Science.gov

Sample records for peptide mapping analysis

  1. Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes.

    PubMed Central

    Gauss, C; Klein, J; Post, K; Suckau, D; Schneider, K; Thomas, H; Oesch, F; Przybylski, M

    1990-01-01

    The direct molecular weight determination and structural analysis of polypeptides and peptide mixtures have become amenable by the recent development of fast atom bombardment (FABMS) and 252Cf-plasma desorption (PDMS) mass spectrometry. FABMS and PDMS peptide mapping, i.e., the direct analysis of peptide mixtures resulting from proteolytic digestion, have been developed as powerful methods for the structural characterization of epoxide-metabolizing isoenzymes. The major advantage of this approach is provided by the selectivity of the endoproteolytic cleavage, combined with the specific and accurate molecular weight determination of complex digest mixtures containing peptides up to several thousands daltons in size. Furthermore, the mass spectrometric peptide mapping analysis can be combined with a range of protein-chemical modification reactions and with sequential degradation such as by carboxypeptidases. Both FABMS and PDMS peptide mapping have already been successfully applied to the structural differentiation of glutathione transferase and epoxide hydrolase isoenzymes in cases where references sequence data for at least one isoenzyme form was available. In the application described here, for a series of dihydrodiol dehydrogenase (DDH) isoenzymes with hitherto undetermined primary structures, a direct correlation between the structural differentiation from peptide mapping data and differences in their substrate specificities could be demonstrated. The mass spectrometric peptide mapping analysis of isoenzymes proved to be an efficient basis for the elucidation of the structure of one major DDH isoenzyme form; partial sequence data for this protein are reported. PMID:2272334

  2. Differentiation of citrus tristeza virus isolates by serological analysis of p25 coat protein peptide maps.

    PubMed

    Albiach-Marti, M R; Guerri, J; Cambra, M; Garnsey, S M; Moreno, P

    2000-07-01

    A procedure was developed to purify rapidly and easily a sufficient quantity of native p25 coat protein (CP) to allow comparison of five isolates of citrus tristeza virus (CTV) by serological analysis of peptide maps, using monoclonal and polyclonal antibodies. CTV particles were concentrated by centrifugation and purified by agarose gel electrophoresis. The CP was extracted from gel slices riched in virions and protein yields were about three times greater than those obtained previously and of comparable purity. The purified CP was partially digested with either V8 or papain endo-protease, and the peptides generated were separated and electroblotted to a membrane. Protein blots were tested with four monoclonal antibodies and one source of polyclonal antibodies. The serological maps generated by papain allowed differentiation of all the isolates examined, and those generated by V8 endoprotease allowed discrimination of four of the five isolates tested. Some of these isolates had been indistinguishable based on their reactivity in DASI-ELISA, dsRNA pattern and biological characterization. Serological analysis of peptide maps, as described below, allowed accurate comparison of CTV isolates with minimum amounts of p25 CP and proved superior to other techniques for discriminating CTV isolates.

  3. High throughput peptide mapping method for analysis of site specific monoclonal antibody oxidation.

    PubMed

    Li, Xiaojuan; Xu, Wei; Wang, Yi; Zhao, Jia; Liu, Yan-Hui; Richardson, Daisy; Li, Huijuan; Shameem, Mohammed; Yang, Xiaoyu

    2016-08-19

    Oxidation of therapeutic monoclonal antibodies (mAbs) often occurs on surface exposed methionine and tryptophan residues during their production in cell culture, purification, and storage, and can potentially impact the binding to their targets. Characterization of site specific oxidation is critical for antibody quality control. Antibody oxidation is commonly determined by peptide mapping/LC-MS methods, which normally require a long (up to 24h) digestion step. The prolonged sample preparation procedure could result in oxidation artifacts of susceptible methionine and tryptophan residues. In this paper, we developed a rapid and simple UV based peptide mapping method that incorporates an 8-min trypsin in-solution digestion protocol for analysis of oxidation. This method is able to determine oxidation levels at specific residues of a mAb based on the peptide UV traces within <1h, from either TBHP treated or UV light stressed samples. This is the simplest and fastest method reported thus far for site specific oxidation analysis, and can be applied for routine or high throughput analysis of mAb oxidation during various stability and degradation studies. By using the UV trace, the method allows more accurate measurement than mass spectrometry and can be potentially implemented as a release assay. It has been successfully used to monitor antibody oxidation in real time stability studies.

  4. Accurate determination of succinimide degradation products using high fidelity trypsin digestion peptide map analysis.

    PubMed

    Yu, X Christopher; Joe, Koman; Zhang, Yu; Adriano, Andrea; Wang, Yaning; Gazzano-Santoro, Helene; Keck, Rodney G; Deperalta, Galahad; Ling, Victor

    2011-08-01

    We report an efficient, high fidelity trypsin digestion method for peptide map analysis. This method minimizes artifacts caused by the sample preparation process, and we show its utility for the accurate determination of succinimide formation in a degraded monoclonal antibody product. A basic charge variant was detected by imaged capillary isoelectric focusing and was shown with reduced antigen binding and biological activity. Samples were reduced under denaturing conditions at pH 5.0, and digestion of the reduced protein with porcine trypsin was performed at pH 7.0 for 1 h. Following reversed phase high-performance liquid chromatography and online mass spectrometric analysis, succinimide formation was identified at Asp30 in the light chain. This result contrasts with the observation of only iso-Asp and Asp residues under conventional sample preparation conditions, which are therefore concluded to be artificially generated. The Asp30 residue is seen in the cocrystal structure model to participate in favorable charge interaction with an antigen molecule. Formation of succinimide and the resulting loss of negative charge are therefore hypothesized to be the degradation mechanism. After treatment of the degraded antibody sample to mildly alkaline pH conditions, we observed only Asp residue as the succinimide hydrolysis product and concurrent recovery of biological activity.

  5. Analysis and optimization of saturation transfer difference NMR experiments designed to map early self-association events in amyloidogenic peptides.

    PubMed

    Huang, Hao; Milojevic, Julijana; Melacini, Giuseppe

    2008-05-08

    Saturation transfer difference (STD) methods recently have been proposed to be a promising tool for self-recognition mapping at residue and atomic resolution in amyloidogenic peptides. Despite the significant potential of the STD approach for systems undergoing oligomer/monomer (O/M) equilibria, a systematic analysis of the possible artifacts arising in this novel application of STD experiments is still lacking. Here, we have analyzed the STD method as applied to O/M peptides, and we have identified three major sources of possible biases: offset effects, intramonomer cross-relaxation, and partial spin-diffusion within the oligomers. For the purpose of quantitatively assessing these artifacts, we employed a comparative approach that relies on 1-D and 2-D STD data acquired at different saturation frequencies on samples with different peptide concentrations and filtration states. This artifact evaluation protocol was applied to the Abeta(12-28) model system, and all three types of artifacts appear to affect the measured STD spectra. In addition, we propose a method to minimize the biases introduced by these artifacts in the Halpha STD distributions used to obtain peptide self-recognition maps at residue resolution. This method relies on the averaging of STD data sets acquired at different saturation frequencies and provides results comparable to those independently obtained through other NMR pulse sequences that probe oligomerization, such as nonselective off-resonance relaxation experiments. The artifact evaluation protocol and the multiple frequencies averaging strategy proposed here are of general utility for the growing family of amyloidogenic peptides, as they provide a reliable analysis of STD spectra in terms of polypeptide self-recognition epitopes.

  6. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates.

    PubMed Central

    Carré-Eusèbe, D; Lederer, F; Lê, K H; Elsevier, S M

    1991-01-01

    Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid. Images Fig. 1. Fig. 3. Fig. 4. PMID:1854346

  7. Investigation of purification process stresses on erythropoietin peptide mapping profile

    PubMed Central

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Background: Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Materials and Methods: Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. Results: No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Conclusions: Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance. PMID:26261816

  8. Investigation of purification process stresses on erythropoietin peptide mapping profile.

    PubMed

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance.

  9. Analysis of C3b/C4b receptor (CR1) polymorphic variants by tryptic peptide mapping.

    PubMed

    Nickells, M W; Seya, T; Holers, V M; Atkinson, J P

    1986-06-01

    The human C3b/C4b receptor (CR1) binds the major activation and opsonic fragments of the third (C3) and fourth (C4) components of complement. CR1 is a single chain integral membrane glycoprotein widely distributed on peripheral blood cells. Four codominantly inherited allelic variants with Mrs of 160,000, 190,000, 220,000 and 250,000 have been described. To address the structural basis for this unusual polymorphism, CR1 from donors expressing three of the four allelic variants was purified from surface labeled (125I) erythrocytes by iC3-Sepharose affinity chromatography and the variants compared by tryptic peptide mapping (TPM). The TPMs of each variant contained the same major peaks and minor peak areas and were nearly identical to one another. Tryptic peptide mappings of the 190,000 Mr erythrocyte CR1, which was purified prior to iodination, were similar to those derived from surface iodinated CR1. The TPMs of erythrocyte and granulocyte CR1 from the same donor differed by a single peak of increased prominence in the granulocyte map. These results indicate a conservation in amino acid sequence for those peptides detected. In view of these data and those of other studies of the structure and genetics of CR1 and related proteins, it is suggested in this paper that the allelic variation relates to CR1, being composed of repeating amino acid sequences.

  10. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    PubMed Central

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  11. Computer prediction of peptide maps: assignment of polypeptides to human and mouse mitochondrial DNA genes by analysis of two-dimensional-proteolytic digest gels.

    PubMed Central

    Wallace, D C; Yang, J H; Ye, J H; Lott, M T; Oliver, N A; McCarthy, J

    1986-01-01

    We have prepared a computer program that predicts complete and partial peptide maps from amino acid sequences. The program fragments amino acid sequences at designated cleavage sites and calculates the molecular weight and relative labeling of each peptide. These data are graphed as log molecular weight of the original protein (X-axis) vs. log molecular weight of the component peptides (Y-axis). The program is interactive, permitting adjustment of a number of graphic parameters and alteration of the position of proteins in the first dimension to accommodate aberrations in protein mobility. The program has been used to predict the V8 protease peptide maps of the 13 open reading frames (ORFs) identified in the human and the mouse mitochondrial DNA (mtDNA) sequences. The results were compared to the V8 protease peptide maps obtained for mouse and human mitochondrially synthesized proteins by two-dimensional proteolytic digest gels. A high correlation was observed between the predicted and observed peptide maps. These results suggest the assignment of several proteins to mtDNA genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3518425

  12. Epitope mapping by epitope excision, hydrogen/deuterium exchange, and peptide-panning techniques combined with in silico analysis.

    PubMed

    Clementi, Nicola; Mancini, Nicasio; Criscuolo, Elena; Cappelletti, Francesca; Clementi, Massimo; Burioni, Roberto

    2014-01-01

    The fine characterization of protective B cell epitopes plays a pivotal role in the development of novel vaccines. The development of epitope-based vaccines, in fact, cannot be possible without a clear definition of the antigenic regions involved in the binding between the protective antibody (Ab) and its molecular target. To achieve this result, different epitope-mapping approaches have been widely described (Clementi et al. Drug Discov Today 18(9-10):464-471, 2013). Nowadays, the best way to characterize an Ab bound region is still the resolution of Ab-antigen (Ag) co-crystal structure. Unfortunately, the crystallization approaches are not always feasible. However, different experimental strategies aimed to predict Ab-Ag interaction and followed by in silico analysis of the results may be good surrogate approaches to achieve this result. Here, we review few experimental techniques followed by the use of "basic" informatics tools for the analysis of the results.

  13. Combinatorial peptide ligand libraries for the analysis of low-expression proteins: Validation for normal urine and definition of a first protein MAP.

    PubMed

    Santucci, Laura; Candiano, Giovanni; Bruschi, Maurizio; D'Ambrosio, Chiara; Petretto, Andrea; Scaloni, Andrea; Urbani, Andrea; Righetti, Pier G; Ghiggeri, Gian M

    2012-02-01

    In this review, we report the evolution on experimental conditions for the analysis of normal urine based on combinatorial peptide ligand library (CPLL) treatment and successive 2-DE and 2-DE/MS analysis. The main topics are (i) definition of the urine sample requirements, (ii) optimization of the urine/ligand ratio, (iii) essay conditions, (iv) en bloc elution. Overall, normal urine protein composition as studied by 2-DE includes over 2600 spots. Relevant data on inter and intraessay reproducibility obtained by the analysis of different normal urines repeated several times are also here presented. We found a 73% reproducibility upon analysis of the same sample and 68% correspondence of protein composition among different normal urine samples. Based on the above results, we are completing the characterization with LC-MS of 249 spots. The composition of normal urine proteins after CPLLs is finally shown with the indication of those spots which are currently under identification. This map will be completed in a near future; in the meantime this would represent the basic reference sample for newly developed studies on human diseases.

  14. NMR Chemical Shift Mapping of SH2 Peptide Interactions.

    PubMed

    McKercher, Marissa A; Wuttke, Deborah S

    2017-01-01

    Heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) experiments offer a rapid and high resolution approach to gaining binding and conformational insights into a protein-peptide interaction. By tracking (1)H and (15)N chemical shift changes over the course of a peptide titration into isotopically labeled protein, amide NH pairs of amino acids whose chemical environment changes upon peptide binding can be identified. When mapped onto a structure of the protein, this approach can identify the peptide-binding interface or regions undergoing conformation changes within a protein upon ligand binding. Monitoring NMR chemical shift changes can also serve as a screening technique to identify novel interaction partners for a protein or to determine the binding affinity of a weak protein-peptide interaction. Here, we describe the application of NMR chemical shift mapping to the study of peptide binding to the C-terminal SH2 domain of PLCγ1.

  15. IgE Epitope Mapping Using Peptide Microarray Immunoassay.

    PubMed

    Lin, Jing; Sampson, Hugh A

    2017-01-01

    IgE epitope mapping has the potential to become an additional tool for food allergy diagnosis/prognosis and to lead to a better understanding of the pathogenesis and tolerance induction of food allergy. Due to its ability to screen thousands of targets in parallel using small volumes of sample, peptide microarray has greatly facilitated large-scale IgE epitope mapping. In the past 10 years, we have developed and optimized a reliable and sensitive peptide microarray immunoassay, which has been successfully applied for IgE epitope mapping of many food allergens in our lab. Here, we describe the method of performing the peptide microarray immunoassay for IgE epitope mapping. In addition, we have upgraded the microarray platform to measure antibody affinity by adding one additional competition step, which is also described in this chapter.

  16. Intein-mediated peptide arrays for epitope mapping and kinase/phosphatase assays.

    PubMed

    Xu, Ming-Qun; Ghosh, Inca; Kochinyan, Samvel; Sun, Luo

    2007-01-01

    Synthetic peptides are widely used for production and analysis of antibodies as well as in the study of protein modification enzymes. To circumvent the technical challenges of the existing techniques regarding peptide quantization and normalization, a new method of producing peptide arrays has been developed. This approach utilizes intein-mediated protein ligation that involves linkage of a carrier protein possessing a reactive carboxyl-terminal thioester to a peptide with an amino-terminal cysteine through a native peptide bond. Ligated protein substrates or enzyme-treated samples are arrayed on nitrocellulose membranes with a standard dot-blot apparatus and analyzed by immunoassay. This technique has improved sensitivity and reproducibility, and is suitable for various peptide-based applications. In this report, several experimental procedures including epitope mapping and the study of protein modifications were described.

  17. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.

  18. Determination of the optimal cell-penetrating peptide sequence for intestinal insulin delivery based on molecular orbital analysis with self-organizing maps.

    PubMed

    Kamei, Noriyasu; Kikuchi, Shingo; Takeda-Morishita, Mariko; Terasawa, Yoshiaki; Yasuda, Akihito; Yamamoto, Shuichi; Ida, Nobuo; Nishio, Reiji; Takayama, Kozo

    2013-02-01

    Our recent work has shown that the intestinal absorption of insulin can be improved significantly by coadministration of cell-penetrating peptides (CPPs), especially penetratin. However, a relatively high dose of penetratin is required to adequately stimulate the intestinal absorption of insulin. Therefore, in this study, we sought to determine the CPP that most effectively enhanced intestinal insulin absorption. An in situ loop absorption study using 26 penetratin analogues suggested that the chain length, hydrophobicity, and amphipathicity of the CPPs, as well as their basicity, contribute to their absorption-enhancing efficiency. Moreover, a molecular orbital method with self-organizing maps (SOMs) classification suggested that multiple factors, including the molecular weight, basicity, the lowest unoccupied molecular orbital energy, absolute hardness, and chemical potential of CPPs, are associated with their effects on intestinal insulin absorption. Furthermore, the new CPPs proposed by SOM clustering had a marked capacity to interact with insulin, and their ability to enhance insulin absorption was much stronger than that of the original penetratin. Therefore, the peptide sequence that optimally enhances intestinal insulin absorption could be defined by SOM with the molecular orbital method, and our present work emphasizes the utility of such methodologies in the development of effective drug delivery systems.

  19. Experimental conformational energy maps of proteins and peptides.

    PubMed

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-02-07

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol(-1) ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017. © 2017 Wiley Periodicals, Inc.

  20. Development and Validation of Transferable Amide I Vibrational Frequency Maps for Peptides

    PubMed Central

    Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L.

    2012-01-01

    Infrared (IR) spectroscopy of the amide I band has been widely utilized for the analysis of peptides and proteins. Theoretical modeling of IR spectra of proteins requires an accurate and efficient description of the amide I frequencies. In this paper, amide I frequency maps for protein backbone and side chain groups are developed from experimental spectra and vibrational lifetimes of N-methylacetamide and acetamide in different solvents. The frequency maps, along with established nearest-neighbor frequency shift and coupling schemes, are then applied to a variety of peptides in aqueous solution and reproduce experimental spectra well. The frequency maps are designed to be transferable to different environments; therefore, they can be used for heterogeneous systems, such as membrane proteins. PMID:21405034

  1. Application of capillary isotachophoresis in peptide analysis.

    PubMed

    Kasicka, V; Prusík, Z

    1991-09-13

    This paper gives a broad and detailed review of the applications of one of the modern high-performance electromigration separation techniques--capillary isotachophoresis (ITP)--in peptide analysis. Examples are presented of the utilization of capillary ITP for peptide analysis in the fields of chemistry, general and clinical biochemistry, biology, biotechnology, pharmacy and the food industry. The complete composition of all the electrolyte systems used for peptide ITP analyses in both cationic and anionic techniques is given in tabular form. According to the purpose of analysis the applications are divided into several sections: model studies, determination of physico-chemical characteristics, purity control of both intermediate and final peptide preparations, including the determination of low-molecular-mass ionogenic admixtures, and the analysis of peptides in biological fluids and tissue extracts. In addition to the main applications the theoretical and methodological aspects of peptide ITP analysis are discussed. The basic electromigration properties of peptides (their polyampholyte character, effective and absolute mobilities, acid-base equilibria) are explained and the selection of parameters for peptide ITP analysis is described in detail. The advantages and disadvantages of ITP compared with other electrophoretic and chromatographic methods used for peptide analysis are discussed.

  2. Proteome-wide Epitope Mapping of Antibodies Using Ultra-dense Peptide Arrays*

    PubMed Central

    Forsström, Björn; Axnäs, Barbara Bisławska; Stengele, Klaus-Peter; Bühler, Jochen; Albert, Thomas J.; Richmond, Todd A.; Hu, Francis Jingxin; Nilsson, Peter; Hudson, Elton P.; Rockberg, Johan; Uhlen, Mathias

    2014-01-01

    Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody's linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens. PMID:24705123

  3. Infrared-assisted tryptic proteolysis for peptide mapping.

    PubMed

    Wang, Sheng; Zhang, Luyan; Yang, Pengyuan; Chen, Gang

    2008-07-01

    In this report, infrared (IR) radiation was employed to enhance the efficiency of tryptic proteolysis for peptide mapping. Protein solutions containing trypsin in sealed transparent Eppendorf tubes were allowed to digest under an IR lamp at 37 degrees C. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of BSA and myoglobin (MYO) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF MS with the sequence coverages of 69% (BSA) and 90% (MYO) that were much better than those obtained by conventional in-solution tryptic digestion. The present IR-assisted proteolysis strategy is simple and efficient, offering great promise for high-throughput protein identification.

  4. Fast, Quantitative and Variant Enabled Mapping of Peptides to Genomes.

    PubMed

    Schlaffner, Christoph N; Pirklbauer, Georg J; Bender, Andreas; Choudhary, Jyoti S

    2017-08-23

    Current tools for visualization and integration of proteomics with other omics datasets are inadequate for large-scale studies and capture only basic sequence identity information. Furthermore, the frequent reformatting of annotations for reference genomes required by these tools is known to be highly error prone. We developed PoGo for mapping peptides identified through mass spectrometry to overcome these limitations. PoGo reduced runtime and memory usage by 85% and 20%, respectively, and exhibited overall superior performance over other tools on benchmarking with large-scale human tissue and cancer phosphoproteome datasets comprising ∼3 million peptides. In addition, extended functionality enables representation of single-nucleotide variants, post-translational modifications, and quantitative features. PoGo has been integrated in established frameworks such as the PRIDE tool suite and OpenMS, as well as a standalone tool with user-friendly graphical interface. With the rapid increase of quantitative high-resolution datasets capturing proteomes and global modifications to complement orthogonal genomics platforms, PoGo provides a central utility enabling large-scale visualization and interpretation of transomics datasets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Grafting MAP peptide to dental polymer inhibits MMP-8 activity.

    PubMed

    Dixit, Namrata; Settle, Jenifer K; Ye, Qiang; Berrie, Cindy L; Spencer, Paulette; Laurence, Jennifer S

    2015-02-01

    Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.

  6. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT)

    PubMed Central

    Su, Chiao-Yung; London, Erwin; Sampson, Nicole S.

    2013-01-01

    The plasma membrane contains a diverse array of proteins, including receptors, channels, and signaling complexes, that serve as decision-making centers. Investigation of membrane protein topology is important for understanding the function of these types of protein. Here, we report a method to determine protein topology in the membrane that utilizes labeling of cysteine with isotope-coded mass tags. The mass tags contain a thiol reactive moiety, linker, and a quaternary ammonium group to aid ionization in the mass spectrometer and were synthesizes as both light and heavy (deuterated) forms. The probes were found to be membrane impermeable when applied to lipid vesicles. To assess the utility of the probes for mapping peptide thiol topology, we employed a two-step labeling procedure. Vesicles containing α-helical transmembrane peptides were labeled with heavy (or light) probe, solubilized by detergent, and then labeled by an excess of the complementary probe. Peptide for which the cysteine was oriented in the center of the lipid bilayer was not labeled until the lipid vesicles were lysed with detergent, consistent with the membrane impermeability of the probes and reduced ionization of the thiol in the hydrophobic membrane. Peptide for which the cysteine was positioned in the head group zone of the lipid bilayer was labeled rapidly. Peptide for which the cysteine was positioned below the head group abutting the hydrocarbon region was labeled at a reduced rate compared to the fully accessible cysteine. Moreover, the effect of lipid bilayer structure on the kinetics of peptide and lipid flipping in the bilayer was readily measured with our two-step labeling method. The small sample size required, the ease and rapidity of sample preparation, and the amenability of MALDI-TOF mass spectral to analysis in the presence of lipids will enable future facile investigation of membrane proteins in a cellular context. PMID:23725486

  7. Interlaboratory study to evaluate the robustness of capillary electrophoresis-mass spectrometry for peptide mapping.

    PubMed

    Wenz, Christian; Barbas, Coral; López-Gonzálvez, Ángeles; Garcia, Antonia; Benavente, Fernando; Sanz-Nebot, Victoria; Blanc, Tim; Freckleton, Gordon; Britz-McKibbin, Philip; Shanmuganathan, Meera; de l'Escaille, Francois; Far, Johann; Haselberg, Rob; Huang, Sean; Huhn, Carolin; Pattky, Martin; Michels, David; Mou, Si; Yang, Feng; Neusuess, Christian; Tromsdorf, Nora; Baidoo, Edward E K; Keasling, Jay D; Park, SungAe Suhr

    2015-07-06

    A collaborative study on the robustness and portability of a capillary electrophoresis-mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis-mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath-flow capillary electrophoresis-mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin-digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3-12 and 9-29% RSD, respectively. These results demonstrate that capillary electrophoresis-mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis-mass spectrometry applications in biopharmaceutical analysis and related fields.

  8. Mapping of Epitopes Occurring in Bovine α(s1)-Casein Variants by Peptide Microarray Immunoassay.

    PubMed

    Lisson, Maria; Erhardt, Georg

    2016-01-01

    Immunoglobulin E epitope mapping of milk proteins reveals important information about their immunologic properties. Genetic variants of αS1-casein, one of the major allergens in bovine milk, are until now not considered when discussing the allergenic potential. Here we describe the complete procedure to assess the allergenicity of αS1-casein variants B and C, which are frequent in most breeds, starting from milk with identification and purification of casein variants by isoelectric focusing (IEF) and anion-exchange chromatography, followed by in vitro gastrointestinal digestion of the casein variants, identification of the resulting peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), in silico analysis of the variant-specific peptides as allergenic epitopes, and determination of their IgE-binding properties by microarray immunoassay with cow's milk allergic human sera.

  9. Multifunctional Prenylated Peptides for Live Cell Analysis

    PubMed Central

    Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.; Amundson, Gregg; Geier, Suzanne; Falkum, Stacy; Wattenberg, Elizabeth V.; Barany, George; Distefano, Mark D.

    2009-01-01

    Protein prenylation is a common post-translational modification present in eukaryotic cells. Many key proteins involved in signal transduction pathways are prenylated and inhibition of prenylation can be useful as a therapeutic intervention. While significant progress has been made in understanding protein prenylation in vitro, we have been interested in studying this process in living cells, including the question of where prenylated molecules localize. Here, we describe the synthesis and live cell analysis of a series of fluorescently labeled multifunctional peptides, based on the C-terminus of the naturally prenylated protein CDC42. A synthetic route was developed that features a key Acm to Scm protecting group conversion. This strategy was compatible with acid-sensitive isoprenoid moieties, and allowed incorporation of an appropriate fluorophore as well as a cell-penetrating sequence (penetratin). These peptides are able to enter cells through different mechanisms, depending on the presence or absence of the penetratin vehicle and the nature of the prenyl group attached. Interestingly, prenylated peptides lacking penetratin are able to enter cells freely through an energy-independent process, and localize in a perinuclear fashion. This effect extends to a prenylated peptide that includes a full “CAAX box” sequence (specifically, CVLL). Hence, these peptides open the door for studies of protein prenylation in living cells, including enzymatic processing and intracellular peptide trafficking. Moreover, the synthetic strategy developed here should be useful for the assembly of other types of peptides that contain acid sensitive functionalities. PMID:19425596

  10. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  11. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  12. Temporal mapping and analysis

    NASA Technical Reports Server (NTRS)

    O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)

    2011-01-01

    A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.

  13. IgE and IgG4 Epitope Mapping of Food Allergens with a Peptide Microarray Immunoassay.

    PubMed

    Martínez-Botas, Javier; de la Hoz, Belén

    2016-01-01

    Peptide microarrays are a powerful tool to identify linear epitopes of food allergens in a high-throughput manner. The main advantages of the microarray-based immunoassay are the possibility to assay thousands of targets simultaneously, the requirement of a low volume of serum, the more robust statistical analysis, and the possibility to test simultaneously several immunoglobulin subclasses. Among them, the last one has a special interest in the field of food allergy, because the development of tolerance to food allergens has been associated with a decrease in IgE and an increase in IgG4 levels against linear epitopes. However, the main limitation to the clinical use of microarray is the automated analysis of the data. Recent studies mapping the linear epitopes of food allergens with peptide microarray immunoassays have identified peptide biomarkers that can be used for early diagnosis of food allergies and to predict their severity or the self-development of tolerance. Using this approach, we have worked on epitope mapping of the two most important food allergens in the Spanish population, cow's milk and chicken eggs. The final aim of these studies is to define subsets of peptides that could be used as biomarkers to improve the diagnosis and prognosis of food allergies. This chapter describes the protocol to produce microarrays using a library of overlapping peptides corresponding to the primary sequences of food allergens and data acquisition and analysis of IgE- and IgG4-binding epitopes.

  14. General Applicable Frequency Map for the Amide-I Mode in β-Peptides.

    PubMed

    Cai, Kaicong; Du, Fenfen; Zheng, Xuan; Liu, Jia; Zheng, Renhui; Zhao, Juan; Wang, Jianping

    2016-02-18

    In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.

  15. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    PubMed

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  16. Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis.

    PubMed

    Hochleitner, E O; Borchers, C; Parker, C; Bienstock, R J; Tomer, K B

    2000-03-01

    A combination of epitope excision, epitope extraction, and differential chemical modification followed by mass spectrometric peptide mapping was used for the characterization of a discontinuous epitope that is recognized by the mouse anti-HIV-p24 monoclonal antibody 5E2.A3. In epitope excision, the protein is first bound to an immobilized antibody and then digested with proteolytic enzymes. In epitope extraction, the protein is first digested and subsequently allowed to react with the antibody. After epitope excision of the p24-5E2.A3 complex with endoproteinase Lys-C, a large fragment remained affinity bound corresponding to amino acids 1-158 of HIV-p24 (fragment 1-158). Further digestion, however, resulted in loss of affinity. Moreover, no affinity-bound fragments were observed after an epitope extraction experiment. These data from the epitope excision and extraction experiments suggest that the epitope is discontinuous. For the further characterization of the epitope, amino groups in the epitope-containing fragment were acetylated in both the affinity bound and free states followed by mass spectrometric analysis. Two successive acetylation reactions were performed: (1) the first used a low molar excess of acetic anhydride, and (2) the second, after separation from the antibody, a high molar excess of its hexadeuteroderivative. This isotopic labeling procedure, in combination with high resolution mass spectrometry, allowed the precise determination of relative reactivities of amino groups. In this study, no differences were observed in the ranking of the relative reactivities of five lysine residues. However, the N-terminal amino group was found to be part of the discontinuous epitope.

  17. Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis.

    PubMed Central

    Hochleitner, E. O.; Borchers, C.; Parker, C.; Bienstock, R. J.; Tomer, K. B.

    2000-01-01

    A combination of epitope excision, epitope extraction, and differential chemical modification followed by mass spectrometric peptide mapping was used for the characterization of a discontinuous epitope that is recognized by the mouse anti-HIV-p24 monoclonal antibody 5E2.A3. In epitope excision, the protein is first bound to an immobilized antibody and then digested with proteolytic enzymes. In epitope extraction, the protein is first digested and subsequently allowed to react with the antibody. After epitope excision of the p24-5E2.A3 complex with endoproteinase Lys-C, a large fragment remained affinity bound corresponding to amino acids 1-158 of HIV-p24 (fragment 1-158). Further digestion, however, resulted in loss of affinity. Moreover, no affinity-bound fragments were observed after an epitope extraction experiment. These data from the epitope excision and extraction experiments suggest that the epitope is discontinuous. For the further characterization of the epitope, amino groups in the epitope-containing fragment were acetylated in both the affinity bound and free states followed by mass spectrometric analysis. Two successive acetylation reactions were performed: (1) the first used a low molar excess of acetic anhydride, and (2) the second, after separation from the antibody, a high molar excess of its hexadeuteroderivative. This isotopic labeling procedure, in combination with high resolution mass spectrometry, allowed the precise determination of relative reactivities of amino groups. In this study, no differences were observed in the ranking of the relative reactivities of five lysine residues. However, the N-terminal amino group was found to be part of the discontinuous epitope. PMID:10752610

  18. PepMapper: A Collaborative Web Tool for Mapping Epitopes from Affinity-Selected Peptides

    PubMed Central

    Chen, Wenhan; Guo, William W.; Huang, Yanxin; Ma, Zhiqiang

    2012-01-01

    Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/ PMID:22701536

  19. Antigenicity and immunogenicity of multiple antigen peptides (MAP) containing P. vivax CS epitopes in Aotus monkeys.

    PubMed

    Herrera, S; De Plata, C; González, M; Perlaza, B L; Bettens, F; Corradin, G; Arévalo-Herrera, M

    1997-04-01

    Using linear synthetic peptides corresponding to the Plasmodium vivax circumsporozoite (CS) protein of the common type, we have identified several T and B-cell epitopes recognized by human individuals. Three T-cell epitopes studied (p6) from the amino, (p11) from the central and (p25) from the carboxyl regions, were widely recognized by lymphocytes of immune donors. A series of six peptides, in addition to p11, representing the central repeat domain of the CS(p11-p17) protein were used in ELISA assays to map the B-cell epitopes of this region. P11 was the peptide most frequently recognized by sera containing antibodies to the homologous CS protein as determined by IFAT. The sequences corresponding to peptides p6, p11 and P25 as well as that representing a universal T-cell epitope derived from the tetanus toxin were used to assemble eight different Multiple Antigen Peptides (MAP). The immunogenicity of these MAP was analysed in Aotus monkeys. Groups of two animals were immunized with each MAP and both antibody response, T-lymphocyte proliferation and in vitro gamma-IFN production were evaluated. Two MAPs containing the same B-cell epitope and either a promiscuous CS-protein derived T-cell epitope (p25) or the tetanus toxin epitope (p-tt30) proved to be the most immunogenic and induced high levels of anti-peptide antibodies that recognized the native protein. Except for animals immunized with MAP VII, there was no correlation between antibody levels, lymphocyte proliferation or gamma-IFN production in vitro. The broad recognition of these epitopes by individuals which had been exposed to malaria, the capacity of these MAPs to induce antibodies, recognize the cognate protein, and in vitro gamma-IFN production encourages further analyses of the potential of these proteins as malaria vaccine candidates for human use.

  20. Indirect ultrasonication for protein quantification and peptide mass mapping through mass spectrometry-based techniques.

    PubMed

    Carreira, R J; Lodeiro, C; Reboiro-Jato, M; Glez-Peña, D; Fdez-Riverola, F; Capelo, J L

    2010-07-15

    We report in this work a fast protocol for protein quantification and for peptide mass mapping that rely on (18)O isotopic labeling through the decoupling procedure. It is demonstrated that the purity and source of trypsin do not compromise the labeling degree and efficiency of the decoupled labeling reaction, and that the pH of the labeling reaction is a critical factor to obtain a significant (18)O double labeling. We also show that the same calibration curve can be used for MALDI protein quantification during several days maintaining a reasonable accuracy, thus simplifying the handling of the quantification process. In addition we demonstrate that (18)O isotopic labeling through the decoupling procedure can be successfully used to elaborate peptide mass maps. BSA was successfully quantified using the same calibration curve in different days and plasma from a freshwater fish, Cyprinus carpio, was used to elaborate the peptide mass maps. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Molecular dynamics simulation and conformational analysis of some catalytically active peptides.

    PubMed

    Honarparvar, Bahareh; Skelton, Adam A

    2015-04-01

    The design of stable and inexpensive artificial enzymes with potent catalytic activity is a growing field in peptide science. The first step in this design process is to understand the key factors that can affect the conformational preference of an enzyme and correlate them with its catalytic activity. In this work, molecular dynamics simulations in explicit water of two catalytically active peptides (peptide 1: Fmoc-Phe1-Phe2-His-CONH2; peptide 2: Fmoc-Phe1-Phe2-Arg-CONH2) were performed at temperatures of 300, 400, and 500 K. Conformational analysis of these peptides using Ramachandran plots identified the secondary structures of the amino acid residues involved (Phe1, Phe2, His, Arg) and confirmed their conformational flexibility in solution. Furthermore, Ramachandran maps revealed the intrinsic preference of the constituent residues of these compounds for a helical conformation. Long-range interaction distances and radius of gyration (R g) values obtained during 20 ns MD simulations confirmed their tendency to form folded conformations. Results showed a decrease in side-chain (Phe1, Phe2, His ring, and Arg) contacts as the temperature was raised from 300 to 400 K and then to 500 K. Finally, the radial distribution functions (RDF) of the water molecules around the nitrogen atoms in the catalytically active His and Arg residues of peptide 1 and peptide 2 revealed that the strongest water-peptide interaction occurred with the arginine nitrogen atoms in peptide 2. Our results highlight differences in the secondary structures of the two peptides that can be explained by the different arrangement of water molecules around the nitrogen atoms of Arg in peptide 2 as compared to the arrangement of water molecules around the nitrogen atoms of His in peptide 1. The results of this work thus provide detailed insight into peptide conformations which can be exploited in the future design of peptide analogs.

  2. Comparisons by peptide mapping of proteins specified by Kunjin, West Nile and Murray Valley encephalitis viruses.

    PubMed

    Wright, P J; Warr, H M; Westaway, E G

    1983-12-01

    The relationships among virus-specified proteins of Murray Valley encephalitis (MVE), Kunjin (KUN) and West Nile (WN) viruses were investigated by peptide mapping of exhaustive proteolytic digests of radioactively labelled polypeptides. Maps of the three structural proteins (E, C and M) derived from purified virions and of two non-structural proteins (NV5 and NV4) obtained from infected cells were compared. For each polypeptide considered, the peptide maps of the KUN and WN virus-specified proteins were more similar to each other than either was to the map of the corresponding MVE virus-specified protein. Since the polypeptides considered together account for approximately 60% of the coding capacity of the flavivirus genome, our results suggested that, for the three viruses examined, the genomes of KUN and WN viruses are the most closely related.

  3. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Mapping the Vif-A3G interaction using peptide arrays: a basis for anti-HIV lead peptides.

    PubMed

    Reingewertz, Tali H; Britan-Rosich, Elena; Rotem-Bamberger, Shahar; Viard, Mathias; Jacobs, Amy; Miller, Abigail; Lee, Ji Youn; Hwang, Jeeseong; Blumenthal, Robert; Kotler, Moshe; Friedler, Assaf

    2013-06-15

    Human apolipoprotein-B mRNA-editing catalytic polypeptide-like 3G (A3G) is a cytidine deaminase that restricts retroviruses, endogenous retro-elements and DNA viruses. A3G plays a key role in the anti-HIV-1 innate cellular immunity. The HIV-1 Vif protein counteracts A3G mainly by leading A3G towards the proteosomal machinery and by direct inhibition of its enzymatic activity. Both activities involve direct interaction between Vif and A3G. Disrupting the interaction between A3G and Vif may rescue A3G antiviral activity and inhibit HIV-1 propagation. Here, mapping the interaction sites between A3G and Vif by peptide array screening revealed distinct regions in Vif important for A3G binding, including the N-terminal domain (NTD), C-terminal domain (CTD) and residues 83-99. The Vif-binding sites in A3G included 12 different peptides that showed strong binding to either full-length Vif, Vif CTD or both. Sequence similarity was found between Vif-binding peptides from the A3G CTD and NTD. A3G peptides were synthesized and tested for their ability to counteract Vif action. A3G 211-225 inhibited HIV-1 replication in cell culture and impaired Vif dependent A3G degradation. In vivo co-localization of full-length Vif with A3G 211-225 was demonstrated by use of FRET. This peptide has the potential to serve as an anti-HIV-1 lead compound. Our results suggest a complex interaction between Vif and A3G that is mediated by discontinuous binding regions with different affinities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Mapping of radiolabeled peptides derived from proteolysis of polypeptides bound to nitrocellulose after Western blotting

    SciTech Connect

    Carrey, E.A.; Hardie, D.G.

    1986-11-01

    Sections of nitrocellulose containing bound /sup 32/P-labeled polypeptides were excised from Western blots and exhaustively digested by trypsin in order to analyze the distribution of phosphorylation sites between the products of limited proteolysis of the multifunctional protein CAD. Using the criterion of analytical isoelectric focusing, the /sup 32/P-peptides obtained by this method were found to be similar, although not identical, to peptides obtained by a more conventional digestion of trichloroacetic acid precipitates. Digestion on Western blots is more straightforward than electrophoretic elution of individual gel slices, gives better recoveries than direct digestion of gel slices, and is particularly suitable for peptide mapping of small peptides which bind to nitrocellulose but would diffuse out of polyacrylamide gels during the commonly used fixing and staining procedures.

  6. Terahertz Spectroscopic Analysis of Peptides and Proteins

    NASA Astrophysics Data System (ADS)

    Falconer, Robert J.; Markelz, Andrea G.

    2012-10-01

    Spectroscopic analysis using the Terahertz frequencies between 0.1-15 THz (3-500 cm-1) has been underutilised by the biochemistry community but is starting to yield some scientifically interesting information. Analysis of structures from simple molecules like N-methylacetamide, to polyamides, peptides and relatively complex proteins provides different types of information dependant on the molecular size. The absorbance spectrum of small molecules is dominated by individual modes and specific hydrogen bonds, peptide spectra have peaks associated with secondary structure, while protein spectra are dominated by ensembles of hydrogen bonds and/or collective modes. Protein dynamics has been studied using Terahertz spectroscopy using proteins like bacteriorhodopsin, illustrating a potential application where this approach can provide complementary global dynamics information to the current nuclear magnetic resonance and fluorescence-based techniques. Analysis of higher-order protein structures like polyomavirus virus-like particles generate quite different spectra compared to their constituent parts. The presence of an extended hydration layer around proteins, first postulated to explain data generated using p-germanium spectroscopy may present a particularly interesting opportunity to better understand protein's complex interaction with water and small solutes in an aqueous environment. The practical aspects of Terahertz spectroscopy including sample handling, the use of molecular dynamics simulation and orthogonal experiment design are also discussed.

  7. Analysis of residue conformations in peptides in Cambridge structural database and protein-peptide structural complexes.

