RNAs. Charged tRNAs and tRNA analogues bearing a peptide bond on the N-terminus of their amino acid are recognized as having affinity for the ribosomal P site. Specific labeling of the P site by BrAcphe-tRNA was confirmed by its ability to radioactively label proteins indirectly. As many as 8 ribosomal proteins may be labeled under these conditions, however, the majority of the bound label is associated with 3 large subunit proteins and 2 small subunit proteins. Overlaps between the proteins labeled by BrAcphe-tRNA and those labeled by other affinity labels are examined and a model of the peptidyl transferase region of Drosophila ribosomes is presented.

  3. Toward realization of 'mix-and-use' approach in ⁶⁸Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of ⁶⁸Ga-labeled NODAGA-coupled RGD peptide derivative.

    PubMed

    Chakraborty, Sudipta; Chakravarty, Rubel; Vatsa, Rakhee; Bhusari, Priya; Sarma, H D; Shukla, Jaya; Mittal, B R; Dash, Ashutosh

    2016-01-01

    The present article demonstrates a 'mix-and-use' approach for radiolabeling RGD peptide derivative with (68)Ga, which is easily adaptable in hospital radiopharmacy practice. The radiotracer thus formulated was successfully used for positron emission tomography (PET) imaging of breast cancer in human patients. The conditions for radiolabeling NODAGA-coupled dimeric cyclic RGD peptide derivative [NODAGA-(RGD)2] with (68)Ga were optimized using (68)Ga obtained from a (68)Ge/(68)Ga generator developed in-house with CeO2-PAN composite sorbent as well as from a commercial (68)Ge/(68)Ga generator obtained from ITG, Germany. Preclinical studies were carried out in C57BL/6 mice bearing melanoma tumors. The radiotracer was prepared in a hospital radiopharmacy using (68)Ga obtained from ITG generator and used for monitoring breast cancer patients by positron emission tomography (PET) imaging. (68)Ga-NODAGA-(RGD)2 could be prepared with high radiolabeling yield (>98%) and specific activity (~50 GBq/μmol) within 10 min at room temperature by mixing (68)Ga with the solution of the peptide conjugate. In vivo biodistribution studies showed significant uptake (5.24±0.39% ID/g) in melanoma tumor at 30 min post-injection, with high tumor-to-background contrast. The integrin αvβ3 specificity of the tracer was corroborated by blocking study. Preliminary clinical studies in locally advanced breast cancer (LABC) patients indicated specifically high tumor uptake (SUVmax 10-15) with good contrast. This is one of the very few reports which presents preliminary clinical data on use of (68)Ga-NODAGA-(RGD)2 and the developed 'mix-and-use' holds tremendous prospect in clinical PET imaging using (68)Ga. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A double fluorescence staining protocol to determine the cross-sectional area of myofibers using image analysis

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Fassel, T. A.; Schultz, E.; Greaser, M. L.; Cassens, R. G.

    1996-01-01

    A double fluorescence staining protocol was developed to facilitate computer based image analysis. Myofibers from experimentally treated (irradiated) and control growing turkey skeletal muscle were labeled with the anti-myosin antibody MF-20 and detected using fluorescein-5-isothiocyanate (FITC). Extracellular material was stained with concanavalin A (ConA)-Texas red. The cross-sectional area of the myofibers was determined by calculating the number of pixels (0.83 mu m(2)) overlying each myofiber after subtracting the ConA-Texas red image from the MF-20-FITC image for each region of interest. As expected, myofibers in the irradiated muscle were smaller (P < 0.05) than those in the non-irradiated muscle. This double fluorescence staining protocol combined with image analysis is accurate and less labor-intensive than classical procedures for determining the cross-sectional area of myofibers.

  5. Determining bacteriophage endopeptidase activity using either fluorophore-quencher labeled peptides combined with liquid chromatography-mass spectrometry (LC-MS) or Förster resonance energy transfer (FRET) assays

    PubMed Central

    Molina, Henrik; Fischetti, Vincent A.

    2017-01-01

    The necessity of identifying novel methods to combat infections caused by antibiotic resistant bacteria is increasing each year. Recent advancements in the development of peptidoglycan hydrolases (e.g. lysins) from bacterial viruses (bacteriophages) have revealed the efficiency of this class of enzymes in treating serious bacterial infections. Though promising results have been obtained regarding the lethal action of lysin on bacterial pathogens both in vitro and in vivo, an often-overlooked factor in these studies is precisely identifying their peptidoglycan cleavage site. This knowledge would be useful for following the activity of the enzyme during development, without the need for whole-organism lytic assays. However, more importantly, it would enable the selection of lysins with different cleavage activities that would act synergistically for enhanced efficacy. Here, we have developed two new methods to accurately identify the cleavage site of lysins using liquid chromatography mass spectrometry (LC-MS) on peptidoglycan-like fluorophore-quencher modified synthetic peptides, as well as determining the enzymatic action and kinetics of the enzymes on modified peptides in a Förster resonance energy transfer (FRET) assay. These methods should facilitate progress within the lysin field, accelerating the development of therapeutic lysins to combat antibiotic resistant bacterial infections. PMID:28296948

  6. Combinatorial discovery of tumor targeting peptides using phage display.

    PubMed

    Landon, Linda A; Deutscher, Susan L

    2003-10-15

    Peptides possess appropriate pharmacokinetic properties to serve as cancer imaging or therapeutic targeting agents. Currently, only a small number of rationally-derived, labeled peptide analogues that target only a limited subset of antigens are available. Thus, finding new cancer targeting peptides is a central goal in the field of molecular targeting. Novel tumor-avid peptides can be efficiently identified via affinity selections using complex random peptide libraries containing millions of peptides that are displayed on bacteriophage. In vitro and in situ affinity selections may be used to identify peptides with high affinity for the target antigen in vitro. Unfortunately, it has been found that peptides selected in vitro or in situ may not effectively target tumors in vivo due to poor peptide stability and other problems. To improve in vivo targeting, methodological combinatorial chemistry innovations allow selections to be conducted in the environment of the whole animal. Thus, new targeting peptides with optimal in vivo properties can be selected in vivo in tumor-bearing animals. In vivo selections have been proven successful in identifying peptides that target the vasculature of specific organs. In addition, in vivo selections have identified peptides that bind specifically to the surface of or are internalized into tumor cells. In the future, direct selection of peptides for cancer imaging may be expedited using genetically engineered bacteriophage libraries that encode peptides with intrinsic radiometal-chelation or fluorescent sequences.

  7. Pesticide Label Review Training

    EPA Pesticide Factsheets

    This training will help ensure that reviewers evaluate labels according to four core principles. It also will help pesticide registrants developing labels understand what EPA expects of pesticide labels, and what the Agency generally finds acceptable.

  8. Isobaric protein-level labeling strategy for serum glycoprotein quantification analysis by liquid chromatography-tandem mass spectrometry.

    PubMed

    Nie, Song; Lo, Andy; Zhu, Jianhui; Wu, Jing; Ruffin, Mack T; Lubman, David M

    2013-06-04

    While peptide-level labeling using isobaric tag reagents has been widely applied for quantitative proteomics experiments, there are comparatively few reports of protein-level labeling. Intact protein labeling could be broadly applied to quantification experiments utilizing protein-level separations or enrichment schemes. Here, protein-level isobaric labeling was explored as an alternative strategy to peptide-level labeling for serum glycoprotein quantification. Labeling and digestion conditions were optimized by comparing different organic solvents and enzymes. Digestions with Asp-N and trypsin were found highly complementary; combining the results enabled quantification of 30% more proteins than either enzyme alone. Three commercial reagents were compared for protein-level labeling. Protein identification rates were highest with iTRAQ 4-plex when compared to TMT 6-plex and iTRAQ 8-plex using higher-energy collisional dissociation on an Orbitrap Elite mass spectrometer. The compatibility of isobaric protein-level labeling with lectin-based glycoprotein enrichment was also investigated. More than 74% of lectin-bound labeled proteins were known glycoproteins, which was similar to results from unlabeled and peptide-level labeled serum samples. Finally, protein-level and peptide-level labeling strategies were compared for serum glycoprotein quantification. Isobaric protein-level labeling gave comparable identification levels and quantitative precision to peptide-level labeling.

  9. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  10. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  11. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  12. Photolytic Labeling to Probe Molecular Interactions in Lyophilized Powders

    PubMed Central

    Iyer, Lavanya K.; Moorthy, Balakrishnan S.; Topp, Elizabeth M.