    PubMed

    Raghavender, Upadhyayula Surya

    2017-03-01

    A comprehensive statistical analysis of the geometric parameters of peptide chains in a reduced dataset of protein-peptide complexes in Protein Data Bank (PDB) is presented. The angular variables describing the backbone conformations of amino acid residues in peptide chains shed insights into the conformational preferences of peptide residues interacting with protein partners. Nonparametric statistical approaches are employed to evaluate the interrelationships and associations in structural variables. Grouping of residues based on their structure into chemical classes reveals characteristic trends in parameter relationships. A comparison of canonical amino acid residues in free peptide structures in Cambridge structural database (CSD) with identical residues in PDB complexes, suggests that the information can be integrated from both the structural repositories enabling efficient and accurate modeling of biologically active peptides. © 2016 John Wiley & Sons A/S.

  8. MAP Stability, Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  9. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  10. Multi-pin peptide synthesis strategy for T cell determinant analysis.

    PubMed

    Maeji, N J; Bray, A M; Geysen, H M

    1990-11-06

    Techniques to synthesize many peptides simultaneously exist, however their individual cleavage and subsequent purification constitutes a bottleneck to total throughput. Biological screening of peptides is generally carried out at physiological pH in aqueous solutions. However, peptides, unless individually purified are usually contaminated by residual compounds used in their preparation such as trifluoroacetic acid, organic solvents, scavengers etc. In testing with cellular systems, such as T cell determinant analysis, such contaminations must be rigorously excluded. We have extended the pin synthesis technique of synthesizing and screening large number of peptides (Geysen et al., 1984) to the analysis of T cell determinants. Peptides can be synthesized on polyethylene pins, the side chain protective groups removed and the peptides washed free of contaminants. A linker system stable under these conditions can then be triggered to cleave the peptides from the pins in an aqueous solution at neutral pH. This strategy enables the rapid mapping of T cell determinants. It is also applicable to other systems where large numbers of solution phase peptides are required, for example, in the study of hormone analogues.

  11. Use of an integrated MS--multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies.

    PubMed

    Chakraborty, Asish B; Berger, Scott J; Gebler, John C

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) peptide maps have become a basic tool for characterizing proteins of biological and pharmaceutical interest. The ability to generate reproducible maps with high protein sequence coverage is a central goal of methods development. We have applied a recently developed analytical approach (termed LC/MS(E)) to LC/MS peptide mapping. Using the LC/MS(E) approach, the mass detector alternates between a low-energy scanning mode (MS) for accurate mass peptide precursor identification, and an elevated-energy mode (MS(E)) for generation of accurate mass multiplex peptide fragmentation data. In this paper, we evaluate this analytical approach against a tryptic digest of yeast enolase. From the low-energy data, high peptide map coverage (98% of sequence from peptides >3 amino acids) was reproducibly obtained. The MS signal for essentially equimolar peptides varied over 2 orders of magnitude in intensity, and peptide intensities could be precisely and reproducibly measured. Using the temporal constraint that MS(E) peptide fragment ions exhibit chromatographic profiles that parallel the precursor ions that generated them, we were able to produce accurate mass time-resolved MS/MS information for all enolase peptides with sufficient abundance to produce a detectable fragment ion. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.

    PubMed

    Berlin, C; Kowalewski, D J; Schuster, H; Mirza, N; Walz, S; Handel, M; Schmid-Horch, B; Salih, H R; Kanz, L; Rammensee, H-G; Stevanović, S; Stickel, J S

    2015-03-01

    Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8(+) T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4(+) T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML.

  13. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2.

    PubMed

    Migliolo, Ludovico; Felício, Mário R; Cardoso, Marlon H; Silva, Osmar N; Xavier, Mary-Ann E; Nolasco, Diego O; de Oliveira, Adeliana Silva; Roca-Subira, Ignasi; Vila Estape, Jordi; Teixeira, Leandro D; Freitas, Sonia M; Otero-Gonzalez, Anselmo J; Gonçalves, Sónia; Santos, Nuno C; Franco, Octavio L

    2016-07-01

    Recently, several peptides have been studied regarding the defence process against pathogenic microorganisms, which are able to act against different targets, with the purpose of developing novel bioactive compounds. The present work focuses on the structural and functional evaluation of the palindromic antimicrobial peptide Pa-MAP2, designed based on the peptide Pa-MAP from Pleuronectes americanus. For a better structural understanding, molecular modelling analyses were carried out, together with molecular dynamics and circular dichroism, in different media. Antibacterial activity against Gram-negative and positive bacteria was evaluated, as well as cytotoxicity against human erythrocytes, RAW 264.7, Vero and L6 cells. In silico docking experiments, lipid vesicle studies, and atomic force microscopy (AFM) imaging were carried out to explore the activity of the peptide. In vivo studies on infected mice were also done. The palindromic primary sequence favoured an α-helix structure that was pH dependent, only present on alkaline environment, with dynamic N- and C-terminals that are stabilized in anionic media. Pa-MAP2 only showed activity against Gram-negative bacteria, with a MIC of 3.2 μM, and without any cytotoxic effect. In silico, lipid vesicles and AFM studies confirm the preference for anionic lipids (POPG, POPS, DPPE, DPPG and LPS), with the positively charged lysine residues being essential for the initial electrostatic interaction. In vivo studies showed that Pa-MAP2 increases to 100% the survival rate of mice infected with Escherichia coli. Data here reported indicated that palindromic Pa-MAP2 could be an alternative candidate for use in therapeutics against Gram-negative bacterial infections.

  14. Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    PubMed Central

    Matthes, Dirk; Gapsys, Vytautas; Daebel, Venita; de Groot, Bert L.

    2011-01-01

    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited. We employ molecular dynamics simulations in explicit solvent to study the spontaneous aggregation process of steric zipper peptide segments from the tau protein and insulin in atomistic detail. Starting from separated chains with random conformations, we find a rapid formation of structurally heterogeneous, -sheet rich oligomers, emerging from multiple bimolecular association steps and diverse assembly pathways. Furthermore, our study provides evidence that aggregate intermediates as small as dimers can be kinetically trapped and thus affect the structural evolution of larger oligomers. Alternative aggregate structures are found for both peptide sequences in the different independent simulations, some of which feature characteristics of the known steric zipper conformation (e.g., -sheet bilayers with a dry interface). The final aggregates interconvert with topologically distinct oligomeric states exclusively via internal rearrangements. The peptide oligomerization was analyzed through the perspective of a minimal oligomer, i.e., the dimer. Thereby all observed multimeric aggregates can be consistently mapped onto a space of reduced dimensionality. This novel method of conformational mapping reveals heterogeneous association and reorganization dynamics that are governed by the characteristics of peptide sequence and oligomer size. PMID:21559277

  15. Alternating current-assisted on-plate proteolysis for MALDI-TOF MS peptide mapping.

    PubMed

    Wang, Sheng; Wei, Bangguo; Yang, Pengyuan; Chen, Gang

    2008-11-01

    In this report, alternating current-assisted on-plate proteolysis has been developed for rapid peptide mapping. Protein solutions containing trypsin were allowed to digest directly on the spots of a stainless steel MALDI plate with the assistance of low-voltage alternating current electricity. Alternating current (AC) was allowed to pass through the protein solutions via the MALDI plate and a platinum disc electrode. The feasibility and performance of the novel proteolysis approach were investigated by the digestion of BSA and cytochrome c (Cyt-c). It was demonstrated that AC substantially enhanced the efficiency of proteolysis and the digestion time was significantly reduced to 5 min. The digests were identified by MALDI-TOF MS with sequence coverages of 42% (BSA) and 77% (Cyt-c) that were comparable to those obtained by using conventional in-solution tryptic digestion. The present proteolysis strategy is simple and efficient, offering great promise for MALDI-TOF MS peptide mapping.

  16. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants*

    PubMed Central

    Carmona, Santiago J.; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C.; Campetella, Oscar; Buscaglia, Carlos A.; Agüero, Fernán

    2015-01-01

    Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. PMID:25922409

  17. MAP - a mapping and analysis program for harvest planning

    Treesearch

    Robert N. Eli; Chris B. LeDoux; Penn A. Peters

    1984-01-01

    The Northeastern Forest Experiment Station and the Department of Civil Engineering at West Virginia University are cooperating in the development of a Mapping and Analysis Program, to be named MAP. The goal of this computer software package is to significantly improve the planning and harvest efficiency of small to moderately sized harvest units located in mountainous...

  18. Benefits Mapping and Analysis Program (BenMAP)

    EPA Pesticide Factsheets

    This area summarizes the key features of the BenMAP-CE program and links to pages that provide more details regarding the program, the basic principles of air pollution benefits analysis and a link to download the software.

  19. Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures

    PubMed Central

    O’Donnell, Brian; Maurer, Alexander; Papandreou-Suppappola, Antonia; Stafford, Phillip

    2015-01-01

    One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the body’s immune system to detect and amplify tumor-specific signals may enable detection of cancer using an inexpensive immunoassay. Immunosignatures are one such assay: they provide a map of antibody interactions with random-sequence peptides. They enable detection of disease-specific patterns using classic train/test methods. However, to date, very little effort has gone into extracting information from the sequence of peptides that interact with disease-specific antibodies. Because it is difficult to represent all possible antigen peptides in a microarray format, we chose to synthesize only 330,000 peptides on a single immunosignature microarray. The 330,000 random-sequence peptides on the microarray represent 83% of all tetramers and 27% of all pentamers, creating an unbiased but substantial gap in the coverage of total sequence space. We therefore chose to examine many relatively short motifs from these random-sequence peptides. Time-variant analysis of recurrent subsequences provided a means to dissect amino acid sequences from the peptides while simultaneously retaining the antibody–peptide binding intensities. We first used a simple experiment in which monoclonal antibodies with known linear epitopes were exposed to these random-sequence peptides, and their binding intensities were used to create our algorithm. We then demonstrated the performance of the proposed algorithm by examining immunosignatures from patients with Glioblastoma multiformae (GBM), an aggressive form of brain cancer. Eight different frameshift targets were identified from the random-sequence peptides using this technique. If immune-reactive antigens can be identified using a relatively simple immune assay, it might enable a diagnostic test with sufficient sensitivity to detect tumors

  20. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  1. Limited proteolysis and peptide mapping for comparability of biopharmaceuticals: An evaluation of repeatability, intra-assay precision and capability to detect structural change.

    PubMed

    Perrin, Camille; Burkitt, Will; Perraud, Xavier; O'Hara, John; Jone, Carl

    2016-05-10

    The use of limited proteolysis followed by peptide mapping for the comparability of the higher-order structure of biopharmaceuticals was investigated. In this approach the proteolysis is performed under non-reducing and non-denaturing conditions, and the resulting peptide map is determined by the samples primary and higher order structures. This allows comparability of biopharmaceuticals to be made in terms of their higher order structure, using a method that is relatively simple to implement. The digestion of a monoclonal antibody under non-denaturing conditions was analyzed using peptide mapping, circular dichroism (CD) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This allowed an optimal digestion time to be chosen. This method was then assessed for its ability to detect structural change using a monoclonal antibody, which had been subjected to a range of stresses; deglycosylation, mild denaturation and a batch that had failed specifications due to in-process reduction. The repeatability and inter-assay precision were assessed. It was demonstrated that the limited proteolysis peptide maps of the three stressed samples were significantly different to control samples and that the differences observed were consistent between the occasions when the assays were run. A combination of limited proteolysis and CD or SDS-PAGE analysis was shown to enhance the capacity of these techniques to detect structural change, which otherwise would not have been observed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Comparison of peptide mass mapping and electron capture dissociation as assays for histone posttranslational modifications

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen; Freitas, Michael A.

    2004-05-01

    Posttranslational modifications of core histones play a critical role in the structure of chromatin and the regulation of gene activities. Improved techniques for determining these modification sites may lead to a better understanding of histone regulation at the molecular level. LC-MS peptide mass mapping was performed on pepsin, trypsin and Glu-C digests of bovine thymus H4 using a QqTOF instrument. The well established modification sites of H4 (acetylation of K8, 12, 16 and methylation of K20) were observed in addition to several recently discovered modifications including: methylation of K31, 44, 59 and acetylation of K20, 77, 79. For comparison, electron capture dissociation (ECD) was performed on intact H4 along with several peptides from enzymatic digestion. The results from the ECD experiments of histone H4 indicated the acetylation of K5, 12, 16, 31, 91 and the methylation of K20 and 59 in good agreement with the result from peptide mapping. The work is dedicated to Alan G. Marshall on his 60th birthday. His endeavors in the advancement of FT-ICR facilitated experiments reported herein.

  3. Improved Methods for the Enrichment and Analysis of Glycated Peptides

    SciTech Connect

    Zhang, Qibin; Schepmoes, Athena A; Brock, Jonathan W; Wu, Si; Moore, Ronald J; Purvine, Samuel O; Baynes, John; Smith, Richard D; Metz, Thomas O

    2008-12-15

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an on-line wash of column-bound glycated peptides using 50 mM ammonium acetate. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor-ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. In general, acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor-ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number glycated peptides identified by LC-MS/MS.

  4. Improved Methods for the Enrichment and Analysis of Glycated Peptides

    PubMed Central

    Zhang, Qibin; Schepmoes, Athena A.; Brock, Jonathan W. C.; Wu, Si; Moore, Ronald J.; Purvine, Samuel O.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC–MS/MS. PMID:18989935

  5. Immobilized pepsin microreactor for rapid peptide mapping with nanoelectrospray ionization mass spectrometry.

    PubMed

    Long, Ying; Wood, Troy D

    2015-01-01

    Most enzymatic microreactors for protein digestion are based on trypsin, but proteins with hydrophobic segments may be difficult to digest because of the paucity of Arg and Lys residues. Microreactors based on pepsin, which is less specific than trypsin, can overcome this challenge. Here, an integrated immobilized pepsin microreactor (IPMR)/nanoelectrospray emitter is examined for its potential for peptide mapping. For myoglobin, equivalent sequence coverage is obtained in a thousandth the time of solution digestion with better sequence coverage. While sequence coverage of cytochrome c is lesser than solution in this short duration, more highly-charged peptic peptides are produced and a number of peaks are unidentified at low-resolution, suggesting that high-resolution mass spectrometry is needed to take full advantage of integrated IPMR/nanoelectrospray devices.

  6. Immobilized Pepsin Microreactor for Rapid Peptide Mapping with Nanoelectrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Long, Ying; Wood, Troy D.

    2015-01-01

    Most enzymatic microreactors for protein digestion are based on trypsin, but proteins with hydrophobic segments may be difficult to digest because of the paucity of Arg and Lys residues. Microreactors based on pepsin, which is less specific than trypsin, can overcome this challenge. Here, an integrated immobilized pepsin microreactor (IPMR)/nanoelectrospray emitter is examined for its potential for peptide mapping. For myoglobin, equivalent sequence coverage is obtained in a thousandth the time of solution digestion with better sequence coverage. While sequence coverage of cytochrome c is lesser than solution in this short duration, more highly-charged peptic peptides are produced and a number of peaks are unidentified at low-resolution, suggesting that high-resolution mass spectrometry is needed to take full advantage of integrated IPMR/nanoelectrospray devices.

  7. Analysis of proteins and peptides by electromigration methods in microchips.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2017-01-01

    This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.

  8. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    PubMed

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  9. Mapping the bound conformation and protein interactions of microtubule destabilizing peptides by STD-NMR spectroscopy.

    PubMed

    Milton, Mark J; Thomas Williamson, R; Koehn, Frank E

    2006-08-15

    Using the hemiasterlin analogs taltobulin (I, HTI-286), II, and III as model compounds, we demonstrate that relaxation-compensated STD-NMR can be used as an effective tool to efficiently provide a qualitative epitope map for microtubule destabilizing peptides. Due to the disparate relaxation behavior of the protons in these model compounds, it was essential to collect STD with very short saturation times to render an accurate picture of the binding interaction. The conformation of HTI-286 (I) in complex with the protein was determined from TRNOESY/ROESY experiments and is similar to the X-ray crystal structure conformation observed for hemiasterlin methyl ester in the absence of protein.

  10. Temperature-dependent instability of the cTnI subunit in NIST SRM2921 characterized by tryptic peptide mapping.

    PubMed

    van der Burgt, Yuri E M; Cobbaert, Christa M; Dalebout, Hans; Smit, Nico; Deelder, André M

    2012-08-01

    In this study temperature-dependent instability of the cTnI subunit of the three-protein complex NIST SRM2921 was demonstrated using a mass spectrometric tryptic peptide mapping approach. The results were compared to the cTnI subunit obtained as a protein standard from Calbiochem with identical amino acid sequence. Both the three-protein complex from NIST as well as the cTnI subunit were incubated at elevated temperatures and then evaluated with respect to the primary sequence. The corresponding peptide maps were analyzed using LC-MS/MS. From a Mascot database search in combination with "semiTrypsin" tolerance it was found that two peptide backbone cleavages had occurred in subunit cTnI in NIST SRM2921 material upon incubation at 37°C, namely between amino acids at 148/149 and 194/195. The Calbiochem standard did not show increased levels of "unexpected" peptides in tryptic peptide maps. One of the two peptide backbone cleavages could also be monitored using a "single-step" MALDI-MS approach, i.e. without the need for peptide separation. The amount of degradation appeared rather constant in replicate temperature-instability experiments. However, for accurate quantification internal labelled standards are needed. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping.

    PubMed

    van Oosten, Luuk N; Pieterse, Mervin; Pinkse, Martijn W H; Verhaert, Peter D E M

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides. Graphical Abstract ᅟ.

  12. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NASA Astrophysics Data System (ADS)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  13. MALDI imaging mass spectrometry and analysis of endogenous peptides.

    PubMed

    Chatterji, Bijon; Pich, Andreas

    2013-08-01

    In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well.

  14. Comparative peptide mapping of adrenergic and cholinergic neutrotransmitter receptors by reverse-HPLC

    SciTech Connect

    Kerlavage, A.R.; Fraser, C.M.; Venter, J.C.; Shreeve, S.M.

    1986-05-01

    The authors have developed a methodology for unambiguously identifying neutrotransmitter receptor proteins and comparing structural features of related receptors as well as those in different classes. These techniques have been applied to the study of the ..cap alpha..- and ..beta..-adrenergic receptors as well as the muscarinic and nicotinic cholinergic receptors. The method involves comparative peptide mapping of total proteolytic digests of receptor proteins by microbore reverse-phase HPLC in conjunction with covalent modification by specific receptor ligands or (/sup 125/I)-labeling. Femtomole amounts of receptor can be analyzed. The maps of all the (/sup 125/I)-labeled receptors contain between 20 and 25 peaks and each receptor has a unique profile although all are similar in the very hydrophobic region of the map. The ..cap alpha../sub 2/-adrenergic receptor from human platelets has a higher total percentage of hydrophilic peaks than either the guinea pig lung ..beta../sub 2/-adrenergic receptor or the porcine atria muscarinic receptor. Two forms of the muscarinic receptor have very similar but clearly distinct profiles. The nicotinic receptor subunits show a higher degree of homology by this method than was revealed by previous mapping studies which utilized SDS-PAGE or thin-layer techniques.

  15. Wave function analysis of MHC-peptide interactions.

    PubMed

    Cárdenas, Constanza; Obregón, Mateo; Balbín, Alejandro; Villaveces, José Luis; Patarroyo, Manuel E

    2007-01-01

    We have carried out an analysis of the wave function data for three MHC-peptide complexes: HLA-DRbeta1*0101-HA, HLA-DRbeta1*0401-HA and HLA-DRbeta1*0401-Col. We used quantum chemistry computer programs to generate wave function coefficients for these complexes, from which we obtained both molecular and atomic orbital data for both pocket and peptide amino acids within each pocket region. From these discriminated data, interaction molecular orbitals (IMOs) were identified as those with large and similar atomic orbital coefficient contributions from both pocket and peptide amino acids. The present results correlate well with our previous research where only electrostatic moments were used to explore molecular component interactions. Furthermore, we show a quantum chemical methodology to produce more fine-grained results concerning amino acid behavior in the MHC-peptide interaction.

  16. High-throughput analysis of peptide binding modules

    PubMed Central

    Liu, Bernard A.; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    Modular protein interaction domains that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some protein interaction domains such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-translational modification of amino acids (such as phosphorylation, acetylation, methylation etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PDZ domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High throughput analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls of high-throughput analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of protein interaction domains and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions. PMID:22610655

  17. How to unveil self-quenched fluorophores and subsequently map the subcellular distribution of exogenous peptides

    PubMed Central

    Swiecicki, Jean-Marie; Thiebaut, Frédéric; Di Pisa, Margherita; Gourdin -Bertin, Simon; Tailhades, Julien; Mansuy, Christelle; Burlina, Fabienne; Chwetzoff, Serge; Trugnan, Germain; Chassaing, Gérard; Lavielle, Solange

    2016-01-01

    Confocal laser scanning microscopy (CLSM) is the most popular technique for mapping the subcellular distribution of a fluorescent molecule and is widely used to investigate the penetration properties of exogenous macromolecules, such as cell-penetrating peptides (CPPs), within cells. Despite the membrane-association propensity of all these CPPs, the signal of the fluorescently labeled CPPs did not colocalize with the plasma membrane. We studied the origin of this fluorescence extinction and the overall consequence on the interpretation of intracellular localizations from CLSM pictures. We demonstrated that this discrepancy originated from fluorescence self-quenching. The fluorescence was unveiled by a “dilution” protocol, i.e. by varying the ratio fluorescent/non-fluorescent CPP. This strategy allowed us to rank with confidence the subcellular distribution of several CPPs, contributing to the elucidation of the penetration mechanism. More generally, this study proposes a broadly applicable and reliable method to study the subcellular distribution of any fluorescently labeled molecules. PMID:26839211

  18. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in lipid detergent and aqueous environments using 13C-enhanced Fourier transform infrared spectroscopy

    PubMed Central

    Gordon, Larry M.; Mobley, Patrick W.; Lee, William; Eskandari, Sepehr; Kaznessis, Yiannis N.; Sherman, Mark A.; Waring, Alan J.

    2004-01-01

    The N-terminal domain of HIV-1 glycoprotein 41,000 (gp41) participates in viral fusion processes. Here, we use physical and computational methodologies to examine the secondary structure of a peptide based on the N terminus (FP; residues 1–23) in aqueous and detergent environments. 12C-Fourier transform infrared (FTIR) spectroscopy indicated greater α-helix for FP in lipid-detergent sodium dodecyl sulfate (SDS) and aqueous phosphate-buffered saline (PBS) than in only PBS. 12C-FTIR spectra also showed disordered FP conformations in these two environments, along with substantial β-structure for FP alone in PBS. In experiments that map conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using FP peptides labeled with 13C-carbonyl. 13C-FTIR results on FP in SDS at low peptide loading indicated α-helix (residues 5 to 16) and disordered conformations (residues 1–4). Because earlier 13C-FTIR analysis of FP in lipid bilayers demonstrated α-helix for residues 1–16 at low peptide loading, the FP structure in SDS micelles only approximates that found for FP with membranes. Molecular dynamics simulations of FP in an explicit SDS micelle indicate that the fraying of the first three to four residues may be due to the FP helix moving to one end of the micelle. In PBS alone, however, electron microscopy of FP showed large fibrils, while 13C-FTIR spectra demonstrated antiparallel β-sheet for FP (residues 1–12), analogous to that reported for amyloid peptides. Because FP and amyloid peptides each exhibit plaque formation, α-helix to β-sheet interconversion, and membrane fusion activity, amyloid and N-terminal gp41 peptides may belong to the same superfamily of proteins. PMID:15044732

  19. UNIT 11.10 N-Terminal Sequence Analysis of Proteins and Peptides

    PubMed Central

    Speicher, Kaye D.; Gorman, Nicole; Speicher, David W.

    2009-01-01

    Automated N-terminal sequence analysis involves a series of chemical reactions that derivatize and remove one amino acid at a time from the N-terminal of purified peptides or intact proteins. At least several pmoles of a purified protein or 10 to 20 pmoles of a purified peptide with an unmodified N-terminal is required in order to obtain useful sequence information. In recent years the demand for N-terminal sequencing has decreased substantially as some applications for protein identification and characterization can now be more effectively performed using mass spectrometry. However, N-terminal sequencing remains the method of choice for verifying the N-terminal boundary of recombinant proteins, determining the N-terminal of protease-resistant domains, identifying proteins isolated from species where most of the genome has not yet been sequenced, and mapping modified or crosslinked sites in proteins that prove to be refractory to analysis by mass spectrometry. PMID:18429102

  20. Epitope mapping of the Dermatophagoides pteronyssinus house dust mite major allergen Der p II using overlapping synthetic peptides.

    PubMed

    van 't Hof, W; Driedijk, P C; van den Berg, M; Beck-Sickinger, A G; Jung, G; Aalberse, R C

    1991-11-01

    Fourteen synthetic peptides of 15 amino acid residues length, overlapping by five residues and spanning the entire sequence of the major allergen Der p II from the house dust mite Dermatophagoides pteronyssinus were synthesized. These peptides were coupled to CNBr-activated Sepharose-4B and used as solid-phase antigens in epitope mapping studies using human IgE antisera. These antibodies bound predominantly to the peptide comprising residues 65-78, the binding of which was inhibited by native Der p II. In addition these antisera bound, to a lesser extent, to the peptide that comprised residues 1-15, which binding was not inhibited by native Der p II. Thus, we found one sequential epitope for a number of IgE sera.

  1. Serial concept maps: tools for concept analysis.

    PubMed

    All, Anita C; Huycke, LaRae I

    2007-05-01

    Nursing theory challenges students to think abstractly and is often a difficult introduction to graduate study. Traditionally, concept analysis is useful in facilitating this abstract thinking. Concept maps are a way to visualize an individual's knowledge about a specific topic. Serial concept maps express the sequential evolution of a student's perceptions of a selected concept. Maps reveal individual differences in learning and perceptions, as well as progress in understanding the concept. Relationships are assessed and suggestions are made during serial mapping, which actively engages the students and faculty in dialogue that leads to increased understanding of the link between nursing theory and practice. Serial concept mapping lends itself well to both online and traditional classroom environments.

  2. Screening of peptides with a high affinity to bile acids using peptide arrays and a computational analysis.

    PubMed

    Takeshita, Toshikazu; Okochi, Mina; Kato, Ryuji; Kaga, Chiaki; Tomita, Yasuyuki; Nagaoka, Satoshi; Honda, Hiroyuki

    2011-07-01

    Bile acid binding peptides have attracted attention for the improvement and prevention of hypercholesterolemia. In this study, screening of bile acid high affinity peptides was investigated using computationally-assisted peptide array analysis. Starting with the screening data obtained from a limited, random 6-mer library (2212 sequences), the peptides with a high affinity to bile acid were characterized by comparison of high- and low-affinity peptides using fuzzy neural network (FNN) analysis. The physical properties of amino acids at specific positions that contribute to bile acid binding activity were extracted as the structural rule; optimization was carried out using three repeated screening cycles of the rule extraction. The extracted structural rule indicates that Trp, Tyr, Phe, Leu, Ile and Val are enriched in bile acid binding peptides. The yields of bile acid binding peptides with an affinity of above the VAWWMY peptide (soystatin, control sequence) were significantly higher in the optimized structural rule (32.5%) compared to that of the random library (3.1%), and 6 peptides were obtained with above 2.0-fold increased binding activity. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Mask Analysis Program (MAP) reference manual

    NASA Technical Reports Server (NTRS)

    Mitchell, C. L.

    1976-01-01

    A document intended to serve as a User's Manual and a Programmer's Manual for the Mask Analysis Program is presented. The first portion of the document is devoted to the user. It contains all of the information required to execute MAP. The remainder of the document describes the details of MAP software logic. Although the information in this portion is not required to run the program, it is recommended that every user review it to gain an appreciation for the program functions.

  4. Identification and analysis of insulin like peptides in nematode secretomes provide targets for parasite control

    PubMed Central

    Gahoi, Shachi; Gautam, Budhayash

    2016-01-01

    Insulin-like (ins) peptides play an important role in development and metabolism across the metazoa. In nematodes, these are also required for dauer formation and longevity and are expressed in different types of neurons across various life stages which demonstrate their role in parasites and could become possible targets for parasite control. To date, many nematode genomes are publically available. However, a systematic screening of ins peptides across different nematode group has not been reported. In the present study, we systematically identified ins peptides in the secretomes of 73 nematodes with fully sequenced genomes covering five different groups viz. plant parasitic, animal parasitic, human parasitic, entomopathogenic and free living nematodes. From the total of 93,949 secretory proteins, 176 proteins were uniquely mapped to 40 identified C. elegans ins families. The obtained result showed that 74.15% of the identified ins proteins were represented in free living nematodes only and remaining 25.84% were combinedly identified in all other nematode groups. The ins-1, ins-17 and ins-18 were the only ins families which were detected in all the studied nematode groups. Out of 176 proteins, 96 of ins proteins were predicted as hydrophilic in nature and 39 proteins were found stable using ProtParam analysis. Our study provides insight into the distribution of ins peptides across different group of nematodes and this information could be useful for further experimental study. PMID:28356679

  5. Automated carboxy-terminal sequence analysis of peptides.

    PubMed Central

    Bailey, J. M.; Shenoy, N. R.; Ronk, M.; Shively, J. E.

    1992-01-01

    current limitations, the methodology should be a valuable new tool for the C-terminal sequence analysis of peptides. PMID:1304884

  6. Genetic and biochemical analysis of peptide transport in Escherichia coli

    SciTech Connect

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U-/sup 14/C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using lambda placMu51-generated lac operon fusions. Synthesis of ..beta..-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium.

  7. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data

    SciTech Connect

    Ting, Ying S.; Egertson, Jarrett D.; Payne, Samuel H.; Kim, Sangtae; MacLean, Brendan; Kall, Lukas; Aebersold, Ruedi; Smith, Richard D.; Noble, William; MacCoss, Michael

    2015-09-01

    In mass spectrometry-based bottom-up proteomics, data-independent acquisition (DIA) is an emerging technique due to its comprehensive and unbiased sampling of precursor ions. However, current DIA methods use wide precursor isolation windows, resulting in co- fragmentation and complex mixture spectra. Thus, conventional database searching tools that identify peptides by interpreting individual MS/MS spectra are inherently limited in analyzing DIA data. Here we discuss an alternative approach, peptide-centric analysis, which tests directly for the presence and absence of query peptides. We discuss how peptide-centric analysis resolves some limitations of traditional spectrum-centric analysis, and we outline the benefits of peptide-centric analysis in general.

  8. Metabolic flux analysis using ¹³C peptide label measurements.

    PubMed

    Mandy, Dominic E; Goldford, Joshua E; Yang, Hong; Allen, Doug K; Libourel, Igor G L

    2014-02-01

    ¹³C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady-state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady-state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable 'single-sample' spatially and temporally resolved steady-state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC-MS measurement-based approach. Deconvolution of PMDs of the storage protein β-conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC-MS-derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.

  9. N-terminal sequence analysis of proteins and peptides.

    PubMed

    Reim, D F; Speicher, D W

    2001-05-01

    Amino-terminal (N-terminal) sequence analysis is used to identify the order of amino acids of proteins or peptides, starting at their N-terminal end. This unit describes the sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Perkin-Elmer Procise Sequencer. Sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Hewlett-Packard Model G1005A sequencer is also described. Methods are provided for optimizing separation of PTH amino acid derivatives on Perkin-Elmer instruments and for increasing the proportion of sample injected onto the PTH analyzer on older Perkin-Elmer instruments by installing a modified sample loop. The amount of data obtained from a single sequencer run is substantial, and careful interpretation of this data by an experienced scientist familiar with the current operation performance of the instrument used for this analysis is critically important. A discussion of data interpretation is therefore provided. Finally, discussion of optimization of sequencer performance as well as possible solutions to frequently encountered problems is included.

  10. Infrared-assisted on-plate proteolysis for MALDI-TOF-MS peptide mapping.

    PubMed

    Wang, Sheng; Bao, Huimin; Zhang, Luyan; Yang, Pengyuan; Chen, Gang

    2008-07-15

    In this report, infrared (IR)-assisted on-plate proteolysis has been developed for rapid peptide mapping. Protein solutions containing trypsin were allowed to digest directly on the spots of matrix-assisted laser desorption/ionization (MALDI) plates under IR radiation. The feasibility and performance of the novel proteolysis approach were investigated by the digestion of bovine serum albumin (BSA) and cytochrome c (Cyt-c). It was demonstrated that IR radiation substantially enhanced the efficiency of proteolysis and the digestion time was significantly reduced to 5 min. The digests were identified by MALDI time-of-flight mass spectrometry with sequence coverages of 55 (BSA) and 75% (Cyt-c) that were comparable to those obtained by using conventional in-solution tryptic digestion. The suitability of IR-assisted on-plate proteolysis to complex proteins was demonstrated by digesting human serum and casein extracted from commercially available milk sample. The present proteolysis strategy is simple and efficient, offering great promise for high-throughput protein identification.

  11. Structure of the hepatitis A virion: peptide mapping of the capsid region.

    PubMed

    Wheeler, C M; Robertson, B H; Van Nest, G; Dina, D; Bradley, D W; Fields, H A

    1986-05-01

    Milligram amounts of highly purified hepatitis A virus (HAV) were obtained from persistently infected cell cultures. The HAV polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose for detection by an enzyme-linked immunotransfer blot procedure. The HAV nucleotide-derived amino acid sequence was subjected to computer analysis to identify potential immunogenic regions within the HAV capsid polypeptides. Synthetic peptides corresponding to selected regions of each of the larger putative capsid polypeptides were coupled to keyhole limpet hemocyanin and used to immunize rabbits. Four of six anti-HAV peptide sera were strongly reactive. Antipeptide serum generated against amino acids (a.a.) 75 through 82 reacted with the 27,000-molecular-weight (MW) polypeptide; serum against a.a. 279 through 285 reacted with the 29,000-MW HAV polypeptide; and sera against a.a. 591 through 602 and 606 through 618 reacted with the 33,000-MW HAV polypeptide. These reactions enabled the identification of the gene order of the larger HAV P1 region gene products. Our data indicate the following molecular weights: HAV VP2 or 1B, 27,000; HAV VP3 or 1C, 29,000; and HAV VP1 or 1D, 33,000.

  12. MapReduce Implementation of a Hybrid Spectral Library-Database Search Method for Large-Scale Peptide Identification

    SciTech Connect

    Kalyanaraman, Anantharaman; Cannon, William R.; Latt, Benjamin K.; Baxter, Douglas J.

    2011-11-01

    A MapReduce-based implementation called MR- MSPolygraph for parallelizing peptide identification from mass spectrometry data is presented. The underlying serial method, MSPolygraph, uses a novel hybrid approach to match an experimental spectrum against a combination of a protein sequence database and a spectral library. Our MapReduce implementation can run on any Hadoop cluster environment. Experimental results demonstrate that, relative to the serial version, MR-MSPolygraph reduces the time to solution from weeks to hours, for processing tens of thousands of experimental spectra. Speedup and other related performance studies are also reported on a 400-core Hadoop cluster using spectral datasets from environmental microbial communities as inputs.

  13. Chromatic Image Analysis For Quantitative Thermal Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  14. Producing peptide arrays for epitope mapping by intein-mediated protein ligation.

    PubMed

    Sun, Luo; Rush, John; Ghosh, Inca; Maunus, Jeremy R; Xu, Ming-Qun

    2004-09-01

    Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.

  15. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay

    PubMed Central

    2013-01-01

    Background The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Methods Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. Results The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. Conclusions The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    SciTech Connect

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G. E-mail: gerhard.hummer@biophys.mpg.de; Hummer, Gerhard E-mail: gerhard.hummer@biophys.mpg.de

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  17. Specific Degradation of the Mucus Adhesion-Promoting Protein (MapA) of Lactobacillus reuteri to an Antimicrobial Peptide

    PubMed Central

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B.; Holo, Helge; Nes, Ingolf F.

    2010-01-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota. PMID:20833791

  18. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide.

    PubMed

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B; Holo, Helge; Nes, Ingolf F

    2010-11-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.

  19. Mapping City Accessibility: Review and Analysis.

    PubMed

    Comai, Sara; Kayange, Daniel; Mangiarotti, Raffaella; Matteucci, Matteo; Ugur Yavuz, Secil; Valentini, Francesco

    2015-01-01

    The paper presents an analysis of prototypes, studies, and applications for the mapping of city accessibility, focusing mainly on sidewalks accessibility. Moreover, it presents the results of two focus groups that we organized both with electric and with manual wheelchairs to attain requirements and insights to design a user-friendly app for the collection and visualization of information about the accessibility of urban pedestrian pathways.

  20. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Epitope mapping of region 11-70 of ovalbumin (Gal d I) using five synthetic peptides.

    PubMed

    Elsayed, S; Stavseng, L

    1994-05-01

    Five successively located peptides, in region 11-70 of the major allergen of ovalbumin (OA) Gal d I (11-19, 20-33, 34-46, 47-55, 56-70), were obtained by manual solid-phase peptide synthesis. These peptides together with the previously reported OA region 1-10 comprise a segment of 70 amino acid residues located at the N-terminal of ovalbumin. The crude peptides were purified by gel filtration and reversed-phase high-performance liquid chromatographies and their sequences were verified. Polyclonal antibodies against the peptides conjugated to carrier protein (BSA) were raised in rabbits. Rocket line immunoelectrophoresis showed that four peptides (20-33, 34-46, 47-55 and 56-70), could deflect OA-line immunoprecipitates. The peptide's affinity to rabbit polyclonal Ig was examined by quantitative precipitation inhibition and the results suggested that an epitope was encompassed in segments 34-55 and 47-55. Allergenicity was tested by inhibition of specific IgE binding of ovalbumin, using several sera and a serum pool from 16 egg-allergic patients. The results showed that the allergenicity was distributed over the whole region. These findings suggested that: (a) the region 11-70 of OA seemed not to encompass continuous epitopes; (b) the antigenicity of this region was convincing for peptides 34-46 and 47-55; (c) the allergenicity, though dependent on the patient serum used, was distributed over the whole of region 11-70; (d) peptide 11-19, although weak antigenically was capable of specific IgE inhibition; (e) human and rabbit polyclonal antibodies did not show analogous affinities to the present peptides.

  2. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides.

    PubMed

    Kawada, Tsuyoshi; Ogasawara, Michio; Sekiguchi, Toshio; Aoyama, Masato; Hotta, Kohji; Oka, Kotaro; Satake, Honoo

    2011-06-01

    The phylogenetic position of ascidians as the chordate invertebrates closest to vertebrates suggests that they might possess homologs and/or prototypes of vertebrate peptide hormones and neuropeptides as well as ascidian-specific peptides. However, only a small number of peptides have so far been identified in ascidians. In the present study, we have identified various peptides in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomic analysis detected 33 peptides, including 26 novel peptides, from C. intestinalis. The ascidian peptides are largely classified into three categories: 1) prototypes and homologs of vertebrate peptides, such as galanin/galanin-like peptide, which have never been identified in any invertebrates; 2) peptides partially homologous with vertebrate peptides, including novel neurotesin-like peptides; 3) novel peptides. These results not only provide evidence that C. intestinalis possesses various homologs and prototypes of vertebrate neuropeptides and peptide hormones but also suggest that several of these peptides might have diverged in the ascidian-specific evolutionary lineage. All Ciona peptide genes were expressed in the neural complex, whereas several peptide gene transcripts were also distributed in peripheral tissues, including the ovary. Furthermore, a Ciona neurotensin-like peptide, C. intestinalis neurotensin-like peptide 6, was shown to down-regulate growth of Ciona vitellogenic oocytes. These results suggest that the Ciona peptides act not only as neuropeptides in the neural tissue but also as hormones in nonneuronal tissues and that ascidians, unlike other invertebrates, such as nematodes, insects, and sea urchins, established an evolutionary origin of the peptidergic neuroendocrine, endocrine, and nervous systems of vertebrates with certain specific molecular diversity.

  3. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  4. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  5. Characterization of desmoglein-3 epitope region peptides as synthetic antigens: analysis of their in vitro T cell stimulating efficacy, cytotoxicity, stability, and their conformational features.

    PubMed

    Szabados, Hajnalka; Uray, Katalin; Majer, Zsuzsa; Silló, Pálma; Kárpáti, Sarolta; Hudecz, Ferenc; Bősze, Szilvia

    2015-09-01

    Desmoglein-3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full-length peptide (Dsg3/189-205, Dsg3/206-222, Dsg3/342-358, and Dsg3/761-777) and its N-terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure-activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)-γ content of the supernatants was measured by enzyme-linked immunosorbent assay. In the in vitro conditions, peptides were stable and non-cytotoxic. The in vitro IFN-γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342-358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192-205, Dsg3/763-777, and Dsg3/764-777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors.

  6. Novel Peptide-specific QSAR Analysis Applied to Collagen IV Peptides with Antiangiogenic Activity

    PubMed Central

    Rivera, Corban G.; Rosca, Elena V.; Pandey, Niranjan B.; Koskimaki, Jacob E.; Bader, Joel S.; Popel, Aleksander S.