    2014-01-01

    Local side-chain interactions in lyophilized protein formulations were mapped using solid-state photolytic labeling-mass spectrometry (ssPL-MS). Photoactive amino acid analogs (PAAs) were used as probes and either added to the lyophilized matrix or incorporated within the amino acid sequence of a peptide. In the first approach, apomyoglobin was lyophilized with sucrose and varying concentrations of photo-leucine (L-2-amino-4, 4′-azipentanoic acid; pLeu). The lyophilized solid was irradiated at 365 nm to initiate photolabeling. The rate and extent of labeling were measured using ESI-HPLC-MS, with labeling reaching a plateau at ∼ 30 min, forming up to 6 labeled populations. Bottom-up MS/MS analysis was able to provide peptidelevel resolution of the location of pLeu. ssPL-MS was also able to detect differences in side-chain environment between sucrose and guanidine hydrochloride formulations. In the second approach, peptide GCG (1-8)* containing p-benzoyl-L-phenylalanine (pBpA) in the amino acid sequence was lyophilized with various excipients and irradiated. Peptide-peptide and peptide-excipient adducts were detected using MS. Top-down MS/MS on the peptide dimer provided amino acidlevel resolution regarding interactions and the cross-linking partner for pBpA in the solid state. The results show that ssPL-MS can provide high-resolution information about protein interactions in the lyophilized environment. PMID:24125175

  13. Deep Label Distribution Learning With Label Ambiguity

    NASA Astrophysics Data System (ADS)

    Gao, Bin-Bin; Xing, Chao; Xie, Chen-Wei; Wu, Jianxin; Geng, Xin

    2017-06-01

    Convolutional Neural Networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains such as apparent age estimation, head pose estimation, multi-label classification and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed DLDL (Deep Label Distribution Learning) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from over-fitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.

  14. Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy Q.; Brower, Kara; Harink, Björn; Baxter, Brian; Thorn, Kurt S.; Fordyce, Polly M.

    2017-02-01

    Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.

  15. Affinity labeling of protein synthesis factors

    SciTech Connect

    Anthony, D.D.; Dever, T.E.; Abramson, R.D.; Lobur, M.; Merrick, W.C.

    1986-05-01

    The authors laboratory is interested in determining those eukaryotic protein synthesis factors which interact with nucleotides and mRNA. To study the binding the authors have used the nucleotides, their analogs, and mRNA analogs as listed below: (1) UV cross-linking with normal (/sup 32/P)XTP; (2) Oxidized GTP; (3) 3'p-azido benzoyl GDP (GTP); (4) 5'p-fluoro sulfonyl benzoyl guanosine; (5) 5'p-fluoro sulfonyl benzoyl adenosine; (6) oxidized mRNA. Currently, they are continuing their efforts to specifically label the proteins, and they are also trying to isolate a single labeled tryptic peptide from the proteins.

  16. 99mTc: Labeling Chemistry and Labeled Compounds

    NASA Astrophysics Data System (ADS)

    Alberto, R.; Abram, U.

    This chapter reviews the radiopharmaceutical chemistry of technetium related to the synthesis of perfusion agents and to the labeling of receptor-binding biomolecules. To understand the limitations of technetium chemistry imposed by future application of the complexes in nuclear medicine, an introductory section analyzes the compulsory requirements to be considered when facing the incentive of introducing a novel radiopharmaceutical into the market. Requirements from chemistry, routine application, and market are discussed. In a subsequent section, commercially available 99mTc-based radiopharmaceuticals are treated. It covers the complexes in use for imaging the most important target organs such as heart, brain, or kidney. The commercially available radiopharmaceuticals fulfill the requirements outlined earlier and are discussed with this background. In a following section, the properties and perspectives of the different generations of radiopharmaceuticals are described in a general way, covering characteristics for perfusion agents and for receptor-specific molecules. Technetium chemistry for the synthesis of perfusion agents and the different labeling approaches for target-specific biomolecules are summarized. The review comprises a general introduction to the common approaches currently in use, employing the N x S4-x , [3+1] and 2-hydrazino-nicotinicacid (HYNIC) method as well as more recent strategies such as the carbonyl and the TcN approach. Direct labeling without the need of a bifunctional chelator is briefly reviewed as well. More particularly, recent developments in the labeling of concrete targeting molecules, the second generation of radiopharmaceuticals, is then discussed and prominent examples with antibodies/peptides, neuroreceptor targeting small molecules, myocardial imaging agents, vitamins, thymidine, and complexes relevant to multidrug resistance are given. In addition, a new approach toward peptide drug development is described. The section

  17. Treatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide 213Bi-DTPA-[F3]2 into the Nucleus of Tumor Cells

    PubMed Central

    Miederer, Matthias; Blechert, Birgit; Vallon, Mario; Müller, Jan M.; Alke, Andrea; Seidl, Christof; Bruchertseifer, Frank; Morgenstern, Alfred; Senekowitsch-Schmidtke, Reingard; Essler, Markus

    2009-01-01

    Background α-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for α-particle emitting isotopes facilitating selective tumor therapies. Principal Findings A dimer of the vascular tumor homing peptide F3 was chemically coupled to the α-emitter 213Bi (213Bi-DTPA-[F3]2). We found 213Bi-DTPA-[F3]2 to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of 213Bi-DTPA-[F3]2 we treated mice bearing intraperitoneally growing xenograft tumors with 213Bi-DTPA-[F3]2. In a tumor prevention study between the days 4–14 after inoculation of tumor cells 6×1.85 MBq (50 µCi) of 213Bi-DTPA-[F3]2 were injected. In a tumor reduction study between the days 16–26 after inoculation of tumor cells 6×1.85 MBq of 213Bi-DTPA-[F3]2 were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found 213Bi-DTPA-[F3]2 to accumulate in tumors but only low activities were found in control organs except for the kidneys, where 213Bi-DTPA-[F3]2 is found due to renal excretion. Conclusions/Significance In conclusion we report that 213Bi-DTPA-[F3]2 is a novel tool for the targeted delivery of α-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology. PMID:19479088

  18. Various routes of administration of (99m)Tc-labeled synthetic lactoferrin antimicrobial peptide hLF 1-11 enables monitoring and effective killing of multidrug-resistant Staphylococcus aureus infections in mice.

    PubMed

    Brouwer, Carlo P J M; Welling, Mick M

    2008-07-01

    The synthetic antimicrobial peptide representative of the first 11 N-terminal amino acids of human lactoferrin (hLF 1-11) kills multidrug-resistant Staphylococcus aureus (MRSA). This study displays antimicrobial activity of hLF 1-11, via various routes of administration, against MRSA infections in mice. Radiolabeling hLF 1-11 with technetium-99m ((99m)Tc-hLF 1-11) enables scintigraphic monitoring directly after administration. (99m)Tc-hLF 1-11 was taken up by the gall bladder, intestines, and kidneys. Most of the radioactivity was captured in the urinary bladder and about 1% of the injected dose accumulated into infected thigh muscles. At 2 or 24h after either intravenously, subcutaneously, intraperitoneally, or orally injected a single dose of 0.04 mg/kg hLF 1-11 in mice significantly reduced (20-60 times) the number of viable MRSA. In a dose-response setting in immunocompetent mice maximum bactericidal effects (10,000 times reduction) of intravenously injected (99m)Tc-hLF 1-11 was seen with 40 mg/kg whereas the same dose of orally administered (99m)Tc-hLF 1-11 induced about approximately 100 times reduction. In conclusion, intravenously and orally administrated (99m)Tc-hLF 1-11 accumulates in infected tissues and is highly effective against experimental infections with MRSA. Moreover, scintigraphy is an excellent tool to study the pharmacology of experimental compounds and to determine the uptake in infected tissues.

  19. Effects of Spin-Labels on Membrane Burial Depth of MARCKS-ED Residues.

    PubMed

    Qi, Yifei; Klauda, Jeffery B; Im, Wonpil

    2016-10-18

    Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a useful tool to obtain information about the environment of specific residues. One of its applications is to investigate membrane protein topology based on the accessibility of the spin label, with the assumption that the position of the spin label in the membrane is close to that of the native residue. This assumption is valid in proteins with well-ordered structures, but could be problematic in small peptides because the labeling may cause a perturbation that is large enough to change local interactions between the peptide and the membrane. To quantitatively characterize such effects, we have simulated the association of a 25-amino-acid peptide, MARCKS-ED, to membranes with and without spin labels. Our simulations show that the depths of spin labels are ∼6-17 Å deeper than the unlabeled charged and polar residues in the wild-type. When the hydrophobic residue Phe is labeled, however, the spin-label depth is close to that of the native residue as well as the experimental value. Our study suggests that one should be cautious in interpretation of spin label data when charged and polar residues in small peptides are labeled.

  20. Narrow-range peptide isoelectric focusing as peptide prefractionation method prior to tandem mass spectrometry analysis.

    PubMed

    Pernemalm, Maria

    2013-01-01

    High sample complexity is one of the major challenges in mass spectrometry-based proteomics today. Despite massive improvement in instrumentation, sample prefractionation is still needed to reduce sample complexity and improve proteome coverage. Isoelectric focusing (IEF) has been traditionally used as a first-dimension protein separation technique in two-dimensional gel electrophoresis-based proteomics. Recently, peptide IEF has emerged as appealing alternative for anion exchange chromatography in multidimensional LC-MS/MS workflows. The rationale behind using narrow-range peptide isoelectric focusing as a prefractionation method prior to ms/ms is to reduce the complexity induced by tryptic digestion. This is done by selectively analyzing a sub-fraction of peptides with an acidic pI. The pI range is chosen as it has previously been shown that 96 % of human proteins have at least one tryptic peptide between pH 3.4 and 4.9. This ensures high proteome coverage while reducing the number of peptides with 2/3. In addition the focusing precision is optimal in this range. Therefore, by analyzing this sub-fraction of peptides the complexity of the sample can be reduced without significant loss of proteome coverage. As the theoretical pI of peptides can be calculated, the pI of the identified peptides can be used to validate the peptide sequence (identified peptides with pI outside the pH range 3.4-4.9 are more likely to be false positives). In addition, this approach is compatible with iTRAQ labelling as the different iTRAQ labels migrate similarly in IEF.