    2011-01-01

    Angiogenesis is the growth of new blood vessels from existing vasculature. Excessive vascularization is associated with a number of diseases including cancer. Anti-angiogenic therapies have the potential to stunt cancer progression. Peptides derived from type IV collagen are potent inhibitors of angiogenesis. We wanted to gain a better understanding of collagen IV structure-activity relationships using a ligand-based approach. We developed novel peptide-specific QSAR models to study the activity of the peptides in endothelial cell proliferation, migration, and adhesion inhibition assays. We found that the models produced quantitatively accurate predictions of activity and provided insight into collagen IV derived peptide structure-activity relationships. PMID:21866962

  7. Quality Analysis of Open Street Map Data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Li, Q.; Hu, Q.; Zhou, M.

    2013-05-01

    Crowd sourcing geographic data is an opensource geographic data which is contributed by lots of non-professionals and provided to the public. The typical crowd sourcing geographic data contains GPS track data like OpenStreetMap, collaborative map data like Wikimapia, social websites like Twitter and Facebook, POI signed by Jiepang user and so on. These data will provide canonical geographic information for pubic after treatment. As compared with conventional geographic data collection and update method, the crowd sourcing geographic data from the non-professional has characteristics or advantages of large data volume, high currency, abundance information and low cost and becomes a research hotspot of international geographic information science in the recent years. Large volume crowd sourcing geographic data with high currency provides a new solution for geospatial database updating while it need to solve the quality problem of crowd sourcing geographic data obtained from the non-professionals. In this paper, a quality analysis model for OpenStreetMap crowd sourcing geographic data is proposed. Firstly, a quality analysis framework is designed based on data characteristic analysis of OSM data. Secondly, a quality assessment model for OSM data by three different quality elements: completeness, thematic accuracy and positional accuracy is presented. Finally, take the OSM data of Wuhan for instance, the paper analyses and assesses the quality of OSM data with 2011 version of navigation map for reference. The result shows that the high-level roads and urban traffic network of OSM data has a high positional accuracy and completeness so that these OSM data can be used for updating of urban road network database.

  8. Metabolic flux analysis using 13C peptide label measurements

    USDA-ARS?s Scientific Manuscript database

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  9. Determination of glyoxylyl-peptide concentration using oxime chemistry and RP-HPLC analysis.

    PubMed

    Garcia, Jean-Michel; Far, Samia; Diesis, Eric; Melnyk, Oleg

    2006-11-01

    Glyoxylyl-peptides are useful peptide derivatives in the context of hydrazone, oxime or thiazolidine ligations. We describe a method for the determination of glyoxylyl-peptide concentration based on the reaction of the alpha-oxo aldehyde group with an excess of O-benzylhydroxylamine. The amount of O-benzylhydroxylamine necessary to convert the alpha-oxo aldehyde group into the corresponding O-benzyloxime was determined by RP-HPLC analysis and corresponded to the quantity of glyoxylyl-peptide used in the experiment. The method is rapid, sensitive, accurate and allows the automated analysis of several samples. Copyright 2006 European Peptide Society and John Wiley & Sons, Ltd.

  10. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-02

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable.

  11. Chaotic map clustering algorithm for EEG analysis

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; Stramaglia, S.

    2004-03-01

    The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.

  12. Peptide mapping and characterisation of glycation patterns of the glima 38 antigen recognised by autoantibodies in Type I diabetic patients.

    PubMed

    Roll, U; Turck, C W; Gitelman, S E; Rosenthal, S M; Nolte, M S; Masharani, U; Ziegler, A G; Baekkeskov, S

    2000-05-01

    Glima 38 is an N-glycated neuroendocrine membrane protein of M(r) 38,000, which is recognised by autoantibodies in approximately 20% of patients with Type I (insulin-dependent) diabetes mellitus. The aim of this study was to characterise the carbohydrate moiety and generate peptide maps of glima 38. Sera of high immunoreactivity to glima 38 were used to isolate 35-S methionine-labelled protein from betaTC-3 cells and a neuronal cell line GT1.7. Tunicamycin was used to inhibit N-glycation of glima 38 and define the core protein. The carbohydrate moiety was characterised for tunicamycin sensitivity, lectin binding and susceptibility to different endoglycosidases. The protein moiety was subjected to digestion by proteases to define peptide maps. The autoreactive epitopes in glima 38 recognised by Type I diabetic sera are conformational and independent of the carbohydrate moiety. Inhibition of N-glycation of glima 38 in vivo, shows a protein core of M(r) 22,000 in both pancreatic beta-(betaTC3) and neuronal (GT1.7) cell lines. The carbohydrate moieties in the two cell types are distinct but contain a similar amount of terminal sialic acid residues and at least five oligosaccharide chains Glima 38 binds Triticum vulgare and Ricinus communis I lectins. Endoproteinase treatment of the M(r) 22,000 core protein results in peptides of M(r) 4500 and M(r) 20,000 with Lys-C, and peptides of M(r) 4000 and M(r) 11,000-12,000 with Glu-C/V8 and Asp-N proteases. The biochemical properties of glima 38 define it as a new autoantigen in Type I diabetes and provide a basis for its purification.

  13. Narrow-range peptide isoelectric focusing as peptide prefractionation method prior to tandem mass spectrometry analysis.

    PubMed

    Pernemalm, Maria

    2013-01-01

    High sample complexity is one of the major challenges in mass spectrometry-based proteomics today. Despite massive improvement in instrumentation, sample prefractionation is still needed to reduce sample complexity and improve proteome coverage. Isoelectric focusing (IEF) has been traditionally used as a first-dimension protein separation technique in two-dimensional gel electrophoresis-based proteomics. Recently, peptide IEF has emerged as appealing alternative for anion exchange chromatography in multidimensional LC-MS/MS workflows. The rationale behind using narrow-range peptide isoelectric focusing as a prefractionation method prior to ms/ms is to reduce the complexity induced by tryptic digestion. This is done by selectively analyzing a sub-fraction of peptides with an acidic pI. The pI range is chosen as it has previously been shown that 96 % of human proteins have at least one tryptic peptide between pH 3.4 and 4.9. This ensures high proteome coverage while reducing the number of peptides with 2/3. In addition the focusing precision is optimal in this range. Therefore, by analyzing this sub-fraction of peptides the complexity of the sample can be reduced without significant loss of proteome coverage. As the theoretical pI of peptides can be calculated, the pI of the identified peptides can be used to validate the peptide sequence (identified peptides with pI outside the pH range 3.4-4.9 are more likely to be false positives). In addition, this approach is compatible with iTRAQ labelling as the different iTRAQ labels migrate similarly in IEF.

  14. Sequence analysis by iterated maps, a review.

    PubMed

    Almeida, Jonas S

    2014-05-01

    Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.

  15. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  16. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.

    PubMed

    Cai, Kaicong; Su, Tingting; Lin, Shen; Zheng, Renhui

    2014-01-03

    A general electrostatic potential map based on molecular mechanics force field for modeling the amide I frequency is presented. This map is applied to N-methylacetamide (NMA) and designed to be transferable in different micro-environments. The electrostatic potentials from solvent and peptide side chain are projected on the amide unit of NMA to induce the frequency shift of amide I mode. It is shown that the predicted amide I frequency reproduces the experimental data satisfactorily, especially when NMA in polar solvents. The amide I frequency shift is largely determined by the solvents in aqueous solution while it is dominated by the local structure of peptide in other solvent environments. The map parameters are further applied on NMA-MeOH system and the obtained IR spectra show doublet peak profile with negligible deviation from the experimental data, suggesting the usefulness of this general map for providing information about vibrational parameters of amide motions of peptide in different environments.

  17. Comparison of the peptide map and functional properties of monooxygenases induced by 3-methylcholanthrene and. beta. -naphthoflavone

    SciTech Connect

    Chasovnikova, O.B.; Mishin, V.M.; Tsyrlov, I.B.

    1987-02-20

    The similarity of the catalytic, spectral, electrophoretic, and immunochemical properties of microsomal cytochromes P-448 (molecular weight 56,000), synthesized de novo after administration of 3-methylcholanthrene and ..beta..-naphthoflavone to rats, was demonstrated. The identity of the peptide maps of the microsomal and isolated cytochrome P-448 is evidence of adequacy of the method of limited proteolysis for establishing the homogeneity and comparing the structure of the microsomal hemoproteins. The data obtained substantiate the approach for the study of the similarity and differences in the structure and enzymatic activity of various forms of monooxygenases without their preliminary isolation from the microsomal membrane.

  18. Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons.

    PubMed

    Neupert, Susanne; Schattschneider, Sebastian; Predel, Reinhard

    2009-03-01

    The first insect allatotropin-related peptide (ATRP) was isolated from head extracts of the adult sphinx moth Manduca sexta [Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ. Identification of an allatotropin from adult Manduca sexta. Science 1989;243:1481-3.]. Meanwhile ATRPs are known from different holometabolous insects but only a single ATRP could be identified from hemimetabolous insects [Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A. Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 1991;12:7-10.]. This means that the extensive analysis of neuropeptides from Leucophaea maderae and Periplaneta americana, which led to the discovery of many novel insect neuropeptides, did not result in the detection of any ATRP. In this study, we used another approach to find a cockroach ATRP by first identifying Manse-AT immunoreactive neurons in the terminal ganglion that can be stained by retrograde labeling and are suitable for dissection and subsequent mass spectrometric analysis. The peptidomic analysis of these putative ATRP neurons paved the way for the identification of the first cockroach ATRP. MALDI-TOF/TOF tandem mass spectrometry revealed a sequence identity with Locmi-AG-MT-1 which classifies this ATRP as a highly conserved neuropeptide. A mass spectrometric screening of the nervous system allowed the detection of ATRP-ion signals in different parts of the CNS of P. americana as well as L. maderae. The data obtained in this study will be incorporated in a map of peptidergic neurons from the CNS of the American cockroach, P. americana.

  19. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.

  20. Conformation Analysis of Peptides Derived from Laminin Alpha 1-2 Chain Using Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, Hironao; Fukuda, Masaki; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako

    Laminin is one of the components of the basement membrane and has diverse biological activities. Several functional peptides (EF1-EF5) are identified from LG4 modules of laminin alpha 1-5 chains. Thus, we perform conformation analysis of EF1 and EF2 using molecular dynamics simulations. In this study, we perform structure sampling with NPT ensemble (300 K, 1 bar). Our results show that EF1 peptide has β-sheet structure in water, and EF2 peptide does not have. Likewise, the EF2 peptide has unstable structure compared with the EF1 peptide in water.

  1. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis.

    PubMed

    Shao, Hongwei; Lin, Yanmei; Wang, Teng; Ou, Yusheng; Shen, Han; Tao, Changli; Wu, Fenglin; Zhang, Wenfeng; Bo, Huaben; Wang, Hui; Huang, Shulin

    2015-07-10

    Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells.

  2. Structural analysis of the foldecture derived from racemic peptide foldamers

    NASA Astrophysics Data System (ADS)

    Gong, Jintaek; Eom, Jae-Hoon; Jeong, Rokam; Driver, Russell W.; Lee, Hee-Seung

    2017-08-01

    The molecular packing structure of an elongated parallelogram plate shaped foldecture composed of a 1:1 racemic mixture of 11-helical peptide foldamers was resolved by powder X-ray diffraction (PXRD) analysis. A comprehensive Rietveld refinement procedure compensated for powder texture and identified the principal face of the foldecture. Each foldamer makes head-to-tail intermolecular hydrogen bonds, creating extended chains of single enantiomers that form a network of hydrophobic close contacts with foldamers of both the opposite and the same chiralities. An isosurface for anisotropic microstrain was calculated and found to be smallest along the x-axis, which is parallel to the network of intermolecular hydrogen bonds. Comparison with the single crystal structure found molecular packing motifs to be almost identical-a result infrequently observed in enantiopure foldectures. This is the first powder X-ray diffraction structural analysis of a foldecture composed of multiple components.

  3. MapReduce implementation of a hybrid spectral library-database search method for large-scale peptide identification.

    PubMed

    Kalyanaraman, Ananth; Cannon, William R; Latt, Benjamin; Baxter, Douglas J

    2011-11-01

    A MapReduce-based implementation called MR-MSPolygraph for parallelizing peptide identification from mass spectrometry data is presented. The underlying serial method, MSPolygraph, uses a novel hybrid approach to match an experimental spectrum against a combination of a protein sequence database and a spectral library. Our MapReduce implementation can run on any Hadoop cluster environment. Experimental results demonstrate that, relative to the serial version, MR-MSPolygraph reduces the time to solution from weeks to hours, for processing tens of thousands of experimental spectra. Speedup and other related performance studies are also reported on a 400-core Hadoop cluster using spectral datasets from environmental microbial communities as inputs. The source code along with user documentation are available on http://compbio.eecs.wsu.edu/MR-MSPolygraph. ananth@eecs.wsu.edu; william.cannon@pnnl.gov. Supplementary data are available at Bioinformatics online.

  4. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Identification by chemical derivatization and peptide mapping.

    PubMed

    Vangrysperre, W; Ampe, C; Kersters-Hilderson, H; Tempst, P

    1989-10-01

    Group-specific chemical modifications of D-xylose isomerase from Streptomyces violaceruber indicated that complete loss of activity is fully correlated with the acylation of a single histidine. Active-site protection, by the ligand combination of xylitol plus Mg2+, completely blocked diethyl pyrocarbonate derivatization of this particular residue [Vangrysperre, Callens, Kersters-Hilderson & De Bruyne (1988) Biochem. J. 250, 153-160]. Differential peptide mapping between D-xylose isomerase, which has previously been treated with diethyl pyrocarbonate in the presence or absence of xylitol plus Mg2+, allowed specific isolation and sequencing of a peptide containing this active-site histidine. For this purpose we used two essentially new techniques: first, a highly reproducible peptide cleavage protocol for protease-resistant, carbethoxylated proteins with guanidinium hydrochloride as denaturing agent and subtilisin for proteolysis; and second, reverse-phase liquid chromatography with dual-wavelength detection at 214 and 238 nm, and calculation of absorbance ratios. It allowed us to locate the single active-site histidine at position 54 in the primary structure of Streptomyces violaceoruber D-xylose isomerase. The sequence around this residue is conserved in D-xylose isomerases from a diversity of micro-organisms, suggesting that this is a structurally and/or functionally essential part of the molecule.

  5. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Bachmann, Stefan; Bakry, Rania; Huck, Christian W; Polato, Fabio; Corradini, Danilo; Bonn, Günther K

    2011-10-01

    This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.

  6. Sequence analysis by iterated maps, a review

    PubMed Central

    2014-01-01

    Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, ‘Chaos Game Representation’. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results. PMID:24162172

  7. Discrimination of recombinant and pituitary-derived bovine and porcine growth hormones by peptide mass mapping.

    PubMed

    Pinel, Gaud; André, François; Le Bizec, Bruno

    2004-02-11

    Somatotropins, which are used in cattle for growth and lactating performances, are difficult to reliably detect because no direct method exists. Reversed-phase high-performance liquid chromatography (RP-HLC) coupled to electrospray ionization quadrupole mass spectrometry (ESI/MS) has been developed to separate and characterize the N-terminal peptides resulting from tryptic cleavage of natural and recombinant growth hormones from different species (bovine, porcine, and human) and suppliers. Conditions for tryptic digestion were optimized. This technique was found to be optimal to cleave efficiently the N-terminal peptide of the proteins without releasing too much noise from the matrix. Characterization of the peptides through ESI(+)-MS allowed natural and recombinant growth hormones from bovine and porcine species with N-terminal amino acid sequences differing from one amino acid residue to be discriminated. However, the studied human growth hormones had similar primary sequences that did not permit any discrimination between recombinant and natural forms, thus confirming the known identity of these hormones. Protein digestions with pepsin and chymotrypsin were also compared but were not conclusive due to the too small N-terminal peptides released after proteolysis.

  8. Identification of 2D-gel proteins : a comparison of MALDI/TOF peptide mass mapping to {mu} LC-ESI tandem mass spectrometry.

    SciTech Connect

    Lim, H.; Hays, L. G.; Eng, J.; Tollaksen, S. L.; Giometti, C. S.; Holden, J. F.; Adams, M. W. W.; Reich, C. I.; Olsen, G. J.; Yates, J. R.; Biosciences Division; The Scripps Research Inst.; Univ. of Georgia; Univ. of Illinois

    2003-09-01

    A comparative analysis of protein identification for a total of 162 protein spots separated by two-dimensional gel electrophoresis from two fully sequenced archaea, Methanococcus jannaschii and Pyrococcus furiosus, using MALDI-TOF peptide mass mapping (PMM) and mu LC-MS/MS is presented. 100% of the gel spots analyzed were successfully matched to the predicted proteins in the two corresponding open reading frame databases by mu LC-MS/MS while 97% of them were identified by MALDI-TOF PMM. The high success rate from the PMM resulted from sample desalting/concentrating with ZipTip(C18) and optimization of several PMM search parameters including a 25 ppm average mass tolerance and the application of two different protein molecular weight search windows. By using this strategy, low-molecular weight (<23 kDa) proteins could be identified unambiguously with less than 5 peptide matches. Nine percent of spots were identified as containing multiple proteins. By using mu LC-MS/MS, 50% of the spots analyzed were identified as containing multiple proteins. mu LC-MS/MS demonstrated better protein sequence coverage than MALDI-TOF PMM over the entire mass range of proteins identified. MALDI-TOF and PMM produced unique peptide molecular weight matches that were not identified by mu LC-MS/MS. By incorporating amino acid sequence modifications into database searches, combined sequence coverage obtained from these two complimentary ionization methods exceeded 50% for approximately 70% of the 162 spots analyzed. This improved sequence coverage in combination with enzymatic digestions of different specificity is proposed as a method for analysis of post-translational modification from 2D-gel separated proteins.

  9. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis.

    PubMed

    Yeung, Yee-Guide; Stanley, E Richard

    2010-02-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus, detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglucoside from protease digests without loss of peptides. This procedure can also be used to reduce interference by sodium dodecyl sulfate, Nonidet P-40, or Triton X-100 in peptide samples for MS analysis.

  10. UAV for landslide mapping and deformation analysis

    NASA Astrophysics Data System (ADS)

    Shi, Beiqi; Liu, Chun

    2015-12-01

    Unmanned aerial vehicle (UAV) can be a flexible, cost-effective, and accurate method to monitor landslides with high resolution aerial images. Images acquired on 05 May 2013 and 13 December 2014 of the Xishan landslide, China, have been used to produce a high-resolution ortho-mosaic of the entire landslide and digital elevation model (DEM). The UAV capability for imaging detection and displacements on the landslide surface has been evaluated, and the subsequent image processing approaches for suitably georectifying the data have been assessed. Objects derived from the segmentation of a multispectral image were used as classifying units for landslide object-oriented analysis. Spectral information together with various morphometric characteristics was applied for recognizing landslides from false positives. Digital image correlation technique was evaluated to quantify and map terrain displacements. The magnitude and direction of the displacement vectors derived from correlating two temporal UAV images corresponded to a visual interpretation of landslide change. Therefore, the UAV can demonstrate its capability for producing valuable landslide mapping data and deformation information.

  11. Parametric Response Mapping of Apparent Diffusion Coefficient (ADC) as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression In Peptide-Based Vaccine Therapy for Pediatric Diffuse Instrinsic Pontine Glioma

    PubMed Central

    Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination

  12. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer

    SciTech Connect

    Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D.; Clauser, Karl R.; Tabb, David L.; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P.; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A.; Perou, Charles M.; Chen, Xian; Davies, Sherri R.; Maher, Christopher A.; Kinsinger, Christopher R.; Rodland, Karen D.; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R. Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D.; Liebler, Daniel C.; Carr, Steven A.; Payne, Samuel; Ellis, Matthew J.; Fenyő, David

    2015-12-02

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations and splice variants identified in cancer cells are translated. Herein we therefore describe a proteogenomic data integration tool (QUILTS) and illustrate its application to whole genome, transcriptome and global MS peptide sequence datasets generated from a pair of luminal and basal-like breast cancer patient derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS process replicates. Despite over thirty sample replicates, only about 10% of all SNV (somatic and germline) were detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNV without a detectable mRNA transcript were also observed demonstrating the transcriptome coverage was also incomplete (~80%). In contrast to germ-line variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than the luminal tumor raising the possibility of differential translation or protein degradation effects. In conclusion, the QUILTS program integrates DNA, RNA and peptide sequencing to assess the degree to which somatic mutations are translated and therefore biologically active. By identifying gaps in sequence coverage QUILTS benchmarks current technology and assesses progress towards whole cancer proteome and transcriptome analysis.

  13. Peptidomic analysis of HEK293T cells: Effect of the proteasome inhibitor epoxomicin on intracellular peptides

    PubMed Central

    Fricker, Lloyd D.; Gelman, Julia S.; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.

    2012-01-01

    Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 μM or 2 μM) for 1 hour and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation. PMID:22304392

  14. Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses.

    PubMed

    Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J; Walker, Bruce D; Riemer, Angelika B; Le Gall, Sylvie

    2016-10-01

    Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human

  15. Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses

    PubMed Central

    Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.

    2016-01-01

    ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA

  16. Western blot analysis of Src kinase assays using peptide substrates ligated to a carrier protein.

    PubMed

    Xu, Jie; Sun, Luo; Ghosh, Inca; Xu, Ming-Qun

    2004-06-01

    We have applied intein-mediated peptide ligation (IPL) to the use of peptide substrates for kinase assays and subsequent Western blot analysis. IPL allows for the efficient ligation of a synthetic peptide with an N-terminal cysteine residue to an intein-generated carrier protein containing a cysteine reactive C-terminal thioester through a native peptide bond. A distinct advantage of this procedure is that each carrier protein molecule ligates only one peptide, ensuring that the ligation product forms a sharp band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrate the effectiveness of this approach by mutational analysis of peptide substrates derived from human cyclin-dependent kinase, Cdc2, which contains a phosphorylation site of human c-Src protein tyrosine kinase.

  17. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata.

    PubMed

    Ma, Yufang; Liu, Cunbao; Liu, Xiuhong; Wu, Jing; Yang, Hailong; Wang, Yipeng; Li, Jianxu; Yu, Haining; Lai, Ren

    2010-01-01

    Much attention has been paid on amphibian peptides for their wide-ranging pharmacological properties, clinical potential, and gene-encoded origin. More than 300 antimicrobial peptides (AMPs) from amphibians have been studied. Peptidomics and genomics analysis combined with functional test including microorganism killing, histamine-releasing, and mast cell degranulation was used to investigate antimicrobial peptide diversity. Thirty-four novel AMPs from skin secretions of Rana nigrovittata were identified in current work, and they belong to 9 families, including 6 novel families. Other three families are classified into rugosin, gaegurin, and temporin family of amphibian AMP, respectively. These AMPs share highly conserved preproregions including signal peptides and spacer acidic peptides, while greatly diversified on mature peptides structures. In this work, peptidomics combined with genomics analysis was confirmed to be an effective way to identify amphibian AMPs, especially novel families. Some AMPs reported here will provide leading molecules for designing novel antimicrobial agents.

  18. Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen.

    PubMed

    Favreau, Philippe; Menin, Laure; Michalet, Sophie; Perret, Fréderic; Cheneval, Olivier; Stöcklin, Maxime; Bulet, Philippe; Stöcklin, Reto

    2006-05-01

    Due to their complexity and diversity, animal venoms represent an extensive source of bioactive compounds such as peptides and proteins. Conventional approaches for their characterization often require large quantities of biological material. Current mass spectrometry (MS) techniques now give access to a wealth of information in a short working time frame with minute amounts of sample. Such MS approaches may now be used for the discovery of novel compounds, and once their structure has been determined they may be synthesized and tested for functional activity. Molecular mass fingerprints of venoms allow the rapid identification of known toxins as well as preliminary structural characterization of new compounds. De novo peptide sequencing by tandem mass spectrometry (MS/MS) offers rapid access to partial or total primary peptide structures. This article, written as a tutorial, also contains new material: molecular mass fingerprint analysis of Orthochirus innesi scorpion venom, and identification of components from bumblebee Bombus lapidarius venom, both collected from one single specimen. The structure of the three major peptides detected in the Bombus venom was fully characterized in one working day by de novo sequencing using an electrospray ionization hybrid quadrupole time-of-flight instrument (ESI-QqTOF) and a matrix-assisted laser desorption ionization time-of-flight instrument (MALDI-LIFT-TOF-TOF). After presenting the MS-based sequence elucidation, perspectives in using MS and MS/MS techniques in toxinology are discussed.

  19. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    PubMed Central

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2013-01-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno) phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se–S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen (m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se–S cleavage, analogous to the S–S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se–S of the tag to the S–S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se–S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes. PMID:21953264

  20. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

    PubMed Central

    2015-01-01

    Background As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Methods Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Results Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Conclusions Network analysis is a

  1. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.

    PubMed

    Luo, Heng; Ye, Hao; Ng, Hui; Shi, Leming; Tong, Weida; Mattes, William; Mendrick, Donna; Hong, Huixiao

    2015-01-01

    As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Network analysis is a useful approach for analyzing large and

  2. India ink staining after sodium dodecyl sulfate polyacrylamide gel electrophoresis and in conjunction with Western blots for peptide mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Klarskov, Klaus; Naylor, Stephen

    2002-01-01

    We present an approach that allows matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) peptide mapping of proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose (NC). After blocking the nitrocellulose membrane with polyvinylpyrrolidone-40 the immobilized proteins are visualized using India Ink staining which allows the detection of low nanogram amounts of protein. The utilization of a low concentration of Tween 20 (0.05%) in the India Ink staining solution does not negatively impair the quality of the mass spectra. Due to the virtual nondestructive nature of the stain proteolytic peptides could be recovered from the NC membrane. Taking into account minor precautions during the sample manipulation and concentration and by loading the sample onto a pre-crystallized matrix layer, high quality mass spectral data were obtained on <100 femtomoles of protein loaded onto the gel. Finally, the use of India Ink in conjunction with Western blot analysis is also demonstrated. A rat plasma protein, characterized by Western blot as a covalently modified protein-drug compound, was subjected to peptide mapping and post source decay (PSD) sequencing of peptides. The zomepirac-modified protein was identified as the alpha-subunit of fibrinogen. Copyright 2001 John Wiley & Sons, Ltd.

  3. Rapid sensitive analysis of cysteine rich peptide venom components.

    PubMed

    Ueberheide, Beatrix M; Fenyö, David; Alewood, Paul F; Chait, Brian T

    2009-04-28

    Disulfide-rich peptide venoms from animals such as snakes, spiders, scorpions, and certain marine snails represent one of nature's great diversity libraries of bioactive molecules. The various species of marine cone shells have alone been estimated to produce >50,000 distinct peptide venoms. These peptides have stimulated considerable interest because of their ability to potently alter the function of specific ion channels. To date, only a small fraction of this immense resource has been characterized because of the difficulty in elucidating their primary structures, which range in size between 10 and 80 aa, include up to 5 disulfide bonds, and can contain extensive posttranslational modifications. The extraordinary complexity of crude venoms and the lack of DNA databases for many of the organisms of interest present major analytical challenges. Here, we describe a strategy that uses mass spectrometry for the elucidation of the mature peptide toxin components of crude venom samples. Key to this strategy is our use of electron transfer dissociation (ETD), a mass spectrometric fragmentation technique that can produce sequence information across the entire peptide backbone. However, because ETD only yields comprehensive sequence coverage when the charge state of the precursor peptide ion is sufficiently high and the m/z ratio is low, we combined ETD with a targeted chemical derivatization strategy to increase the charge state of cysteine-containing peptide toxins. Using this strategy, we obtained full sequences for 31 peptide toxins, using just 7% of the crude venom from the venom gland of a single cone snail (Conus textile).

  4. Peptidomic Analysis of Amniotic Fluid for Identification of Putative Bioactive Peptides in Ventricular Septal Defect.

    PubMed

    Li, Xing; Wu, Li-Jie; Gu, Meng; Chen, Yu-Mei; Zhang, Qi-Jun; Li, Hua; Cheng, Zi-Jie; Hu, Ping; Han, Shu-Ping; Yu, Zhang-Bin; Qian, Ling-Mei

    2016-01-01

    Ventricular septal defect (VSD) is one of the most common congenital heart diseases and to date the role of peptides in human amniotic fluid in the pathogenesis of VSD have been rarely investigated. To gain insight into the mechanisms of protein and peptides in cardiovascular development, we constructed a comparative peptidomic profiling of human amniotic fluid between normal and VSD fetuses using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by nano liquid chromatography tandem mass spectrometry. We identified and quantified 692 non-redundant peptides, 183 of which were differentially expressed in the amniotic fluid of healthy and VSD fetuses; 69 peptides were up regulated and 114 peptides were down regulated. These peptides were imported into the Ingenuity Pathway Analysis (IPA) and identified putative roles in cardiovascular system morphogenesis and cardiogenesis. We concluded that 35 peptides located within the functional domains of their precursor proteins could be candidate bioactive peptides for VSD. The identified peptide changes in amniotic fluid of VSD fetuses may advance our current understanding of congenital heart disease and these peptides may be involved in the etiology of VSD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Peptide sequence motif analysis of tandem MS data with the SALSA algorithm.

    PubMed

    Liebler, Daniel C; Hansen, Beau T; Davey, Sean W; Tiscareno, Laura; Mason, Daniel E

    2002-01-01

    We have developed a pattern recognition algorithm called SALSA (scoring algorithm for spectral analysis) for the detection of specific features in tandem MS (MS-MS) spectra. Application of the SALSA algorithm to the detection of peptide MS-MS ion series enables identification of MS-MS spectra displaying characteristics of specific peptide sequences. SALSA analysis scores MS-MS spectra based on correspondence between theoretical ion series for peptide sequence motifs and actual MS-MS product ion series, regardless of their absolute positions on the m/z axis. Analyses of tryptic digests of bovine serum albumin (BSA) by LC-MS-MS followed by SALSA analysis detected MS-MS spectra for both unmodified and multiple modified forms of several BSA tryptic peptides. SALSA analysis of MS-MS data from mixtures of BSA and human serum albumin (HSA) tryptic digests indicated that ion series searches with BSA peptide sequence motifs identified MS-MS spectra for both BSA and closely related HSA peptides. Optimal discrimination between MS-MS spectra of variant peptide forms is achieved when the SALSA search criteria are optimized to the target peptide. Application of SALSA to LC-MS-MS proteome analysis will facilitate the characterization of modified and sequence variant proteins.

  6. Peptide Arrays for Kinome Analysis of Livestock Species

    PubMed Central

    Daigle, Joanna; Van Wyk, Brenden; Trost, Brett; Scruten, Erin; Arsenault, Ryan; Kusalik, Anthony; Griebel, Philip John; Napper, Scott

    2014-01-01

    Reversible protein phosphorylation is a central mechanism for both the transfer of intracellular information and the initiation of cellular responses. Within human medicine, considerable emphasis is placed on understanding and controlling the enzymes (kinases) that are responsible for catalyzing these modifications. This is evident in the prominent use of kinase inhibitors as drugs as well as the trend to understand complex biology and identify biomarkers via characterizations of global kinase (kinome) activity. Despite the demonstrated value of focusing on kinome activity, the application of this perspective to livestock has been restricted by the absence of appropriate research tools. In this review, we discuss the development of software platforms that facilitate the development and application of species-specific peptide arrays for kinome analysis of livestock. Examples of the application of kinomic approaches to a number of priority species (cattle, pigs, and chickens) in a number of biological contexts (infections, biomarker discovery, and food quality) are presented as are emerging trends for kinome analysis of livestock. PMID:26664912

  7. Food peptidomics: large scale analysis of small bioactive peptides--a pilot study.

    PubMed

    Lahrichi, Sabine L; Affolter, Michael; Zolezzi, Irma Silva; Panchaud, Alexandre

    2013-08-02

    Food peptidomics deals in part with the identification and quantification of nutritionally relevant peptides which are called bioactive peptides. This category of peptides comprises large, medium to small peptides. However, small peptides (2-6 amino acids) represent by far the largest category. Such molecules sit at the interface of both the world of proteomics and small molecule. The purpose of this study was to evaluate the feasibility of developing an LC-MSMS based method to measure such small peptides at a large scale that is representative of the hundreds of known small bioactive peptides. In order to do that we selected a very complex and homogeneous peptide set in terms of chemical and physical properties. This peptide set comprised only di, tri- and tetrapeptides made out of the three branched chain amino acids (valine, leucine and isoleucine). Results showed that at least 60% of these 117 peptides can be uniquely identified although many are isobaric and co-eluting. Moreover, identical results were obtained when spiked into a complex matrix, i.e. hydrolyzed whey protein. In conclusion, these results support the feasibility of a large scale approach and open the door to further development for all potential small bioactive peptides known so far. Bioactive peptides are a key category of molecules for functional food application. Most known bioactive peptides are small (less than 5 amino acids) and hence represent a challenge in terms of analysis when using current proteomics techniques. Therefore development of the food peptidomics field through high throughput large scale assays for these molecules is mandatory in the future to better conduct research in this field. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Gardony Map Drawing Analyzer: Software for quantitative analysis of sketch maps.

    PubMed

    Gardony, Aaron L; Taylor, Holly A; Brunyé, Tad T

    2016-03-01

    Sketch maps are effective tools for assessing spatial memory. However, despite their widespread use in cognitive science research, sketch map analysis techniques remain unstandardized and carry limitations. In the present article, we present the Gardony Map Drawing Analyzer (GMDA), an open-source software package for sketch map analysis. GMDA combines novel and established analysis techniques into a graphical user interface that permits rapid computational sketch map analysis. GMDA calculates GMDA-unique measures based on pairwise comparisons between landmarks, as well as bidimensional regression parameters (Friedman & Kohler, 2003), which together reflect sketch map quality at two levels: configural and individual landmark. The configural measures assess the overall landmark configuration and provide a whole-map analysis. Individual landmark measures, introduced in GMDA, assess individual landmark placement and indicate how individual landmarks contribute to the configural scores. Together, these measures provide a more complete psychometric picture of sketch map analysis, allowing for comparisons between sketch maps and between landmarks. The calculated measures reflect specific and cognitively relevant aspects of interlandmark spatial relationships, including distance and angular representation. GMDA supports complex environments (up to 48 landmarks) and two software modes that capture aspects of maps not addressed by existing techniques, such as landmark size and shape variation and interlandmark containment relationships. We describe the software and its operation and present a formal specification of calculation procedures for its unique measures. We then validate the software by demonstrating the capabilities and reliability of its measures using simulation and experimental data. The most recent version of GMDA is available at www.aarongardony.com/tools/map-drawing-analyzer.

  9. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlöffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements.

  10. Mapping ash properties using principal components analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones

    2017-04-01

    In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2

  11. The SSVEP topographic scalp maps by canonical correlation analysis.

    PubMed

    Bin, Guangyu; Lin, Zhonglin; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    2008-01-01

    As the number of electrodes increases, topographic scalp mapping methods for electroencephalogram (EEG) data analysis are becoming important. Canonical correlation analysis (CCA) is a method of extracting similarity between two data sets. This paper presents an EEG topographic scalp mapping -based CCA for the steady-state visual evoked potentials (SSVEP) analysis. Multi-channel EEG data and the sinusoidal reference signal were used as the inputs of CCA. The output linear combination was then employed for mapping. Our experimental results prove the topographic scalp mapping-based CCA can instruct for the improvement of SSVEP-based brain computer interface (BCI) system.

  12. Analysis of the chaotic maps generating different statistical distributions

    NASA Astrophysics Data System (ADS)

    Lawnik, M.

    2015-09-01

    The analysis of the chaotic maps, enabling the derivation of numbers from given statistical distributions was presented. The analyzed chaotic maps are in the form xk+1 = F-1(U(F(xk))), where F is the cumulative distribution function, U is the skew tent map and F-1 is the inverse function of F. The analysis was presented on the example of chaotic map with the standard normal distribution in view of his computational efficiency and accuracy. On the grounds of the conducted analysis, it should be indicated that the method not always allows to generate the values from the given distribution.

  13. Monolithic capillary columns based on pentaerythritol tetraacrylate for peptide analysis

    NASA Astrophysics Data System (ADS)

    Kucherenko, E. V.; Melnik, D. M.; Korolev, A. A.; Kanateva, A. Yu.; Pirogov, A. V.; Kurganov, A. A.

    2015-09-01

    Monolythic medium-polar capillary columns based on pentaerythritol tetraacrylate were optimized for separation of peptides. The synthesis temperature and time, the fraction of monomer in the initial polymerization mixture, and the nature of alcohol contained in the complex porogen were chosen as optimization parameters. The highest efficiency was attained for columns obtained with 33 and 34% monomer at a polymerization time of 75 min and a temperature of 75°C. The columns with the optimum structure were effective in separation of a model mixture of five peptides. The sensitivity of the method was 200 ng of peptide per column.

  14. Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies.

    PubMed

    Vanhee, Celine; Janvier, Steven; Desmedt, Bart; Moens, Goedele; Deconinck, Eric; De Beer, Jacques O; Courselle, Patricia

    2015-09-01

    Recent advances in genomics, recombinant expression technologies and peptide synthesis have led to an increased development of protein and peptide therapeutics. Unfortunately this goes hand in hand with a growing market of counterfeit and illegal biopharmaceuticals, including substances that are still under pre-clinical and clinical development. These counterfeit and illegal protein and peptide substances could imply severe health threats as has been demonstrated by numerous case reports. The Belgian Federal Agency for Medicines and Health Products (FAMHP) and customs are striving, together with their global counterparts, to curtail the trafficking and distributions of these substances. At their request, suspected protein and peptide preparations are analysed in our Official Medicines Control Laboratory (OMCL). It stands to reason that a general screening method would be beneficiary in the battle against counterfeit and illegal peptide drugs. In this paper we present such general screening method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the identification of counterfeit and illegal injectable peptide preparations, extended with a subsequent quantification method using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD). The screening method, taking only 30 min, is able to selectively detect 25 different peptides and incorporates the proposed minimum of five identification points (IP) as has been recommended for sports drug testing applications. The group of peptides represent substances which have already been detected in illegal and counterfeit products seized by different European countries as well as some biopharmaceutical peptides which have not been confiscated yet by the controlling agencies, but are already being used according to the many internet users forums. Additionally, we also show that when applying the same LC gradient, it is also possible to quantify these peptides without the need for

  15. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.

    PubMed

    Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S

    2015-07-14

    A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.

  16. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts.

    PubMed Central

    Bennett, K. L.; Kussmann, M.; Björk, P.; Godzwon, M.; Mikkelsen, M.; Sørensen, P.; Roepstorff, P.

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes. PMID:10975572

  17. Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides.

    PubMed Central

    Cezari, Maria Helena S; Puzer, Luciano; Juliano, Maria Aparecida; Carmona, Adriana K; Juliano, Luiz

    2002-01-01

    We have examined in detail the specificity of the subsites S1, S2, S1' and S2' for the carboxydipeptidase activity of cathepsin B by synthesizing and assaying four series of internally quenched fluorescent peptides based on the sequence Dnp-GFRFW-OH, where Dnp (2,4-dinitrophenyl) is the quenching group of the fluorescence of the tryptophan residue. Each position, except the glycine, was substituted with 15 different naturally occurring amino acids. Based on the results we obtained, we also synthesized efficient and sensitive substrates that contained o -aminobenzoic acid and 3-Dnp-(2,3-diaminopropionic acid), or epsilon-amino-Dnp-Lys, as the fluorescence donor-receptor pair. The higher kinetic parameter values for the carboxydipeptidase compared with the endopeptidase activity of cathepsin B allowed an accurate analysis of its specificity. The subsite S1 accepted preferentially basic amino acids for hydrolysis; however, substrates with phenylalanine and aliphatic side-chain-containing amino acids at P1 had lower K m values. Despite the presence of Glu245 at S2, this subsite presented clear preference for aromatic amino acid residues, and the substrate with a lysine residue at P2 was hydrolysed better than that containing an arginine residue. S1' is essentially a hydrophobic subsite, and S2' has particular preference for phenylalanine or tryptophan residues. PMID:12201820

  18. Hyperspectral derivatives analysis for intertidal habitat mapping

    NASA Astrophysics Data System (ADS)

    Oppelt, N.; Schulze, F.; Bartsch, I.

    2012-09-01

    Analysis of coastal marine algae communities enables an estimation of the state of coastal marine environments and provides evidence for environmental changes. Hyperspectral remote sensing provides a tool for mapping macroalgal habitats if the algal communities are spectrally resolvable. We tested the performance of a new approach for determining the distribution of macroalgae communities in the rocky intertidal zone of Helgoland (Germany) using airborne hyperspectral (AISAeagle) data. This new approach calculates the slopes in wavelength regions between specific pigment absorption features and does not rely on absolute reflectance values. The first order derivatives of these wavelength regions form slope bands, which are then classified using a k-Means approach. The new derivatives approach proved to be a time effective possibility for identifying the dominating macroalgae species with sufficient accuracy (Cohan's kappa = 0.70). The method was tested on another AISA data set and turned out to be as a robust (Cohan's kappa = 0.77) and easy-to-use approach for delineating dominant algae communities or habitats, which can be adapted easily to different data sets.

  19. Mapping of functional domains in p47(phox) involved in the activation of NADPH oxidase by "peptide walking".

    PubMed

    Morozov, I; Lotan, O; Joseph, G; Gorzalczany, Y; Pick, E

    1998-06-19

    The superoxide generating NADPH oxidase of phagocytes consists, in resting cells, of a membrane-associated electron transporting flavocytochrome (cytochrome b559) and four cytosolic proteins as follows: p47(phox), p67(phox), p40(phox), and the small GTPase, Rac(1 or 2). Activation of the oxidase is consequent to the assembly of a membrane-localized multimolecular complex consisting of cytochrome b559 and the cytosolic components. We used "peptide walking" (Joseph, G., and Pick, E. (1995) J. Biol. Chem. 270, 29079-29082) for mapping domains in the amino acid sequence of p47(phox) participating in the molecular events leading to the activation of NADPH oxidase. Ninety-five overlapping pentadecapeptides, with a four-residue offset between neighboring peptides, spanning the complete p47(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in a cell-free system. This consisted of solubilized macrophage membranes, recombinant p47(phox), p67(phox), and Rac1, and lithium dodecyl sulfate, as the activator. Eight functional domains were identified and labeled a-h. These were (N- and C-terminal residue numbers are given for each domain) as follows: a (21-35); b (105-119); c (149-159); d (193-207); e (253-267); f (305-319); g (325-339), and h (373-387). Four of these domains (c, d, e, and g) correspond to or form parts of regions shown before to participate in NADPH oxidase assembly. Thus, domain c corresponds to a region on the N-terminal boundary of the first src homology 3 (SH3) domain, whereas domains d and e represent more precisely defined sites within the full-length first and second SH3 domains, respectively. Domain g overlaps an extensively investigated arginine-rich region. Domains a and b, in the N-terminal half of p47(phox), and domains f and h, in the C-terminal half, represent newly identified entities, for which there is no earlier experimental evidence of involvement in NADPH oxidase activation. "Peptide walking" was also applied to

  20. Combining UV photodissociation with electron transfer for peptide structure analysis.

    PubMed

    Shaffer, Christopher J; Marek, Ales; Pepin, Robert; Slovakova, Kristina; Turecek, Frantisek

    2015-03-01

    The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Low-Energy Collision-Induced Dissociation Fragmentation Analysis of Cysteinyl-Modified Peptides

    SciTech Connect

    Borisov, Oleg V.; Goshe, Michael B. ); Conrads, Thomas P. ); Rakov, Vsevolod S. ); Veenstra, Timothy D. ); Smith, Richard D. )

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of D. radiodurans, the presence of these labeled-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys-residue, and to differentiate identical Cys-peptides labeled with either ICAT-D0 or ICAT-D8.

  2. Low-energy collision-induced dissociation fragmentation analysis of cysteinyl-modified peptides.

    PubMed

    Borisov, Oleg V; Goshe, Michael B; Conrads, Thomas P; Rakov, V Sergey; Veenstra, Timothy D; Smith, Richard D

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue-containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of Deinococcus radiodurans, the presence of these label-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys residue, and to differentiate identical Cys-peptides labeled with either ICAT-d0 or ICAT-d8.

  3. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  4. Analysis of gastrin-releasing peptide gene and gastrin-releasing peptide receptor gene in patients with agoraphobia.

    PubMed

    Zimmermann, Katrin; Görgens, Heike; Bräuer, David; Einsle, Franziska; Noack, Barbara; von Kannen, Stephanie; Grossmann, Maria; Hoyer, Jürgen; Strobel, Alexander; Köllner, Volker; Weidner, Kerstin; Ziegler, Andreas; Hemmelmann, Claudia; Schackert, Hans K

    2014-10-01

    A gastrin-releasing peptide receptor (GRPR) knock-out mouse model provided evidence that the gastrin-releasing peptide (GRP) and its neural circuitry operate as a negative feedback-loop regulating fear, suggesting a novel candidate mechanism contributing to individual differences in fear-conditioning and associated psychiatric disorders such as agoraphobia with/without panic disorder. Studies in humans, however, provided inconclusive evidence on the association of GRP and GRPR variations in agoraphobia with/without panic disorder. Based on these findings, we investigated whether GRP and GRPR variants are associated with agoraphobia. Mental disorders were assessed via the Munich-Composite International Diagnostic Interview (M-CIDI) in 95 patients with agoraphobia with/without panic disorder and 119 controls without any mental disorders. A complete sequence analysis of GRP and GRPR was performed in all participants. We found no association of 16 GRP and 7 GRPR variants with agoraphobia with/without panic disorder.

  5. Geographic analysis of the digital vector data of old maps

    NASA Astrophysics Data System (ADS)

    Cajthaml, Jiri

    2010-05-01

    During last 10 years old maps are digitized very intensively. Spatial information are usually stored in raster digital data (maps are scanned into rasters). Less commonly these maps are vectorized, although vector data model has many advantages. The most usable feature of vector data (instead of raster images) is possibility of their geographic analysis in GIS software. At the Department of Mapping and Cartography, Czech Technical University in Prague we created full vector data model of the Müller's map of Bohemia as an example of vector data of old map. This dataset was analyzed in ArcGIS software and thus provided many outputs. The map contains administrative boundaries of Bohemia (western part of the Czech Republic). Area features of districts on the map were compared with current situation. Areas of these features were computed in GIS software and compared with current areas. Müller's map of Bohemia as well as many other old maps contains rivers and streams. In GIS software the topology of the river network was analyzed and some other river characteristics (length, sinuosity, etc.) were computed. The most frequent features on old maps are settlement points. These features were analyzed in many ways. The densities of particular types of settlement were computed (for districts, for regular grid). Also number of features in each category was counted. Other geographical analyses combined more feature types, e.g. distances from main roads were computed for each settlement feature. Derived maps, tables or numbers can help us understand the historical landscape.

  6. Amyloid-beta peptide binds to microtubule-associated protein 1B (MAP1B).

    PubMed

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H; Manoutcharian, Karen

    2008-05-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease.

  7. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    PubMed Central

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  8. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations.

    PubMed

    Carr, J K; Zabuga, A V; Roy, S; Rizzo, T R; Skinner, J L

    2014-06-14

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H(+) in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly (13)C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and (13)C(18)O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm(-1) for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  9. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    SciTech Connect

    Carr, J. K.; Roy, S.; Skinner, J. L.; Zabuga, A. V.; Rizzo, T. R.

    2014-06-14

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala){sub 5}-Lys-H{sup +} in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly {sup 13}C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and {sup 13}C{sup 18}O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm{sup −1} for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  10. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    PubMed Central

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378

  11. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-06-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm-1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  12. Landform Mapping Using Multiscale Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Bliss, N. B.

    2008-12-01

    Many ecological and agricultural processes depend on topographic relationships. Topography strongly influences microclimate, the types and productivity of plants, biomass, evapotranspiration rates, carbon storage rates, and fire fuel accumulation. These factors in turn influence the water cycle, stream flow, water quality, and soil formation. Most previous topographic analysis methods have focused on the elevation of a given grid cell (pixel) and very localized measures of slope and aspect (e.g., computed from elevation in a 3x3 window). Some measures have moved beyond a strictly local relationship, such as the compound topographic index, which can be used as a soil wetness index. I introduce a new method of multiscale topographic analysis which can be applied to digital elevation model (DEM) data of any resolution. The method calculates slope and curvature (change of slope) of the land not only in relation to adjacent grid cells but also for much larger distances downstream. The algorithm uses a flow direction grid to create a synthetic stream network as a set of connected line segments (a vector dataset). The multiscale measures are stored on a node attribute table, where the nodes are the endpoints of line segments connecting the original DEM grid cells. A pointer is computed for directly accessing data for nodes at selected distances down the stream network. Baseline distances are selected by counting cells down the flow path by each power of two (1, 2, 4, 8, ... cells downstream). Slope and curvature measures are defined for each of these baselines and are queried to distinguish multiscale topographic characteristics. Several applications of these methods have been tested. A floodplain measure identifies areas that are relatively low on the landscape, even as elevation changes while moving from plains into hills or mountains (study area: South Dakota). The landscape may be partitioned to provide zones for ecological analysis, including selection of field

  13. Analysis of thematic map classification error matrices.

    USGS Publications Warehouse

    Rosenfield, G.H.

    1986-01-01

    The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author

  14. Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis.

    PubMed

    Rivera, José G; Choi, Yong Seok; Vujcic, Stefan; Wood, Troy D; Colón, Luis A

    2009-01-01

    Hafnium oxide (hafnia) exhibits unique enrichment properties towards phosphorylated peptides that are complementary to those of titanium oxide (titania) and zirconium oxide (zirconia) for use with mass spectrometric analysis in the field of proteomics.

  15. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    McMahon, Ben [LANL

    2016-07-12

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  16. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays.

    PubMed

    Kudithipudi, Srikanth; Kusevic, Denis; Weirich, Sara; Jeltsch, Albert

    2014-11-29

    Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.

  17. Specificity Analysis of Protein Lysine Methyltransferases Using SPOT Peptide Arrays

    PubMed Central

    Kudithipudi, Srikanth; Kusevic, Denis; Weirich, Sara; Jeltsch, Albert

    2014-01-01

    Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs. PMID:25489813

  18. Analysis of Dengue Virus Enhancing Epitopes Using Peptide Antigens Derived from the Envelope Glycoprotein Gene Sequence

    DTIC Science & Technology

    1990-11-27

    AD________ AD-A230 976 ARMY PROJECT NO: 89PP9961 TITLE: ANALYSIS OF DENGUE VIRUS ENHANCING EPITOPES USING PEPTIDE ANTIGENS DERIVED FROM THE ENVELOPE...INO. INO r CCESSION NO I1I TITLE (Include Security Classification) Analysis of Dengue Virus Enhancing Epitopes Using Peptide Antigens Derived From the...necessary and identify by block number) Antibody-dependent enhancement (ADE) ot dengue (DEN) virus infection in human mononuclear cells in vitro has been

  19. Peptide structural analysis using continuous Ar cluster and C60 ion beams.

    PubMed

    Aoyagi, Satoka; Fletcher, John S; Sheraz Rabbani, Sadia; Kawashima, Tomoko; Berrueta Razo, Irma; Henderson, Alex; Lockyer, Nicholas P; Vickerman, John C

    2013-08-01

    A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn(1) Val(5)]-angiotensin II and [Val(5)]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 (+), are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.

  20. Quantitative analysis of peptide-MHC class II interaction.

    PubMed

    Fleckenstein, B; Jung, G; Wiesmüller, K H

    1999-12-01

    The tremendous progress in the field of basic immunology and immunochemistry made in the last decade has significantly advanced our understanding of antigen processing and presentation by MHC class I and II proteins. In this review different techniques to study peptide interaction with MHC class II molecules are summarized and their impact on the elucidation of quantitative parameters, like affinities or kinetic data, is discussed. A recently introduced method based on synthetic combinatorial peptide libraries allows to quantify the binding contribution of each amino acid residue in a class II ligand and is presented in more detail. As this knowledge is fundamental for current investigations in modern medicine, e.g. for novel immune system based therapy concepts, further aspects like the design of new high affinity MHC class II ligands and the prediction of peptide antigens are discussed.

  1. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes

    PubMed Central

    Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica

    2016-01-01

    Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. PMID:27119636

  2. Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing.

    PubMed

    McLaughlin, Megan E; Sidhu, Sachdev S

    2013-01-01

    Protein interaction networks depend in part on the specific recognition of unstructured peptides by folded domains. Understanding how members of a domain family use a similar fold to recognize different peptide sequences selectively is a fundamental question. One way to advance our understanding of peptide recognition is to apply an existing model of peptide recognition for a particular domain toward engineering synthetic domain variants with desired properties. Successes, failures, and unintended outcomes can help refine the model and can illuminate more general principles of peptide recognition. Using the PDZ domain fold as an example, we describe methods for (1) structure-based combinatorial library design and directed evolution of domain variants and (2) specificity profiling of large repertoires of synthetic variants using multiplexed deep sequencing. Peptide-binding preferences for hundreds of variants can be decoded in parallel, enabling comparisons between different library designs and selection pressures. The tremendous depth of coverage of the binding peptide profiles also permits robust computational analysis. This approach to studying peptide recognition can be applied to other domains and to a variety of structural and functional models by tailoring the combinatorial library design and selection pressures accordingly. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Analysis of amino-terminal variants of amyloid-β peptides by capillary isoelectric focusing immunoassay.

    PubMed

    Haußmann, Ute; Jahn, Olaf; Linning, Philipp; Janßen, Christin; Liepold, Thomas; Portelius, Erik; Zetterberg, Henrik; Bauer, Chris; Schuchhardt, Johannes; Knölker, Hans-Joachim; Klafki, Hans; Wiltfang, Jens

    2013-09-03

    Here we present a novel assay for the separation and detection of amino-terminal amyloid-β (Aβ) peptide variants by capillary isoelectric focusing (CIEF) immunoassay. Specific amino-terminally truncated Aβ peptides appear to be generated by β-secretase (BACE1)-independent mechanisms and have previously been observed in cerebrospinal fluid (CSF) after BACE1 inhibitor treatment in an animal model. CIEF immunoassay sensitivity is sufficient to detect total Aβ in CSF without preconcentration. To analyze low-abundance amino-terminally truncated Aβ peptides from cell culture supernatants, we developed a CIEF-compatible immunoprecipitation protocol, allowing for selective elution of Aβ peptides with very low background. CIEF immunoassay and immunoprecipitation mass spectrometry analysis identified peptides starting at residue Arg(5) as the main amino-terminal Aβ variants produced in the presence of tripartite BACE1 inhibitor in our cell culture model. The CIEF immunoassay allows for robust relative quantification of Aβ peptide patterns in biological samples. To assess the future possibility of absolute quantification, we have prepared the Aβ peptides Aβ(x-10), Aβ(x-16), and Aβ(5-38(D23S)) by using solid phase peptide synthesis as internal standards for the CIEF immunoassay.

  4. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  5. Characterization and structural analysis of hepcidin like antimicrobial peptide from Schizothorax richardsonii (Gray).

    PubMed

    Chaturvedi, Preeti; Dhanik, Meenakshi; Pande, Amit

    2014-02-01

    Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host's innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5' and 3' UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).

  6. PANDORA: analysis of protein and peptide sets through the hierarchical integration of annotations

    PubMed Central

    Rappoport, Nadav; Fromer, Menachem; Schweiger, Regev; Linial, Michal

    2010-01-01

    Derivation of biological meaning from large sets of proteins or genes is a frequent task in genomic and proteomic studies. Such sets often arise from experimental methods including large-scale gene expression experiments and mass spectrometry (MS) proteomics. Large sets of genes or proteins are also the outcome of computational methods such as BLAST search and homology-based classifications. We have developed the PANDORA web server, which functions as a platform for the advanced biological analysis of sets of genes, proteins, or proteolytic peptides. First, the input set is mapped to a set of corresponding proteins. Then, an analysis of the protein set produces a graph-based hierarchy which highlights intrinsic relations amongst biological subsets, in light of their different annotations from multiple annotation resources. PANDORA integrates a large collection of annotation sources (GO, UniProt Keywords, InterPro, Enzyme, SCOP, CATH, Gene-3D, NCBI taxonomy and more) that comprise ∼200 000 different annotation terms associated with ∼3.2 million sequences from UniProtKB. Statistical enrichment based on a binomial approximation of the hypergeometric distribution and corrected for multiple hypothesis tests is calculated using several background sets, including major gene-expression DNA-chip platforms. Users can also visualize either standard or user-defined binary and quantitative properties alongside the proteins. PANDORA 4.2 is available at http://www.pandora.cs.huji.ac.il. PMID:20444873

  7. PANDORA: analysis of protein and peptide sets through the hierarchical integration of annotations.

    PubMed

    Rappoport, Nadav; Fromer, Menachem; Schweiger, Regev; Linial, Michal

    2010-07-01

    Derivation of biological meaning from large sets of proteins or genes is a frequent task in genomic and proteomic studies. Such sets often arise from experimental methods including large-scale gene expression experiments and mass spectrometry (MS) proteomics. Large sets of genes or proteins are also the outcome of computational methods such as BLAST search and homology-based classifications. We have developed the PANDORA web server, which functions as a platform for the advanced biological analysis of sets of genes, proteins, or proteolytic peptides. First, the input set is mapped to a set of corresponding proteins. Then, an analysis of the protein set produces a graph-based hierarchy which highlights intrinsic relations amongst biological subsets, in light of their different annotations from multiple annotation resources. PANDORA integrates a large collection of annotation sources (GO, UniProt Keywords, InterPro, Enzyme, SCOP, CATH, Gene-3D, NCBI taxonomy and more) that comprise approximately 200,000 different annotation terms associated with approximately 3.2 million sequences from UniProtKB. Statistical enrichment based on a binomial approximation of the hypergeometric distribution and corrected for multiple hypothesis tests is calculated using several background sets, including major gene-expression DNA-chip platforms. Users can also visualize either standard or user-defined binary and quantitative properties alongside the proteins. PANDORA 4.2 is available at http://www.pandora.cs.huji.ac.il.

  8. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer*

    PubMed Central

    Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D.; Clauser, Karl R.; Tabb, David L.; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P.; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A.; Perou, Charles M.; Chen, Xian; Davies, Sherri R.; Maher, Christopher A.; Kinsinger, Christopher R.; Rodland, Karen D.; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R. Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D.; Liebler, Daniel C.; Carr, Steven A.; Payne, Samuel; Ellis, Matthew J.; Fenyő, David

    2016-01-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. PMID:26631509

  9. A Graphics System for Pole-Zero Map Analysis.

    ERIC Educational Resources Information Center

    Beyer, William Fred, III

    Computer scientists have developed an interactive, graphical display system for pole-zero map analysis. They designed it for use as an educational tool in teaching introductory courses in automatic control systems. The facilities allow the user to specify a control system and an input function in the form of a pole-zero map and then examine the…

  10. A Graphics System for Pole-Zero Map Analysis.

    ERIC Educational Resources Information Center

    Beyer, William Fred, III

    Computer scientists have developed an interactive, graphical display system for pole-zero map analysis. They designed it for use as an educational tool in teaching introductory courses in automatic control systems. The facilities allow the user to specify a control system and an input function in the form of a pole-zero map and then examine the…

  11. Recursive Frame Analysis: A Practitioner's Tool for Mapping Therapeutic Conversation

    ERIC Educational Resources Information Center

    Keeney, Hillary; Keeney, Bradford; Chenail, Ronald J.

    2012-01-01

    Recursive frame analysis (RFA), both a practical therapeutic tool and an advanced qualitative research method that maps the structure of therapeutic conversation, is introduced with a clinical case vignette. We present and illustrate a means of mapping metaphorical themes that contextualize the performance taking place in the room, recursively…

  12. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue.

    PubMed

    Shan, Lu; Qiao, Shuo-Wang; Arentz-Hansen, Helene; Molberg, Øyvind; Gray, Gary M; Sollid, Ludvig M; Khosla, Chaitan

    2005-01-01

    Dietary gluten proteins from wheat, rye, and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably alpha- and gamma-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from alpha-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here, we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of alpha-2 gliadin confirmed that the DQ2 restricted T cell response to the alpha-2 gliadin are directed toward the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative gamma-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.

  13. Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten: Implications for Celiac Sprue

    PubMed Central

    Shan, Lu; Qiao, Shuo-Wang; Arentz-Hansen, Helene; Molberg, Øyvind; Gray, Gary M.; Sollid, Ludvig M.; Khosla, Chaitan

    2005-01-01

    Dietary gluten proteins from wheat, rye and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably α- and γ-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from α-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of α-2 gliadin confirmed that the DQ2 restricted T cell response to the α-2 gliadin are directed towards the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative γ-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome. PMID:16212427

  14. Comparative structural and energetic analysis of WW domain-peptide interactions.

    PubMed

    Schleinkofer, Karin; Wiedemann, Urs; Otte, Livia; Wang, Ting; Krause, Gerd; Oschkinat, Hartmut; Wade, Rebecca C

    2004-11-26

    WW domains are small globular protein interaction modules found in a wide spectrum of proteins. They recognize their target proteins by binding specifically to short linear peptide motifs that are often proline-rich. To infer the determinants of the ligand binding propensities of WW domains, we analyzed 42 WW domains. We built models of the 3D structures of the WW domains and their peptide complexes by comparative modeling supplemented with experimental data from peptide library screens. The models provide new insights into the orientation and position of the peptide in structures of WW domain-peptide complexes that have not yet been determined experimentally. From a protein interaction property similarity analysis (PIPSA) of the WW domain structures, we show that electrostatic potential is a distinguishing feature of WW domains and we propose a structure-based classification of WW domains that expands the existent ligand-based classification scheme. Application of the comparative molecular field analysis (CoMFA), GRID/GOLPE and comparative binding energy (COMBINE) analysis methods permitted the derivation of quantitative structure-activity relationships (QSARs) that aid in identifying the specificity-determining residues within WW domains and their ligand-recognition motifs. Using these QSARs, a new group-specific sequence feature of WW domains that target arginine-containing peptides was identified. Finally, the QSAR models were applied to the design of a peptide to bind with greater affinity than the known binding peptide sequences of the yRSP5-1 WW domain. The prediction was verified experimentally, providing validation of the QSAR models and demonstrating the possibility of rationally improving peptide affinity for WW domains. The QSAR models may also be applied to the prediction of the specificity of WW domains with uncharacterized ligand-binding properties.

  15. Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis.

    PubMed

    Hogeboom, Charissa

    2015-12-01

    Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed.

  16. Recent trends in the analysis of bioactive peptides in milk and dairy products.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2016-04-01

    Food-derived constituents represent important sources of several classes of bioactive compounds. Among them peptides have gained great attention in the last two decades thanks to the scientific evidence of their beneficial effects on health in addition to their established nutritional value. Several functionalities for bioactive peptides have been described, including antioxidative, antihypertensive, anti-inflammatory, immunomodulatory, and antimicrobial activity. They are now considered as novel and potential dietary ingredients to promote human health, though in some cases they may also have detrimental effects on health. Bioactive peptides can be naturally occurring, produced in vitro by enzymatic hydrolysis, and formed in vivo during gastrointestinal digestion of proteins. Thus, the need to gain a better understanding of the positive health effects of food peptides has prompted the development of analytical strategies for their isolation, separation, and identification in complex food matrices. Dairy products and milk are potential sources of bioactive peptides: several of them possess extra-nutritional physiological functions that qualify them to be classified under the functional food label. In this trends article we briefly describe the state-of-the-art of peptidomics methods for the identification and discovery of bioactive peptides, also considering recent progress in their analysis and highlighting the difficulty in the analysis of short amino acid sequences and endogenous peptides.

  17. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method.

    PubMed

    Huang, Junfeng; Qin, Hongqiang; Sun, Zhen; Huang, Guang; Mao, Jiawei; Cheng, Kai; Zhang, Zhang; Wan, Hao; Yao, Yating; Dong, Jing; Zhu, Jun; Wang, Fangjun; Ye, Mingliang; Zou, Hanfa

    2015-05-11

    Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.

  18. Influence of analysis methods on interpretation of hazard maps.

    PubMed

    Koehler, Kirsten A; Peters, Thomas M

    2013-06-01

    Exposure or hazard mapping is becoming increasingly popular among industrial hygienists. Direct-reading instruments used for hazard mapping of data collection are steadily increasing in reliability and portability while decreasing in cost. Exposure measurements made with these instruments generally require no laboratory analysis although hazard mapping can be a time-consuming process. To inform decision making by industrial hygienists and management, it is crucial that the maps generated from mapping data are as accurate and representative as possible. Currently, it is unclear how many sampling locations are necessary to produce a representative hazard map. As such, researchers typically collect as many points as can be sampled in several hours and interpolation methods are used to produce higher resolution maps. We have reanalyzed hazard-mapping data sets from three industrial settings to determine which interpolation methods yield the most accurate results. The goal is to provide practicing industrial hygienists with some practical guidelines to generate accurate hazard maps with 'off-the-shelf' mapping software. Visually verifying the fit of the variogram model is crucial for accurate interpolation. Exponential and spherical variogram models performed better than Gaussian models. It was also necessary to diverge from some of the default interpolation parameters such as the number of bins used for the experimental variogram and whether or not to allow for a nugget effect to achieve reasonable accuracy of the interpolation for some data sets.

  19. Modeling and Analysis of Information Product Maps

    ERIC Educational Resources Information Center

    Heien, Christopher Harris

    2012-01-01

    Information Product Maps are visual diagrams used to represent the inputs, processing, and outputs of data within an Information Manufacturing System. A data unit, drawn as an edge, symbolizes a grouping of raw data as it travels through this system. Processes, drawn as vertices, transform each data unit input into various forms prior to delivery…

  20. Oregon Cascades Play Fairway Analysis: Maps

    DOE Data Explorer

    Trimble, John

    2015-12-15

    The maps in this submission include: heat flow, alkalinity, Cl, Mg, SiO2, Quaternary volcanic rocks, faults, and land ownership. All of the Oregon Cascade region. The work was done by John Trimble, in 2015, at Oregon State University.

  1. Modeling and Analysis of Information Product Maps

    ERIC Educational Resources Information Center

    Heien, Christopher Harris

    2012-01-01

    Information Product Maps are visual diagrams used to represent the inputs, processing, and outputs of data within an Information Manufacturing System. A data unit, drawn as an edge, symbolizes a grouping of raw data as it travels through this system. Processes, drawn as vertices, transform each data unit input into various forms prior to delivery…

  2. Knowledge Mapping: A Multipurpose Task Analysis Tool.

    ERIC Educational Resources Information Center

    Esque, Timm J.

    1988-01-01

    Describes knowledge mapping, a tool developed to increase the objectivity and accuracy of task difficulty ratings for job design. Application in a semiconductor manufacturing environment is discussed, including identifying prerequisite knowledge for a given task; establishing training development priorities; defining knowledge levels; identifying…

  3. Knowledge Mapping: A Multipurpose Task Analysis Tool.

    ERIC Educational Resources Information Center

    Esque, Timm J.

    1988-01-01

    Describes knowledge mapping, a tool developed to increase the objectivity and accuracy of task difficulty ratings for job design. Application in a semiconductor manufacturing environment is discussed, including identifying prerequisite knowledge for a given task; establishing training development priorities; defining knowledge levels; identifying…

  4. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides.

    PubMed

    Calderon-Aranda, E S; Selisko, B; York, E J; Gurrola, G B; Stewart, J M; Possani, L D

    1999-09-01

    The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.

  5. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

    PubMed Central

    Syka, John E. P.; Coon, Joshua J.; Schroeder, Melanie J.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2004-01-01

    Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated acquisition of high-quality, single-scan electron transfer dissociation MS/MS spectra of phosphopeptides separated by nanoflow HPLC is described. PMID:15210983

  6. A novel tachykinin-related peptide receptor. Sequence, genomic organization, and functional analysis.

    PubMed

    Kawada, Tsuyoshi; Furukawa, Yasuo; Shimizu, Yoriko; Minakata, Hiroyuki; Nomoto, Kyosuke; Satake, Honoo

    2002-09-01

    Structurally tachykinin-related peptides have been isolated from various invertebrate species and shown to exhibit their biological activities through a G-protein-coupled receptor (GPCR) for a tachykinin-related peptide. In this paper, we report the identification of a novel tachykinin-related peptide receptor, the urechistachykinin receptor (UTKR) from the echiuroid worm, Urechis unitinctus. The deduced UTKR precursor includes seven transmembrane domains and typical sites for mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors. A functional analysis of the UTKR expressed in Xenopus oocytes demonstrated that UTKR, like tachykinin receptors and tachykinin-related peptide receptors, activates calcium-dependent signal transduction upon binding to its endogenous ligands, urechistachykinins (Uru-TKs) I-V and VII, which were isolated as Urechis tachykinin-related peptides from the nervous tissue of the Urechis unitinctus in our previous study. UTKR responded to all Uru-TKs equivalently, showing that UTKR possesses no selective affinity with Uru-TKs. In contrast, UTKR was not activated by substance P or an Uru-TK analog containing a C-terminal Met-NH2 instead of Arg-NH2. Furthermore, the genomic analysis revealed that the UTKR gene, like mammalian tachykinin receptor genes, consists of five exons interrupted by four introns, and all the intron-inserted positions are completely compatible with those of mammalian tachykinin receptor genes. These results suggest that mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors were evolved from a common ancestral GPCR gene. This is the first identification of an invertebrate tachykinin-related peptide receptor from other species than insects and also of the genomic structure of a tachykinin-related peptide receptor gene.

  7. Precipitation and selective extraction of human serum endogenous peptides with analysis by quadrupole time-of-flight mass spectrometry reveals posttranslational modifications and low-abundance peptides.

    PubMed

    Williams, Declan; Ackloo, Suzanne; Zhu, Peihong; Bowden, Peter; Evans, Kenneth R; Addison, Christina L; Lock, Chris; Marshall, John G

    2010-02-01

    The endogenous peptides of human serum may have regulatory functions, have been associated with physiological states, and their modifications may reveal some mechanisms of disease. In order to correlate levels of specific peptides with disease alongside internal standards, the polypeptides must first be reliably extracted and identified. Endogenous blood peptides can be effectively enriched by precipitation of the serum with organic solvents followed by selective extraction of peptides using aqueous solutions modified with organic solvents. Polypeptides on filter paper were assayed with Coomasie brilliant blue binding. The polypeptides were resolved by detergent tricine polyacrylamide electrophoresis and visualized by diamine silver staining. Peptides in the extracts were collected by C18 and analyzed by matrix-assisted laser desorption/ionization and liquid chromatography-electrospray ionization-tandem mass spectrometry (MS/MS) quadrupole time-of-flight MS/MS. Peptides were resolved as multiple isotopic peaks in MS mode with mass deviation of 0.1 Da or less and similar accuracy for fragments. The sensitivity of MS and MS/MS analysis was estimated to be in the picomolar range or less. The peptide composition of the extracts was dependent on solvent formulation. Multiple peptides from apolipoproteins, complement proteins, coagulation factors, and many others were identified by X!Tandem with high mass accuracy of peptide ions and fragments from collision-induced dissociation. Many previously unreported posttranslational modifications of peptides including phosphorylations, oxidations, glycosylations, and others were detected with high mass accuracy and may be of clinical importance. About 4,630 redundant peptides were identified with 99% confidence separately, and together some 1,251 distinct proteins were identified with 99% confidence or greater using the Paragon algorithm.

  8. Weighted analysis methods for mapped plot forest inventory data: Tables, regressions, maps and graphs

    Treesearch

    Paul C. Van Deusen; Linda S. Heath

    2010-01-01

    Weighted estimation methods for analysis of mapped plot forest inventory data are discussed. The appropriate weighting scheme can vary depending on the type of analysis and graphical display. Both statistical issues and user expectations need to be considered in these methods. A weighting scheme is proposed that balances statistical considerations and the logical...

  9. Mapping Rise Time Information with Down-Shift Analysis

    SciTech Connect

    Tunnell, T. W., Machorro, E. A., Diaz, A. B.

    2011-11-01

    These viewgraphs summarize the application of recent developments in digital down-shift (DDS) analysis of up converted PDV data to map out how well the PDV diagnostic would capture rise time information (mid point and rise time) in short rise time (<1 ns) shock events. The mapping supports a PDV vs VISAR challenge. The analysis concepts are new (~September FY 2011), simple, and run quickly, which makes them good tools to map out (with ~1 million Monte Carlo simulations) how well PDV captures rise time information as function of baseline velocity, rise time, velocity jump, and signal-to-noise ratios.

  10. EEG source analysis using space mapping techniques

    NASA Astrophysics Data System (ADS)

    Crevecoeur, G.; Hallez, H.; van Hese, P.; D'Asseler, Y.; Dupre, L.; van de Walle, R.

    2008-06-01

    The electroencephalogram (EEG) measures potential differences, generated by electrical activity in brain tissue, between scalp electrodes. The EEG potentials can be calculated by the quasi-static Poisson equation in a certain head model. It is well known that the electrical dipole (source) which best fits the measured EEG potentials is obtained by an inverse problem. The dipole parameters are obtained by finding the global minimum of the relative residual energy (RRE). For the first time, the space mapping technique (SM technique) is used for minimizing the RRE. The SM technique aims at aligning two different simulation models: a fine model, accurate but CPU-time expensive, and a coarse model, computationally fast but less accurate than the fine one. The coarse model is a semi-analytical model, the so-called three-shell concentric sphere model. The fine model numerically solves the Poisson equation in a realistic head model. If we use the aggressive space mapping (ASM) algorithm, the errors on the dipole location are too large. The hybrid aggressive space mapping (HASM) on the other hand has better convergence properties, yielding a reduction in dipole location errors. The computational effort of HASM is greater than ASM but smaller than using direct optimization techniques.

  11. A peptide resource for the analysis of Staphylococcus aureus in host pathogen interaction studies

    PubMed Central

    Depke, Maren; Michalik, Stephan; Rabe, Alexander; Surmann, Kristin; Brinkmann, Lars; Jehmlich, Nico; Bernhardt, Jörg; Hecker, Michael; Wollscheid, Bernd; Sun, Zhi; Moritz, Robert L.; Völker, Uwe; Schmidt, Frank

    2016-01-01

    Staphylococcus aureus is an opportunistic human pathogen, which can cause life-threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS–driven, proteome-wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide-centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus-typic peptides in highly complex host–pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus-specific host–pathogen interaction studies through comprehensive proteome analysis. The S. aureus-specific spectra resource developed here also represents an important spectral repository for SRM or for data-independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 (http://proteomecentral.proteomexchange.org/dataset/PXD000702). PMID:26224020

  12. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping.

    PubMed

    Bongers, Jacob; Devincentis, John; Fu, Jinmei; Huang, Peiqing; Kirkley, David H; Leister, Kirk; Liu, Peiran; Ludwig, Richard; Rumney, Kathleen; Tao, Li; Wu, Wei; Russell, Reb J

    2011-11-11

    Liquid chromatography mass spectrometry (LC-MS) peptide mapping can be a versatile technique for characterizing protein glycosylation sites without the need to remove the attached glycans as in conventional oligosaccharide mapping methods. In this way, both N-linked and O-linked sites of glycosylation can each be directly identified, characterized, and quantified by LC-MS as intact glycopeptides in a single experiment. LC-MS peptide mapping of the individual glycosylation sites avoids many of the limitations of preparing and analyzing an entire pool of released N-linked oligosaccharides from all sites mixed together. In this study, LC interfaced to a linear ion trap mass spectrometer (ESI-LIT-MS) were used to characterize the glycosylation of a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein with multiple sites of N-and O-glycosylation. Samples were reduced, S-carboxyamidomethylated, and cleaved with either trypsin or endoproteinase Asp-N. Enhanced detection for minor IgG1 glycoforms (∼0.1 to 1.0 mol% level) was obtained by LC-MS of the longer 32-residue Asp-N glycopeptide (4+ protonated ion) compared to the 9-residue tryptic glycopeptide (2+ ion). LC-MS peptide mapping was run according to a general procedure: (1) Locate N-linked and/or O-linked sites of glycosylation by selected-ion-monitoring of carbohydrate oxonium fragment ions generated by ESI in-source collision-induced dissociation (CID), i.e. 204, 366, and 292 Da marker ions for HexNAc, HexNAc-Hex, and NeuAc, respectively; (2) Characterize oligosaccharides at each site via MS and MSMS. Use selected ion currents (SIC) to estimate relative amounts of each glycoform; and (3) Measure the percentage of site-occupancy by searching for any corresponding nonglycosylated peptide. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.

    PubMed

    Cai, Kaicong; Han, Chen; Wang, Jianping

    2009-10-28

    A molecular mechanics (MM) force field-based empirical electrostatic potential map (MM map) for amide-I vibrations is developed with the aim of seeking a quick and reasonable approach to computing local mode parameters and their distributions in solution phase. Using N-methylacetamide (NMA) as a model compound, the instantaneous amide-I normal-mode parameters (transition frequency and dipole) obtained at the level of MM force fields are converted to solution phase values by a four-site potential scheme, but without the need for quantum mechanical frequency computations of solute-solvent clusters as are required in constructing ab initio-based electrostatic potential or field maps. The linear IR line shape of the amide-I mode in NMA obtained from the frequency-time correlation function on the basis of the MM map are found to be comparable to those from the ab initio-based maps. Our results show that the amide-I local mode parameters are largely determined by the solvated peptide structure rather than by explicit solvent molecules, suggesting an inherent local structure sensitivity of the amide-I mode in solvated peptides. Applications to alanine di- and tripeptides are satisfactorily demonstrated, showing its usefulness as an alternative approach in providing vibrational parameters for the simulation of linear IR and 2D IR spectra of the amide-I modes in polypeptides.

  14. Recognition of ZnT8, Proinsulin, and Homologous MAP Peptides in Sardinian Children at Risk of T1D Precedes Detection of Classical Islet Antibodies.

    PubMed

    Niegowska, Magdalena; Paccagnini, Daniela; Mannu, Carla; Targhetta, Clara; Songini, Marco; Sechi, Leonardo A

    2016-01-01

    As numerous studies put in evidence the increasing incidence of type 1 diabetes (T1D) in children, an early diagnosis is of great importance to define correct treatment and diet. Currently, the identification of classical islet autoantibodies is the primary biomarker for diagnosis in subjects at risk, especially in pediatric patients. Recent studies suggest that detection of antibodies against ZnT8 protein in preclinical phase can predict the development of T1D. We previously demonstrated a significant association of Mycobacterium avium subspecies paratuberculosis (MAP) with T1D in adult Sardinian patients. To enforce this finding, we investigated the presence of antibodies against ZnT8 and proinsulin (PI) with respective homologous epitopes: MAP3865c133-141/ZnT8186-194, MAP3865c125-133/ZnT8178-186, MAP2404c70-85/PI46-61, and MAP1,4αgbp157-173/PI64-80, in 23 children at risk for T1D, formerly involved in the TRIGR study, and 22 healthy controls (HCs). Positivity to anti-MAP and homologous human peptides was detected in 48% of at-risk subjects compared to 5,85% HCs, preceding appearance of islet autoantibodies. Being MAP easily transmitted to humans with infected cow's milk and detected in retail infant formulas, MAP epitopes could be present in extensively hydrolyzed formula and act as antigens stimulating β-cell autoimmunity.

  15. C-peptide as a Therapy for Kidney Disease: A Systematic Review and Meta-Analysis

    PubMed Central

    Shaw, James A.; Shetty, Partha; Burns, Kevin D.; Fergusson, Dean; Knoll, Greg A.

    2015-01-01

    C-peptide has intrinsic biological activity and may be renoprotective. We conducted a systematic review to determine whether C-peptide had a beneficial effect on renal outcomes. MEDLINE, EMBASE, and the Cochrane Central Databases were searched for human and animal studies in which C-peptide was administered and renal endpoints were subsequently measured. We identified 4 human trials involving 74 patients as well as 18 animal studies involving 35 separate experiments with a total of 641 animals. In humans, the renal effects of exogenously delivered C-peptide were only studied in type 1 diabetics with either normal renal function or incipient nephropathy. Pooled analysis showed no difference in GFR (mean difference, -1.36 mL/min/1.73 m2, p = 0.72) in patients receiving C-peptide compared to a control group, but two studies reported a reduction in glomerular hyperfiltration (p<0.05). Reduction in albuminuria was also reported in the C-peptide group (p<0.05). In diabetic rodent models, C-peptide led to a reduction in GFR (mean difference, -0.62 mL/min, p<0.00001) reflecting a partial reduction in glomerular hyperfiltration. C-peptide also reduced proteinuria (mean difference, -186.25 mg/day, p = 0.05), glomerular volume (p<0.00001), and mesangial matrix area (p<0.00001) in diabetic animals without affecting blood pressure or plasma glucose. Most studies were relatively short-term in duration, ranging from 1 hour to 3 months. Human studies of sufficient sample size and duration are needed to determine if the beneficial effects of C-peptide seen in animal models translate into improved long-term clinical outcomes for patients with chronic kidney disease. (PROSPERO CRD42014007472) PMID:25993479

  16. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    PubMed

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Meteorological data analysis using MapReduce.

    PubMed

    Fang, Wei; Sheng, V S; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  18. Logistic map analysis of biomolecular network evolution

    NASA Astrophysics Data System (ADS)

    Stein, R. R.; Isambert, H.

    2011-11-01

    We study the expansion of biomolecular networks from the view point of first evolutionary principles based on the duplication and divergence of ancestral genes. The expansion of gene families and subnetworks is analyzed in terms of logistic map compositions, which capture the varying functional constraints of individual genes in the course of evolution. Using a mean-field approach, we then demonstrate the existence of spontaneous growth-rate variations between gene families and discuss the relevance of such heterogeneous expansions for the emergent properties of actual biomolecular networks.

  19. Meteorological Data Analysis Using MapReduce

    PubMed Central

    Fang, Wei; Sheng, V. S.; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability. PMID:24790576

  20. Combinatorial peptide on-resin analysis: optimization of static nanoelectrospray ionization technique for sequence determination.

    PubMed

    Biederman, K J; Lee, H; Haney, C A; Kaczmarek, M; Buettner, J A

    1999-03-01

    The optimizations of static nanoelectrospray parameters to determine peptide or mimetic sequences released from resin were explored. Several different manufacturers of probe tips were utilized and a method was developed for the direct analysis of bead-bound peptides by nanoelectrospray. The method involved minimum sample handling to assure maximum recovery from individual beads. Parameters that were explored included an inside and outside wash of the probe tip, the distance from the probe housing to the probe tip, source temperature, drying gas flow, individual tips and presence of beads. The same soluble synthetic peptide was used in all comparisons, which had a molecular weight of 717 amu. The discovery of the sequence of a bead-bound peptide was achieved. The parameters that were found to effect signal were outside wash, presence of bead and distance. There was the need for pneumatic assist to initiate electrospray on some occasions, although this generally resulted in unsatisfactory performance.

  1. Analysis of Protein Tyrosine Kinase Specificity Using Positional Scanning Peptide Microarrays.

    PubMed

    Deng, Yang; Turk, Benjamin E

    2016-01-01

    Protein tyrosine kinases phosphorylate their substrates within the context of specific consensus sequences surrounding the site of modification. We describe a peptide microarray approach to rapidly determine tyrosine kinase phosphorylation site motifs. This method uses a peptide library that systematically substitutes each of the amino acid residues at multiple positions surrounding a central tyrosine residue. Peptide substrates are synthesized as biotin conjugates for immobilization on avidin-coated slides. Following incubation of the slide with protein kinase and radiolabeled ATP, the relative extent of phosphorylation of each of the peptides is quantified by phosphor imaging. This method allows small quantities of kinase to be analyzed rapidly in parallel, facilitating analysis of large numbers of kinases.