  1. C-Peptide Test

    MedlinePlus

    ... vital for the body to use its main energy source, glucose . Since C-peptide and insulin are produced ... these cases, C-peptide measurement is a useful alternative to testing for insulin. C-peptide measurements can ...

  2. Chemical Visualization of an Attractant Peptide, LURE

    PubMed Central

    Goto, Hiroaki; Okuda, Satohiro; Mizukami, Akane; Mori, Hitoshi; Sasaki, Narie; Kurihara, Daisuke; Higashiyama, Tetsuya

    2011-01-01

    The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction. PMID:21149297

  3. Chemical visualization of an attractant peptide, LURE.

    PubMed

    Goto, Hiroaki; Okuda, Satohiro; Mizukami, Akane; Mori, Hitoshi; Sasaki, Narie; Kurihara, Daisuke; Higashiyama, Tetsuya

    2011-01-01

    The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction.

  4. Synthesis and physico-chemical properties of peptides in soil humic substances.

    PubMed

    Fan, T W-M; Lane, A N; Chekmenev, E; Wittebort, R J; Higashi, R M

    2004-03-01

    Soil humic substances (HS) are heterologous, polydispersive, and multi-functional organometallic macromolecules ubiquitous in soils and sediments. They are key players in the maintenance of the belowground ecosystems and in the bioavailability of both organic and inorganic contaminants. It is widely assumed that the peptidic substructures of HS are readily degraded and therefore do not contribute significantly to interactions with contaminants such as toxic metals. To investigate the turnover of humified peptides, laboratory soil aging experiments were conducted with 13C-glucose or 15N-nitrate for 8.5 months. Evidence for random-coil peptidic structures in the labeled HS was obtained from 2-D nuclear magnetic resonance (NMR), pyrolysis gas chromatography-mass spectrometry (pyro-GC-MS), and circular dichroism data. Interaction of metals with the peptidic carbonyls of labeled HS was rationalized from the solid-state NMR data. Detailed 13C and 15N labeling patterns of amino acid residues in the acid hydrolysates of HS acquired from NMR and GC-MS revealed two pools of peptides, i.e. one extant (unlabeled) and the other, newly humified with little isotopic scrambling (fully labeled). The persistence of pre-existing peptidic structures indicates their resistance to degradation while the presence of fully labeled peptidic amino acids suggests wholesale incorporation of newly synthesized peptides into HS. These findings are contrary to the general notion that humified peptides are readily degraded.

  5. Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA

    PubMed Central

    Bode, Gerard H.; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J. G.; Schmitz, Christoph; Sinner, Frank M.; Losen, Mario; Steinbusch, Harry W. M.; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. PMID:25996618

  6. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  7. Multifunctional Prenylated Peptides for Live Cell Analysis

    PubMed Central

    Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.; Amundson, Gregg; Geier, Suzanne; Falkum, Stacy; Wattenberg, Elizabeth V.; Barany, George; Distefano, Mark D.

    2009-01-01

    Protein prenylation is a common post-translational modification present in eukaryotic cells. Many key proteins involved in signal transduction pathways are prenylated and inhibition of prenylation can be useful as a therapeutic intervention. While significant progress has been made in understanding protein prenylation in vitro, we have been interested in studying this process in living cells, including the question of where prenylated molecules localize. Here, we describe the synthesis and live cell analysis of a series of fluorescently labeled multifunctional peptides, based on the C-terminus of the naturally prenylated protein CDC42. A synthetic route was developed that features a key Acm to Scm protecting group conversion. This strategy was compatible with acid-sensitive isoprenoid moieties, and allowed incorporation of an appropriate fluorophore as well as a cell-penetrating sequence (penetratin). These peptides are able to enter cells through different mechanisms, depending on the presence or absence of the penetratin vehicle and the nature of the prenyl group attached. Interestingly, prenylated peptides lacking penetratin are able to enter cells freely through an energy-independent process, and localize in a perinuclear fashion. This effect extends to a prenylated peptide that includes a full “CAAX box” sequence (specifically, CVLL). Hence, these peptides open the door for studies of protein prenylation in living cells, including enzymatic processing and intracellular peptide trafficking. Moreover, the synthetic strategy developed here should be useful for the assembly of other types of peptides that contain acid sensitive functionalities. PMID:19425596

  8. Optimized labeling of NOTA-conjugated octreotide with F-18.

    PubMed

    Laverman, Peter; D'Souza, Christopher A; Eek, Annemarie; McBride, William J; Sharkey, Robert M; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C

    2012-04-01

    We recently reported a facile method based on the chelation of [(18)F]aluminum fluoride (Al(18)F) by NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid). Here, we present a further optimization of the (18)F labeling of NOTA-octreotide (IMP466). Octreotide was conjugated with the NOTA chelate and was labeled with (18)F in a two-step, one-pot method. The labeling procedure was optimized with regard to the labeling buffer, ionic strength, peptide concentration, and temperature. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice. In addition, microPET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 97% yield in the presence of 80% (v/v) acetonitrile or ethanol. The labeled product was purified by HPLC to remove unlabeled peptide and unbound Al(18)F. The radiolabeling, including purification, was performed for 45 min. Specific activities of 48,000 GBq/mmol could be obtained. (18)F-IMP466 showed a high tumor uptake and excellent tumor-to-blood ratios at 2 h post-injection. In addition, the low bone uptake indicated that the Al(18)F-NOTA complex was stable in vivo. PET/CT scans revealed excellent tumor delineation and specific accumulation in the tumor. Uptake in receptor-negative organs was low. NOTA-octreotide could be labeled with (18)F in quantitative yields using a rapid two-step, one-pot, method. The compound was stable in vivo and showed rapid accretion in SSTR(2)-receptor-expressing AR42J tumors in nude mice. This method can be used to label other NOTA-conjugated compounds such as RGD peptides, GRPR-binding peptides, and Affibody molecules with (18)F.

  9. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  10. Mental Labels and Tattoos

    ERIC Educational Resources Information Center

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  11. Pesticide Labeling Questions & Answers

    EPA Pesticide Factsheets

    Pesticide manufacturers, applicators, state regulatory agencies, and other stakeholders raise questions or issues about pesticide labels. The questions on this page are those that apply to multiple products or address inconsistencies among product labels.

  12. Soil Fumigant Labels - Chloropicrin

    EPA Pesticide Factsheets

    Search by EPA registration number, product name, or company name, and follow the link to the Pesticide Product Label System (PPLS) for details on each fumigant. Updated labels include new safety requirements for buffer zones and related measures.

  13. Soil Fumigant Labels - Dazomet

    EPA Pesticide Factsheets

    Updated labels include new safety requirements for buffer zones and related measures. Find information from the Pesticide Product Labeling System (PPLS) for products such as Basamid G, manufactured by Amvac.

  14. Mental Labels and Tattoos

    ERIC Educational Resources Information Center

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  15. Soil Fumigant Labels

    EPA Pesticide Factsheets

    The 2012 updated pesticide labels include new safety requirements for buffer zones and related measures. Find labels for each different type of fumigant: chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  16. Electronic Submission of Labels

    EPA Pesticide Factsheets

    Pesticide registrants can provide draft and final labels to EPA electronically for our review as part of the pesticide registration process. The electronic submission of labels by registrants is voluntary but strongly encouraged.

  17. The Labelling of Chemicals.

    ERIC Educational Resources Information Center

    Education in Science, 1979

    1979-01-01

    Describes the impact on chemistry laboratories and teachers in the United Kingdom of the Packaging and Labelling of Dangerous Substances Regulations 1978. These regulations require suppliers to label containers in particular ways. (HM)

  18. Semiotic labelled deductive systems

    SciTech Connect

    Nossum, R.T.

    1996-12-31

    We review the class of Semiotic Models put forward by Pospelov, as well as the Labelled Deductive Systems developed by Gabbay, and construct an embedding of Semiotic Models into Labelled Deductive Systems.

  19. Low-Energy Collision-Induced Dissociation Fragmentation Analysis of Cysteinyl-Modified Peptides

    SciTech Connect

    Borisov, Oleg V.; Goshe, Michael B. ); Conrads, Thomas P. ); Rakov, Vsevolod S. ); Veenstra, Timothy D. ); Smith, Richard D. )

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of D. radiodurans, the presence of these labeled-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys-residue, and to differentiate identical Cys-peptides labeled with either ICAT-D0 or ICAT-D8.