  2. Application of Z-sinapinic matrix in peptide MALDI-MS analysis.

    PubMed

    Salum, M L; Giudicessi, S L; Schmidt De León, T; Camperi, S A; Erra-Balsells, R

    2017-03-01

    Since introduction of sinapinic acid (SA) and α-cyano-4-hydroxycinnamic acid as matrices, successful application of matrix-assisted laser desorption/ionization mass spectrometry started for protein/polypeptides. Both show some limitations in short peptide analysis because matrix clusters are quite abundant. Cinnamics currently used are E-cinnamics. Here, Z-SA as matrix for peptides is studied and compared with E-SA and α-cyano-4-hydroxycinnamic acid. Minor number of clusters is always observed in the low m/z region allowing the detection of short peptides. The results here described show that this novel matrix is a tool of choice for direct, rapid and sensitive detection of hydrophilic and hydrophobic peptides. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment

    PubMed Central

    Wang, Haixing; Qian, Wei-Jun; Chin, Mark H.; Petyuk, Vladislav A.; Barry, Richard C.; Liu, Tao; Gritsenko, Marina A.; Mottaz, Heather M.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Given the growing interest in applying genomic and proteomic approaches for studying the mammalian brain using mouse models, we hereby present a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 non-redundant proteins (∼34% of the predicted mouse proteome). 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases. PMID:16457602

  4. A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples

    SciTech Connect

    Zhang, Qibin; Qian, Weijun; Knyushko, Tanya V.; Clauss, Therese RW; Purvine, Samuel O.; Moore, Ronald J.; Sacksteder, Colette A.; Chin, Mark H.; Smith, Desmond J.; Camp, David G.; Bigelow, Diana J.; Smith, Richard D.

    2007-06-01

    Elevated levels of protein tyrosine nitration have been found in various neurodegenerative diseases and aging related pathologies; however, the lack of an efficient enrichment method has prevented the analysis of this important low level protein modification. We have developed an efficient method for specific enrichment of nitrotyrosine containing peptides that permits nitrotyrosine peptides and specific nitration sites to be unambiguously identified with LC-MS/MS. The method is based on the derivatization of nitrotyrosine into free sulfhydryl groups followed by high efficiency enrichment of sulfhydryl-containing peptides with thiopropyl sepharose beads. The derivatization process starts with acetylation with acetic anhydride to block all primary amines, followed by reduction of nitrotyrosine to aminotyrosine, then derivatization of aminotyrosine with N-Succinimidyl S-Acetylthioacetate (SATA), and finally deprotecting of S-acetyl on SATA to form free sulfhydryl groups. This method was evaluated using nitrotyrosine containing peptides, in-vitro nitrated human histone 1.2, and bovine serum albumin (BSA). 91% and 62% of the identified peptides from enriched histone and BSA samples were nitrotyrosine derivatized peptides, respectively, suggesting relative high specificity of the enrichment method. The application of this method to in-vitro nitrated mouse brain homogenate resulted in 35% of identified peptides containing nitrotyrosine (compared to only 5.9% observed from the global analysis of unenriched sample), and a total of 150 unique nitrated peptides covering 102 proteins were identified with a false discovery rate estimated at 3.3% from duplicate LC-MS/MS analyses of a single enriched sample.

  5. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  6. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  7. High-sensitivity analysis and sequencing of peptides and proteins by quadrupole ion trap mass spectrometry.

    PubMed

    Marina, A; García, M A; Albar, J P; Yagüe, J; López de Castro, J A; Vázquez, J

    1999-01-01

    This paper describes experience with the commercially available LCQ quadrupole ion trap mass spectrometer applied to the off-line analysis of peptides and proteins. The standard front end of the electrospray probe was replaced with a micromanipulator which, with the aid of a magnifying device, allowed the use of a variety of miniaturized spraying interfaces. The low sample consumption and extended analysis times of these devices were ideally suitable to obtain improved results in terms of sensitivity and mass accuracy. This needed a careful optimization of the number of ions stored inside the trap (ion target parameter) and required spectrum averaging of many scans. A method is presented for the mathematical fitting of ZoomScan spectra to theoretical isotopic distributions, which allowed the mass determination of large peptides with more accuracy than that achieved by conventional deconvolution algorithms. A very simple on-line desalting configuration is also described which needed no external micro-high-performance liquid chromatographic pumps, and can be easily mounted using the built-in syringe delivery system of the LCQ. This set-up allowed extended analysis times of 'in-gel' protein digests in subpicomole amounts. Finally, the multiple fragmentation capabilities of the ion trap were found to be extremely useful for the analysis of peptide modifications such as phosphorylation and for sequencing individual peptides from highly complex MHC-bound peptide pools.

  8. Gas-phase Ion Isomer Analysis Reveals the Mechanism of Peptide Sequence Scrambling

    PubMed Central

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B.; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-01-01

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M→cb) pathway is less energetically (or kinetically) favored. PMID:24313304

  9. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling.

    PubMed

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-03-18

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.

  10. Linear Algebraic Method for Non-Linear Map Analysis

    SciTech Connect

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  11. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping.

    PubMed

    Li, Chunyan; Takazaki, Shinya; Jin, Xiuri; Kang, Dongchon; Abe, Yoshito; Hamasaki, Naotaka

    2006-10-03

    In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.

  12. Mapping the Future, Mapping Education: An Analysis of the 2011 State of the Union Address

    ERIC Educational Resources Information Center

    Collin, Ross

    2012-01-01

    This article presents a discourse analysis of President Barack Obama's 2011 State of the Union Address. Fredric Jameson's concepts of cognitive mapping, cultural revolution, and the unconscious are employed to examine the president's vision of educational and economic transformation. Ultimately, it is argued this vision evokes a world in which…

  13. Mapping the Future, Mapping Education: An Analysis of the 2011 State of the Union Address

    ERIC Educational Resources Information Center

    Collin, Ross

    2012-01-01

    This article presents a discourse analysis of President Barack Obama's 2011 State of the Union Address. Fredric Jameson's concepts of cognitive mapping, cultural revolution, and the unconscious are employed to examine the president's vision of educational and economic transformation. Ultimately, it is argued this vision evokes a world in which…

  14. High-sensitivity HLA class I peptidome analysis enables a precise definition of peptide motifs and the identification of peptides from cell lines and patients' sera.

    PubMed

    Ritz, Danilo; Gloger, Andreas; Weide, Benjamin; Garbe, Claus; Neri, Dario; Fugmann, Tim

    2016-05-01

    The characterization of peptides bound to human leukocyte antigen (HLA) class I is of fundamental importance for understanding CD8+ T cell-driven immunological processes and for the development of immunomodulatory therapeutic strategies. However, until now, the mass spectrometric analysis of HLA-bound peptides has typically required billions of cells, still resulting in relatively few high-confidence peptide identifications. Capitalizing on the recent developments in mass spectrometry and bioinformatics, we have implemented a methodology for the efficient recovery of acid-eluted HLA peptides after purification with the pan-reactive antibody W6/32 and have identified a total of 27 862 unique peptides with high confidence (1% false discovery rate) from five human cancer cell lines. More than 93% of the identified peptides were eight to 11 amino acids in length and contained signatures that were in excellent agreement with published HLA binding motifs. Furthermore, by purifying soluble HLA class I complexes (sHLA) from sera of melanoma patients, up to 972 high-confidence peptides could be identified, including melanoma-associated antigens already described in the literature. Knowledge of the HLA class I peptidome should facilitate multiplex tetramer technology-based characterization of T cells, and allow the development of patient selection, stratification and immunomodulatory therapeutic strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MMAPPR: Mutation Mapping Analysis Pipeline for Pooled RNA-seq

    PubMed Central

    Hill, Jonathon T.; Demarest, Bradley L.; Bisgrove, Brent W.; Gorsi, Bushra; Su, Yi-Chu; Yost, H. Joseph

    2013-01-01

    Forward genetic screens in model organisms are vital for identifying novel genes essential for developmental or disease processes. One drawback of these screens is the labor-intensive and sometimes inconclusive process of mapping the causative mutation. To leverage high-throughput techniques to improve this mapping process, we have developed a Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) that works without parental strain information or requiring a preexisting SNP map of the organism, and adapts to differential recombination frequencies across the genome. MMAPPR accommodates the considerable amount of noise in RNA-seq data sets, calculates allelic frequency by Euclidean distance followed by Loess regression analysis, identifies the region where the mutation lies, and generates a list of putative coding region mutations in the linked genomic segment. MMAPPR can exploit RNA-seq data sets from isolated tissues or whole organisms that are used for gene expression and transcriptome analysis in novel mutants. We tested MMAPPR on two known mutant lines in zebrafish, nkx2.5 and tbx1, and used it to map two novel ENU-induced cardiovascular mutants, with mutations found in the ctr9 and cds2 genes. MMAPPR can be directly applied to other model organisms, such as Drosophila and Caenorhabditis elegans, that are amenable to both forward genetic screens and pooled RNA-seq experiments. Thus, MMAPPR is a rapid, cost-efficient, and highly automated pipeline, available to perform mutant mapping in any organism with a well-assembled genome. PMID:23299975

  16. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq.

    PubMed

    Hill, Jonathon T; Demarest, Bradley L; Bisgrove, Brent W; Gorsi, Bushra; Su, Yi-Chu; Yost, H Joseph

    2013-04-01

    Forward genetic screens in model organisms are vital for identifying novel genes essential for developmental or disease processes. One drawback of these screens is the labor-intensive and sometimes inconclusive process of mapping the causative mutation. To leverage high-throughput techniques to improve this mapping process, we have developed a Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) that works without parental strain information or requiring a preexisting SNP map of the organism, and adapts to differential recombination frequencies across the genome. MMAPPR accommodates the considerable amount of noise in RNA-seq data sets, calculates allelic frequency by Euclidean distance followed by Loess regression analysis, identifies the region where the mutation lies, and generates a list of putative coding region mutations in the linked genomic segment. MMAPPR can exploit RNA-seq data sets from isolated tissues or whole organisms that are used for gene expression and transcriptome analysis in novel mutants. We tested MMAPPR on two known mutant lines in zebrafish, nkx2.5 and tbx1, and used it to map two novel ENU-induced cardiovascular mutants, with mutations found in the ctr9 and cds2 genes. MMAPPR can be directly applied to other model organisms, such as Drosophila and Caenorhabditis elegans, that are amenable to both forward genetic screens and pooled RNA-seq experiments. Thus, MMAPPR is a rapid, cost-efficient, and highly automated pipeline, available to perform mutant mapping in any organism with a well-assembled genome.

  17. Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.

    PubMed

    Keska, Paulina; Stadnik, Joanna

    2017-01-01

    The aim of this study was to evaluate the antimicrobial activity of meat protein-derived peptides against selected Gram-positive and Gram-negative bacteria. The in silico and in vitro approach was combined to determine the potency of antimicrobial peptides derived from pig (Sus scrofa) and cow (Bos taurus) proteins. The in silico studies consisted of an analysis of the amino acid composition of peptides obtained from the CAMPR database, their molecular weight and other physicochemical properties (isoelectric point, molar extinction coefficient, instability index, aliphatic index, hydropathy index and net charge). The degree of similarity was estimated between the antimicrobial peptide sequences derived from the slaughtered animals and the main meat proteins. Antimicrobial activity of peptides isolated from dry-cured meat products was analysed (in vitro) against two strains of pathogenic bacteria using the disc diffusion method. There was no evidence of growthinhibitory properties of peptides isolated from dry-cured meat products against Escherichia coli K12 ATCC 10798 and Staphylococcus aureus ATCC 25923.

  18. Biologically-Inspired Peptide Reagents for Enhancing IMS-MS Analysis of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Bohrer, Brian C.; Clemmer, David E.

    2011-09-01

    The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein's binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide-carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.

  19. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  20. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  1. Improved machine learning method for analysis of gas phase chemistry of peptides.

    PubMed

    Gehrke, Allison; Sun, Shaojun; Kurgan, Lukasz; Ahn, Natalie; Resing, Katheryn; Kafadar, Karen; Cios, Krzysztof

    2008-12-03

    Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS) of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  2. Improved machine learning method for analysis of gas phase chemistry of peptides

    PubMed Central

    Gehrke, Allison; Sun, Shaojun; Kurgan, Lukasz; Ahn, Natalie; Resing, Katheryn; Kafadar, Karen; Cios, Krzysztof

    2008-01-01

    Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS) of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future. PMID:19055745

  3. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  4. Analysis of polar peptides using a silica hydride column and high aqueous content mobile phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Kulsing, Chadin; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2013-09-01

    The retention behavior of a set of polar peptides separated on a silica hydride stationary phase was examined with a capillary HPLC system coupled to ESI-MS detection. The mobile phases consisted of formic acid or acetic acid/acetonitrile/water mixtures with the acetonitrile content ranging from 5 to 80% v/v. The effects on peptide retention of these two acidic buffer additives and their concentrations in the mobile phase were systematically investigated. Strong retention of the peptides on the silica hydride phase was observed with relatively high-organic low-aqueous mobile phases (i.e. under aqueous normal-phase conditions). However, when low concentrations of acetic acid were employed as the buffer additive, strong retention of the peptides was also observed even when high aqueous content mobile phases were employed. This unique feature of the stationary phase therefore provides an opportunity for chromatographic analysis of polar peptides with water-rich eluents, a feature usually not feasible with traditional RP sorbents, and thus under conditions more compatible with analytical green chemistry criteria. In addition, both isocratic and gradient elution procedures can be employed to optimize peptide separations with excellent reproducibility and resolution under these high aqueous mobile phase conditions with this silica hydride stationary phase.

  5. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  6. A Concept Map Knowledge Model of Intelligence Analysis

    DTIC Science & Technology

    2011-05-01

    This Technical Report describes a Concept Map (CMap) Knowledge Model (KM) of intelligence analysis developed at DRDC Toronto. The CMap KM consists of...conceptual understanding of various issues relevant to intelligence analysis and brings together a number of pertinent topics. The authors? aspiration...for this CMap KM is that it might serve as a springboard for further development of concepts essential to intelligence analysis and as a foundation for an intelligence analysis education program.

  7. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS.

    PubMed

    Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda

    2018-01-15

    An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates*

    PubMed Central

    Shteynberg, David; Deutsch, Eric W.; Lam, Henry; Eng, Jimmy K.; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L.; Aebersold, Ruedi; Nesvizhskii, Alexey I.

    2011-01-01

    The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments

  9. Using Infrared Spectroscopy of Cyanylated Cysteine to Map Membrane Binding Structure and Orientation of the Hybrid Antimicrobial Peptide CM15

    PubMed Central

    Alfieri, Katherine N.; Vienneau, Alice R.; Londergan, Casey H.

    2011-01-01

    The synthetic antimicrobial peptide CM15, a hybrid of N-terminal sequences from cecropin and melittin peptides, has been shown to be extremely potent. Its mechanism of action has been speculated to involve pore formation based on prior site-directed spin labeling studies. This study examines four single-site β-thiocyanatoalanine variants of CM15 in which the artificial amino acid side chain acts as a vibrational reporter of its local environment through the frequency and lineshape of the unique CN stretching band in the infrared spectrum. Circular dichroism experiments indicate that the placements of the artificial side chain have only small perturbative effects on the membrane-bound secondary structure of the CM15 peptide. All variant peptides were placed in buffer solution, in contact with dodecylphosphatidylcholine micelles, and in contact with vesicles formed from E. coli polar lipid extract. At each site, the CN stretching band reports a different behavior. Time-dependent attenuated total reflectance infrared spectra were also collected for each variant as it was allowed to remodel the E. coli lipid vesicles. These experiments agree with the previously proposed formation of toroidal pores, in which each peptide finds itself in an increasingly homogeneous and curved local environment without apparent peptide-peptide interactions. This work also demonstrates the excellent sensitivity of the SCN stretching vibration to small changes in peptide-lipid interfacial structure. PMID:22103476

  10. Computational analysis of LDDMM for brain mapping.

    PubMed

    Ceritoglu, Can; Tang, Xiaoying; Chow, Margaret; Hadjiabadi, Darian; Shah, Damish; Brown, Timothy; Burhanullah, Muhammad H; Trinh, Huong; Hsu, John T; Ament, Katarina A; Crocetti, Deana; Mori, Susumu; Mostofsky, Stewart H; Yantis, Steven; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    One goal of computational anatomy (CA) is to develop tools to accurately segment brain structures in healthy and diseased subjects. In this paper, we examine the performance and complexity of such segmentation in the framework of the large deformation diffeomorphic metric mapping (LDDMM) registration method with reference to atlases and parameters. First we report the application of a multi-atlas segmentation approach to define basal ganglia structures in healthy and diseased kids' brains. The segmentation accuracy of the multi-atlas approach is compared with the single atlas LDDMM implementation and two state-of-the-art segmentation algorithms-Freesurfer and FSL-by computing the overlap errors between automatic and manual segmentations of the six basal ganglia nuclei in healthy subjects as well as subjects with diseases including ADHD and Autism. The high accuracy of multi-atlas segmentation is obtained at the cost of increasing the computational complexity because of the calculations necessary between the atlases and a subject. Second, we examine the effect of parameters on total LDDMM computation time and segmentation accuracy for basal ganglia structures. Single atlas LDDMM method is used to automatically segment the structures in a population of 16 subjects using different sets of parameters. The results show that a cascade approach and using fewer time steps can reduce computational complexity as much as five times while maintaining reliable segmentations.

  11. "Almost Darks": HI Mapping and Optical Analysis

    NASA Astrophysics Data System (ADS)

    Singer, Quinton; Ball, Catie; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph

    2017-01-01

    We present VLA HI imaging of the "Almost Dark" galaxies AGC 227982, AGC 268363, and AGC 219533. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. These three HI-rich objects harbor some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. Our new multi-configuration, high angular (~20") and spectral (1.7 km/s) resolution HI observations produce spatially resolved column density and velocity distribution moment maps. We compare these images to Sloan Digitized Sky Survey (SDSS) optical images. By localizing the HI gas, we identify previously unknown optical components (offset from the ALFALFA pointing center) for AGC 227982 and AGC 268363, and confirm the association with a very low surface brightness stellar counterpart for AGC 219533. Baryonic masses are derived from VLA flux integral values and ALFALFA distance estimates, giving answers consistent with those derived from ALFALFA fluxes. All three sources appear to have fairly regular HI morphologies and show evidence of ordered rotation.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  12. Synthetic peptides of Venezuelan equine encephalomyelitis virus E2 glycoprotein. I. Immunogenic analysis and identification of a protective peptide.

    PubMed

    Hunt, A R; Johnson, A J; Roehrig, J T

    1990-12-01

    Fourteen peptides representing 67% of the extramembranal domain of the Venezuelan equine encephalomyelititis (VEE) virus E2 glycoprotein were synthesized and analyzed to determine their antigenic, immunogenic, and protective capacities. Thirteen of 14 peptides elicited antibody for the homologous peptide. Thirteen peptides elicited antiviral antibody that recognized either the Trinidad (TRD) strain of VEE virus or the TC-83 vaccine derivative, or both. Two peptides, VE2pep01(TC-83) and VE2pep01(TRD), protected significant numbers of mice from TRD virus challenge. The majority of the peptides were reactive with antisera from mice immunized with the various subtypes of VEE virus. A competition assay using antipeptide antibodies to block virus binding of anti-VEE virus monoclonal antibodies corroborated previous studies on the spatial relationship of E2 epitopes and provided evidence for a spatial overlap of the E2 amino terminus with a domain composed of residues 180-210.

  13. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  14. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    NASA Astrophysics Data System (ADS)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  15. Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models

    PubMed Central

    van Swelm, Rachel P. L.; Theurl, Milan; Theurl, Igor; Kemna, Erwin H.; van der Burgt, Yuri E. M.; Venselaar, Hanka; Dutilh, Bas E.; Russel, Frans G. M.; Weiss, Günter; Masereeuw, Rosalinde; Fleming, Robert E.; Swinkels, Dorine W.

    2011-01-01

    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics. PMID:21408141

  16. Ion trap mass spectrometry in the structural analysis of haemoglobin peptides modified by epichlorohydrin and diepoxybutane.

    PubMed

    Miraglia, Nadia; Basile, Adriana; Pieri, Maria; Acampora, Antonio; Malorni, Livia; De Giulio, Beatrice; Sannolo, Nicola

    2002-01-01

    Ion trap mass spectrometry has been shown to be particularly suitable for the structural analysis of high molecular weight peptides directly fragmented in the mass analyser without needing further sub-digestion reactions. Here we report the advantages of using multi-stage ion trap mass spectrometry in the structural characterisation of haemoglobin alkylated with epichlorohydrin and diepoxybutane. Alkylated globins were digested with trypsin and the peptide mixtures were analysed by MS(3). This technique allows the sequential fragmentation of peptides under analysis, giving rise to MS(3) product ion spectra with additional information with respect to MS(2) mass spectra. The results obtained complete the previously reported structural characterisation of alkylated haemoglobin, demonstrating the potential of ion trap mass spectrometry.

  17. Epitope mapping of rat neutralizing monoclonal antibody against human immunodeficiency virus type-1 by a phage peptide library: comparison with ELISA using synthetic peptides.

    PubMed

    Ichiyama, K; Ishikawa, D; Tanaka, Y; Kashiwa, T; Koyanagi, Y; Handa, S; Yamashita, A; Fukushi, M; Yamamoto, N; Taki, T

    1999-01-01

    We generated a rat monoclonal antibody (mAb W#10) with the ability to neutralize human immunodeficiency virus type 1IIIB (HIV-1IIIB) infection. The epitope recognized by mAb W#10 was defined as R-I-Q-R-G-P-G by enzyme-linked immunosorbent assay (ELISA) with the use of synthetic peptides. The filamentous phage clones displaying random 15-amino-acid peptides on the amino terminus of the pIII coat protein reacting with mAb W#10 were identified with affinity and immunological selection procedures. Thirteen out of 16 selected phage clones contained the G-X-G-R-X-F sequence in the coat protein region representing significant homology to a part of conserved G-P-G-R-A-F sequence in the V3 loop of various HIV-1 strains. In addition, the phage clones included the G-X-G sequence in the sequence detected by synthetic peptides as the recognition site. The selected phage clones were stained by mAb W#10 specifically and were able to compete with mAb binding to cells expressing viral antigens.

  18. A novel mass spectrometric approach to the analysis of hormonal peptides in extracts of mouse pancreatic islets.

    PubMed

    Ramström, Margareta; Hagman, Charlotte; Tsybin, Youri O; Markides, Karin E; Håkansson, Per; Salehi, Albert; Lundquist, Ingmar; Håkanson, Rolf; Bergquist, Jonas

    2003-08-01

    Liquid chromatography mass spectrometry (LC-MS) is a valuable tool in the analysis of proteins and peptides. The combination of LC-MS with different fragmentation methods provides sequence information on components in complex mixtures. In this work, on-line packed capillary LC electrospray ionization Fourier transform ion cyclotron resonance MS was combined with two complementary fragmentation techniques, i.e. nozzle-skimmer fragmentation and electron capture dissociation, for the determination of hormonal peptides in an acid ethanol extract of mouse pancreatic islets. The most abundant peptides, those derived from proinsulin and proglucagon, were identified by their masses and additional sequence-tag information established their identities. Interestingly, the experiments demonstrated the presence of truncated C-peptides, des-(25-29)-C-peptide and des-(27-31)-C-peptide. These novel findings clearly illustrate the potential usefulness of the described technique for on-line sequencing and characterization of peptides in tissue extracts.

  19. Use of a porous silicon-gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis.

    PubMed

    Li, Xiao; Tan, Jie; Yu, Jiekai; Feng, Jiandong; Pan, Aiwu; Zheng, Shu; Wu, Jianmin

    2014-11-07

    Small peptides in serum are potential biomarkers for the diagnosis of cancer and other diseases. The identification of peptide biomarkers in human plasma/serum has become an area of high interest in medical research. However, the direct analysis of peptides in serum samples using mass spectrometry is challenging due to the low concentration of peptides and the high abundance of high-molecular-weight proteins in serum, the latter of which causes severe signal suppression. Herein, we reported that porous semiconductor-noble metal hybrid nanostructures can both eliminate the interference from large proteins in serum samples and significantly enhance the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) yields of peptides captured on the nanostructure. Serum peptide fingerprints with high fidelity can be acquired rapidly, and successful discrimination of colorectal cancer patients based on peptide fingerprints is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus nucleoprotein.

    PubMed

    Yu, Ruisong; Fan, Xiaoming; Xu, Wanxiang; Li, Wentao; Dong, Shijuan; Zhu, Yumin; He, Yaping; Tang, Haiping; Du, Rong; Li, Zhen

    2015-01-30

    Nucleoprotein (NP) is the most abundant and highly immunogenic protein of morbillivirus, and is presently the basis of most diagnostic assays for peste des petits ruminants virus (PPRV). In this study, fine epitope mapping and conservation analysis of linear B-cell epitopes on the PPRV NP has been undertaken using biosynthetic peptides. Nineteen linear B-cell epitopes were identified and their corresponding minimal motifs were located on the NP of PPRV China/Tibet/Geg/07-30. Conservation analysis indicated that ten of the 19 minimal motifs were conserved among 46 PPRV strains. Peptides containing the minimal motifs were recognized using anti-PPRV serum from a goat immunized with PPRV vaccine strain Nigeria 75/1. Identified epitopes and their motifs improve our understanding of the antigenic characteristics of PPRV NP and provide a basis for the development of epitope-based diagnostic assays.

  1. Larger scale multipin peptide synthesis.

    PubMed

    Maeji, N J; Bray, A M; Valerio, R M; Wang, W

    1995-01-01

    The multipin peptide synthesis approach originated as an immunological tool for epitope mapping. However, continuing evolution of the basic technology has allowed synthesis at scales up to 10 mumol per pin. At this loading, the methodology can no longer be considered just a screening tool. The overall synthesis efficiency of this approach was assessed by the synthesis of 2913 different peptides having little or no sequence homology and ranging up to a 46-mer in length. High performance liquid chromatography analysis of the crude peptides indicates overall quality of synthesis was high. The method is suitable for multi-milligram synthesis of peptides without sacrificing any of the inherent advantages of the 96-well format.

  2. Bioaffinity magnetic reactor for peptide digestion followed by analysis using bottom-up shotgun proteomics strategy.

    PubMed

    Korecká, Lucie; Jankovicová, Barbora; Krenková, Jana; Hernychová, Lenka; Slováková, Marcela; Le-Nell, Anne; Chmelik, Josef; Foret, Frantisek; Viovy, Jean-Louis; Bilková, Zusana

    2008-02-01

    We report an efficient and streamlined way to improve the analysis and identification of peptides and proteins in complex mixtures of soluble proteins, cell lysates, etc. By using the shotgun proteomics methodology combined with bioaffinity purification we can remove or minimize the interference contamination of a complex tryptic digest and so avoid the time-consuming separation steps before the final MS analysis. We have proved that by means of enzymatic fragmentation (endoproteinases with Arg-C or/and Lys-C specificity) connected with the isolation of specific peptides we can obtain a simplified peptide mixture for easier identification of the entire protein. A new bioaffinity sorbent was developed for this purpose. Anhydrotrypsin (AHT), an inactive form of trypsin with an affinity for peptides with arginine (Arg) or lysine (Lys) at the C-terminus, was immobilized onto micro/nanoparticles with superparamagnetic properties (silica magnetite particles (SiMAG)-Carboxyl, Chemicell, Germany). This AHT carrier with a determined binding capacity (26.8 nmol/mg of carrier) was tested with a model peptide, human neurotensin, and the resulting MS spectra confirmed the validity of this approach.

  3. Modular Automated Processing System (MAPS) for analysis of biological samples.

    SciTech Connect

    Gil, Geun-Cheol; Chirica, Gabriela S.; Fruetel, Julia A.; VanderNoot, Victoria A.; Branda, Steven S.; Schoeniger, Joseph S.; Throckmorton, Daniel J.; Brennan, James S.; Renzi, Ronald F.

    2010-10-01

    We have developed a novel modular automated processing system (MAPS) that enables reliable, high-throughput analysis as well as sample-customized processing. This system is comprised of a set of independent modules that carry out individual sample processing functions: cell lysis, protein concentration (based on hydrophobic, ion-exchange and affinity interactions), interferent depletion, buffer exchange, and enzymatic digestion of proteins of interest. Taking advantage of its unique capacity for enclosed processing of intact bioparticulates (viruses, spores) and complex serum samples, we have used MAPS for analysis of BSL1 and BSL2 samples to identify specific protein markers through integration with the portable microChemLab{trademark} and MALDI.

  4. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  5. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  6. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-07-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies.

  7. Mapping Creativity: Creativity Measurements Network Analysis

    ERIC Educational Resources Information Center

    Pinheiro, Igor Reszka; Cruz, Roberto Moraes

    2014-01-01

    This article borrowed network analysis tools to discover how the construct formed by the set of all measures of creativity configures itself. To this end, using a variant of the meta-analytical method, a database was compiled simulating 42,381 responses to 974 variables centered on 64 creativity measures. Results, although preliminary, indicate…

  8. Mapping Creativity: Creativity Measurements Network Analysis

    ERIC Educational Resources Information Center

    Pinheiro, Igor Reszka; Cruz, Roberto Moraes

    2014-01-01

    This article borrowed network analysis tools to discover how the construct formed by the set of all measures of creativity configures itself. To this end, using a variant of the meta-analytical method, a database was compiled simulating 42,381 responses to 974 variables centered on 64 creativity measures. Results, although preliminary, indicate…

  9. Immunodominant epitopes mapped by synthetic peptides on the capsid protein of avian hepatitis E virus are non-protective.

    PubMed

    Guo, Hailong; Zhou, E M; Sun, Z F; Meng, X J

    2008-03-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted antigenic domains by synthetic peptides. However, whether these epitopes are protective against avian HEV infection has not been investigated. In this study, groups of chickens were immunized with keyhole limpet hemocyanin (KLH)-conjugated peptides and recombinant avian HEV ORF2 antigen followed by challenge with avian HEV virus to assess the protective capacity of these peptides containing the epitopes. While avian HEV ORF2 protein showed complete protection against infection, viremia and fecal virus shedding were found in all peptide-immunized chickens. Using purified IgY from normal, anti-peptide, and anti-avian HEV ORF2 chicken sera, an in-vitro neutralization and in-vivo monitoring assay was performed to further evaluate the neutralizing ability of anti-peptide IgY. Results showed that none of the anti-peptide IgY can neutralize avian HEV in vitro, as viremia, fecal virus shedding, and seroconversion appeared similarly in chickens inoculated with avian HEV mixed with anti-peptide IgY and chickens inoculated with avian HEV mixed with normal IgY. As expected, chickens inoculated with the avian HEV and anti-avian HEV ORF2 IgY mixture did not show detectable avian HEV infection. Taken together, the results of this study demonstrated that immunodominant epitopes on avian HEV ORF2 protein identified by synthetic peptides are non-protective, suggesting protective neutralizing epitope on avian HEV ORF2 may not be linear as is human HEV.

  10. Two-phase analysis in consensus genetic mapping.

    PubMed

    Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A

    2012-05-01

    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  11. Two-Phase Analysis in Consensus Genetic Mapping

    PubMed Central

    Ronin, Y.; Mester, D.; Minkov, D.; Belotserkovski, R.; Jackson, B. N.; Schnable, P. S.; Aluru, S.; Korol, A.

    2012-01-01

    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as “synchronized TSP.” The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  12. Lead optimization of antifungal peptides with 3D NMR structures analysis

    PubMed Central

    Landon, Céline; Barbault, Florent; Legrain, Michèle; Menin, Laure; Guenneugues, Marc; Schott, Valérie; Vovelle, Françoise; Dimarcq, Jean-Luc

    2004-01-01

    Antimicrobial peptides are key components of the innate immune response in most multicellular organisms. These molecules are considered as one of the most innovative class of anti-infective agents that have been discovered over the last two decades, and therefore, as a source of inspiration for novel drug design. Insect cystein-rich antimicrobial peptides with the CSαβ scaffold (an α-helix linked to a β-sheet by two disulfide bridges) represent particularly attractive templates for the development of systemic agents owing to their remarkable resistance to protease degradation. We have selected heliomicin, a broad spectrum antifungal CSαβ peptide from Lepidoptera as the starting point of a lead optimization program based on phylogenic exploration and fine tuned mutagenesis. We report here the characterization, biological activity, and 3D structure of heliomicin improved analogs, namely the peptides ARD1, ETD-135, and ETD-151. The ARD1 peptide was initially purified from the immune hemolymph of the caterpillars of Archeoprepona demophoon. Although it differs from heliomicin by only two residues, it was found to be more active against the human pathogens Aspergillus fumigatus and Candida albicans. The peptides ETD-135 and ETD-151 were engineered by site-directed mutagenesis of ARD1 in either cationic or hydrophobic regions. ETD-135 and ETD-151 demonstrated an improved antifungal activity over the native peptides, heliomicin and ARD1. A comparative analysis of the 3D structure of the four molecules highlighted the direct impact of the modification of the amphipathic properties on the molecule potency. In addition, it allowed to characterize an optimal organization of cationic and hydrophobic regions to achieve best antifungal activity. PMID:14978308

  13. Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean.

    PubMed

    Galeano, Carlos H; Fernandez, Andrea C; Franco-Herrera, Natalia; Cichy, Karen A; McClean, Phillip E; Vanderleyden, Jos; Blair, Matthew W

    2011-01-01

    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364 × BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364 × G19833 (DG) and BAT93 × JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning.

  14. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  15. NMR-Based Mapping of Disulfide Bridges in Cysteine-Rich Peptides: Application to the μ-Conotoxin SxIIIA*

    PubMed Central

    Walewska, Aleksandra; Skalicky, Jack J.; Davis, Darrell R.; Zhang, Min-Min; Lopez-Vera, Estuardo; Watkins, Maren; Han, Tiffany S.; Yoshikami, Doju; Olivera, Baldomero M.; Bulaj, Grzegorz

    2009-01-01

    Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide bridged conotoxin, μ-SxIIIA (from the venom of Conus striolatus) whose discovery is also reported here for the first time. μ-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with 15N/13C, while the remaining three cysteine residues were incorporated using a mixture of 70%:30% unlabeled:labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple resonance (1H,13C,15N) NMR experiments and 2D [13C,1H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of μ-conotoxins. μ-SxIIIA was found to be a potent blocker of the sodium channel subtype NaV1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides. PMID:18831583

  16. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    PubMed Central

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  17. Analysis of a subclass-restricted HIV-1 gp41 epitope by omission peptides.

    PubMed Central

    Mathiesen, T; Chiodi, F; Broliden, P A; Albert, J; Houghten, R A; Utter, G; Wahren, B; Norrby, E

    1989-01-01

    To define the amino acids involved in IgG subclass reactivity to two overlapping HIV-1 gp41 (E34/32; amino acid positions 582-613) peptides, sera from 18 HIV-infected individuals were studied. Peptides mimicking E34 but with single amino acid deletions or glycine substitutions were used to define the amino acid residues necessary for antibody binding. Two dominating immunogenic epitopes, containing highly hydrophilic amino acids, were found on the original peptide. Further analysis was undertaken with two corresponding omission sets of dodecapeptides representing halves of the complete E34 plus a terminal cystein peptide. The subclass reactivities usually differed between the patients with regard to the epitopes with which the different IgG subclasses reacted and also to the importance of different amino acids in antibody binding. The 600 glycine and the 601 lysine were involved in the binding of all IgG1, 2 and 4 and most IgG3. The development of E34/32-reactive IgM and IgG subclasses showed different patterns in four patients with primary HIV infections, contradicting the existence of a general pattern for the development of IgG subclasses to this peptide. The findings suggest that different progenitor clones are selected for synthesis of the different subclasses. PMID:2472353

  18. Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin

    PubMed Central

    Cantisani, Marco; Finamore, Emiliana; Mignogna, Eleonora; Falanga, Annarita; Nicoletti, Giovanni Francesco; Pedone, Carlo; Morelli, Giancarlo; Leone, Marilisa

    2014-01-01

    The marine environment has been poorly explored in terms of potential new molecules possessing antibacterial activity. Antimicrobial peptides (AMPs) offer a new potential class of pharmaceuticals; however, further optimization is needed if AMPs are to find broad use as antibiotics. We focused our studies on a peptide derived from the epidermal mucus of hagfish (Myxine glutinosa L.), which was previously characterized and showed high antimicrobial activity against human and fish pathogens. In the present work, the activities of myxinidin peptide analogues were analyzed with the aim of widening the original spectrum of action of myxinidin by suitable changes in the peptide primary structure. The analysis of key residues by alanine scanning allowed for the design of novel peptides with increased activity. We identified the amino acids that are of the utmost importance for the observed antimicrobial activities against a set of pathogens comprising both Gram-negative and Gram-positive bacteria. Overall, optimized bactericidal potency was achieved by adding a tryptophan residue at the N terminus and by the simultaneous substitution of residues present in positions 3, 4, and 11 with arginine. These results indicate that the myxinidin analogues emerge as an attractive alternative for treating drug-resistant infectious diseases and provide key insights into a rational design for novel agents against these pathogens. PMID:24957834

  19. On-column digestion of protein for peptide mapping by capillary zone electrophoresis with laser-induced native fluorescence detection

    SciTech Connect

    Chang, H.T.; Yeung, E.S. Iowa State Univ., Ames, IA )

    1993-10-15

    We have developed a novel technique to separate and detect peptide fragments which are digested on the same column. In this procedure, pepsin is used to digest low femtomole amounts of [beta]-lactoglobulin on the column. Then, CZE and LINF are applied to separate and detect the peptide fragments. The advantages of this method are its simplicity, high sensitivity, high selectivity, efficient operation, and high speed. 38 refs., 6 figs., 2 tabs.

  20. Analysis of opioid peptides by on-line SPE-CE-ESI-MS.

    PubMed

    Hernández, Elena; Benavente, Fernando; Sanz-Nebot, Victoria; Barbosa, José

    2007-11-01

    In this study, SPE-CE-ESI-MS is explored for the preconcentration and separation of dilute solutions of six opioid peptides. First, a CE-ESI-MS methodology was developed and validated. LODs of around 1 microg/mL were obtained for all the studied peptides. For SPE-CE-ESI-MS experiments, a home-made SPE microcartridge containing a C18 sorbent was constructed near the inlet of the separation capillary. After optimizing the on-line preconcentration methodology, LODs between 10 and 0.1 ng/mL were achieved. Repeatability, reproducibility, durability of the microcartridges and linearity of the SPE-CE-ESI-MS methodology were also investigated and compared to the values obtained by CE-ESI-MS. Finally, human plasma samples fortified with opioid peptides were analyzed by SPE-CE-ESI-MS in order to show the potential of the methodology for the analysis of biological fluids.

  1. WAMI: a web server for the analysis of minisatellite maps

    PubMed Central

    2010-01-01

    Background Minisatellites are genomic loci composed of tandem arrays of short repetitive DNA segments. A minisatellite map is a sequence of symbols that represents the tandem repeat array such that the set of symbols is in one-to-one correspondence with the set of distinct repeats. Due to variations in repeat type and organization as well as copy number, the minisatellite maps have been widely used in forensic and population studies. In either domain, researchers need to compare the set of maps to each other, to build phylogenetic trees, to spot structural variations, and to study duplication dynamics. Efficient algorithms for these tasks are required to carry them out reliably and in reasonable time. Results In this paper we present WAMI, a web-server for the analysis of minisatellite maps. It performs the above mentioned computational tasks using efficient algorithms that take the model of map evolution into account. The WAMI interface is easy to use and the results of each analysis task are visualized. Conclusions To the best of our knowledge, WAMI is the first server providing all these computational facilities to the minisatellite community. The WAMI web-interface and the source code of the underlying programs are available at http://www.nubios.nileu.edu.eg/tools/wami. PMID:20525398

  2. Peptide Mapping of Aminoacyl-tRNA Synthetases: Evidence for Internal Sequence Homology in Escherichia coli Leucyl-tRNA Synthetase

    PubMed Central

    Waterson, Robert M.; Konigsberg, William H.

    1974-01-01

    Most aminoacyl-tRNA synthetases contain polypeptide chains of about either 50,000 or 100,000 daltons. Peptide mapping of tryptic, chymotryptic, or Staphylococcus aureus acid protease digests of seryl-tRNA synthetase (100,000, dimer) and leucyl-tRNA synthetase (100,000, monomer) from E. coli was done after selective modification of lysine residues with [14C]succinic anhydride or of methionine residues with [14C]iodoacetate. By use of thin-layer electrophoresis and chromatography on silicagel or cellulose plates followed by radioautography it was possible, depending upon the specific activity of the reagent used, to detect radioactive peptides obtained from as little as l μg of protein. Seryl-tRNA synthetase gave the correct number of tryptic peptides expected for a dimer of identical subunits. Leucyl-tRNA synthetase, on the other hand, gave roughly half the number of radioactive tryptic, chymotryptic, and acid protease peptides expected from the lysine, arginine, and methionine content of the 100,000 monomer. We have interpreted these results as indicating that extensive internal homology exists among lysine- and methionine-containing peptides within the leucyl-tRNA synthetase. The simplest conclusion that can be drawn from these observations is that the NH2- and COOH-terminal halves of leucyl-tRNA synthetase and perhaps other synthetases of 100,000 molecular weight may have evolved through a process of gene duplication and fusion, followed by limited diversification by way of amino-acid substitutions accumulating during evolution. Images PMID:4592690

  3. The genetic map and comparative analysis with the physical map of Trypanosoma brucei.

    PubMed

    MacLeod, Annette; Tweedie, Alison; McLellan, Sarah; Taylor, Sonya; Hall, Neil; Berriman, Matthew; El-Sayed, Najib M; Hope, Michelle; Turner, C Michael R; Tait, Andy

    2005-01-01

    Trypanosoma brucei is the causative agent of African sleeping sickness in humans and contributes to the debilitating disease 'Nagana' in cattle. To date we know little about the genes that determine drug resistance, host specificity, pathogenesis and virulence in these parasites. The availability of the complete genome sequence and the ability of the parasite to undergo genetic exchange have allowed genetic investigations into this parasite and here we report the first genetic map of T.brucei for the genome reference stock TREU 927, comprising of 182 markers and 11 major linkage groups, that correspond to the 11 previously identified chromosomes. The genetic map provides 90% probability of a marker being 11 cM from any given locus. Its comparison to the available physical map has revealed the average physical size of a recombination unit to be 15.6 Kb/cM. The genetic map coupled with the genome sequence and the ability to undertake crosses presents a new approach to identifying genes relevant to the disease and its prevention in this important pathogen through forward genetic analysis and positional cloning.

  4. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data.

    PubMed

    Zhu, Fujiang; Kapitan, Josef; Tranter, George E; Pudney, Paul D A; Isaacs, Neil W; Hecht, Lutz; Barron, Laurence D

    2008-02-15

    Vibrational Raman optical activity (ROA), measured as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the aqueous solution structure of proteins. The large number of structure-sensitive bands in protein ROA spectra makes multivariate analysis techniques such as nonlinear mapping (NLM) especially favorable for determining structural relationships between different proteins. We have previously used NLM to map a large dataset of peptide, protein, and virus ROA spectra into a readily visualizable two-dimensional space in which points close to or distant from each other, respectively, represent similar or dissimilar structures. As well as folded proteins, our dataset contains ROA spectra from many natively unfolded proteins, proteins containing both folded and unfolded domains, denatured partially structured molten globule and reduced protein states, together with folded proteins containing little or no alpha-helix or beta-sheet. In this article, the relative positions of these systems in the NLM plot are used to obtain information about any residual structure that they may contain. The striking differences between the structural propensities of proteins that are unfolded in their native states and those that are unfolded due to denaturation may be responsible for their often very different behavior, especially with regard to aggregation. An ab initio simulation of the Raman and ROA spectra of an alanine oligopeptide in the poly(L-proline) II-helical conformation confirms previous suggestions that this conformation is a significant structural element in disordered peptides and natively unfolded proteins. The use of ROA to identify and characterize proteins containing significant amounts of unfolded structure will, inter alia, be valuable in structural genomics/proteomics since

  5. Bioactive molecules for biomimetic materials: Identification of RGD peptide sequences by TOF-S-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Poulin, S.; Durrieu, M. C.; Polizu, S.; Yahia, L.'H.

    2006-07-01

    Implantable biomaterials, such as Ti-6Al-4V alloy, are designed to replace a part of the human body and/or its associated functions. This system, containing the alloy onto which the osteoprogenitor cells are deposited, is formed through the grafting of linear RGD (Arginine-Glycine-Aspartic acid) peptides. Our preliminary work demonstrated that the bonding of the fibronectin cell attachment peptide RGD to a metallic surface is extremely successful in promoting the adhesion and the proliferation of osteoprogenitor cells. However, a fuller understanding of the relationship between surface coverage and the contribution of each layer is required, in order to optimize the efficiency of the RGD-modified surface through optimal RGD bonding. We have used the TOF-S-SIMS analysis of this new surface, previously studied by XPS, to follow each modification level. Functional groups for peptide immobilization are required at the metallic surface, and their presence has been identified by mass spectra. A relative quantification of immobilized RGD peptides is obtained by TOF-S-SIMS analysis. Molecular ion imaging informs us of the surface evolution throughout the modification process and offers a description of each group. A comparative analysis of the spectra has permitted us to correlate the presence of these species on the surface with their bioactivities.

  6. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis.

    PubMed

    Qiao, Liang; Roussel, Christophe; Wan, Jingjing; Yang, Pengyuan; Girault, Hubert H; Liu, Baohong

    2007-12-01

    An on-plate specific enrichment method is presented for the direct analysis of peptides phosphorylation. An array of sintered TiO 2 nanoparticle spots was prepared on a stainless steel plate to provide porous substrate with a very large specific surface and durable functions. These spots were used to selectively capture phosphorylated peptides from peptide mixtures, and the immobilized phosphopeptides could then be analyzed directly by MALDI MS after washing away the nonphosphorylated peptides. beta-Casein and protein mixtures were employed as model samples to investigate the selection efficiency. In this strategy, the steps of phosphopeptide capture, purification, and subsequent mass spectrometry analysis are all successfully accomplished on a single target plate, which greatly reduces sample loss and simplifies analytical procedures. The low detection limit, small sample size, and rapid selective entrapment show that this on-plate strategy is promising for online enrichment of phosphopeptides, which is essential for the analysis of minute amount of samples in high-throughput proteome research.

  7. Peptide Fragmentation and Surface Structural Analysis by Means of ToF-SIMS Using Large Cluster Ion Sources.

    PubMed

    Yokoyama, Yuta; Aoyagi, Satoka; Fujii, Makiko; Matsuo, Jiro; Fletcher, John S; Lockyer, Nicholas P; Vickerman, John C; Passarelli, Melissa K; Havelund, Rasmus; Seah, Martin P

    2016-04-05

    Peptide or protein structural analysis is crucial for the evaluation of biochips and biodevices, therefore an analytical technique with the ability to detect and identify protein and peptide species directly from surfaces with high lateral resolution is required. In this report, the efficacy of ToF-SIMS to analyze and identify proteins directly from surfaces is evaluated. Although the physics governing the SIMS bombardment process precludes the ability for researchers to detect intact protein or larger peptides of greater than a few thousand mass unit directly, it is possible to obtain information on the partial structures of peptides or proteins using low energy per atom argon cluster ion beams. Large cluster ion beams, such as Ar clusters and C60 ion beams, produce spectra similar to those generated by tandem MS. The SIMS bombardment process also produces peptide fragment ions not detected by conventional MS/MS techniques. In order to clarify appropriate measurement conditions for peptide structural analysis, peptide fragmentation dependency on the energy of a primary ion beam and ToF-SIMS specific fragment ions are evaluated. It was found that the energy range approximately 6 ≤ E/n ≤ 10 eV/atom is most effective for peptide analysis based on peptide fragments and [M + H] ions. We also observed the cleaving of side chain moieties at extremely low-energy E/n ≤ 4 eV/atom.

  8. A cyclic peptide inhibitor of apoC-II peptide fibril formation: mechanistic insight from NMR and molecular dynamics analysis.

    PubMed

    Griffin, Michael D W; Yeung, Levi; Hung, Andrew; Todorova, Nevena; Mok, Yee-Foong; Karas, John A; Gooley, Paul R; Yarovsky, Irene; Howlett, Geoffrey J

    2012-03-09

    The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.

  9. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  10. Comparative analysis on some filters for wrapped phase maps

    SciTech Connect

    Kemao, Qian; Le Tran Hoai Nam; Feng Lin; Soon, Seah Hock

    2007-10-20

    Some effective filtering methods for wrapped phase maps, a regularized phase-tracking method (RPT) without the regularization term, a multiple-parameter least-square method (MPLS), a windowed Fourier ridges method (WFR), an autocorrelation function method (ACF), and a sine/cosine average filter (SCAF), are analyzed in order to establish their transversal relationship. The analysis shows that principles of the RPT,MPLS, WFR, and ACF are equivalent and the SCAF also leads to the WFR by some extension, which elegantly unifies all these methods for filtering unwrapped phase maps.

  11. Comparative analysis on some filters for wrapped phase maps.

    PubMed

    Kemao, Qian; Nam, Le Tran Hoai; Feng, Lin; Soon, Seah Hock

    2007-10-20

    Some effective filtering methods for wrapped phase maps, a regularized phase-tracking method (RPT) without the regularization term, a multiple-parameter least-square method (MPLS), a windowed Fourier ridges method (WFR), an autocorrelation function method (ACF), and a sine/cosine average filter (SCAF), are analyzed in order to establish their transversal relationship. The analysis shows that principles of the RPT, MPLS, WFR, and ACF are equivalent and the SCAF also leads to the WFR by some extension, which elegantly unifies all these methods for filtering unwrapped phase maps.

  12. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

    PubMed

    Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David

    2016-03-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. GRAMA: genetic mapping analysis of temperature gradient capillary electrophoresis data.

    PubMed

    Maher, Philip M; Chou, Hui-Hsien; Hahn, Elizabeth; Wen, Tsui-Jung; Schnable, Patrick S

    2006-06-01

    Temperature gradient capillary electrophoresis (TGCE) is a high-throughput method to detect segregating single nucleotide polymorphisms and InDel polymorphisms in genetic mapping populations. Existing software that analyzes TGCE data was, however, designed for mutation analysis rather than genetic mapping. Genetic recombinant analysis and mapping assistant (GRAMA) is a new tool that automates TGCE data analysis for the purpose of genetic mapping. Data from multiple TGCE runs are analyzed, integrated, and displayed in an intuitive visual format. GRAMA includes an algorithm to detect peaks in electropherograms and can automatically compare its peak calls with those produced by another software package. Consequently, GRAMA provides highly accurate results with a low false positive rate of 5.9% and an even lower false negative rate of 1.3%. Because of its accuracy and intuitive interface, GRAMA boosts user productivity more than twofold relative to previous manual methods of scoring TGCE data. GRAMA is written in Java and is freely available at http://www.complex.iastate.edu .

  14. On-plate desalting and SALDI-MS analysis of peptides with hydrophobic silicate nanofilms on a gold substrate.

    PubMed

    Duan, Jicheng; Wang, Hui; Cheng, Quan

    2010-11-15

    We report the use of silicate nanofilms for on-plate desalting and subsequently direct laser desorption/ionization-mass spectrometric (LDI-MS) analysis of peptides. A hydrophobic octadecyltrichlorosilane (OTS) monolayer is formed on a calcinated nanofilm on a gold substrate to facilitate sample deposition and interaction with the surface that allows effective removal of MS-incompatible contaminants such as salts and surfactants by simple on-plate washing while the peptides are retained on the spot. By elimination of interferences from matrix-related ions and contaminants, sensitivity of MS analysis has been enhanced over ca. 20 times, leading to improved detection of peptides at the low-femtomolar level. A high recovery rate of the peptides is obtained by using relatively rough nanofilms, which are prepared through a modified layer-by-layer deposition/calcination process. The performance of the films has been investigated with peptide samples in the presence of high salts (NaCl and sodium acetate) and urea. Compared to matrix-assisted laser desorption/ionization analysis with CHCA matrix, LDI with on-plate desalting offers marked improvement for analysis of peptides due to low background ions and reduction of sample complexity. Additionally, selective capture of the hydrophobic components of a protein can be achieved, providing a highly useful strategy for specific peptide enrichment. LDI with on-plate desalting approach has also been successfully applied to peptide analysis from protein digests.

  15. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP).

    PubMed

    Davidson, Kenneth; Hallberg, Aaron; McCubbin, Donald; Hubbell, Bryan

    2007-02-01

    As epidemiological work from around the world continues to tie PM2.5 to serious adverse health effects, including premature mortality, the U.S. Environmental Protection Agency (U.S. EPA) has developed a number of policies to reduce air pollution, including PM2.5. To assist in the benefit-cost analyses of these air pollution control policies, the U.S. EPA has developed the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP is meant to (1) provide a flexible tool for systematically analyzing impacts of changes in environmental quality in a timely fashion, (2) ensure that stakeholders can understand the assumptions underlying the analysis, and (3) adequately address uncertainty and variability. BenMAP uses a "damage-function" approach to estimate the health benefits of a change in air quality. The major components of the damage-function approach are population estimates, population exposure, adverse health effects, and economic costs. To demonstrate BenMAP's ability to analyze PM2.5 pollution control policy scenarios, we assess two sample applications: (1) benefits of a national-level air quality control program, and (2) benefits of attaining two annual PM2.5 standards in California (annual average standards of 15 microg/m3 and 12 microg/m3). In the former, we estimate a scenario where control of PM2.5 emissions results in $100 billion of benefits annually. In the analysis of alternative standards, we estimate that attaining the more stringent standard (12 microg/m3) would result in approximately 2000 fewer premature deaths each year than the 15 microg/m3 achieves. BenMAP has a number of features to help clarify the analysis process. It allows the user to record in a configuration all of the choices made during an analysis. Configurations are especially useful for recreating already existing policy analyses. Also, BenMAP has a number of reporting options, including a set of mapping tools that allows users to visually inspect their inputs and results.

  16. A cost-benefit analysis of The National Map

    USGS Publications Warehouse

    Halsing, David L.; Theissen, Kevin; Bernknopf, Richard

    2003-01-01

    The Geography Discipline of the U.S. Geological Survey (USGS) has conducted this cost-benefit analysis (CBA) of The National Map. This analysis is an evaluation of the proposed Geography Discipline initiative to provide the Nation with a mechanism to access current and consistent digital geospatial data. This CBA is a supporting document to accompany the Exhibit 300 Capital Asset Plan and Business Case of The National Map Reengineering Program. The framework for estimating the benefits is based on expected improvements in processing information to perform any of the possible applications of spatial data. This analysis does not attempt to determine the benefits and costs of performing geospatial-data applications. Rather, it estimates the change in the differences between those benefits and costs with The National Map and the current situation without it. The estimates of total costs and benefits of The National Map were based on the projected implementation time, development and maintenance costs, rates of data inclusion and integration, expected usage levels over time, and a benefits estimation model. The National Map provides data that are current, integrated, consistent, complete, and more accessible in order to decrease the cost of implementing spatial-data applications and (or) improve the outcome of those applications. The efficiency gains in per-application improvements are greater than the cost to develop and maintain The National Map, meaning that the program would bring a positive net benefit to the Nation. The average improvement in the net benefit of performing a spatial data application was multiplied by a simulated number of application implementations across the country. The numbers of users, existing applications, and rates of application implementation increase over time as The National Map is developed and accessed by spatial data users around the country. Results from the 'most likely' estimates of model parameters and data inputs indicate that

  17. Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display.

    PubMed

    Tammen, Harald; Schulte, Imke; Hess, Rudiger; Menzel, Christoph; Kellmann, Markus; Mohring, Thomas; Schulz-Knappe, Peter

    2005-08-01

    The human Plasma Proteome Project pilot phase aims to analyze serum and plasma specimens to elucidate specimen characteristics by various proteomic techniques to ensure sufficient sample quality for the HUPO main phase. We used our proprietary peptidomics technologies to analyze the samples distributed by HUPO. Peptidomics summarizes technologies for visualization, quantitation, and identification of the low-molecular-weight proteome (<15 kDa), the "peptidome." We analyzed all four HUPO specimens (EDTA plasma, citrate plasma, heparin plasma, and serum) from African- and Asian-American donors and compared them to in-house collected Caucasian specimens. One main finding focuses on the most suitable method of plasma specimen collection. Gentle platelet removal from plasma samples is beneficial for improved specificity. Platelet contamination or activation of platelets by low temperature prior to their removal leads to distinct and multiple peptide signals in plasma samples. Two different specimen collection protocols for platelet-poor plasma are recommended. Further emphasis is placed on the differences between plasma and serum on a peptidomic level. A large number of peptides, many of them in rather high abundance, are only present in serum and not detectable in plasma. This ex vivo generation of multiple peptides hampers discovery efforts and is caused by a variety of factors: the release of platelet-derived peptides, other peptides derived from cellular components or the clot, enzymatic activities of coagulation cascades, and other proteases. We conclude that specimen collection is a crucial step for successful peptide biomarker discovery in human blood samples. For analysis of the low-molecular-weight proteome, we recommend the use of platelet-depleted EDTA or citrate plasma.

  18. Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46.

    PubMed

    Li, Rui-Fang; Lu, Zhi-Fang; Sun, Ya-Nan; Chen, Shi-Hua; Yi, Yan-Jie; Zhang, Hui-Ru; Yang, Shuo-Ye; Yu, Guang-Hai; Huang, Liang; Li, Chao-Nan

    2016-09-01

    Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.

  19. Large Improvements in MS/MS Based Peptide Identification Rates using a Hybrid Analysis

    SciTech Connect

    Cannon, William R.; Rawlins, Mitchell M.; Baxter, Douglas J.; Callister, Stephen J.; Lipton, Mary S.; Bryant, Donald A.

    2011-05-06

    We have developed a hybrid method for identifying peptides from global proteomics studies that significantly increases sensitivity and specificity in matching peptides to tandem mass spectra using database searches. The method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods1-3 with the accuracy of the intensity information contained in spectral libraries4-6. This hybrid approach is made possible by recent developments that elucidated the statistical framework common to both data analysis and statistical thermodynamics, resulting in a chemically inspired approach to incorporating fragment intensity information into both database searches and spectral library searches. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth.

  20. Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides.

    PubMed

    Kowalewska, Karolina; Stefanowicz, Piotr; Ruman, Tomasz; Fraczyk, Tomasz; Rode, Wojciech; Szewczuk, Zbigniew

    2010-12-01

    Phosphorylation of proteins is an essential signalling mechanism in eukaryotic and prokaryotic cells. Although N-phosphorylation of basic amino acid is known for its importance in biological systems, it is still poorly explored in terms of products and mechanisms. In the present study, two MS fragmentation methods, ECD (electron-capture dissociation) and CID (collision-induced dissociation), were tested as tools for analysis of N-phosphorylation of three model peptides, RKRSRAE, RKRARKE and PLSRTLSVAAKK. The peptides were phosphorylated by reaction with monopotassium phosphoramidate. The results were confirmed by 1H NMR and 31P NMR studies. The ECD method was found useful for the localization of phosphorylation sites in unstable lysine-phosphorylated peptides. Its main advantage is a significant reduction of the neutral losses related to the phosphoramidate moiety. Moreover, the results indicate that the ECD-MS may be useful for analysis of regioselectivity of the N-phosphorylation reaction. Stabilities of the obtained lysine-phosphorylated peptides under various conditions were also tested.

  1. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.

    PubMed

    Jewaria, Pawan Kumar; Hara, Toshiaki; Tanaka, Hirokazu; Kondo, Tatsuhiko; Betsuyaku, Shigeyuki; Sawa, Shinichiro; Sakagami, Youji; Aimoto, Saburo; Kakimoto, Tatsuo

    2013-08-01

    The positioning and density of leaf stomata are regulated by three secretory peptides, EPIDERMAL PATTERNING FACTOR 1 (EPF1), EPF2 and stomagen. Several lines of published evidence have suggested a regulatory pathway as follows. EPF1 and EPF2 are perceived by receptor complexes consisting of a receptor-like protein, TOO MANY MOUTHS (TMM), and receptor kinases, ERECTA (ER), ERECTA-LIKE (ERL) 1 and ERL2. These receptors activate a mitogen-activated protein (MAP) kinase module. MAP kinases phosphorylate and destabilize the transcription factor SPEECHLESS (SPCH), resulting in a decrease in the number of stomatal lineage cells. Stomagen acts antagonistically to EPF1 and EPF2. However, there is no direct evidence that EPF1 and EPF2 activate or that stomagen inactivates the MAP kinase cascade, through which they might regulate the SPCH level. Experimental modulation of these peptides in Arabidopsis thaliana would change the number of stomatal lineage cells in developing leaves, which in turn would change the expression of SPCH, making the interpretation difficult. Here we reconstructed this signaling pathway in differentiated leaf cells of Nicotiana benthamiana to examine signaling without the confounding effect of cell type change. We show that EPF1 and EPF2 are able to activate the MAP kinase MPK6, and that both EPF1 and EPF2 are able to decrease the SPCH level, whereas stomagen is able to increase it. Our data also suggest that EPF1 can be recognized by TMM together with any ER family receptor kinase, whereas EPF2 can be recognized by TMM together with ERL1 or ERL2, but not by TMM together with ER.

  2. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells

    PubMed Central

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R.; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-01-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  3. Micro- versus nano-sized molecularly imprinted polymers in MALDI-TOF mass spectrometry analysis of peptides.

    PubMed

    Cenci, Lucia; Bertolla, Maddalena; Anesi, Andrea; Ambrosi, Emmanuele; Guella, Graziano; Bossi, Alessandra Maria

    2017-08-16

    The integration of molecularly imprinted polymers (MIPs) with MALDI-TOF mass spectrometry (MS) combines MIP selectivity with MS sensitivity. Whether the size of the MIP material-micro versus nano-has an effect on the MS analysis was the object of the study. MIPs, targeting respectively the epitope peptide NR11 of cardiac troponin I and the peptide CK13 of human serum transferrin, were synthesized and characterized. The size-related performance of the MIP materials hyphenated with MALDI-TOF-MS analysis was studied by the incubation of the target peptide with the respective micro- or nano-MIP, followed by rinsing to remove non-specific deposition of the MIP to the MALDI target plate, co-crystallization with the organic matrix, and mass analysis. The quality of the MS analysis was assessed comparing the S/N of the mass peaks of the MIP-bound peptide to that of the same quantity of free peptide. Sweet spots and lower S/N (~ 1 order of magnitude) were observed for micro-MIP materials, while in the case of nano-MIP-bound peptide, the S/N was comparable to that of the free peptide, indicating higher compatibility of the nano-MIPs to MALDI-TOF-MS. The nano-MIP/MALDI-TOF-MS permitted the selective determination of the target peptide in real serum samples. Graphical abstract ᅟ.

  4. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11p15.

    PubMed

    Dufosse, J; Porchet, N; Audie, J P; Guyonnet Duperat, V; Laine, A; Van-Seuningen, I; Marrakchi, S; Degand, P; Aubert, J P

    1993-07-15

    A human tracheobronchial lambda gt 11 cDNA library was screened using antiserum prepared against the deglycosylated protein backbone of human tracheobronchial mucins. Two cDNAs, designated JER 28 and 57, obtained from this immunoscreening, were used to isolate two other cDNA clones, JUL 7 and JUL 10, from a human tracheobronchial lambda gt 10 cDNA library. These four clones (561, 1830, 1631 and 991 bp), which mapped to chromosome 11p15, were all found to contain degenerate 87-base-pair tandem repeats which encode non-repetitive peptides. Numerous deletions or insertions in an otherwise virtually perfect 87-base-pair tandem repeat create many shifts in reading frame which completely destroy the repetitive peptide structure. The peptide is composed of alternate hydrophobic and hydrophilic domains which probably differ in the extent to which they are glycosylated. The mRNAs are expressed both in the respiratory and in the digestive tracts. These human mucin probes may be important in assessing the abnormal mucins associated with inflammatory diseases or carcinoma from human mucosae.

  5. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11p15.

    PubMed Central

    Dufosse, J; Porchet, N; Audie, J P; Guyonnet Duperat, V; Laine, A; Van-Seuningen, I; Marrakchi, S; Degand, P; Aubert, J P

    1993-01-01

    A human tracheobronchial lambda gt 11 cDNA library was screened using antiserum prepared against the deglycosylated protein backbone of human tracheobronchial mucins. Two cDNAs, designated JER 28 and 57, obtained from this immunoscreening, were used to isolate two other cDNA clones, JUL 7 and JUL 10, from a human tracheobronchial lambda gt 10 cDNA library. These four clones (561, 1830, 1631 and 991 bp), which mapped to chromosome 11p15, were all found to contain degenerate 87-base-pair tandem repeats which encode non-repetitive peptides. Numerous deletions or insertions in an otherwise virtually perfect 87-base-pair tandem repeat create many shifts in reading frame which completely destroy the repetitive peptide structure. The peptide is composed of alternate hydrophobic and hydrophilic domains which probably differ in the extent to which they are glycosylated. The mRNAs are expressed both in the respiratory and in the digestive tracts. These human mucin probes may be important in assessing the abnormal mucins associated with inflammatory diseases or carcinoma from human mucosae. Images Figure 1 (cont.) Figure 1 Figure 4 Figure 6 PMID:7916618

  6. The antiviral activity of a synthetic peptide derived from the envelope SU glycoprotein of feline immunodeficiency virus maps in correspondence of an amphipathic helical segment.

    PubMed

    Massi, C; Indino, E; Lami, C; Fissi, A; Pieroni, O; La Rosa, C; Esposito, F; Galoppini, C; Rovero, P; Bandecchi, P; Bendinelli, M; Garzelli, C

    1998-05-08

    In a previous paper (Lombardi et al., Virology 220, 274-284, 1996), we-reported that a 20-amino acid synthetic peptide derived from a conserved region of the SU glycoprotein of feline immunodeficiency virus (FIV), i.e., 225EGPTLGNWAREIWATLFKKA244, bound the surface of FIV-permissive cells and inhibited FIV infection of CrFK and lymphoid cells. In this paper, we report, by the use of N- and C-terminus deleted synthetic analogs and by glycine scanning experiments that the minimal sequence needed for the full antiviral activity of the peptide maps in correspondence of amino acids 229LGNWAREIWATL240 and that either tryptophans residues at sequence position 232 or 237 are essential for such activity. Circular dichroism (CD) studies indicate that in the presence of a hydrophobic environment the 225E-A244 peptide adopts a structure containing an amphipathic alpha-helical segment of approximately 7 residues, corresponding to 2 helical turns, likely in correspondence of the sequence 231(N)WAREIW(A)238. Such a helical segment of FIV SU glycoprotein may play a role in viral envelope fusion role with the host cell membrane, thus proving critical for cell infection.

  7. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening.

    PubMed

    Zhang, Xiaoping; Wang, Jingxue; Wen, Kun; Mou, Zhirong; Zou, Liyun; Che, Xiaoyan; Ni, Bing; Wu, Yuzhang

    2009-12-01

    The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein plays an important role in viral infection, and is a potential major neutralizing determinant. In this study, three hybridoma cell lines secreting specific monoclonal antibodies against the RBD of the S protein were generated and their exact binding sites were identified. Using yeast surface display, the binding sites of these antibodies were defined to two linear regions on the RBD: S(337-360) and S(380-399). Using these monoclonal antibodies in phage peptide library screening identified 10 distinct mimotopes 12 amino acids in length. Sequence comparison between native epitopes and these mimotopes further confirmed the binding sites, and revealed key amino acid residues involved in antibody binding. None of these antibodies could neutralize the murine leukemia virus pseudotyped expressing the SARS-CoV spike protein (MLV/SARS-CoV). However, these mAbs could be useful in the diagnosis of SARS-CoV due to their exclusive reactivity with SARS-CoV. Furthermore, this study established a feasible platform for epitope mapping. Yeast surface display combined with phage peptide library screening provides a convenient strategy for the identification of epitope peptides from certain antigenic proteins.

  8. Preparation of Proteins and Peptides for Mass Spectrometry Analysis in a Bottom-Up Proteomics Workflow

    PubMed Central

    Gundry, Rebekah L.; White, Melanie Y.; Murray, Christopher I.; Kane, Lesley A.; Fu, Qin; Stanley, Brian A.; Van Eyk, Jennifer E.

    2010-01-01

    This unit outlines the steps required to prepare a sample for MS analysis following protein separation or enrichment by gel electrophoresis, liquid chromatography, and affinity capture within the context of a bottom-up proteomics workflow in which the protein is first broken up into peptides, either by chemical or enzymatic digestion, prior to MS analysis. Also included are protocols for enrichment at the peptide level, including phosphopeptide enrichment and reversed-phase chromatography for sample purification immediately prior to MS analysis. Finally, there is a discussion regarding the types of MS technologies commonly used to analyze proteomics samples, as well as important parameters that should be considered when analyzing the MS data to ensure stringent and robust protein identifications and characterization. PMID:19816929

  9. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    SciTech Connect

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast cancer vaccine design.

  10. MAPS

    Atmospheric Science Data Center

    2014-07-03

    ... Measurement of Air Pollution from Satellites (MAPS) data were collected during Space Shuttle flights in 1981, ... Facts Correlative Data  - CDIAC - Spring & Fall 1994 - Field and Aircraft Campaigns SCAR-B Block:  ...

  11. Geoscience data visualization and analysis using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D

  12. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal.

    PubMed

    Ma, Yibao; He, Yawen; Zhao, Ruiming; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2012-02-16

    Venom is an important genetic development crucial to the survival of scorpions for over 400 million years. We studied the evolution of the scorpion venom arsenal by means of comparative transcriptome analysis of venom glands and phylogenetic analysis of shared types of venom peptides and proteins between buthids and euscorpiids. Fifteen types of venom peptides and proteins were sequenced during the venom gland transcriptome analyses of two Buthidae species (Lychas mucronatus and Isometrus maculatus) and one Euscorpiidae species (Scorpiops margerisonae). Great diversity has been observed in translated amino acid sequences of these transcripts for venom peptides and proteins. Seven types of venom peptides and proteins were shared between buthids and euscorpiids. Molecular phylogenetic analysis revealed that at least five of the seven common types of venom peptides and proteins were likely recruited into the scorpion venom proteome before the lineage split between Buthidae and Euscorpiidae with their corresponding genes undergoing individual or multiple gene duplication events. These are α-KTxs, βKSPNs (β-KTxs and scorpines), anionic peptides, La1-like peptides, and SPSVs (serine proteases from scorpion venom). Multiple types of venom peptides and proteins were demonstrated to be continuously recruited into the venom proteome during the evolution process of individual scorpion lineages. Our results provide an insight into the recruitment pattern of the scorpion venom arsenal for the first time.

  13. Quantitative Analysis of Single Amino Acid Variant Peptides Associated with Pancreatic Cancer in Serum by an Isobaric Labeling Quantitative Method

    PubMed Central

    2015-01-01

    Single amino acid variations are highly associated with many human diseases. The direct detection of peptides containing single amino acid variants (SAAVs) derived from nonsynonymous single nucleotide polymorphisms (SNPs) in serum can provide unique opportunities for SAAV associated biomarker discovery. In the present study, an isobaric labeling quantitative strategy was applied to identify and quantify variant peptides in serum samples of pancreatic cancer patients and other benign controls. The largest number of SAAV peptides to date in serum including 96 unique variant peptides were quantified in this quantitative analysis, of which five variant peptides showed a statistically significant difference between pancreatic cancer and other controls (p-value < 0.05). Significant differences in the variant peptide SDNCEDTPEAGYFAVAVVK from serotransferrin were detected between pancreatic cancer and controls, which was further validated by selected reaction monitoring (SRM) analysis. The novel biomarker panel obtained by combining α-1-antichymotrypsin (AACT), Thrombospondin-1 (THBS1) and this variant peptide showed an excellent diagnostic performance in discriminating pancreatic cancer from healthy controls (AUC = 0.98) and chronic pancreatitis (AUC = 0.90). These results suggest that large-scale analysis of SAAV peptides in serum may provide a new direction for biomarker discovery research. PMID:25393578

  14. Analysis of synthetic peptides by capillary zone electrophoresis in organic/aqueous buffers.

    PubMed

    Miller, C; Rivier, J

    1998-06-01

    Whereas synthetic peptides have been routinely analyzed for purity by reverse phase high performance liquid chromatography (RPHPLC) for a number of years, it is only in the last decade that the use of capillary zone electrophoresis (CZE) in aqueous buffers has been taken advantage of as an orthogonal method for the detection of impurities. However, we have found that hydrophobic amino acids and peptides often migrate as very broad, tailing absorbances or even precipitate in the aqueous buffers during CZE analysis. As a result, alternative buffer systems containing organic modifiers were sought. Varying concentrations of acetonitrile, methanol and isopropanol in sodium phosphate and triethylammonium phosphate buffers were used to study their effects on the electrophoretic migration of several synthetic peptides [gonadotropin releasing hormone (GnRH), corticotropin releasing factor (CRF) and analogs] and an enantiomeric synthetic amino acid. The organic/aqueous buffers used to obtain the best conditions for separation of porcine gonadotropin-releasing hormone (GnRH) and chicken II GnRH were then used to optimize a separation of nine native forms of GnRH decapeptides. Interestingly, several of these GnRHs have identical formal charges and yet could be separated. This suggests a mixed mechanism of separation that discriminates not only on the basis of peptide charge and structure but also of adsorptive properties (Van der Waals forces, dipole-dipole interactions and hydrogen bonding) of the capillaries.

  15. Divergent-flow isoelectric focusing for separation and preparative analysis of peptides.

    PubMed

    Duša, Filip; Křenková, Jana; Moravcová, Dana; Kahle, Vladislav; Slais, Karel

    2012-07-01

    A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.

  16. Quantitative analysis of the T cell repertoire selected by a single peptide-major histocompatibility complex.

    PubMed

    Gapin, L; Fukui, Y; Kanellopoulos, J; Sano, T; Casrouge, A; Malier, V; Beaudoing, E; Gautheret, D; Claverie, J M; Sasazuki, T; Kourilsky, P

    1998-06-01

    The positive selection of CD4+ T cells requires the expression of major histocompatibility complex (MHC) class II molecules in the thymus, but the role of self-peptides complexed to class II molecules is still a matter of debate. Recently, it was observed that transgenic mice expressing a single peptide-MHC class II complex positively select significant numbers of diverse CD4+ T cells in the thymus. However, the number of selected T cell specificities has not been evaluated so far. Here, we have sequenced 700 junctional complementarity determining regions 3 (CDR3) from T cell receptors (TCRs) carrying Vbeta11-Jbeta1.1 or Vbeta12-Jbeta1.1 rearrangements. We found that a single peptide-MHC class II complex positively selects at least 10(5) different Vbeta rearrangements. Our data yield a first evaluation of the size of the T cell repertoire. In addition, they provide evidence that the single Ealpha52-68-I-Ab complex skews the amino acid frequency in the TCR CDR3 loop of positively selected T cells. A detailed analysis of CDR3 sequences indicates that a fraction of the beta chain repertoire bears the imprint of the selecting self-peptide.

  17. “On silico” peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions

    PubMed Central

    Price, Jordan V; Tangsombatvisit, Stephanie; Xu, Guangyu; Levy, Dan; Baechler, Emily C.; Gozani, Or; Varma, Madoo; Liu, Chih Long

    2011-01-01

    We have developed a novel, silicon-based peptide array for broad biological applications, including potential for development as a real-time point-of-care platform. We employed photolithography on silicon wafers to synthesize microarrays (Intel arrays), containing every possible overlapping peptide within a linear protein sequence covering the N-terminal tail of human histone H2B. Arrays also included peptides with acetylated and methylated lysine residues reflecting post-translational modifications of H2B. We defined minimum binding epitopes for commercial antibodies recognizing modified and unmodified H2B peptides. We further demonstrated that this platform is suitable for highly sensitive methyltransferase and kinase substrate characterization. Intel arrays also revealed specific H2B epitopes recognized by autoantibodies in individuals with systemic lupus erythematosus (SLE) that have increased disease severity. By combining emerging nonfluorescence-based detection methods with an underlying integrated circuit, we are now poised to create a truly transformative proteomics platform with applications in bioscience, drug development, and clinical diagnostics. PMID:22902875

  18. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  19. Homogenization of soil properties map by Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Garrido, Alberto; Villeta, Maria; Tarquis, Ana Maria

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, becoming very important to implement agriculture risk management policies by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has gained importance in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. To establish index influence area is necessary to have a secondary information that show us homogeneous climatic and soil areas, which inside of each homogeneous classes, index measurements on crops of interest are going to be similar, and in this way reduce basis risk. But it is necessary an efficient method to accomplish this aim, to get homogeneous areas that not depends on only in expert criteria and that could be widely used, for this reason this study asses two conventional agricultural and geographic methods (control and climatic maps) based in expert criteria, and one classical statistical method of multi-factorial analysis (factorial map), all of them to homogenize soil and climatic characteristics. Resulting maps were validated by agricultural and spatial analysis, obtaining very good results in statistical method (Factorial map) that proves to be an efficient and accuracy method that could be used for similar porpoises.

  20. Characterization of novel RFamide peptides in the central nervous system of the brown hagfish: isolation, localization, and functional analysis.

    PubMed

    Osugi, Tomohiro; Uchida, Katsuhisa; Nozaki, Masumi; Tsutsui, Kazuyoshi

    2011-11-01

    RFamide (RFa) peptides play various important roles in the central nervous system in both invertebrates and vertebrates. However, there is no evidence of the existence of any RFamide peptide in the brain of hagfish, one of the oldest lineages of vertebrates. In this study, we sought to identify novel RFamide peptides from the brains of hagfish (Paramyxine atami). We identified four novel RFamide peptides, which had the C-terminal Pro-Gln-Arg-Phe-NH2 structure. cDNA cloning revealed that the identified RFamide peptides are encoded in two types of cDNA. Molecular phylogenetic analysis of the two precursors indicated that the hagfish RFamide peptides belong to the PQRFamide peptide group that includes mammalian neuropeptide FF and AF. Based on immunohistochemistry and in situ hybridization, hagfish PQRFamide peptide precursor mRNA and its translated peptides were localized in the infundibular nucleus of the hypothalamus. Immunoreactive fibers were terminated on blood vessels in the infundibular nucleus. Dense immunoreactive fibers were also observed in other brain regions. We further showed that one of the hagfish PQRFamide peptides significantly stimulated the expression of gonadotropin-β mRNA in the cultured hagfish pituitary. These results indicate that the control mechanism of gonadotropin expression by a hypothalamic neuropeptide evolved in the agnathan brain. This is the first evidence describing the identification of RFamide peptides in the hagfish brain. This is also the first report showing the regulation of gonadotropin expression by a homolog of neuropeptide FF that belongs to the PQRFamide peptide group in any vertebrate.

  1. Using AutoMap for Social and Texual Network Analysis

    DTIC Science & Technology

    2008-07-01

    There are other thesauri that the user may use to assign meaning or associate concepts; those are discussed in this report but not shown in figure 1... thesauri . When the input text has been sufficiently prepared, the concepts are associated as “bigrams,” or pairs of character strings. The...association must be determined separately. AutoMap has several preloaded thesauri . The analyst may configure a thesaurus specific to the analysis

  2. Applications of plasma desorption mass spectrometry to the analysis of bioactive peptides

    SciTech Connect

    Alai, M.

    1988-01-01

    The applications of Cf-252 plasma desorption mass spectrometry to the analysis of peptides is evaluated. Sample preparation is a critical stage in such type of analyses. The plasma desorption mass spectra of compounds dissolved and electrosprayed in solutions containing reduced glutathione, showed increased molecular ion signal, reduced peak widths and an increase in multiply charged ions. Plasma desorption mass spectrometry was also evaluated for the analysis of glycopeptides, especially the glycosylation site microheterogeneity. The three N-linked sites of bovine fetuin, as a model glycoprotein, digested with trypsin and treated with neuraminidase, were identified by a combination of amino acid composition, amino acid sequence and molecular ions obtained by mass spectrometry. Methodology has also been developed for the study of mixed disulfides formed between the Cys residue of peptides and glutathione by mass spectrometry.

  3. Multitemporal landslides inventory map updating using spaceborne SAR analysis

    NASA Astrophysics Data System (ADS)

    Del Ventisette, C.; Righini, G.; Moretti, S.; Casagli, N.

    2014-08-01

    Deep seated gravitational slope deformation and slow moving landslides on large areas were analyzed by spaceborne SAR interferometry: a test site in the Italian Alps of about 300 km2 was selected for updating pre-existing landslide inventory maps based on the advanced interferometric processing technique (A-DInSAR). SAR images from ERS-1/2 satellites (1995-2000) and from Envisat satellite (2002-2009) have been used, allowing the deferred-time analysis of past movements and the record of recent slope movements. In the multi-temporal updated landslide inventory database, the characteristics of the landslides were highlighted: geometry, state of activity, typology, monitoring systems, interventions, source of information and the updating time and actions. Furthermore, for each landslide area, the occurrence of persistent scatterers points and the statistical description of their velocities were reported. This methodology may allow the systematic updating of landslides inventory maps keeping all information on each landslide, becoming the basic tool for the realization and updating of thematic maps such as the landslide susceptibility map.

  4. Analysis of Dengue Virus Enhancing Epitopes Using Peptide Antigens Derived From the Envelope Glycoprotein Gene Sequence.

    DTIC Science & Technology

    1991-11-29

    AD-A261 707 AD____ ARMY PROJECT ORDER NO: 89PP9961 TITLE: ANALYSIS OF DENGUE VIRUS ENHANCING EPITOPES USING PEPTIDE ANTIGENS DERIVED FROM THE...DATES COVERED 29 Nov 91 Final Report (9/1/89 - 11/30/91) 4. TITLE AND SUBTITLE Ana ysis or Dengue Vnrus nancing 5. FUNDING NUMBERS Epitopes Using...biological events leading to the development of severe disease manifestations of dengue infections ( dengue hemorrhagic fever/ dengue shock syndrome

  5. MALDI MS sample preparation by using paraffin wax film: systematic study and application for peptide analysis.

    PubMed

    Wang, Junhua; Chen, Ruibing; Ma, Mingming; Li, Lingjun

    2008-01-15

    Recently developed sample preparation techniques employing hydrophobic sample support have improved the detection sensitivity and mass spectral quality of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). These methods concentrate the samples on target by minimizing the sample area via the solvent repellent effect of the target surface. In the current study, we employed the use of paraffin wax film (Parafilm M) for improved MALDI MS analysis of low-abundance peptide mixtures, including neuronal tissue releasate and protein tryptic digests. This thin film was found to strongly repel polar solvents including water, methanol, and acetonitrile, which enabled the application of a wide range of sample preparation protocols that involved the use of various organic solvents. A "nanoliter-volume deposition" technique employing a capillary column has been used to produce tiny ( approximately 400 microm) matrix spots of 2,5-dihydroxybenzoic acid on the film. By systematically optimizing the sample volume, solvent composition, and film treatment, the Parafilm M substrate in combination with the nanoliter-volume matrix deposition method allowed dilute sample to be concentrated on the film for MALDI MS analysis. Peptide mixtures with nanomolar concentrations have been detected by MALDI time-of-flight and MALDI Fourier transform ion cyclotron resonance mass spectrometers. Overall, the use of Parafilm M enabled improved sensitivity and spectral quality for the analysis of complex peptide mixtures.