  20. Low-energy collision-induced dissociation fragmentation analysis of cysteinyl-modified peptides.

    PubMed

    Borisov, Oleg V; Goshe, Michael B; Conrads, Thomas P; Rakov, V Sergey; Veenstra, Timothy D; Smith, Richard D

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue-containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of Deinococcus radiodurans, the presence of these label-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys residue, and to differentiate identical Cys-peptides labeled with either ICAT-d0 or ICAT-d8.

  1. Differential protein labeling based on electrochemically generated reactive intermediates.

    PubMed

    Büter, Lars; Faber, Helene; Wigger, Tina; Vogel, Martin; Karst, Uwe

    2015-10-06

    A specific labeling method for cysteine moieties in proteins was developed. Electrochemical oxidation of phenolic compounds such as phenol or acetaminophen leads to the generation of the reactive intermediates benzoquinone and N-acetyl-p-benzoquinone imine, which can subsequently react with nucleophilic thiol functions in peptides or proteins. Differential labeling of cysteine residues was successfully demonstrated with native as well as heavy-isotope labeled forms of the corresponding labeling compounds. The specific mass differences on the peptide level were successfully analyzed by mass spectrometry for the tripeptide glutathione. Free cysteines in various proteins such as β-lactoglobulin A, human serum albumin, hemoglobin, and human carbonic anhydrase I were successfully labeled. Tryptic digestion of differentially labeled carbonic anhydrase I and hemoglobin allowed the identification of the binding site in the proteins. The obtained mass difference allowed an easy identification of the cysteine containing peptides. With these experiments, it was successfully demonstrated that the developed method can serve as a tool for counting cysteine moieties in proteins and, thus, be used as an additional technique in protein identification experiments.

  2. Indirect ultrasonication for protein quantification and peptide mass mapping through mass spectrometry-based techniques.

    PubMed

    Carreira, R J; Lodeiro, C; Reboiro-Jato, M; Glez-Peña, D; Fdez-Riverola, F; Capelo, J L

    2010-07-15

    We report in this work a fast protocol for protein quantification and for peptide mass mapping that rely on (18)O isotopic labeling through the decoupling procedure. It is demonstrated that the purity and source of trypsin do not compromise the labeling degree and efficiency of the decoupled labeling reaction, and that the pH of the labeling reaction is a critical factor to obtain a significant (18)O double labeling. We also show that the same calibration curve can be used for MALDI protein quantification during several days maintaining a reasonable accuracy, thus simplifying the handling of the quantification process. In addition we demonstrate that (18)O isotopic labeling through the decoupling procedure can be successfully used to elaborate peptide mass maps. BSA was successfully quantified using the same calibration curve in different days and plasma from a freshwater fish, Cyprinus carpio, was used to elaborate the peptide mass maps. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Label Review Training: Module 1: Label Basics, Page 16

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the importance of labels and the role in enforcement.

  4. Label Review Training: Module 1: Label Basics, Page 14

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about positive effects from proper labeling.

  5. Label Review Training: Module 1: Label Basics, Page 15

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  6. Label Review Training: Module 1: Label Basics, Page 21

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about types of labels.

  7. Label Review Training: Module 1: Label Basics, Page 19

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section covers supplemental distributor labeling.

  8. Label Review Training: Module 1: Label Basics, Page 17

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See an overview of the importance of labels.

  9. Label Review Training: Module 1: Label Basics, Page 22

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about what labels require review.

  10. Label Review Training: Module 1: Label Basics, Page 27

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See examples of mandatory and advisory label statements.

  11. Label Review Training: Module 1: Label Basics, Page 26

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about mandatory and advisory label statements.

  12. Label Review Training: Module 1: Label Basics, Page 24

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is about which labels require review.

  13. Label Review Training: Module 1: Label Basics, Page 18

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section discusses the types of labels.

  14. Label Review Training: Module 1: Label Basics, Page 23

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Lists types of labels that do not require review.

  15. NMR Chemical Shift Mapping of SH2 Peptide Interactions.

    PubMed

    McKercher, Marissa A; Wuttke, Deborah S

    2017-01-01

    Heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) experiments offer a rapid and high resolution approach to gaining binding and conformational insights into a protein-peptide interaction. By tracking (1)H and (15)N chemical shift changes over the course of a peptide titration into isotopically labeled protein, amide NH pairs of amino acids whose chemical environment changes upon peptide binding can be identified. When mapped onto a structure of the protein, this approach can identify the peptide-binding interface or regions undergoing conformation changes within a protein upon ligand binding. Monitoring NMR chemical shift changes can also serve as a screening technique to identify novel interaction partners for a protein or to determine the binding affinity of a weak protein-peptide interaction. Here, we describe the application of NMR chemical shift mapping to the study of peptide binding to the C-terminal SH2 domain of PLCγ1.

  16. Selective purification of the thiol peptides of myosin

    PubMed Central

    Weeds, A. G.; Hartley, B. S.

    1968-01-01

    1. A method for selective purification of thiol peptides is described. Thiol groups in a protein are treated with radioactive cystine by disulphide–thiol interchange. The labelled cystine peptides in a digest can then be fractionated for peptide `maps'. Performic acid oxidation of paper strips containing the radioactive peptides followed by further ionophoresis yields the purified cysteic acid peptides. 2. The thiol peptides in a peptic digest of cystine-exchanged myosin were purified in this way, and their amino acid sequences were determined. 3. The conclusion that myosin contains at least 16, and probably between 20 and 22, unique thiol sequences indicates that the molecule consists of two chemically equivalent components. PMID:5660634

  17. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  18. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization

    DOE PAGES

    Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; ...

    2016-08-11

    Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.

  19. Photolytic labeling to probe molecular interactions in lyophilized powders.

    PubMed

    Iyer, Lavanya K; Moorthy, Balakrishnan S; Topp, Elizabeth M

    2013-12-02

    Local side-chain interactions in lyophilized protein formulations were mapped using solid-state photolytic labeling-mass spectrometry (ssPL-MS). Photoactive amino acid analogues (PAAs) were used as probes and either added to the lyophilized matrix or incorporated within the amino acid sequence of a peptide. In the first approach, apomyoglobin was lyophilized with sucrose and varying concentrations of photoleucine (L-2-amino-4,4'-azipentanoic acid; pLeu). The lyophilized solid was irradiated at 365 nm to initiate photolabeling. The rate and extent of labeling were measured using electrospray ionization/high-performance liquid chromatography/mass spectrometry (ESI-HPLC-MS), with labeling reaching a plateau at ~30 min, forming up to six labeled populations. Bottom-up MS/MS analysis was able to provide peptide-level resolution of the location of pLeu. ssPL-MS was also able to detect differences in side-chain environment between sucrose and guanidine hydrochloride formulations. In the second approach, peptide GCG (1-8)* containing p-benzoyl-L-phenylalanine (pBpA) in the amino acid sequence was lyophilized with various excipients and irradiated. Peptide-peptide and peptide-excipient adducts were detected using MS. Top-down MS/MS on the peptide dimer provided amino acid-level resolution regarding interactions and the cross-linking partner for pBpA in the solid state. The results show that ssPL-MS can provide high-resolution information about protein interactions in the lyophilized environment.

  20. Labeling Biomolecules with Radiorhenium - a Review of the Bifunctional Chelators

    PubMed Central

    Liu, Guozheng; Hnatowich, Donald J.

    2007-01-01

    For radiotherapy, biomolecules such as intact antibodies, antibody fragments, peptides, DNAs and other oligomers have all been labeled with radiorhenium (186Re and 188Re). Three different approaches have been employed that may be referred to as direct, indirect and integral labeling. Direct labeling applies to proteins and involves the initial reduction of endogenous disulfide bridges to provide chelation sites. Indirect labeling can apply to most biomolecules and involves the initial attachment of an exogenous chelator. Finally, integral labeling is a special case applying only to small molecules in which the metallic radionuclide serves to link two parts of a biomolecule together in forming the labeled complex. While the number of varieties for the direct and integral radiolabeling approaches is rather limited, a fairly large and diverse number of chelators have been reported in the case of indirect labeling. Our objective herein is to provide an overview of the various chelators that have been used in the indirect labeling of biomolecules with radiorhenium, including details on the labeling procedures, the stability of the radiolabel and, where possible, the influence of the label on biological properties. PMID:17504162

  1. Labeling biomolecules with radiorhenium: a review of the bifunctional chelators.

    PubMed

    Liu, Guozheng; Hnatowich, Donald J

    2007-05-01

    For radiotherapy, biomolecules such as intact antibodies, antibody fragments, peptides, DNAs and other oligomers have all been labeled with radiorhenium ((186)Re and (188)Re). Three different approaches have been employed that may be referred to as direct, indirect and integral labeling. Direct labeling applies to proteins and involves the initial reduction of endogenous disulfide bridges to provide chelation sites. Indirect labeling can apply to most biomolecules and involves the initial attachment of an exogenous chelator. Finally, integral labeling is a special case applying only to small molecules in which the metallic radionuclide serves to link two parts of a biomolecule together in forming the labeled complex. While the number of varieties for the direct and integral radiolabeling approaches is rather limited, a fairly large and diverse number of chelators have been reported in the case of indirect labeling. Our objective herein is to provide an overview of the various chelators that have been used in the indirect labeling of biomolecules with radiorhenium, including details on the labeling procedures, the stability of the radiolabel and, where possible, the influence of the label on biological properties.