  6. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    PubMed

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS(3) experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  7. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS

    NASA Astrophysics Data System (ADS)

    Hage, Christoph; Ihling, Christian H.; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids.

  8. Systematic Mutational Analysis of Peptide Inhibition of the p53-MDM2/MDMX Interactions

    PubMed Central

    Li, Chong; Pazgier, Marzena; Li, Changqing; Yuan, Weirong; Liu, Min; Wei, Gang; Lu, Wei-Yue; Lu, Wuyuan

    2010-01-01

    Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly two orders of magnitude higher than that of 17–28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp and Leu dominate PMI or 17–28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17–28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17–28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25–109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized inter-molecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions. PMID:20226197

  9. Spatiotemporal analysis of sensor logs using growth ring maps.

    PubMed

    Bak, Peter; Mansmann, Florian; Janetzko, Halldor; Keim, Daniel A

    2009-01-01

    Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and are hard to navigate, and c) map distortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of time that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twofold manner; while distinct colors distinguish between sensor nodes in different regions, the colors' intensity is used as an indicator to the temporal property of the subjects' activity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities and extract patterns of interest in spatiotemporal data by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based on transition matrices only reveal limited results. Results and findings are cross-validated using multidimensional scaling. While the focus of this paper is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing data, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning.

  10. Analysis Sharpens Mars Hydrogen Map, Hinting Equatorial Water Ice

    NASA Image and Video Library

    2017-09-28

    Re-analysis of 2002-2009 data from a hydrogen-finding instrument on NASA's Mars Odyssey orbiter increased the resolution of maps of hydrogen abundance. The reprocessed data (lower map) shows more "water-equivalent hydrogen" (darker blue) in some parts of this equatorial region of Mars. Puzzingly, this suggests the possible presence of water ice just beneath the surface near the equator, though it would not be thermodynamically stable there. The upper map uses raw data from Odyssey's neutron spectrometer instrument, which senses the energy state of neutrons coming from Mars, providing an indication of how much hydrogen is present in the top 3 feet (1 meter) of the surface. Hydrogen detected by Odyssey at high latitudes of Mars in 2002 was confirmed to be in the form of water ice by the follow-up NASA Phoenix Mars Lander mission in 2008. A 2017 reprocessing of the older data applied image-reconstruction techniques often used to reduce blurring from medical imaging data. The results are shown here for an area straddling the equator for about one-fourth the circumference of the planet, centered at 175 degrees west longitude. The white contours outline lobes of a formation called Medusae Fossae, coinciding with some areas of higher hydrogen abundance in the enhanced-resolution analysis. The black line indicates the limit of a relatively young lava plain, coinciding with areas of lower hydrogen abundance in the enhanced-resolution analysis. The color-coding key for hydrogen abundance in both maps is indicated by the horizontal bar, in units expressed as how much water would be present in the ground if the hydrogen is all in the form of water. Units of the equivalent water weight, as a percentage of the material in the ground, are correlated with counts recorded by the spectrometer, ranging from less than 1 weight-percent water equivalent (red) to more than 30 percent (dark blue). https://photojournal.jpl.nasa.gov/catalog/PIA21848

  11. A comprehensive analysis of predicted HLA binding peptides of JE viral proteins specific to north Indian isolates.

    PubMed

    Sharma, Pawan; Saxena, Komal; Mishra, Sanjay; Kumar, Ajay

    2014-01-01

    Japanese encephalitis (JE), a viral disease has significantly increased worldwide especially, in the developing region due to challenges in immunization, vector control and lack of appropriate treatment methods. An effective, yet an expensive heat-killed vaccine is available for the disease. Therefore, the design and development of short peptide vaccine candidate is promising. We used immune-informatics methods to perform a comprehensive analysis of the entire JEV proteome of north Indian isolate to identify the conserved peptides binding known specific HLA alleles among the documented JEV genotypes 1, 2, 3, 4 and 5. The prediction analysis identified 102 class I (using propred I) and 118 class II (using propred) binding peptides at 4% threshold value. These predicted HLA allele binding peptides were further analyzed for potential conserved region using IEDB (an immune epitope database and analysis resource). This analysis shows that 78.81% of class II (in genotype 2) and 76.47% of HLA I (in genotype 3) bound peptides are conserved. The peptides IPIVSVASL, KGAQRLAAL, LAVFLICVL and FRTLFGGMS, VFLICVLTV, are top ranking with potential super antigenic property by binding to all HLA allele members of B7 and DR4 super-types, respectively. This data finds application in the design and development of short peptide vaccine candidates and diagnostic agents for JE following adequate validation and verification.

  12. PHASTpep: Analysis Software for Discovery of Cell-Selective Peptides via Phage Display and Next-Generation Sequencing

    PubMed Central

    Dasa, Siva Sai Krishna; Kelly, Kimberly A.

    2016-01-01

    Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887

  13. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames

    PubMed Central

    Laumont, Céline M.; Daouda, Tariq; Laverdure, Jean-Philippe; Bonneil, Éric; Caron-Lizotte, Olivier; Hardy, Marie-Pierre; Granados, Diana P.; Durette, Chantal; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude

    2016-01-01

    In view of recent reports documenting pervasive translation outside of canonical protein-coding sequences, we wished to determine the proportion of major histocompatibility complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using high-throughput mass spectrometry to probe the six-frame translation of the B-cell transcriptome. We report that ∼10% of MAPs originate from allegedly noncoding genomic sequences or exonic out-of-frame translation. The biogenesis and properties of these ‘cryptic MAPs' differ from those of conventional MAPs. Cryptic MAPs come from very short proteins with atypical C termini, and are coded by transcripts bearing long 3′UTRs enriched in destabilizing elements. Relative to conventional MAPs, cryptic MAPs display different MHC class I-binding preferences and harbour more genomic polymorphisms, some of which are immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the scope of CD8 T-cell immunosurveillance. PMID:26728094

  14. IsoMAP (Isoscape Modeling, Analysis, and Prediction)

    NASA Astrophysics Data System (ADS)

    Miller, C. C.; Bowen, G. J.; Zhang, T.; Zhao, L.; West, J. B.; Liu, Z.; Rapolu, N.

    2009-12-01

    IsoMAP is a TeraGrid-based web portal aimed at building the infrastructure that brings together distributed multi-scale and multi-format geospatial datasets to enable statistical analysis and modeling of environmental isotopes. A typical workflow enabled by the portal includes (1) data source exploration and selection, (2) statistical analysis and model development; (3) predictive simulation of isotope distributions using models developed in (1) and (2); (4) analysis and interpretation of simulated spatial isotope distributions (e.g., comparison with independent observations, pattern analysis). The gridded models and data products created by one user can be shared and reused among users within the portal, enabling collaboration and knowledge transfer. This infrastructure and the research it fosters can lead to fundamental changes in our knowledge of the water cycle and ecological and biogeochemical processes through analysis of network-based isotope data, but it will be important A) that those with whom the data and models are shared can be sure of the origin, quality, inputs, and processing history of these products, and B) the system is agile and intuitive enough to facilitate this sharing (rather than just ‘allow’ it). IsoMAP researchers are therefore building into the portal’s architecture several components meant to increase the amount of metadata about users’ products and to repurpose those metadata to make sharing and discovery more intuitive and robust to both expected, professional users as well as unforeseeable populations from other sectors.

  15. An analysis of the Venus thermal infrared temperature maps

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Herman, J. R.

    1978-01-01

    A detailed analysis of the published Venus IR maps has been performed and a number of new results have been obtained. The global contour map of the average temperature variations in the vicinity of 6120 km reveals the existence of saddle points along the equator at dawn, at noon, and just before sunset. The hot spots observed at 4:30-4:40 A.M. at 65 deg to 68 deg S latitude appear to be in the vicinity of the coldest region from which the 8- to 14-micron emissions originate. At large earth zenith angles the limb darkening curves show a hump which is attributed primarily to a single patchy haze layer in the vicinity of 6123 km and with a thickness of the order of 3 km. An average IR source region temperature of 250 K is obtained at the equator. At the poles the same altitude region is 8 K cooler.

  16. An analysis of the Venus thermal infrared temperature maps

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Herman, J. R.

    1978-01-01

    A detailed analysis of the published Venus IR maps has been performed and a number of new results have been obtained. The global contour map of the average temperature variations in the vicinity of 6120 km reveals the existence of saddle points along the equator at dawn, at noon, and just before sunset. The hot spots observed at 4:30-4:40 A.M. at 65 deg to 68 deg S latitude appear to be in the vicinity of the coldest region from which the 8- to 14-micron emissions originate. At large earth zenith angles the limb darkening curves show a hump which is attributed primarily to a single patchy haze layer in the vicinity of 6123 km and with a thickness of the order of 3 km. An average IR source region temperature of 250 K is obtained at the equator. At the poles the same altitude region is 8 K cooler.

  17. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells

    PubMed Central

    Bozzacco, Leonia; Yu, Haiqiang; Zebroski, Henry A.; Dengjel, Jörn; Deng, Haiteng; Mojsov, Svetlana; Steinman, Ralph M.

    2011-01-01

    Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen presenting cells and display short bound peptide fragments derived from self and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self antigens and initiate the CD4+ T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5× 108 splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endo-lysosomal (12%), nuclear (14%) and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 copies to 2×105 copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions. PMID:21913724

  18. Children's Understanding of Large-Scale Mapping Tasks: An Analysis of Talk, Drawings, and Gesture

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Cordy, Michelle; Langemeyer, Melanie

    2015-01-01

    This research examined how children represent motion in large-scale mapping tasks that we referred to as "motion maps". The underlying mathematical content was transformational geometry. In total, 19 children, 8- to 10-year-old, created motion maps and captured their motion maps with accompanying verbal description digitally. Analysis of…

  19. Children's Understanding of Large-Scale Mapping Tasks: An Analysis of Talk, Drawings, and Gesture

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Cordy, Michelle; Langemeyer, Melanie

    2015-01-01

    This research examined how children represent motion in large-scale mapping tasks that we referred to as "motion maps". The underlying mathematical content was transformational geometry. In total, 19 children, 8- to 10-year-old, created motion maps and captured their motion maps with accompanying verbal description digitally. Analysis of…

  20. The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways.

    PubMed

    Tremblay, Nicolas; Hill, Patrick; Conway, Kyle R; Boddy, Christopher N

    2016-01-01

    Polyketides and nonribosomal peptides constitute two large families of microbial natural products. Over the past 20 years a broad range of microbial polyketide and nonribosomal peptide biosynthetic pathways have been characterized leading to a surfeit of genetic data on polyketide and nonribosomal peptide biosynthesis. We developed the ClusterMine360 database, which stores the antiSMASH-based annotation of gene clusters in the NCBI database, linking the structure of the natural product to the biosynthetic gene cluster. This database is searchable and enables the user to access multiple sequence files for phylogenetic analysis of polyketide and nonribosomal peptide biosynthetic genes. Herein we describe how to add compound families and gene clusters to the database and search it using key words or structures to identify specific gene clusters. We also describe how to download multiple sequence files for specific catalytic domains from polyketide and nonribosomal peptide biosynthesis.

  1. A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    PubMed Central

    2009-01-01

    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci. PMID:19517207

  2. Why Map Issues? On Controversy Analysis as a Digital Method

    PubMed Central

    2015-01-01

    This article takes stock of recent efforts to implement controversy analysis as a digital method in the study of science, technology, and society (STS) and beyond and outlines a distinctive approach to address the problem of digital bias. Digital media technologies exert significant influence on the enactment of controversy in online settings, and this risks undermining the substantive focus of controversy analysis conducted by digital means. To address this problem, I propose a shift in thematic focus from controversy analysis to issue mapping. The article begins by distinguishing between three broad frameworks that currently guide the development of controversy analysis as a digital method, namely, demarcationist, discursive, and empiricist. Each has been adopted in STS, but only the last one offers a digital “move beyond impartiality.” I demonstrate this approach by analyzing issues of Internet governance with the aid of the social media platform Twitter. PMID:26336325

  3. Why Map Issues? On Controversy Analysis as a Digital Method.

    PubMed

    Marres, Noortje

    2015-09-01

    This article takes stock of recent efforts to implement controversy analysis as a digital method in the study of science, technology, and society (STS) and beyond and outlines a distinctive approach to address the problem of digital bias. Digital media technologies exert significant influence on the enactment of controversy in online settings, and this risks undermining the substantive focus of controversy analysis conducted by digital means. To address this problem, I propose a shift in thematic focus from controversy analysis to issue mapping. The article begins by distinguishing between three broad frameworks that currently guide the development of controversy analysis as a digital method, namely, demarcationist, discursive, and empiricist. Each has been adopted in STS, but only the last one offers a digital "move beyond impartiality." I demonstrate this approach by analyzing issues of Internet governance with the aid of the social media platform Twitter.

  4. A LiDAR based analysis of hydraulic hazard mapping

    NASA Astrophysics Data System (ADS)

    Cazorzi, F.; De Luca, A.; Checchinato, A.; Segna, F.; Dalla Fontana, G.

    2012-04-01

    Mapping hydraulic hazard is a ticklish procedure as it involves technical and socio-economic aspects. On the one hand no dangerous areas should be excluded, on the other hand it is important not to exceed, beyond the necessary, with the surface assigned to some use limitations. The availability of a high resolution topographic survey allows nowadays to face this task with innovative procedures, both in the planning (mapping) and in the map validation phases. The latter is the object of the present work. It should be stressed that the described procedure is proposed purely as a preliminary analysis based on topography only, and therefore does not intend in any way to replace more sophisticated analysis methods requiring based on hydraulic modelling. The reference elevation model is a combination of the digital terrain model and the digital building model (DTM+DBM). The option of using the standard surface model (DSM) is not viable, as the DSM represents the vegetation canopy as a solid volume. This has the consequence of unrealistically considering the vegetation as a geometric obstacle to water flow. In some cases the topographic model construction requires the identification and digitization of the principal breaklines, such as river banks, ditches and similar natural or artificial structures. The geometrical and topological procedure for the validation of the hydraulic hazard maps is made of two steps. In the first step the whole area is subdivided into fluvial segments, with length chosen as a reasonable trade-off between the need to keep the hydrographical unit as complete as possible, and the need to separate sections of the river bed with significantly different morphology. Each of these segments is made of a single elongated polygon, whose shape can be quite complex, especially for meandering river sections, where the flow direction (i.e. the potential energy gradient associated to the talweg) is often inverted. In the second step the segments are analysed

  5. Insulin biosynthesis: studies of Islet polyribosomes (nascent peptides-sucrose gradient analysis-gel filtration).

    PubMed

    Permutt, M A; Kipnis, D M

    1972-02-01

    A method is described for separation of polyribosomes from as few as 25 isolated Islets of Langerhans, representing about 250 mug of pancreatic tissue. Islets are labeled with [(3)H]leucine and polysomes are isolated with liver polyribosomes, which serve as carrier and inhibitor of ribonuclease activity. Islets incubated at 37 degrees C for 45 min in 15.5 mM glucose, then pulsed with [(3)H]leucine, incorporated about 2-3 times more label into nascent peptides on islet polysomes than islets incubated in 2.8 mM glucose. Sucrose gradient analysis of the labeled polysomes indicated that raising the glucose concentration preferentially stimulated synthesis of peptides on trisomes and larger polyribosomes. Islets incubated with [(3)H]leucine for 15 min incorporated two-thirds of the label into proteins on membrane-bound polysomes. At least 85% of the proinsulin synthesis during this time occurs on membrane-bound polysomes.

  6. Kinetic analysis of artificial peptide self-replication. Part I: the homochiral case.

    PubMed

    Islas, Jesús Rivera; Pimienta, Véronique; Micheau, Jean-Claude; Buhse, Thomas

    2003-03-25

    Computational kinetic analysis of a lately discovered homochiral peptide self-replicator is presented. A 6-step kinetic model was designed that addresses the main reactions and hydrophobic interactions involved in this template-directed, autocatalytic system and that gave rise to excellent fitting of 4 previously published independent experimental series. The model sheds light on the mechanistic principle of the reaction system and illustrates directly a number of dynamic properties such as the observed autocatalytic efficiency. It was found that the dynamics are basically governed by two reversible hydrophobic interactions: between the template and a peptide fragment and between two template species. The later association was determined to be considerably more favored, which leads to the predominant presence of the catalytically inactive template dimer in the reaction system. Our results show that the involvement of a template trimer is not necessary to obtain the observed fittings.

  7. Improving Software Performance for Peptide Electron Transfer Dissociation Data Analysis by Implementation of Charge State- and Sequence-Dependent Scoring*

    PubMed Central

    Baker, Peter R.; Medzihradszky, Katalin F.; Chalkley, Robert J.

    2010-01-01

    The use of electron transfer dissociation (ETD) fragmentation for analysis of peptides eluting in liquid chromatography tandem mass spectrometry experiments is increasingly common and can allow identification of many peptides and proteins in complex mixtures. Peptide identification is performed through the use of search engines that attempt to match spectra to peptides from proteins in a database. However, software for the analysis of ETD fragmentation data is currently less developed than equivalent algorithms for the analysis of the more ubiquitous collision-induced dissociation fragmentation spectra. In this study, a new scoring system was developed for analysis of peptide ETD fragmentation data that varies the ion type weighting depending on the precursor ion charge state and peptide sequence. This new scoring regime was applied to the analysis of data from previously published results where four search engines (Mascot, Open Mass Spectrometry Search Algorithm (OMSSA), Spectrum Mill, and X!Tandem) were compared (Kandasamy, K., Pandey, A., and Molina, H. (2009) Evaluation of several MS/MS search algorithms for analysis of spectra derived from electron transfer dissociation experiments. Anal. Chem. 81, 7170–7180). Protein Prospector identified 80% more spectra at a 1% false discovery rate than the most successful alternative searching engine in this previous publication. These results suggest that other search engines would benefit from the application of similar rules. PMID:20513802

  8. Landslide susceptibility mapping using geographically-weighted principal component analysis

    NASA Astrophysics Data System (ADS)

    Faraji Sabokbar, Hassanali; Shadman Roodposhti, Majid; Tazik, Esmaeil

    2014-12-01

    Landslide susceptibility mapping (LSM) documents the extent of probable landslide events in a region to investigate the distribution, pattern, recurrence and statistics of slope failure and consequent mass movement. Similar to other analyses of quantitative sources of spatial data, LSM sometimes uses principal component analysis (PCA), a form of multivariate statistical analysis. This approach helps identify susceptibility by grouping locations or by measuring the variation between groups. The present study outlines the principles and examines the capability of the proposed methodology for landslide mapping, considers optimized shapes for spatial units, estimates an efficient kernel size using alternating least squares (ALS) analysis confirmed by cross-validation, and uses geographically-weighted principal component analysis (GWPCA) to calculate landslide susceptibility using a fuzzy gamma operator. RMSE and PBIAS statistical estimators were then used to assess operational efficiency of all LSMs using fuzzy gamma operators (0.1 to 0.9). ROC curves were drawn for the best result for LSM using a landslide inventory containing 82 landslide points, with an area under curve of 0.889. The new tools can improve the quality of landslide-related analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluation.

  9. PIXE-quantified AXSIA : elemental mapping by multivariate spectral analysis.

    SciTech Connect

    Doyle, Barney Lee; Antolak, Arlyn J.; Campbell, J. L.; Ryan, C. G.; Provencio, Paula Polyak; Barrett, Keith E.; Kotula, Paul Gabriel

    2005-07-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other.

  10. Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry.

    PubMed

    Fritz, Ria; Ruth, Wolfgang; Kragl, Udo

    2009-07-01

    Acetonitrile as a solvent used in liquid chromatography/mass spectrometry (LC/MS) of peptides and proteins is a relatively toxic solvent (LD50 oral; rat; 2,460 mg/kg) compared to alternatives like methanol (LD50 oral; rat; 5,628 mg/kg) and acetone (LD50 oral; rat; 5,800 mg/kg). Strategies to minimize its consumption in LC are either to reduce the inner diameter of the column or replace acetonitrile with a suitable alternative. Methanol is often recommended to replace acetonitrile in peptide analysis. In this study however, the main focus lies on another alternative solvent for LC/MS of peptides; acetone. A number of model proteins were tryptically digested and the peptide solutions were analyzed on a linear trap quadrupole (LTQ) mass spectrometer. The performances of acetonitrile, methanol and acetone were compared according to the quality of the chromatograms obtained and identification of the peptides using the BioWorks software developed by Thermo Scientific. In accordance to the elutropic series, acetone was found to significantly reduce the retention times of peptides separated by C18 column material with regard to acetonitrile while methanol led to increased retention times. Acetone was the superior solvent to methanol for most of the tested model proteins reaching similar sequence coverage and numbers of identified peptides as acetonitrile. We therefore propose acetone as an alternative to acetonitrile in LC/MS of peptides.

  11. Computational Structure-activity Relationship Analysis of Small-Molecule Agonists for Human Formyl Peptide Receptors

    PubMed Central

    Khlebnikov, Andrei I.; Schepetkin, Igor A; Quinn, Mark T.

    2010-01-01

    N-formyl peptide receptors (FPR) are important in host defense. Because of the potential for FPRs as therapeutic targets, recent efforts have focused on identification of non-peptide agonists for two FPR subtypes, FPR1 and FPR2. Given that a number of specific small molecule agonists have recently been identified, we hypothesized that computational structure-activity relationship (SAR) analysis of these molecules could provide new information regarding molecular features required for activity. We used a training set of 71 compounds, including 10 FPR1-specific agonists, 36 FPR2-specific agonists, and 25 non-active analogs. A sequence of (1) one-way analysis of variance selection, (2) cluster analysis, (3) linear discriminant analysis, and (4) classification tree analysis led to the derivation of SAR rules with high (95.8%) accuracy for correct classification of compounds. These SAR rules revealed key features distinguishing FPR1 versus FPR2 agonists. To verify predictive ability, we evaluated a test set of 17 additional FPR agonists, and found that the majority of these agonists (>94%) were classified correctly as agonists. This study represents the first successful application of classification tree methodology based on atom pairs to SAR analysis of FPR agonists. Importantly, these SAR rules represent a relatively simple classification approach for virtual screening of FPR1/FPR2 agonists. PMID:20870313

  12. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates.

    PubMed

    Hawe, Andrea; Hulse, Wendy L; Jiskoot, Wim; Forbes, Robert T

    2011-09-01

    To evaluate Taylor dispersion analysis (TDA) as a novel method for determination of hydrodynamic radius of therapeutic peptides and proteins in non-stressed and stressed formulations and to compare it with dynamic light scattering (DLS). The hydrodynamic radius of oxytocin, bovine serum albumin, various monoclonal antibodies (type IgG) and etanercept at concentrations between 0.05 and 50 mg/ml was determined by TDA and DLS. IgGs and etanercept were stressed (elevated temperatures) and analyzed by TDA, DLS and HP-SEC. TDA and DLS were comparable in sizing non-stressed peptides and proteins in a concentration range of about 0.5 to 50 mg/ml. TDA performed well even at lower concentrations, where DLS tends to provide theoretically high values of the Z-average radius. However, because of differences in the detection physics, DLS was more weighted towards the detection of aggregates in stressed formulations than TDA. Advantageously, TDA was also able to size the small peptide oxytocin, which was not feasible by DLS. TDA allows the accurate determination of the hydrodynamic radius of peptides and proteins over a wide concentration range, with little interference from excipients present in the sample. It is marginally less sensitive than DLS in detecting size increase for stressed protein samples.

  13. Sustained Effects of Acupuncture Stimulation Investigated with Centrality Mapping Analysis.

    PubMed

    Long, Xiangyu; Huang, Wenjing; Napadow, Vitaly; Liang, Fanrong; Pleger, Burkhard; Villringer, Arno; Witt, Claudia M; Nierhaus, Till; Pach, Daniel

    2016-01-01

    Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation.

  14. Application of automated multispectral analysis to Delaware's coastal vegetation mapping

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Daiber, D.; Bartlett, D. S.; Crichton, O. W.; Fornes, A. O.

    1973-01-01

    There are no author-identified significant results in this report. Overlay maps of Delaware's wetlands have been prepared, showing the dominant species or group of species of vegetation present. Five such categories of vegetation were used indicating marshes dominated by: (1) salt marsh cord grass; (2) salt marsh hay and spike grass; (3) reed grass; (4) high tide bush and sea myrtle; and (5) a group of fresh water species found in impounded areas built to attract water fowl. Fifteen such maps cover Delaware's wetlands from the Pennsylvania to the Maryland borders. The mapping technique employed utilizes the General Electric multispectral data processing system. This system is a hybrid analog-digital system designed as an analysis tool to be used by an operator whose own judgment and knowledge of ground truth can be incorporated at any time into the analyzing process. The result is a high speed, cost effective method for producing enhanced photomaps showing a number of spectral classes, each enhanced spectral class being representative of a vegetative species or group of species.

  15. Sustained Effects of Acupuncture Stimulation Investigated with Centrality Mapping Analysis

    PubMed Central

    Long, Xiangyu; Huang, Wenjing; Napadow, Vitaly; Liang, Fanrong; Pleger, Burkhard; Villringer, Arno; Witt, Claudia M.; Nierhaus, Till; Pach, Daniel

    2016-01-01

    Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation. Clinical trial registration: NCT01079689, ClinicalTrials.gov. PMID:27803655

  16. Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra.

    PubMed

    Sun, Rui-Xiang; Dong, Meng-Qiu; Song, Chun-Qing; Chi, Hao; Yang, Bing; Xiu, Li-Yun; Tao, Li; Jing, Zhi-Yi; Liu, Chao; Wang, Le-Heng; Fu, Yan; He, Si-Min

    2010-12-03

    In recent years, electron transfer dissociation (ETD) has enjoyed widespread applications from sequencing of peptides with or without post-translational modifications to top-down analysis of intact proteins. However, peptide identification rates from ETD spectra compare poorly with those from collision induced dissociation (CID) spectra, especially for doubly charged precursors. This is in part due to an insufficient understanding of the characteristics of ETD and consequently a failure of database search engines to make use of the rich information contained in the ETD spectra. In this study, we statistically characterized ETD fragmentation patterns from a collection of 461 440 spectra and subsequently implemented our findings into pFind, a database search engine developed earlier for CID data. From ETD spectra of doubly charged precursors, pFind 2.1 identified 63-122% more unique peptides than Mascot 2.2 under the same 1% false discovery rate. For higher charged peptides as well as phosphopeptides, pFind 2.1 also consistently obtained more identifications. Of the features built into pFind 2.1, the following two greatly enhanced its performance: (1) refined automatic detection and removal of high-intensity peaks belonging to the precursor, charge-reduced precursor, or related neutral loss species, whose presence often set spectral matching askew; (2) a thorough consideration of hydrogen-rearranged fragment ions such as z + H and c - H for peptide precursors of different charge states. Our study has revealed that different charge states of precursors result in different hydrogen rearrangement patterns. For a fragment ion, its propensity of gaining or losing a hydrogen depends on (1) the ion type (c or z) and (2) the size of the fragment relative to the precursor, and both dependencies are affected by (3) the charge state of the precursor. In addition, we discovered ETD characteristics that are unique for certain types of amino acids (AAs), such as a prominent

  17. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  18. Volumetric relief map for intracranial cerebrospinal fluid distribution analysis.

    PubMed

    Lebret, Alain; Kenmochi, Yukiko; Hodel, Jérôme; Rahmouni, Alain; Decq, Philippe; Petit, Éric

    2015-09-01

    Cerebrospinal fluid imaging plays a significant role in the clinical diagnosis of brain disorders, such as hydrocephalus and Alzheimer's disease. While three-dimensional images of cerebrospinal fluid are very detailed, the complex structures they contain can be time-consuming and laborious to interpret. This paper presents a simple technique that represents the intracranial cerebrospinal fluid distribution as a two-dimensional image in such a way that the total fluid volume is preserved. We call this a volumetric relief map, and show its effectiveness in a characterization and analysis of fluid distributions and networks in hydrocephalus patients and healthy adults.

  19. Stakeholder analysis and mapping as targeted communication strategy.

    PubMed

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  20. Atomic-Resolution Map of the Interactions between an Amyloid Inhibitor Protein and Amyloid Beta (Aβ) Peptides in the Monomer and Protofibril States.

    PubMed

    Algamal, Moustafa; Ahmed, Rashik; Jafari, Naeimeh; Ahsan, Bilal; Ortega, Joaquin; Melacini, Giuseppe

    2017-08-10

    Self-association of amyloid beta (Aβ) peptides is a hallmark of Alzheimer's disease and serves as a general prototype for amyloid formation. A key endogenous inhibitor of Aβ self-association is Human Serum Albumin (HSA), which binds ~90% of plasma Aβ. However, the exact molecular mechanism by which HSA binds Aβ monomers and protofibrils is not fully understood. Here, using dark-state exchange saturation transfer (DEST) NMR and relaxation experiments, complemented by morphological characterization, we mapped the HSA-Aβ interactions at atomic resolution by examining HSA's effects on Aβ monomers and soluble high-molecular weight oligomeric protofibrils. We found that HSA binds both monomeric and protofibrillar Aβ, but the affinity of HSA for Aβ monomers is lower than for Aβ protofibrils (Kd ~ sub-mM vs. μM), yet physiologically relevant owing to the ~0.6 - 0.7 mM plasma HSA concentration. In both Aβ protofibrils and monomers, HSA targets key Aβ self-recognition sites spanning the β strands found in cross-β protofibril structures, leading to a net switch from direct to tethered contacts between the monomeric Aβ and the protofibril surface. These HSA-Aβ interactions are isoform specific, as the Aβ monomer - HSA interactions were weaker for Aβ (1-42) than for Aβ (1-40). In addition, the HSA-induced perturbations of the monomer / protofibrils pseudo-equilibrium extended to the C-terminal residues in the Aβ (1-42) isoform but not in Aβ (1-40). These results provide an unprecedented view of how albumin interacts with Aβ and illustrate the potential of DEST NMR in mapping the interactions between amyloid-inhibitory proteins and amyloidogenic peptides. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Chemical genetic approach for kinase-substrate mapping by covalent capture of thiophosphopeptides and analysis by mass spectrometry.

    PubMed

    Hertz, Nicholas T; Wang, Beatrice T; Allen, Jasmina J; Zhang, Chao; Dar, Arvin C; Burlingame, Alma L; Shokat, Kevan M

    2010-03-01

    Mapping kinase-substrate interactions demands robust methods to rapidly and unequivocally identify substrates from complex protein mixtures. Toward this goal, we present a method in which a kinase, engineered to utilize synthetic ATPγS analogs, specifically thiophosphorylates its substrates in a complex lysate. The thiophosphate label provides a bio-orthogonal tag that can be used to affinity purify and identify labeled proteins. Following the labeling reaction, proteins are digested with trypsin; thiol-containing peptides are then covalently captured and non-thiol-containing peptides are washed from the resin. Oxidation-promoted hydrolysis, at sites of thiophosphorylation, releases phosphopeptides for analysis by tandem mass spectrometry. By incorporating two specificity gates-kinase engineering and peptide affinity purification-this method yields high-confidence substrate identifications. This method gives both the identity of the substrates and phosphorylation-site localization. With this information, investigators can analyze the biological significance of the phosphorylation mark immediately following confirmation of the kinase-substrate relationship. Here, we provide an optimized version of this technique to further enable widespread utilization of this technology. Curr. Protoc. Chem Biol. 2:15-36. © 2010 by John Wiley & Sons, Inc.

  2. Sequences encoding identical peptides for the analysis and manipulation of coding DNA

    PubMed Central

    Sánchez, Joaquín

    2013-01-01

    The use of sequences encoding identical peptides (SEIP) for the in silico analysis of coding DNA from different species has not been reported; the study of such sequences could directly reveal properties of coding DNA that are independent of peptide sequences. For practical purposes SEIP might also be manipulated for e.g. heterologous protein expression. We extracted 1,551 SEIP from human and E. coli and 2,631 SEIP from human and D. melanogaster. We then analyzed codon usage and intercodon dinucleotide tendencies and found differences in both, with more conspicuous disparities between human and E. coli than between human and D. melanogaster. We also briefly manipulated SEIP to find out if they could be used to create new coding sequences. We hence attempted replacement of human by E. coli codons via dicodon exchange but found that full replacement was not possible, this indicated robust species-specific dicodon tendencies. To test another form of codon replacement we isolated SEIP from human and the jellyfish green fluorescent protein (GFP) and we then re-constructed the GFP coding DNA with human tetra-peptide-coding sequences. Results provide proof-of-principle that SEIP may be used to reveal differences in the properties of coding DNA and to reconstruct in pieces a protein coding DNA with sequences from a different organism, the latter might be exploited in heterologous protein expression. PMID:23861567

  3. Sequences encoding identical peptides for the analysis and manipulation of coding DNA.

    PubMed

    Sánchez, Joaquín

    2013-01-01

    The use of sequences encoding identical peptides (SEIP) for the in silico analysis of coding DNA from different species has not been reported; the study of such sequences could directly reveal properties of coding DNA that are independent of peptide sequences. For practical purposes SEIP might also be manipulated for e.g. heterologous protein expression. We extracted 1,551 SEIP from human and E. coli and 2,631 SEIP from human and D. melanogaster. We then analyzed codon usage and intercodon dinucleotide tendencies and found differences in both, with more conspicuous disparities between human and E. coli than between human and D. melanogaster. We also briefly manipulated SEIP to find out if they could be used to create new coding sequences. We hence attempted replacement of human by E. coli codons via dicodon exchange but found that full replacement was not possible, this indicated robust species-specific dicodon tendencies. To test another form of codon replacement we isolated SEIP from human and the jellyfish green fluorescent protein (GFP) and we then re-constructed the GFP coding DNA with human tetra-peptide-coding sequences. Results provide proof-of-principle that SEIP may be used to reveal differences in the properties of coding DNA and to reconstruct in pieces a protein coding DNA with sequences from a different organism, the latter might be exploited in heterologous protein expression.

  4. Parallel Detection of Intrinsic Fluorescence from Peptides and Proteins for Quantification During Mass Spectrometric Analysis

    PubMed Central

    Russell, Jason D.; Hilger, Ryan T.; Ladror, Daniel T.; Tervo, Mark A.; Scalf, Mark; Shortreed, Michael R.; Coon, Joshua J.

    2011-01-01

    Direct mass spectrometric quantification of peptides and proteins is compromised by the wide variabilities in ionization efficiency which are hallmarks of both the MALDI and ESI ionization techniques. We describe here the implementation of a fluorescence detection system for measurement of the UV-excited intrinsic fluorescence (UV-IF) from peptides and proteins just prior to their exit and electrospray ionization from an ESI capillary. The fluorescence signal provides a quantifiable measure of the amount of the protein or peptide present, while direct or tandem mass spectrometric analysis (MS/MS) on the ESI-generated ions provides information on identity. We fabricated an inexpensive, modular, fluorescence excitation and detection device utilizing an ultraviolet light-emitting diode for excitation in a ~300 nL fluorescence detection cell integrated into the fused-silica separation column. The fluorescence signal was linear over 3 orders of magnitude with on-column limits of detection in the low femtomole range. Chromatographically separated intact proteins analyzed using UV-IF prior to top-down mass spectrometry demonstrated sensitive detection of proteins as large as 77 kDa. PMID:21314137

  5. Peptidomic analysis of antimicrobial peptides in skin secretions of Amolops mantzorum.

    PubMed

    Hu, Yuhong; Yu, Zhijun; Xu, Shiqi; Hu, Yonghong; Guo, Chao; Li, Fengjiao; Li, Jing; Liu, Jingze; Wang, Hui

    2014-03-01

    Amphibian skin secretions contain abundant bioactive peptides that are valuable natural resources for human beings. However, many amphibians are disappearing from the world, making relevant scientific studies even more important. In this study, 24 cDNA sequences encoding antimicrobial peptide (AMP) precursors were initially cloned by screening a cDNA library derived from the skin of the Sichuan torrent frog, Amolops mantzorum. Eighteen mature AMPs belonging to 11 different families were deduced from these cDNA clones. Biological function was confirmed in each family of these AMPs. Some of them were purified from the skin secretions, and their molecular structures were determined by Edman degradation. Liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS)-based peptidomics was used to further confirm the actual presence and characteristics of mature AMPs in the skin secretions of A. mantzorum. Incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase the peptidome coverage and reproducibility of peptide ion selection.

  6. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis.

    PubMed

    Zhurov, Konstantin O; Fornelli, Luca; Wodrich, Matthew D; Laskay, Ünige A; Tsybin, Yury O

    2013-06-21

    This tutorial review describes the principles and practices of electron capture and transfer dissociation (ECD/ETD or ExD) mass spectrometry (MS) employed for peptide and protein structure analysis. ExD MS relies on interactions between gas phase peptide or protein ions carrying multiple positive charges with either free low-energy (~1 eV) electrons (ECD), or with reagent radical anions possessing an electron available for transfer (ETD). As a result of recent implementation on sensitive, high resolution, high mass accuracy, and liquid chromatography timescale-compatible mass spectrometers, ExD, more specifically, ETD MS has received particular interest in life science research. In addition to describing the fundamental aspects of ExD radical ion chemistry, this tutorial provides practical guidelines for peptide de novo sequencing with ExD MS, as well as reviews some of the current capabilities and limitations of these techniques. The merits of ExD MS are discussed primarily within the context of life science research.

  7. Signal peptide prediction based on analysis of experimentally verified cleavage sites

    PubMed Central

    Zhang, Zemin; Henzel, William J.

    2004-01-01

    A number of computational tools are available for detecting signal peptides, but their abilities to locate the signal peptide cleavage sites vary significantly and are often less than satisfactory. We characterized a set of 270 secreted recombinant human proteins by automated Edman analysis and used the verified cleavage sites to evaluate the success rate of a number of computational prediction programs. An examination of the frequency of amino acid in the N-terminal region of the data set showed a preference of proline and glutamine but a bias against tyrosine. The data set was compared to the SWISS-PROT database and revealed a high percentage of discrepancies with cleavage site annotations that were computationally generated. The best program for predicting signal sequences was found to be SignalP 2.0-NN with an accuracy of 78.1% for cleavage site recognition. The new data set can be utilized for refining prediction algorithms, and we have built an improved version of profile hidden Markov model for signal peptides based on the new data. PMID:15340161

  8. Frames of reference for helicopter electronic maps - The relevance of spatial cognition and componential analysis

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Wickens, Christopher D.

    1991-01-01

    Computer-generated map displays for NOE and low-level helicopter flight were formed according to prior research on maps, navigational problem solving, and spatial cognition in large-scale environments. The north-up map emphasized consistency of object location, wheareas, the track-up map emphasized map-terrain congruency. A component analysis indicates that different cognitive components, e.g., orienting and absolute object location, are supported to varying degrees by properties of different frames of reference.

  9. Frames of reference for helicopter electronic maps - The relevance of spatial cognition and componential analysis

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Wickens, Christopher D.

    1991-01-01

    Computer-generated map displays for NOE and low-level helicopter flight were formed according to prior research on maps, navigational problem solving, and spatial cognition in large-scale environments. The north-up map emphasized consistency of object location, wheareas, the track-up map emphasized map-terrain congruency. A component analysis indicates that different cognitive components, e.g., orienting and absolute object location, are supported to varying degrees by properties of different frames of reference.

  10. Structural analysis of peptide fragments following the hydrolysis of bovine serum albumin by trypsin and chymotrypsin.

    PubMed

    Özyiğit, İbrahim Ethem; Akten, E Demet; Pekcan, Önder

    2016-05-01

    Peptide bond hydrolysis of bovine serum albumin (BSA) by chymotrypsin and trypsin was investigated by employing time-resolved fluorescence spectroscopy. As a fluorescent cross-linking reagent, N-(1-pyrenyl) maleimide (PM) was attached to BSA, through all free amine groups of arginine, lysine, and/or single free thiol (Cys34). Time-resolved fluorescence spectroscopy was used to monitor fluorescence decays analyzed by exponential series method to obtain the changes in lifetime distributions. After the exposure of synthesized protein substrate PM-BSA to chymotrypsin and trypsin, it is observed that each protease produced a distinct change in the lifetime distribution profile, which was attributed to distinct chemical environments created by short peptide fragments in each hydrolysate. The persistence of excimer emission at longer lifetime regions for chymotrypsin, as opposed to trypsin, suggested the presence of small-scale hydrophobic clusters that might prevent some excimers from being completely quenched. It is most likely that the formation of these clusters is due to hydrophobic end groups of peptide fragments in chymotrypsin hydrolysate. A similar hydrophobic shield was not suggested for trypsin hydrolysis, as the end groups of peptide fragments would be either arginine or lysine. Overall, in case the target protein's 3D structure is known, the structural analysis of possible excimer formation presented here can be used as a tool to explain the differences in activity between two proteases, i.e. the peak's intensity and location in the profile. Furthermore, this structural evaluation might be helpful in obtaining the optimum experimental conditions in order to generate the highest amount of PM-BSA complexes.