  2. Sample Pesticide Label for Label Review Training

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  3. Pesticide Product Label System

    EPA Pesticide Factsheets

    The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). New labels were added to PPLS on November 21, 2014. Pesticide product labels provide critical information about how to safely handle and use registered pesticide products. An approved pesticide product label represents the full content of EPAs registration decision regarding that product. Pesticide labels contain detailed information on the use, storage, and handling of a product. This information will be found on EPA stamped-approved labels and, in some cases, in subsequent related correspondence, which is also included in PPLS. You may need to review several PDF files for a single product to determine the complete current terms of registration.

  4. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  5. Combining UV photodissociation with electron transfer for peptide structure analysis.

    PubMed

    Shaffer, Christopher J; Marek, Ales; Pepin, Robert; Slovakova, Kristina; Turecek, Frantisek

    2015-03-01

    The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  6. (68)Ga-labeled radiopharmaceuticals for positron emission tomography.

    PubMed

    Shetty, Dinesh; Lee, Yun-Sang; Jeong, Jae Min

    2010-12-01

    (68)Ga is a promising emerging radionuclide for positron emission tomography (PET). It is produced using a (68)Ge/(68)Ga-generator, and thus, would enable the cyclotron-independent distribution of PET. However, new (68)Ga-labeled radiopharmaceuticals that can replace (18)F-labeled agents like [(18)F]fluorodeoxyglucose (FDG) are needed. Most of the (68)Ga-labeled derivatives currently used are peptide agents, but the developments of other agents, such as amino acid derivatives, nitroimidazole derivatives, and glycosylated human serum albumin, are being actively pursued in many laboratories. Thus, appearance of new (68)Ga-labeled radiopharmaceuticals with high impact are expected in the near future. Here, we present an overview of (68)Ga-labeled agents in terms of their clinical significances and relevances to the management of certain tumors, and pertinent pre-clinical developments.

  7. Peptide nucleic acid probes with charged photocleavable mass markers

    PubMed Central

    Ball, Rachel J; Green, Philip S; Gale, Nittaya; Langley, G John

    2010-01-01

    Halogen-labelled peptide organic acid (HPOA) monomers have been synthesised and incorporated into sequence-specific peptide nucleic acid (PNA) probes. Three different types of probe have been prepared; the unmodified PNA probe, the PNA probe with a mass marker, and the PNA probe with photocleavable mass marker. All three types of probe have been used in model studies to develop a mass spectrometry-based hybridisation assay for detection of point mutations in DNA. PMID:21687524

  8. Regulatory Peptides in Plants.

    PubMed

    Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I

    2017-02-01

    Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

  9. Des-(27-31)C-peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules.

    PubMed

    Verchere, C B; Paoletta, M; Neerman-Arbez, M; Rose, K; Irminger, J C; Gingerich, R L; Kahn, S E; Halban, P A

    1996-11-01

    Insulin and connecting peptide (C-peptide) are produced in equimolar amounts during proinsulin conversion in the pancreatic beta cell secretory granule. To determine whether insulin and C-peptide are equally stable in beta cell granules (and thus secreted in equimolar amounts), neonatal and adult rat beta cells were pulse-chased, and radiolabeled insulin and C-peptide analyzed by high performance liquid chromatography. A novel truncated C-peptide was identified and shown by mass spectrometry to be des-(27-31)C-peptide (loss of 5 C-terminal amino acids). Des-(27-31)C-peptide is a major beta cell secretory product, accounting for 37.4 +/- 1.6% (neonatal) and 8.5 +/- 0.6% (adult) of total labeled C-peptide in secretory granules after 10 h of chase. Des-(27-31)C-peptide is also secreted in a glucose-sensitive manner from the perfused adult rat pancreas, accounting for approximately 10% of total C-peptide immunoreactivity secreted. Human C-peptide is also a substrate for truncation in granules. Thus, when human proinsulin was expressed (infection with recombinant adenovirus) in transformed (INS) rat beta cells, human des-(27-31)C-peptide was secreted along with the intact human peptide and both intact and truncated rat C-peptide. In addition to truncation, 33.1 +/- 1.2% of C-peptide in neonatal but not adult rat beta cell granules was further degraded. Such degradation was completely inhibited by ammonium chloride (known to neutralize intra-granular pH), whereas truncation was only partially inhibited by approximately 50%. In conclusion, a novel beta cell secretory product, des-(27-31)C-peptide, has been identified and should be considered as a potential bioactive peptide. Both truncation and degradation of C-peptide are responsible for non-equimolar secretion of insulin and C-peptide in rat beta cells.

  10. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    PubMed

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/).

  11. TRH-like peptides.

    PubMed

    Bílek, R; Bičíková, M; Šafařík, L

    2011-01-01

    TRH-like peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) with neutral or acidic amino acid, like glutamic acid, phenylalanine, glutamine, tyrosine, leucin, valin, aspartic acid and asparagine. The presence of extrahypothalamic TRH-like peptides was reported in peripheral tissues including gastrointestinal tract, placenta, neural tissues, male reproductive system and certain endocrine tissues. Work deals with the biological function of TRH-like peptides in different parts of organisms where various mechanisms may serve for realisation of biological function of TRH-like peptides as negative feedback to the pituitary exerted by the TRH-like peptides, the role of pEEPam such as fertilization-promoting peptide, the mechanism influencing the proliferative ability of prostatic tissues, the neuroprotective and antidepressant function of TRH-like peptides in brain and the regulation of thyroid status by TRH-like peptides.

  12. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  13. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  14. Comparative studies of adhesion peptides based on l- or d-amino acids.

    PubMed

    Nikitin, Sergey; Palmer, Daniel; Meldal, Morten; Diness, Frederik

    2016-10-01

    Detailed studies comparing solid-supported l- or d-amino acid adhesion peptides based on the sequence KLHRIRA were performed. Stability towards proteases and levels of cellular adhesion to the otherwise inert surface of PEGA resin were compared by using fluorescently labelled peptides. A clear difference in the peptide stability towards cleavage by subtilisin, trypsin, or papain was observed. However, all of the on-bead peptides provided an optimal surface for cell adhesion and proliferation. In long-term experiments, these properties were still found to be similar on the resins modified either with l- or with d-amino acids and unaffected by the nature of their fluorescence labelling at either terminus. These results support that the more accessible l-amino acids can be utilized for cell adhesion experiments and confirm the nonspecific interaction mechanism of cell binding to these peptides on the bead surface. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Labeling of Patient Specimens

    DTIC Science & Technology

    2011-01-26

    printers in each clinic to print labels .JDI Capt Cutter Research compatible printer, Cost, Time Frame Develop standard training for all clinics...Standardize label content, automate with inkless printers once process is proven c . Place visual reminders for providers and support staff 2. Event

  16. Labeling and Delinquency.

    ERIC Educational Resources Information Center

    Adams, Mike S.; Robertson, Craig T.; Gray-Ray, Phyllis; Ray, Melvin C.

    2003-01-01

    Index comprised of six contrasting descriptive adjectives was used to measure incarcerated youths' perceived negative labeling from the perspective of parents, teachers, and peers. Results provided partial support for hypothesis that juveniles who choose a greater number of negative labels will report more frequent delinquent involvement. Labeling…

  17. Labeling and Delinquency.

    ERIC Educational Resources Information Center

    Adams, Mike S.; Robertson, Craig T.; Gray-Ray, Phyllis; Ray, Melvin C.

    2003-01-01

    Index comprised of six contrasting descriptive adjectives was used to measure incarcerated youths' perceived negative labeling from the perspective of parents, teachers, and peers. Results provided partial support for hypothesis that juveniles who choose a greater number of negative labels will report more frequent delinquent involvement. Labeling…

  18. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  20. Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide α-neoendorphin.

    PubMed

    Pickett, Julie E; Nagakura, Kunihiko; Pasternak, Anna R; Grinnell, Steven G; Majumdar, Susruta; Lewis, Jason S; Pasternak, Gavril W

    2013-08-01

    Standard radioiodination methods lack site-selectivity and either mask charges (Bolton-Hunter) or involve oxidative reaction conditions (chloramine-T). Opioid peptides are very sensitive to certain structural modifications, making these labeling methods untenable. In our model opioid peptide, α-neoendorphin, we replaced a tyrosyl hydroxyl with an iodine, and in cell lines stably expressing mu, delta, or kappa opioid receptors, we saw no negative effects on binding. We then optimized a repurposed Sandmeyer reaction using copper(I) catalysts with non-redoxing/non-nucleophilic ligands, bringing the radiochemical yield up to around 30%, and site-selectively incorporated radioactive iodine into this position under non-oxidizing reaction conditions, which should be broadly compatible with most peptides. The (125)I- and (131)I-labeled versions of the compound bound with high affinity to opioid receptors in mouse brain homogenates, thus demonstrating the general utility of the labeling strategy and of the peptide for exploring opioid binding sites.

  1. Government perspective: food labeling.

    PubMed

    Philipson, Tomas

    2005-07-01

    The Food and Drug Administration acknowledges the severity of the obesity epidemic. The Food and Drug Administration recognizes the importance of food labeling as a vehicle for dietary messages and, thus, enforces stringent guidelines to maintain the integrity of the food label. As food labels await another upgrade to make them more effective and easier to understand, the Food and Drug Administration considers what information will be most useful for consumers to make healthy choices. The causal relationship between food labels and subsequent diet choice is not well understood; more research in this area is needed. The Commissioner of the Food and Drug Administration has recently appointed an Obesity Working Group to develop proposals on pertinent topics of obesity, including the role of food labeling as a dietary guide.

  2. Effects of histatin 5 and derived peptides on Candida albicans.

    PubMed Central

    Ruissen, A L; Groenink, J; Helmerhorst, E J; Walgreen-Weterings, E; Van't Hof, W; Veerman, E C; Nieuw Amerongen, A V

    2001-01-01

    Three anti-microbial peptides were compared with respect to their killing activity against Candida albicans and their ability to disturb its cellular and internal membranes. Histatin 5 is an anti-fungal peptide occurring naturally in human saliva, while dhvar4 and dhvar5 are variants of its active domain, with increased anti-microbial activity. dhvar4 has increased amphipathicity compared with histatin 5, whereas dhvar5 has amphipathicity comparable with that of histatin 5. All three peptides caused depolarization of the cytoplasmic and/or mitochondrial membrane, indicating membranolytic activity. For the variant peptides both depolarization and killing occurred at a faster rate. With FITC-labelled peptides, no association with the cytoplasmic membrane was observed, contradicting the formation of permanent transmembrane multimeric peptide pores. Instead, the peptides were internalized and act on internal membranes, as demonstrated with mitochondrion- and vacuole-specific markers. In comparison with histatin 5, the variant peptides showed a more destructive effect on mitochondria. Entry of the peptides and subsequent killing were dependent on the metabolic state of the cells. Blocking of the mitochondrial activity led to complete protection against histatin 5 activity, whereas that of dhvar4 was hardly affected and that of dhvar5 was affected only intermediately. PMID:11368762

  3. Mining Multi-label Data

    NASA Astrophysics Data System (ADS)

    Tsoumakas, Grigorios; Katakis, Ioannis; Vlahavas, Ioannis

    A large body of research in supervised learning deals with the analysis of single-label data, where training examples are associated with a single label λ from a set of disjoint labels L. However, training examples in several application domains are often associated with a set of labels Y ⊆ L. Such data are called multi-label.

  4. Label Review Training: Module 1: Label Basics, Page 29

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.

  5. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  6. Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery.

    PubMed

    Wang, Xuefei; Ji, Jian

    2009-10-06

    The multilayers of poly(L-lysine) (PLL) and hyaluronic acid (HA) were constructed by alternating deposition of PLL at high pH and HA at low pH. The exponential growth of the multilayer was proved to be amplified by increasing the pH difference between the two deposition solutions. The exponential growth multilayers of PLL/HA assembled at different pH were utilized as reservoirs for loading a trans-activating transcriptional factor (TAT) peptide. The confocal laser scanning microscopy (CLSM) results indicated that the FITC-labeled TAT could diffuse throughout the exponentially growing PLL/HA film. The amount of peptide embedded within multilayer could be adjusted by both multilayer assembly pH and the TAT loading pH. Compared with (PLL/HA 6.5/6.5)5 multilayer (PLL/HA a/b means that the multilayer film was constructed by using PLL at pH a and HA at pH b), the (PLL/HA 9.5/2.9)5 film can be loaded with more TAT peptide at the same loading pH 6.5. The excess of positively charged TAT peptide within (PLL/HA 9.5/2.9)5 film could not only be ascribed to its extraordinary thickness but also be attributed to its uncompensated negative charge density enhanced by the pH difference between film buildup and peptide loading process. Increasing of the TAT loading pH from 6.5 to 9.5, which increases the pH difference between multilayer assembly and peptide loading process, enhances the uncompensated charge density within (PLL/HA 9.5/2.9)5 film and elevates the peptide density from 13.8 to 25.0 microg/cm2. Compared with direct layer-by-layer assembly of TAT and HA, the postdiffusion of TAT into (PLL/HA 9.5/2.9)5 film was loaded much more peptide. The postdiffusion of peptide into a rapid growth multilayer can be more favorable to load and sustainedly release functional oligo-peptide. The cell culture results indicated that the TAT embedded within the film maintained the ability to traverse across the Hep G2 cell membrane. The functionalized (PLL/HA 9.5/2.9)5 TAT 9.5 film was more

  7. Peptide signaling in Hydra.

    PubMed

    Fujisawa, Toshitaka; Hayakawa, Eisuke

    2012-01-01

    Peptides play a number of crucial roles as signaling molecules in metazoans. In order to elaborate a more complete picture of the roles played by peptides in a single organism, we launched the "Hydra Peptide Project". For this project, we used Hydra magnipapillata, a species belonging to Cnidaria, one of the most basal metazoan phyla, and using a peptidomic approach, we systematically identified a number of peptide signaling molecules, their encoding genes and their functions. In this article, we report the peptides isolated from Hydra and other cnidarians, as well as their synthesis, processing and release from the cells to the target. Possible peptide signaling pathways are overviewed and finally we discuss the evolution of the peptide signaling system.

  8. A switchable stapled peptide.

    PubMed

    Kalistratova, Aleksandra; Legrand, Baptiste; Verdié, Pascal; Naydenova, Emilia; Amblard, Muriel; Martinez, Jean; Subra, Gilles

    2016-03-01

    The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.

  9. Passive and active fragment ion mass defect labeling: distinct proteomics potential of iodine-based reagents.

    PubMed

    Shi, Yu; Bajrami, Bekim; Yao, Xudong

    2009-08-01

    The exact mass of a peptide differs characteristically from its nominal mass by a value called the mass defect. Limited by possible elemental compositions, the mass defect of peptides has a restricted range, resulting in an unoccupied mass spectral space in every mass-to-charge unit. The method of fragment ion mass defect labeling (FIMDL) places characteristic fragment ions of modified peptides as reporters into unused spectral space where no native peptide fragment ions exist. In this labeling method, peptides are chemically modified in solution and the modified peptides, upon gas-phase collision in a mass spectrometer, generate fragment ions with significantly shifted mass defects. In this work, the efficiency of iodine stable isotope-containing reagents for shifting mass defects of peptide fragment ions was systematically investigated, through derivatization of peptide N-termini with various reagents containing one or more chlorine, bromine, or iodine atoms. The observed efficiency for the iodine atom placing the labeled fragment ions into unoccupied spectral space agreed well with theoretical predictions from averagine-scaling analysis of ion masses. On the basis of the gas-phase stability of different labeling groups and their involvement in collisional dissociation of modified peptides, peptide modifications were classified into three categories: passive, type I active, and type II active. Each modification type has its unique potential in different proteome analyses. Possible proteomics applications of FIMDL are discussed and compared with proteome analyses currently being practiced in the field. Principles obtained from this survey study will provide a guideline in developing novel FIMDL reagents for advanced proteomics analysis.

  10. Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Sha, Xiao-Mei; Tu, Zong-Cai; Wang, Hui; Huang, Tao; Duan, Deng-Le; He, Na; Li, De-Jun; Xiao, Hui

    2014-12-10

    Combined with high-performance liquid chromatography (HPLC) and linear-ion trap/Orbitrap high-resolution mass spectrometry, trypsin-catalyzed (16)O-to-(18)O exchange was used to establish an accurate quantitative method for bovine or porcine gelatin. The sophisticated modifications for these two mammalian gelatins were unambiguously identified by accurate mass and tandem mass spectrometry. Eighteen marker peptides were successfully identified for the bovine and porcine gelatin, respectively. The gelatins were subjected to (18)O or (16)O labeling in the presence of trypsin and mixed together in various ratios for quantification. All of the (18)O-labeled peptides were also confirmed by accurate mass and tandem mass spectrometry. The 10 marker peptides with the strongest signals were chosen to calculate the average ratios of (18)O-labeled and (16)O-labeled gelatin. The measured ratios of (18)O-labeled and (16)O-labeled peptides were very close to the mixing ratios of 20:1, 5:1, 1:1, and 1:5 with low standard deviation values. The samples with a mixing ratio of 1:1 (18)O-labeled and (16)O-labeled peptides were determined to 1.00 and 0.99 with standard deviations of 0.02 and 0.04 for bovine and porcine gelatins, respectively, indicating the high accuracy of this method. Trypsin-catalyzed (18)O labeling was proved to be an excellent internal calibrant for gelatins. When combined with HPLC and high-resolution mass spectrometry, it is an accurate and sensitive quantitative method for gelatin in the food industry.

  11. Soil Fumigant Labels - Methyl Bromide

    EPA Pesticide Factsheets

    Search soil fumigant pesticide labels by EPA registration number, product name, or company, and follow the link to The Pesticide Product Label System (PPLS) for details. Updated labels include new safety requirements for buffer zones and related measures.

  12. Off-Label Drug Use

    MedlinePlus

    ... their drugs for off-label uses. Off-label marketing is very different from off-label use. Why ... Employment Become a Supplier Report Fraud or Abuse Global Health ACS CAN Sign Up for Email Policies ...

  13. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1983-07-15

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  14. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1985-11-12

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.

  15. Capacitive label reader

    DOEpatents

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  16. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Fischer, Lutz; Rappsilber, Juri

    2016-03-01

    Cross-linking/mass spectrometry resolves protein-protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers.

  17. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization

    SciTech Connect

    Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; Martin, Emily B.; Cheng, Xiaolin; Heidel, R. Eric; Kennel, Stephen J.

    2016-08-11

    Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.

  18. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  19. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  20. Like your labels?

    PubMed

    Field, Michele

    2010-01-01

    The descriptive “conventions” used on food labels are always evolving. Today, however, the changes are so complicated (partly driven by legislation requiring disclosures about environmental impacts, health issues, and geographical provenance) that these labels more often baffle buyers than enlighten them. In a light-handed manner, the article points to how sometimes reading label language can be like deciphering runes—and how if we are familiar with the technical terms, we can find a literal meaning, but still not see the implications. The article could be ten times longer because food labels vary according to cultures—but all food-exporting cultures now take advantage of our short attention-span when faced with these texts. The question is whether less is more—and if so, in this contest for our attention, what “contestant” is voted off.

  1. Label Review Training - Resources

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  2. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  3. Direct arginine modification in native peptides and application to chemical probe development.

    PubMed

    Grundler, Verena; Gademann, Karl

    2014-12-11

    An efficient method for the direct labeling of the Arg guanidinium group in native peptides is reported. This straightforward procedure allows modifying the arginine moiety in peptides with various reporter groups, such as fluorophores, biotin, etc., under mild conditions in an operationally simple procedure. The scope of this method tolerates various functionalized amino acids such as His, Ser, Trp, Tyr, Glu, etc., while the only limitations uncovered so far are restricted to cysteine and free amine residues. The utility of this late-stage diversification method was demonstrated in direct labeling of leuprolide, a clinically used drug, for distribution monitoring in Daphnia, and in labeling of microcystin, a cyanobacterial toxin.

  4. Matching isotopic distributions from metabolically labeled samples.

    PubMed

    McIlwain, Sean; Page, David; Huttlin, Edward L; Sussman, Michael R

    2008-07-01

    In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given 'expert' selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using machine selected peaks, which

  5. Matching isotopic distributions from metabolically labeled samples

    PubMed Central

    McIlwain, Sean; Page, David; Huttlin, Edward L.; Sussman, Michael R.

    2008-01-01

    Motivation: In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. Results: The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given ‘expert’ selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using

  6. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  7. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  8. Chromatographic behaviour of peptides following dimethylation with H2/D2-formaldehyde: implications for comparative proteomics.

    PubMed

    Boutilier, Joseph M; Warden, Hunter; Doucette, Alan A; Wentzell, Peter D

    2012-11-01

    The differential separation of deuterated and non-deuterated forms of isotopically substituted compounds in chromatography is a well-known but not well-understood phenomenon. This separation is relevant in comparative proteomics, where stable isotopes are used for differential labelling and the effect of isotope resolution on quantitation has been used to disqualify some deuterium labelling methods in favour of heavier isotopes. In this work, a detailed evaluation of the extent of isotopic separation and its impact on quantitation was performed for peptides labelled through dimethylation with H(2)/D(2) formaldehyde. The chromatographic behaviour of 71 labelled peptide pairs from quadruplicate tryptic digests of bovine serum albumin were analysed, focusing on differences in median retention times, resolution, and relative quantitation for each peptide. For 94% of peptides, the retention time difference (heavy-light) was less than 12s with a median value 3.4s. With the exception of a single anomalous pair, isotope resolution was below 0.6 with a median value 0.11. Quantitative assessment indicates that the bias in ratio calculation introduced by retention time shifts is only about 3%, substantially smaller than the variation in ratio measurements themselves. Computational studies on the dipole moments of deuterated labels indicate that these results are consistent with literature suggestions that retention time shifts are inversely related to the polarity of the label. This study suggests that the incorporation of deuterium isotopes through peptide dimethylation at amine residues is a viable route to proteome quantitation.

  9. Insights into the Mechanism of Peptide Cyclodehydrations Achieved Through the Chemoenzymatic Generation of Amide Derivatives

    PubMed Central

    Dunbar, Kyle L.; Mitchell, Douglas A.

    2013-01-01

    Current strategies for generating peptides and proteins bearing amide carbonyl derivatives rely on solid-phase peptide synthesis for amide functionalization. Although such strategies have been successfully implemented, technical limitations restrict both the length and sequence of the synthetic fragments. Herein we report the repurposing of a thiazole/oxazole-modified microcin (TOMM) cyclodehydratase to site-specifically install amide backbone labels onto diverse peptide substrates, a method we refer to as azoline-mediated peptide backbone labeling (AMPL). This convenient chemoenzymatic strategy can generate both thioamides and amides with isotopically labeled oxygen atoms. Moreover, we demonstrate the first leader peptide-independent activity of a TOMM synthetase, circumventing the requirement that sequences of interest be fused to a leader peptide for modification. Through bioinformatics-guided site-directed mutagenesis, we also convert a strictly dehydrogenase-dependent TOMM azole synthetase into an azoline synthetase. This vastly expands the spectrum of substrates modifiable by AMPL by allowing any in vitro reconstituted TOMM synthetase to be employed. To demonstrate the utility of AMPL for mechanistic enzymology studies, an 18O-labeled substrate was generated to provide direct evidence that cyclodehydrations in TOMMs occur through the phosphorylation of the carbonyl oxygen preceding the cyclized residue. Furthermore, we demonstrate that AMPL is a useful tool for establishing the location of azolines both on in vitro modified peptides and azoline-containing natural products. PMID:23721104

  10. Routing and Label Space Reduction in Label Switching Networks

    NASA Astrophysics Data System (ADS)

    Solano, Fernando; Caro, Luis Fernando; Stidsen, Thomas; Papadimitriou, Dimitri

    This chapter is devoted to the analysis and modeling of some problems related to the optimal usage of the label space in label switching networks. Label space problems concerning three different technologies and architectures - namely Multi-protocol Label Switching (MPLS), Ethernet VLAN-Label Switching (ELS) and All-Optical Label Switching (AOLS) - are discussed in this chapter. Each of these cases yields to different constraints of the general label space reduction problem. We propose a generic optimization model and, then, we describe some adaptations aiming at modeling each particular case. Simulation results are briefly discussed at the end of this chapter.

  11. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    SciTech Connect

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-10

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelledpeptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  12. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-01

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelledpeptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  13. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  14. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  15. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Topical peptides as cosmeceuticals.

    PubMed

    Pai, Varadraj Vasant; Bhandari, Prasana; Shukla, Pankaj

    2017-01-01

    Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  17. The natriuretic peptides.

    PubMed

    Baxter, Gary F

    2004-03-01

    The natriuretic peptides are a family of widely distributed, but evolutionarily conserved, polypeptide mediators that exert a range of actions throughout the body. In cardiovascular homeostasis, the endocrine roles of the cardiac-derived atrial and B-type natriuretic peptide (ANP and BNP) in regulating central fluid volume and blood pressure have been recognised for two decades. However, there is a growing realisation that natriuretic peptide actions go far beyond their volume regulating effects. These pleiotropic actions include local (autocrine/paracrine) regulatory actions of ANP and BNP within the heart, and of another natriuretic peptide, CNP, within the vessel wall. Effects on function and growth of the local tissue environment are likely to be of great importance, especially in disease states where tissue and circulating levels of ANP and BNP rise markedly. At present, the relevance of other natriuretic peptides (notably uroguanylin and DNP) to human physiology and pathology remain uncertain. Other articles in this issue of Basic Research in Cardiology review the molecular physiology of natriuretic peptide signalling, with a particular emphasis on the lessons from genetically targetted mice; the vascular activity of natriuretic peptides; the regulation and roles of natriuretic peptides in ischaemic myocardium; and the diagnostic, prognostic and therapeutic roles of natriuretic peptides in heart failure.

  18. Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-11-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

  19. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT)

    PubMed Central

    Su, Chiao-Yung; London, Erwin; Sampson, Nicole S.

    2013-01-01

    The plasma membrane contains a diverse array of proteins, including receptors, channels, and signaling complexes, that serve as decision-making centers. Investigation of membrane protein topology is important for understanding the function of these types of protein. Here, we report a method to determine protein topology in the membrane that utilizes labeling of cysteine with isotope-coded mass tags. The mass tags contain a thiol reactive moiety, linker, and a quaternary ammonium group to aid ionization in the mass spectrometer and were synthesizes as both light and heavy (deuterated) forms. The probes were found to be membrane impermeable when applied to lipid vesicles. To assess the utility of the probes for mapping peptide thiol topology, we employed a two-step labeling procedure. Vesicles containing α-helical transmembrane peptides were labeled with heavy (or light) probe, solubilized by detergent, and then labeled by an excess of the complementary probe. Peptide for which the cysteine was oriented in the center of the lipid bilayer was not labeled until the lipid vesicles were lysed with detergent, consistent with the membrane impermeability of the probes and reduced ionization of the thiol in the hydrophobic membrane. Peptide for which the cysteine was positioned in the head group zone of the lipid bilayer was labeled rapidly. Peptide for which the cysteine was positioned below the head group abutting the hydrocarbon region was labeled at a reduced rate compared to the fully accessible cysteine. Moreover, the effect of lipid bilayer structure on the kinetics of peptide and lipid flipping in the bilayer was readily measured with our two-step labeling method. The small sample size required, the ease and rapidity of sample preparation, and the amenability of MALDI-TOF mass spectral to analysis in the presence of lipids will enable future facile investigation of membrane proteins in a cellular context. PMID:23725486

  20. Peptide-Targeted Radionuclide Therapy for Melanoma

    PubMed Central

    Miao, Yubin; Quinn, Thomas P.

    2011-01-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1R and melanin. The promising therapeutic efficacies of 188Re-(Arg11)CCMSH (188Re-[Cys3,4,10, d-Phe7, Arg11]-α-MSH3-13), 177Lu- and 212Pb-labeled DOTA-Re(Arg11)CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys3,4,10, d-Phe7, Arg11)]-α-MSH3-13) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  1. Development of peptide and protein based radiopharmaceuticals.

    PubMed

    Wynendaele, Evelien; Bracke, Nathalie; Stalmans, Sofie; De Spiegeleer, Bart

    2014-01-01

    Radiolabelled peptides and proteins have recently gained great interest as theranostics, due to their numerous and considerable advantages over small (organic) molecules. Developmental procedures of these radiolabelled biomolecules start with the radiolabelling process, greatly defined by the amino acid composition of the molecule and the radionuclide used. Depending on the radionuclide selection, radiolabelling starting materials are whether or not essential for efficient radiolabelling, resulting in direct or indirect radioiodination, radiometal-chelate coupling, indirect radiofluorination or (3)H/(14)C-labelling. Before preclinical investigations are performed, quality control analyses of the synthesized radiopharmaceutical are recommended to eliminate false positive or negative functionality results, e.g. changed receptor binding properties due to (radiolabelled) impurities. Therefore, radionuclidic, radiochemical and chemical purity are investigated, next to the general peptide attributes as described in the European and the United States Pharmacopeia. Moreover, in vitro and in vivo stability characteristics of the peptides and proteins also need to be explored, seen their strong sensitivity to proteinases and peptidases, together with radiolysis and trans-chelation phenomena of the radiopharmaceuticals. In vitro biomedical characterization of the radiolabelled peptides and proteins is performed by saturation, kinetic and competition binding assays, analyzing KD, Bmax, kon, koff and internalization properties, taking into account the chemical and metabolic stability and adsorption events inherent to peptides and proteins. In vivo biodistribution can be adapted by linker, chelate or radionuclide modifications, minimizing normal tissue (e.g. kidney and liver) radiation, and resulting in favorable dosimetry analyses. Finally, clinical trials are initiated, eventually leading to the marketing of radiolabelled peptides and proteins for PET/SPECT-imaging and therapy

  2. Assignment of disulfide-linked peptides using automatic a1 ion recognition.

    PubMed

    Huang, Sheng Yu; Wen, Chien Hsien; Li, Ding Tzai; Hsu, Jue Liang; Chen, Chinpan; Shi, Fong Ku; Lin, Yueh Yi

    2008-12-01

    We present a novel approach for the assignment of peptides containing disulfide linkages. Dimethyl labeling is introduced to generate labeled peptides which exhibit enhanced a1 ion signals during MS/MS fragmentation. For disulfide-linked peptides, multiple a1 ions can be observed due to multiple N-termini. This distinct feature allows sieving out the disulfide-linked peptides; meanwhile, the N-terminal amino acids can be identified. With such information, the number of possible peptide combinations involved in a disulfide bond dramatically narrows down. Furthermore, we developed a computational algorithm to perform target a1 ion screening followed by molecular weight matching of cysteine-containing peptides with specific amino acids at the N-termini. Once the protein sequence and the peak list from a LC-MS/MS survey scan of labeled peptides are imported, the identities of disulfide-linked peptides can be readily obtained. The presented approach is simple and straightforward, offering a valuable tool for protein structural characterization.

  3. Nanostructured luminescently labeled nucleic acids.

    PubMed

    Kricka, Larry J; Fortina, Paolo; Park, Jason Y

    2017-03-01

    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single-stranded DNA, double-stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Assaying peptide translocation by the peptide transporter TAP.

    PubMed

    Jongsma, Marlieke L M; Neefjes, Jacques

    2013-01-01

    MHC class I molecules display peptides at the cell surface that are mostly derived from cytosolic or nuclear proteins. Since peptide loading of MHC class I molecules occurs in the ER lumen, cytosolic peptides have to pass the ER membrane. The peptide transporter TAP translocates peptides over this ER membrane which is critical for successful MHC class I antigen presentation. How peptide translocation by TAP can be assayed and inhibitors of chemical or viral origin can be identified, will be described here.

  5. Novel peptides functionally targeting in vivo human lung cancer discovered by in vivo peptide displayed phage screening.

    PubMed

    Lee, Kyoung Jin; Lee, Jae Hee; Chung, Hye Kyung; Choi, Jinhyang; Park, Jaesook; Park, Seok Soon; Ju, Eun Jin; Park, Jin; Shin, Seol Hwa; Park, Hye Ji; Ko, Eun Jung; Suh, Nayoung; Kim, InKi; Hwang, Jung Jin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2015-02-01

    Discovery of the cancer-specific peptidic ligands have been emphasized for active targeting drug delivery system and non-invasive imaging. For the discovery of useful and applicable peptidic ligands, in vivo peptide-displayed phage screening has been performed in this study using a xenograft mouse model as a mimic microenvironment to tumor. To seek human lung cancer-specific peptides, M13 phage library displaying 2.9 × 10(9) random peptides was intravenously injected into mouse model bearing A549-derived xenograft tumor through the tail vein. Then the phages emerged from a course of four rounds of biopanning in the xenograft tumor tissue. Novel peptides were categorized into four groups according to a sequence-homology phylogenicity, and in vivo tumor-targeting capacity of these peptides was validated by whole body imaging with Cy5.5-labeled phages in various cancer types. The result revealed that novel peptides accumulated only in adenocarcinoma lung cancer cell-derived xenograft tissue. For further confirmation of the specific targeting ability, in vitro cell-binding assay and immunohistochemistry in vivo tumor tissue were performed with a selected peptide. The peptide was found to bind intensely to lung cancer cells both in vitro and in vivo, which was efficiently compromised with unlabeled phages in an in vitro competition assay. In conclusion, the peptides specifically targeting human lung cancer were discovered in this study, which is warranted to provide substantive feasibilities for drug delivery and imaging in terms of a novel targeted therapeutics and diagnostics.

  6. Reduced peptide bond pseudopeptide analogues of neurotensin.

    PubMed

    Doulut, S; Rodriguez, M; Lugrin, D; Vecchini, F; Kitabgi, P; Aumelas, A; Martinez, J

    1992-01-01

    Pseudopeptide analogues of the C-terminal hexapeptide of neurotensin (H-Arg-Arg-Pro-Tyr-Ile-Leu-OH) were obtained by replacing each peptide bond by the reduced peptide bond CH2NH. The resulting analogues were then examined for their ability to inhibit binding of labeled neurotensin to new-born mouse brain membranes and for stimulation of guinea pig ileum contraction. Replacement of the Ile12-Leu13, Tyr11-Ile12, Pro10-Tyr11 and Lys9-Pro10 peptide bonds resulted in about 2000-, 3400-, 200- and 3400-fold losses, respectively, in binding affinity and 400-, 750-, 250- and 300-fold losses, respectively, in biological activity. Replacement of both Arg8 and Arg9 by lysine led to an analogue exhibiting the same pharmacological profile as the C-terminal hexapeptide of neurotensin. Interestingly, replacement of the Lys8-Lys9 peptide bond by the CH2NH bond produced an analogue exhibiting the same affinity for neurotensin receptors, but 10 times more potent in stimulating guinea pig ileum contraction. N-terminal protected analogues (by the Boc group) showed decreased potency as compared with their amino-free corresponding compounds.

  7. Structural pattern matching of nonribosomal peptides

    PubMed Central

    Caboche, Ségolène; Pupin, Maude; Leclère, Valérie; Jacques, Phillipe; Kucherov, Gregory

    2009-01-01

    Background Nonribosomal peptides (NRPs), bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents). NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all pepti