  11. Chloroplast Genetics of Chlamydomonas. II. Mapping by Cosegregation Frequency Analysis

    PubMed Central

    Sager, Ruth; Ramanis, Zenta

    1976-01-01

    This paper presents segregation and cosegregation data for a set of 15 chloroplast genes of Chlamydomonas, and uses these data to generate a linear map of the chloroplast genome. The data were derived from pedigree analysis of a total of 1596 zoospore clones resulting from 12 crosses in each of which 4 to 7 pairs of chloroplast alleles were segregating. The crosses are a subset of those previously described (Sager and Ramanis 1976). By means of pedigree analysis, Type II segregations (nonreciprocal conversion-like events) were distinguished from Type III segregations (reciprocal events). The average frequency of Type II segregation was found to be the same for all 15 genes, indicating randomness of this event with respect to map location (Figure 1). Type III segregations occurred with a different and characteristic frequency for each gene, and were interpreted as a measure of the distance of each gene from the postulated centromere-like attachment point. Cosegregations, involving two or more genes, occurred with frequencies characteristic of the particular genes and much lower than expected for the product of single-gene events, indicating strong positive interference. Pairwise cosegregation frequencies provided unambiguous data for the gene order, confirmed by cosegregation runs of three or more genes. Apparent lengths of cosegregation runs, as fractions of the total map, indicate much longer stretches of gene conversion-like events than have been reported for other genetic systems. Comparisons of cosegregation frequencies in cross 20 after 15'', 30'' and 15'' UV irradiation of the mt+ before mating, indicate little if any consistent effect of this irradiation on segregation events. PMID:17248717

  12. New Mexico Play Fairway Analysis: Particle Tracking ArcGIS Map Packages

    SciTech Connect

    Jeff Pepin

    2015-11-15

    These are map packages used to visualize geochemical particle-tracking analysis results in ArcGIS. It includes individual map packages for several regions of New Mexico including: Acoma, Rincon, Gila, Las Cruces, Socorro and Truth or Consequences.

  13. Halvade: scalable sequence analysis with MapReduce

    PubMed Central

    Decap, Dries; Reumers, Joke; Herzeel, Charlotte; Costanza, Pascal; Fostier, Jan

    2015-01-01

    Motivation: Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine. Results: We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner. As an example, a DNA sequencing analysis pipeline for variant calling has been implemented according to the GATK Best Practices recommendations, supporting both whole genome and whole exome sequencing. Using a 15-node computer cluster with 360 CPU cores in total, Halvade processes the NA12878 dataset (human, 100 bp paired-end reads, 50× coverage) in <3 h with very high parallel efficiency. Even on a single, multi-core machine, Halvade attains a significant speedup compared with running the individual tools with multithreading. Availability and implementation: Halvade is written in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR. Its source is available at http://bioinformatics.intec.ugent.be/halvade under GPL license. Contact: jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25819078

  14. Congenic mapping and sequence analysis of the Renin locus

    PubMed Central

    Flister, Michael J.; Hoffman, Matthew J.; Reddy, Prajwal; Jacob, Howard J.; Moreno, Carol

    2013-01-01

    Renin was the first blood pressure (BP) quantitative trait locus (QTL) mapped by linkage analysis in the rat. Subsequent BP linkage and congenic studies capturing different portions of the renin region have returned conflicting results, suggesting that multiple interdependent BP loci may be residing in the chromosome 13 BP QTL that includes Renin. We used SS-13BN congenic strains to map 2 BP loci in the Renin region (chr13:45.2–49.0 Mb). We identified a 1.1 Mb protective Brown Norway (BN) region around Renin (chr13:46.1–47.2 Mb) that significantly decreased BP by 32 mmHg. The Renin protective BP locus was offset by an adjacent hypertensive locus (chr13:47.2–49.0 Mb) that significantly increased BP by 29 mmHg. Sequence analysis of the protective and hypertensive BP loci revealed 1,433 and 2,063 variants between Dahl salt-sensitive/Mcwi (SS) and BN rats, respectively. To further reduce the list of candidate variants, we re-genotyped an overlapping SS-13SR congenic strain (S/renrr) with a previously reported BP phenotype. Sequence comparison between SS, Dahl R (SR), and BN reduced the number of candidate variants in the 2 BP loci by 42% for further study. Combined with previous studies, these data suggest that at least 4 BP loci reside within the 30 cM chromosome 13 BP QTL that includes Renin. PMID:23460292

  15. Constructing module maps for integrated analysis of heterogeneous biological networks

    PubMed Central

    Amar, David; Shamir, Ron

    2014-01-01

    Improved methods for integrated analysis of heterogeneous large-scale omic data are direly needed. Here, we take a network-based approach to this challenge. Given two networks, representing different types of gene interactions, we construct a map of linked modules, where modules are genes strongly connected in the first network and links represent strong inter-module connections in the second. We develop novel algorithms that considerably outperform prior art on simulated and real data from three distinct domains. First, by analyzing protein–protein interactions and negative genetic interactions in yeast, we discover epistatic relations among protein complexes. Second, we analyze protein–protein interactions and DNA damage-specific positive genetic interactions in yeast and reveal functional rewiring among protein complexes, suggesting novel mechanisms of DNA damage response. Finally, using transcriptomes of non–small-cell lung cancer patients, we analyze networks of global co-expression and disease-dependent differential co-expression and identify a sharp drop in correlation between two modules of immune activation processes, with possible microRNA control. Our study demonstrates that module maps are a powerful tool for deeper analysis of heterogeneous high-throughput omic data. PMID:24497192

  16. Large areas elemental mapping by ion beam analysis techniques

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2015-07-01

    The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.

  17. Multivariate Analysis Approach to the Serum Peptide Profile of Morbidly Obese Patients

    PubMed Central

    Agostini, M.; Bedin, C.; Enzo, M.V.; Molin, L.; Traldi, P.; D'Angelo, E.; Maschietto, E.; Serraglia, R.; Ragazzi, E.; Prevedello, L.; Foletto, M.; Nitti, D.

    2013-01-01

    Background: Obesity is currently epidemic in many countries worldwide and is strongly related to diabetes and cardiovascular disease. Mass spectrometry, in particular matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) is currently used for detecting different pattern of expressed protein. This study investigated the differences in low molecular weight (LMW) peptide profiles between obese and normal-weight subjects in combination with multivariate statistical analysis. Materials: Serum samples of 60 obese patients and 10 healthy subjects were treated by cut-off membrane (30000 Da) to remove the most abundant proteins. The filtrates containing the LMW protein/peptides were analyzed by MALDI-TOF mass spectrometry. Dataset was elaborated to align and normalize the spectra. We performed cluster analysis and principal component analysis to detect some ionic species that could characterize and classify the subject groups. Results: We observed a down-expression of ionic species at m/z 655.94 and an over-expression of species at m/z 1518.78, 1536.77, 1537.78 and 1537.81 in obese patients. Furthermore we found some ionic species that can distinguish obese patients with diabetes from those with normal glucose level. Conclusion: Serum peptide profile of LMW associate with multivariate statistical approach was revealed as a promising tool to discriminate and characterize obese patients and it was able to stratify them in relation to comorbidity that usually are associated with this disease. Further research involving a larger sample will be required to validate these findings. PMID:23396294

  18. Amplitude-Phase Analysis of Cosmic Microwave Background Maps

    NASA Astrophysics Data System (ADS)

    Novikov, D.; Naselsky, P.; Silk, J.

    We suggest the amplitude-phase analysis (APA) as a new method for the CMB image reconstruction. This method has been adopted for any kind of possible noise in the CMB observational data ( like point sources, dust emission, pixel and radiometer noise and so on). The important advantage of our scheme is that unlike other methods the phase analysis doesn't require any information about the expected CMB power spectra to subtract the noise. The only assumption we made is that the initial cosmological signal has a Gaussian nature. This method is very efficient computationally because it requires only O(Nln (N)) operations, where N is the number of pixels. Therefore, the full advantage of our scheme can be reached on very large data sets. Its efficiency has been successfully tested on simulated signals corresponding to MAP, PLANCK and RATAN-600 angular resolutions. P. Naselsky (TAC, Denmark), I. Novikov (TAC, Denmark)

  19. Analysis of radiotracking data using digitized habitat maps

    USGS Publications Warehouse

    Gilmer, D.S.; Miller, S.E.; Cowardin, L.M.

    1973-01-01

    A method is described that provides a rapid and accurate analysis of habitat used by radio-equipped animals. The digitizer (basically an X-Y plotter in reverse) converts maps into digital form by describing each habitat unit as a polygon that closely approximates the actual shape of the unit. The coordinates of each polygon are then stored on magnetic tape. Habitat classification data and other information are coded and combined with the proper polygon coordinates. This results in one file containing all habitat data. A computer program with inputs of tracking data and habitat data provides a listing of the habitat used by the animals studied. Analysis of habitat used by radio-equipped ducks is demonstrated using this method.

  20. DURIP: Electrokinetic Injection and Separation System for Analysis of Protein and Peptide Transport, Adsorption and Kinetics Instrumentation Proposal

    DTIC Science & Technology

    2015-03-18

    SECURITY CLASSIFICATION OF: We requested equipment necessary to build an electrokinetic injection and separation system for the analysis of protein...Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: DURIP: Electrokinetic Injection and Separation System for Analysis of...Injection and Separation System for Analysis of Protein and Peptide Transport, Adsorption and Kinetics Instrumentation Proposal Report Title We requested

  1. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  2. Enrichment and Analysis of Non-enzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron Transfer Dissociation Mass Spectrometry

    PubMed Central

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus. PMID:17488106

  3. Connectome analysis for pre-operative brain mapping in neurosurgery

    PubMed Central

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  4. Polypyrrole-peptide microarray for biomolecular interaction analysis by SPR imaging

    PubMed Central

    Villiers, Marie-Bernadette; Cortès, Sandra; Brakha, Carine; Marche, Patrice; Roget, André; Livache, Thierry

    2009-01-01

    Nowadays, high-throughput analysis of biological events is a great challenge which could take benefit of the recent development of microarray devices. The great potential of such technology is related to the availability of a chip bearing a large set of probes, stable and easy to obtain, and suitable for ligand binding detection. Here, we described a new method based on polypyrrole chemistry and allowing the covalent immobilization of peptides in a microarray format and on a gold surface compatible with the use of Surface Plasmon Resonance. This technique is then illustrated by the detection and characterization of antibodies induced by hepatitis C virus and present in patients’serums. PMID:19649603

  5. Fast atom bombardment mass spectrometry and its application to the analysis of some peptides and proteins.

    PubMed

    Hemling, M E

    1987-02-01

    The techniques of fast atom bombardment mass spectrometry has overtaken (but not entirely replaced) field desorption mass spectrometry as the method of choice for the analysis of nonvolatile, thermally labile polar compounds. The ease with which information may be obtained on a wide variety of molecules is a result of the relative simplicity of the technique. A brief history of bioorganic mass spectrometry leading to the development of fast atom bombardment is presented, as well as a description of the method and ancillary techniques. Selected examples of its application to peptide and protein structural problems attest to the power and utility of fast atom bombardment mass spectrometry.

  6. Analysis of Peptides by Denaturing Ultrafiltration and LC-MALDI-TOF-MS

    PubMed Central

    An, Y; Goldman, R

    2017-01-01

    The dynamic range of complex biological samples represents a challenge for mass spectrometric characterization. Removal of high abundant proteins is a prerequisite for a successful mass spectrometric analysis of low abundant analytes. In particular, plasma and serum proteome span at least ten orders of magnitude and represent a major challenge for biomarker discovery. Immunoaffinity depletion is the most common methods of removal of high abundant proteins. Here we describe coupling of denaturing ultrafiltration, an alternative depletion strategy, with reverse phase fractionation and mass spectrometry for characterization of low molecular weight proteins and peptides. PMID:23765617

  7. Theoretical conformational analysis of the bovine adrenal medulla 12 residue peptide molecule

    NASA Astrophysics Data System (ADS)

    Akhmedov, N. A.; Tagiyev, Z. H.; Hasanov, E. M.; Akverdieva, G. A.

    2003-02-01

    The spatial structure and conformational properties of the bovine adrenal medulla 12 residue peptide Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12 (BAM-12P) molecule were studied by theoretical conformational analysis. It is revealed that this molecule can exist in several stable states. The energy and geometrical parameters for the low-energy conformations are obtained. The conformationally rigid and labile segments of this molecule were revealed.

  8. Dissociation behavior of a bifunctional tempo-active ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Ihling, Christian; Falvo, Francesco; Kratochvil, Isabel; Sinz, Andrea; Schäfer, Mathias

    2015-02-01

    We have synthesized a homobifunctional active ester cross-linking reagent containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) moiety connected to a benzyl group (Bz), termed TEMPO-Bz-linker. The aim for designing this novel cross-linker was to facilitate MS analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO-Bz-linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation. The final goal of this proof-of-principle study was to evaluate the potential of the TEMPO-Bz-linker for chemical cross-linking studies to derive 3D-structure information of proteins. Our studies were motivated by the well documented instability of the central NO-C bond of TEMPO-Bz reagents upon collision activation. The fragmentation of this specific bond was investigated in respect to charge states and amino acid composition of a large set of precursor ions resulting in the identification of two distinct fragmentation pathways. Molecular ions with highly basic residues are able to keep the charge carriers located, i.e. protons or sodium cations, and consequently decompose via a homolytic cleavage of the NO-C bond of the TEMPO-Bz-linker. This leads to the formation of complementary open-shell peptide radical cations, while precursor ions that are protonated at the TEMPO-Bz-linker itself exhibit a charge-driven formation of even-electron product ions upon collision activation. MS(3) product ion experiments provided amino acid sequence information and allowed determining the cross-linking site. Our study fully characterizes the CID behavior of the TEMPO-Bz-linker and demonstrates its potential, but also its limitations for chemical cross-linking applications utilizing the special features of open-shell peptide ions on the basis of selective tandem MS analysis.

  9. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  10. Mitochondrial DAMPs from femoral reamings activate neutrophils via formyl peptide receptors and P44/42 MAP Kinase

    PubMed Central

    Hauser, Carl J.; Sursal, Tolga; Rodriguez, Edward K.; Appleton, Paul T.; Zhang, Qin; Itagaki, Kiyoshi

    2010-01-01

    Hypothesis Fractures and femoral reaming are associated with lung injury. The mechanisms linking fractures and inflammation are unclear; but tissue disruption might release mitochondria. Mitochondria are evolutionarily derived from bacteria and contain “Damage Associated Molecular Patterns” (DAMPs) like formylated peptides that can activate immunocytes. We therefore studied whether fracture reaming releases mitochondrial DAMPs (MTD) and how MTD act on immune cells. Methods Femur fracture reamings (FFx) from 10 patients were spun to remove bone particulates. Supernatants were assayed for mitochondrial DNA (mtDNA). Mitochondria were isolated from the residual reaming slurry, sonicated and spun at 12,000g. The resultant MTD were assayed for their ability to cause neutrophil (PMN) Ca2+ transient production, p44/42 MAPK phosphorylation, IL-8 release and matrix metalloproteinase-9 (MMP9) release with and without formyl peptide receptor-1 (FPR1) blockade. Rats were injected with MTD and whole lung assayed for p44/42 activation. Results mtDNA appears at many thousand fold normal plasma levels in FFx and at intermediate levels in patients’ plasma, suggesting release from fracture to plasma. FFx MTD caused brisk PMN Ca2+ flux, activated PMN p44/42 MAPK and caused PMN release of IL-8 and MMP9. Responses to MTD were inhibited by FPR1 blockade using Cyclosporin H and anti-FPR1. MTD injection caused P44/42 phosphorylation in rat lung. Conclusions FFx reaming releases mitochondria into the wound and circulation. MTD then activates PMN. Release of damage signals like MTD from FFx may underlie activation of the cytokine cascades known to be associated with facture fixation and lung injury. PMID:20736789

  11. Historical shoreline mapping (II): Application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A new, state-of-the-art method for mapping historical shorelines from maps and aerial photographs, the Digital Shoreline Mapping System (DSMS), has been developed. The DSMS is a freely available, public domain software package that meets the cartographic and photogrammetric requirements of precise coastal mapping, and provides a means to quantify and analyze different sources of error in the mapping process. The DSMS is also capable of resolving imperfections in aerial photography that commonly are assumed to be nonexistent. The DSMS utilizes commonly available computer hardware and software, and permits the entire shoreline mapping process to be executed rapidly by a single person in a small lab. The DSMS generates output shoreline position data that are compatible with a variety of Geographic Information Systems (GIS). A second suite of programs, the Digital Shoreline Analysis System (DSAS) has been developed to calculate shoreline rates-of-change from a series of shoreline data residing in a GIS. Four rate-of-change statistics are calculated simultaneously (end-point rate, average of rates, linear regression and jackknife) at a user-specified interval along the shoreline using a measurement baseline approach. An example of DSMS and DSAS application using historical maps and air photos of Punta Uvero, Puerto Rico provides a basis for assessing the errors associated with the source materials as well as the accuracy of computed shoreline positions and erosion rates. The maps and photos used here represent a common situation in shoreline mapping: marginal-quality source materials. The maps and photos are near the usable upper limit of scale and accuracy, yet the shoreline positions are still accurate ±9.25 m when all sources of error are considered. This level of accuracy yields a resolution of ±0.51 m/yr for shoreline rates-of-change in this example, and is sufficient to identify the short-term trend (36 years) of shoreline change in the study area.

  12. Historical shoreline mapping (II): application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A new, state-of-the-art method for mapping historical shorelines from maps and aerial photographs, the Digital Shoreline Mapping System (DSMS), has been developed. The DSMS is a freely available, public domain software package that meets the cartographic and photogrammetric requirements of precise coastal mapping, and provides a means to quantify and analyze different sources of error in the mapping process. The DSMS is also capable of resolving imperfections in aerial photography that commonly are assumed to be nonexistent. The DSMS utilizes commonly available computer hardware and software, and permits the entire shoreline mapping process to be executed rapidly by a single person in a small lab. The DSMS generates output shoreline position data that are compatible with a variety of Geographic Information Systems (GIS). A second suite of programs, the Digital Shoreline Analysis System (DSAS) has been developed to calculate shoreline rates-of-change from a series of shoreline data residing in a GIS. Four rate-of-change statistics are calculated simultaneously (end-point rate, average of rates, linear regression and jackknife) at a user-specified interval along the shoreline using a measurement baseline approach. An example of DSMS and DSAS application using historical maps and air photos of Punta Uvero, Puerto Rico provides a basis for assessing the errors associated with the source materials as well as the accuracy of computed shoreline positions and erosion rates. The maps and photos used here represent a common situation in shoreline mapping: marginal-quality source materials. The maps and photos are near the usable upper limit of scale and accuracy, yet the shoreline positions are still accurate ±9.25 m when all sources of error are considered. This level of accuracy yields a resolution of ±0.51 m/yr for shoreline rates-of-change in this example, and is sufficient to identify the short-term trend (36 years) of shoreline change in the study area.

  13. RadMAP: The Radiological Multi-sensor Analysis Platform

    NASA Astrophysics Data System (ADS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  14. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes.

    PubMed

    Laughner, Jacob I; Ng, Fu Siong; Sulkin, Matthew S; Arthur, R Martin; Efimov, Igor R

    2012-10-01

    Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation.

  15. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes

    PubMed Central

    Laughner, Jacob I.; Ng, Fu Siong; Sulkin, Matthew S.; Arthur, R. Martin

    2012-01-01

    Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation. PMID:22821993

  16. Electricity Consumption Risk Map - The use of Urban Climate Mapping for smarter analysis: Case study for Birmingham, UK.

    NASA Astrophysics Data System (ADS)

    Antunes Azevedo, Juliana; Burghardt, René; Chapman, Lee; Katzchner, Lutz; Muller, Catherine L.

    2015-04-01

    Climate is a key driving factor in energy consumption. However, income, vegetation, building mass structure, topography also impact on the amount of energy consumption. In a changing climate, increased temperatures are likely to lead to increased electricity consumption, affecting demand, distribution and generation. Furthermore, as the world population becomes more urbanized, increasing numbers of people will need to deal with not only increased temperatures from climate change, but also from the unintentional modification of the urban climate in the form of urban heat islands. Hence, climate and climate change needs to be taken into account for future urban planning aspects to increase the climate and energy resilience of the community and decrease the future social and economic costs. Geographical Information Systems provide a means to create urban climate maps as part of the urban planning process. Geostatistical analyses linking these maps with demographic and social data, enables a geo-statistical analysis to identify linkages to high-risk groups of the community and vulnerable areas of town and cities. Presently, the climatope classification is oriented towards thermal aspects and the ventilation quality (roughness) of the urban areas but can also be adapted to take into account other structural "environmental factors". This study aims to use the climatope approach to predict areas of potential high electricity consumption in Birmingham, UK. Several datasets were used to produce an average surface temperature map, vegetation map, land use map, topography map, building height map, built-up area roughness calculations, an average air temperature map and a domestic electricity consumption map. From the correlations obtained between the layers it is possible to average the importance of each factor and create a map for domestic electricity consumption to understand the influence of environmental aspects on spatial energy consumption. Based on these results city

  17. Geologic map and structural analysis of the Victoria quadrangle, Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, Valentina; Di Achille, Gaetano; Ferranti, Luigi; Rothery, David A.; Palumbo, Pasquale

    2015-04-01

    In this work we present a new geologic map and structural analysis of the Victoria quadrangle (H2) of Mercury, along with a reconnaissance study of the geometry and kinematics of lobate scarps in this area. To this end, we produced a 1:3,000,000 geologic map of the area using the images provided by the NASA spacecraft MESSENGER, which has been orbiting the planet since March, 2011. The geologic map shows the distribution of smooth plains, intermediate plains, intercrater plains units and a classification of crater materials based on an empirical distinction among three stages of degradation. Structural mapping shows that the H2 quadrangle is dominated by N-S faults (here grouped into the Victoria system) to the east and NE-SW faults (Larrocha system) to the west, with the secondary existence of NW-SE-trending faults (Carnegie system) in the north-western area of the quadrangle. A systematic analysis of these systems has led to the following results. 1) the Victoria system is characterized by a main array of faults located along Victoria Rupes - Endeavour Rupes - Antoniadi Dorsum. The segmentation of this array into three different sectors changes from north to south and is spatially linked to the presence of three volcanic vents located at the boundaries between each sector and at the northern end of the Victoria Rupes sector , suggesting that volcanism and faulting are interrelated 2) The main array of Carnegie system is kinematically linked and antithetical to the Victoria system. Both systems have arguably controlled the growth of a longitudinal, fault-free, crustal and gravimetric bulge in the central area of the Victoria quadrangle, which is interpreted as a regional contractional pop-up. 3) The Larrocha system is interrupted against the central bulge and thus is probably older than the Victoria and Carnegie systems. Buffered crater counting performed on the Victoria system confirms the young relative age of its fault segments with respect to the map units

  18. Mapping of normal fault scarps in airborne laser swath mapping data using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Sare, R.; Hilley, G. E.

    2015-12-01

    Wavelet analysis of Digital Elevation Models (DEMs) successfully identifies degraded fault scarps where earthquakes produce topographic steps and provides an estimate of their morphologic age. However, these methods may fail to detect relatively young, sloping scarps created by more gently-dipping normal faults, misidentifying them as mature, highly-degraded vertical scarps if they are detected at all. We present new wavelet templates incorporating initial scarp slope and above- and below-scarp surface angles to better describe the curvature of observed fault scarps. These templates are based on an analytic solution for scarp curvature, allowing for more accurate estimation of the relative age of the scarp. Synthetic tests show that scarp-like landforms that went largely undetected by a vertical-scarp template are more clearly detected using profile geometries that reflect subtle changes in curvature due to scarp and far-field slope angles. Analysis of DEMs from sites in Surprise Valley in the northwestern Basin and Range and near Jenny Lake on the Teton rangefront illustrates the effects of along-strike variability in scarp morphology on best-fit template parameters. Where normal fault scarps have high slopes, they are identified by filters designed to detect topographic step functions. Scarps with finite initial slopes, as well as those that cut surfaces with different angles above and below the scarp, can be resolved with higher signal-to-noise ratios using more sophisticated template functions. Adaptive use of different wavelet templates could reduce the number of false negatives in wavelet analysis of data from complex faulting regimes, improving the robustness of these methods and enabling automated fault mapping of large areas.

  19. Adapting and testing a portable Raman spectrometer for SERS analysis of amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Philippidis, A.; Nevin, A.; Comelli, D.; Valentini, G.; Anglos, D.

    2013-07-01

    Surface-Enhanced Raman Spectroscopy (SERS), a powerful spectrochemical technique enabling highly sensitive analysis of organic and biological materials, is investigated for applications in the analysis of archaeological materials including in situ screening. In this work, a compact mobile Raman spectrometer is employed for acquiring Surface-Enhanced Raman spectra from natural amino acids (L-Arg, L-Phe, L-Met) and a tripeptide (Glutathione), adsorbed on silver colloids. The detection limits of the portable Raman spectrometer, together with an optimization of sample preparation and experimental parameters, are reported. The collection and interpretation of SER spectra of amino acids and peptides is a starting point for the optimization of the instrumentation and its application in the study of more complex biological molecules in the context of detection and analysis of archaeological materials and residues.

  20. Human T-cells recognise N-terminally Fmoc-modified peptide.

    PubMed

    Mannering, Stuart I; Purcell, Anthony W; Honeyman, Margo C; McCluskey, James; Harrison, Leonard C

    2003-09-08

    We aimed to generate T-cell clones specific for human pre-proinsulin. An HLA DQ8, CD4+ T-cell clone that recognised a 10mer (C65-A9) peptide from pre-proinsulin was isolated. Further analysis revealed that the clone responded neither to recombinant proinsulin nor to re-synthesised C65-A9 peptide. Analysis of the original peptide revealed minor contamination (<0.5%) with an N-terminal Fmoc adduct. This peptide was synthesised and shown to stimulate the clone. Thus, Fmoc-modified peptides, which are common contaminants in synthetic peptides, can stimulate human CD4+ T-cells. This finding has important implications for the use of synthetic peptides in screening and epitope mapping studies and their use as vaccines in humans.

  1. Genome Analysis of Staphylococcus capitis TE8 Reveals Repertoire of Antimicrobial Peptides and Adaptation Strategies for Growth on Human Skin.

    PubMed

    Kumar, Rohit; Jangir, Pramod Kumar; Das, Jhumki; Taneja, Bhupesh; Sharma, Rakesh

    2017-09-05

    Staphylococcus capitis TE8 was isolated from skin surface of a healthy human foot, and exhibited a strong antibacterial activity against Gram-positive bacteria, including Staphylococcus aureus. Whole genome sequence of S. capitis TE8 was obtained by shotgun and paired-end pyrosequencing with a coverage of 109-fold. The draft genome contains 2,516,639 bp in 8 scaffolds with 209 total contigs. The genome contains 2319 protein coding sequences, 58 tRNA and 3 rRNA. Genome sequence analysis revealed 4 distinct gene loci with the ability to encode antimicrobial peptides: (i) an epidermicin gene cluster; (ii) a gallidermin gene cluster; (iii) a gene cluster encoding six phenol soluble modulin (PSM) β-type peptides (PSMβ1-β6) and (iv) an additional gene that belonged to PSMβ family and encoded a 44 residues long peptide, HTP2388. Synthetic peptides with sequence identical to seven PSMβ-like peptides i.e. PSMβ1-β6 and peptide HTP2388 showed antibacterial activity. Genome sequence also revealed genes for adhesins, intracellular adhesins, osmoadaptation, oxidative and acid stress tolerance possibly responsible for initial attachment, colonization and survival of S. capitis TE8 on human skin. Comparative genome analysis revealed presence of a gamut of genes in S. capitis strains in comparison to Staphylococcus epidermidis and Staphylococcus caprae indicating towards their possible role in better adaptation and survival on human skin.

  2. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann.

    PubMed

    Garcia, Consuelo; Calderón-Aranda, Emma S; Anguiano, Gerardo A V; Becerril, Baltazar; Possani, Lourival D

    2003-03-01

    Three different immunogens from the venom of the Mexican scorpion Centruroides noxius Hoffmann were used to study protective antibody response in mice and rabbits, challenged with toxin Cn2, one of the most abundant toxic peptide of this venom. The immunogens were: Cn5, a crustacean specific toxin; a recombinant protein containing the peptide Cn5 linked to the maltose transporter and a sub-fraction (F.II.5) containing 25 distinct peptides, among which is Cn5. Mice immunized with these three preparations, when directly challenged with Cn2 presented no apparent protection, whereas anti-sera produced in rabbits with these three immunogens were capable of partially neutralizing the effect of Cn2, when injected into naive mice. Cn5 rabbit anti-serum showed a better protective effect on mice, than the rabbit sera obtained against the two other antigens. The subcutaneous route of challenging mice was shown to be better than intraperitoneal injections. Comparative structural analysis of Cn5 with other toxins of this venom showed that our results are important to be taken into consideration, when choosing appropriate immunogens aimed at the production of better anti-venoms or for the rational design of possible vaccines.

  3. Modern methods of documentation for conservation - digital mapping in metigo® MAP, Software for documentation, mapping and quantity survey and analysis

    NASA Astrophysics Data System (ADS)

    Siedler, Gunnar; Vetter, Sebastian

    2015-04-01

    Several years of experience of heritage documentation have given a background to develop methods of cartography and digital evaluation. The outcome of which is the development of a 2D-mapping software with integrated image rectification over a period of more then 10 years and that became the state of the art software in Germany initially and now elsewhere for Conservation and Restoration projects. If there are no mapping bases (image plan or CAD-drawing), the user can create its own image plans using different types of rectification functions. Based on true to scale mappings, quantity surveys of areas and lines can be calculated automatically. Digital maps were used for the documentation and analysis of materials and damages, for planning of required action and for calculation of costs. With the help of the hierarchy even large mapping projects with many sub projects can be managed. The results of quantification can be exported to excel spreadsheets for further processing. The combination of image processing and CAD-functionality makes operation of the programm user-friendly, both in the office and on-site. metigo MAP was developed in close cooperation with conservators and restorers. Based on simple equipment consisting of digital camera, laser measuring instrument for measuring distances or total station and standard notebook the mapping software is used in many restoration companies.

  4. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  5. Canonical integration and analysis of periodic maps using non-standard analysis and life methods

    SciTech Connect

    Forest, E.; Berz, M.

    1988-06-01

    We describe a method and a way of thinking which is ideally suited for the study of systems represented by canonical integrators. Starting with the continuous description provided by the Hamiltonians, we replace it by a succession of preferably canonical maps. The power series representation of these maps can be extracted with a computer implementation of the tools of Non-Standard Analysis and analyzed by the same tools. For a nearly integrable system, we can define a Floquet ring in a way consistent with our needs. Using the finite time maps, the Floquet ring is defined only at the locations s/sub i/ where one perturbs or observes the phase space. At most the total number of locations is equal to the total number of steps of our integrator. We can also produce pseudo-Hamiltonians which describe the motion induced by these maps. 15 refs., 1 fig.

  6. Sequential phosphorylation analysis using dye-tethered peptides and microfluidic isoelectric focusing electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Nakchul; Lim, Butaek; Kim, Tae-Wuk; Song, Simon; Kim, Young-Pil

    2015-11-15

    We report a simple method for analyzing sequential phosphorylation by protein kinases using fluorescent peptide substrates and microfluidic isoelectric focusing (μIEF) electrophoresis. When a dye-labeled peptide substrate was sequentially phosphorylated by two consecutive protein kinases (mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3)), its differently phosphorylated forms were easily separated and visualized by fluorescent focusing zones in the μIEF channel based on a change in the isoelectric point (pI) by phosphorylation. As a result, ratiometric and quantitative analysis of the fluorescent focusing regions shifted by phosphorylation enabled the analysis of phosphorylation efficiency and the relevant inhibition of protein kinases (MAPK and GSK3) with high simplicity and selectivity. Furthermore, the GSK3 activity in the cell lysates was elucidated by μIEF electrophoresis in combination with immunoprecipitation. Our results suggest that this method has great potential for analyzing the sequential phosphorylation of multiple protein kinases that are implicated in cellular signaling pathways.

  7. Analysis of the primary sequence and microtubule-binding region of the Drosophila 205K MAP

    PubMed Central

    1990-01-01

    We have sequenced cDNA clones encoding the Drosophila 205K microtubule- associated protein (MAP), a protein that may be the species specific homologue of mammalian MAP4. The peptide sequence deduced from the longest open-reading frame reveals a hydrophilic protein, which has basic and acidic regions that are similar in organization to mammalian MAP2. Using truncated forms of the 205K MAP, a 232-amino acid region could be defined that is necessary for microtubule binding. The amino acid sequence of this region shares no similarity with the binding motif of MAP2 or tau. We also analyzed several embryonic cDNA clones, which show the existence of differentially spliced mRNAs. Finally, we identified several potential protein kinase target sequences. One of these is distal to the microtubule-binding site and fits the phosphorylation consensus sequence of proteins phosphorylated by the mitosis specific protein kinase cdc2. Our data suggest that the 205K MAP uses a microtubule-binding motif unlike that found in other MAPs, and also raise the possibility that the activities of the 205K MAP may be regulated by alternative splicing and phosphorylation. PMID:1703540

  8. N-Terminal Peptide Detection with Optimized Peptide-Spectrum Matching and Streamlined Sequence Libraries.

    PubMed

    Lycette, Brynne E; Glickman, Jacob W; Roth, Samuel J; Cram, Abigail E; Kim, Tae Hee; Krizanc, Danny; Weir, Michael P

    2016-09-02

    We identified tryptic peptides in yeast cell lysates that map to translation initiation sites downstream of the annotated start sites using the peptide-spectrum matching algorithms OMSSA and Mascot. To increase the accuracy of peptide-spectrum matching, both algorithms were run using several standardized parameter sets, and Mascot was run utilizing a, b, and y ions from collision-induced dissociation. A large fraction (22%) of the detected N-terminal peptides mapped to translation initiation downstream of the annotated initiation sites. Expression of several truncated proteins from downstream initiation in the same reading frame as the full-length protein (frame 1) was verified by western analysis. To facilitate analysis of the larger proteome of Drosophila, we created a streamlined sequence library from which all duplicated trypsin fragments had been removed. OMSSA assessment using this "stripped" library revealed 171 peptides that map to downstream translation initiation sites, 76% of which are in the same reading frame as the full-length annotated proteins, although some are in different reading frames creating new protein sequences not in the annotated proteome. Sequences surrounding implicated downstream AUG start codons are associated with nucleotide preferences with a pronounced three-base periodicity N1^G2^A3.

  9. Symplectic maps for the n-body problem - Stability analysis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1992-01-01

    The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.

  10. Analysis issues due to mapped conditions changing over time

    Treesearch

    Paul. Van Deusen

    2015-01-01

    Plot mapping is one of the innovations that were implemented when FIA moved to the annual forest inventory system. Mapped plots can improve the precision of estimates if the mapped conditions are carefully chosen and used judiciously. However, after plots are remeasured multiple times, it can be difficult to properly track changes in conditions and incorporate this...

  11. An Analysis of Prospective Teachers' Knowledge for Constructing Concept Maps

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela

    2015-01-01

    Background: Literature contends that a teacher's knowledge of concept map-based tasks influence how their students perceive the task and execute the creation of acceptable concept maps. Teachers who are skilled concept mappers are able to (1) understand and apply the operational terms to construct a hierarchical/non-hierarchical concept map; (2)…

  12. An Analysis of Prospective Teachers' Knowledge for Constructing Concept Maps

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela

    2015-01-01

    Background: Literature contends that a teacher's knowledge of concept map-based tasks influence how their students perceive the task and execute the creation of acceptable concept maps. Teachers who are skilled concept mappers are able to (1) understand and apply the operational terms to construct a hierarchical/non-hierarchical concept map; (2)…

  13. Inhibition of plaque progression and promotion of plaque stability by glucagon-like peptide-1 receptor agonist: Serial in vivo findings from iMap-IVUS in Watanabe heritable hyperlipidemic rabbits.

    PubMed

    Sudo, Mitsumasa; Li, Yuxin; Hiro, Takafumi; Takayama, Tadateru; Mitsumata, Masako; Shiomi, Masashi; Sugitani, Masahiko; Matsumoto, Taro; Hao, Hiroyuki; Hirayama, Atsushi

    2017-10-01

    Glucagon-like peptide-1 (GLP-1) is thought to inhibit development of aortic atherosclerosis and plaque formation. However, whether GLP-1 stabilizes fully developed atherosclerotic plaque or alters the complicated plaque composition remains unclarified. Ten Watanabe heritable hyperlipidemic (WHHL) rabbits were divided into GLP-1 receptor agonist treatment group and control group. After confirmation of atherosclerotic plaques in brachiocephalic arteries by iMap intravascular ultrasound (iMAP-IVUS), GLP-1 receptor agonist lixisenatide was administered to WHHL rabbits at 30 nmoL/kg/day for 12 weeks by osmotic pump. An equal volume of normal saline was administered in a control group. After evaluation by iMAP-IVUS at 12 weeks, brachiocephalic arteries were harvested for pathological histological analysis. iMAP-IVUS analysis revealed larger fibrotic plaque components and smaller necrotic and calcified plaque components in the GLP-1 group than in the control group; %fibrotic area: 66.30 ± 2.06% vs. 75.14 ± 2.62%, p < 0.01, %necrotic area: 23.25 ± 1.87% vs. 16.17 ± 2.27%, p = 0.02, %calcified area: 2.15 ± 0.24% vs. 1.00 ± 0.18%, p < 0.01), indicating that GLP-1 receptor agonist might modify plaque composition and increase plaque stability. Histological analysis confirmed that GLP-1 receptor agonist treatment improved smooth muscle cell (SMC)-rich plaque with increased fibrotic content. Furthermore, plaque macrophage infiltration and calcification were significantly reduced by GLP-1 receptor agonist treatment; %SMC area: 6.93 ± 0.31% vs. 8.14 ± 0.48%, p = 0.02; %macrophage area: 9.11 ± 0.80% vs. 6.19 ± 0.85%, p < 0.01; %fibrotic area: 54.75 ± 1.63% vs. 69.60 ± 2.12%, p = 0.02; %calcified area: 3.25 ± 0.67% vs. 0.75 ± 0.15%, p = 0.02). GLP-1 receptor agonist inhibited plaque progression and promoted plaque stabilization by inhibiting plaque growth and modifying plaque composition. Copyright © 2017 Elsevier B.V. All

  14. Computational analysis and structure predictions of CHH-related peptides from Litopenaeus vannamei.

    PubMed

    Nagaraju, G Purna Chandra; Kumari, N Siva; Prasad, G L V; Naik, B Reddya; Borst, D W

    2011-03-01

    The crustaceans produce several related peptides that belong to the crustacean hyperglycemic hormone (CHH) family. While these peptides have similar amino acid sequences, they have diverse biological functions that must arise, in part, from differences in the 3D shape of these peptides. However, it is generally accepted that peptides with a high degree of sequence similarity also have a similar 3-D structure. We used the solution structure of one peptide in the crustacean hyperglycemic hormone family, the molt-inhibiting hormone of the kuruma prawn (Marsupenaeus japonicus), to predict the shape of the five known peptides related to CHH in the Pacific white shrimp, Litopenaeus vannamei. The high similarity of the 3-D structures of these peptides suggests a common fold for the entire family. Nevertheless, minor differences in the shape of these peptides were observed, which may be the basis for their different biological properties.

  15. Spectral identity mapping for enhanced chemical image analysis

    NASA Astrophysics Data System (ADS)

    Turner, John F., II

    2005-03-01

    Advances in spectral imaging instrumentation during the last two decades has lead to higher image fidelity, tighter spatial resolution, narrower spectral resolution, and improved signal to noise ratios. An important sub-classification of spectral imaging is chemical imaging, in which the sought-after information from the sample is its chemical composition. Consequently, chemical imaging can be thought of as a two-step process, spectral image acquisition and the subsequent processing of the spectral image data to generate chemically relevant image contrast. While chemical imaging systems that provide turnkey data acquisition are increasingly widespread, better strategies to analyze the vast datasets they produce are needed. The Generation of chemically relevant image contrast from spectral image data requires multivariate processing algorithms that can categorize spectra according to shape. Conventional chemometric techniques like inverse least squares, classical least squares, multiple linear regression, principle component regression, and multivariate curve resolution are effective for predicting the chemical composition of samples having known constituents, but are less effective when a priori information about the sample is unavailable. To address these problems, we have developed a fully automated non-parametric technique called spectral identity mapping (SIMS) that reduces the dependence of spectral image analysis on training datasets. The qualitative SIMS method provides enhanced spectral shape specificity and improved chemical image contrast. We present SIMS results of infrared spectral image data acquired from polymer coated paper substrates used in the manufacture of pressure sensitive adhesive tapes. In addition, we compare the SIMS results to results from spectral angle mapping (SAM) and cosine correlation analysis (CCA), two closely related techniques.

  16. Qualification of a Quantitative Method for Monitoring Aspartate Isomerization of a Monoclonal Antibody by Focused Peptide Mapping.

    PubMed

    Cao, Mingyan; Mo, Wenjun David; Shannon, Anthony; Wei, Ziping; Washabaugh, Michael; Cash, Patricia

    Aspartate (Asp) isomerization is a common post-translational modification of recombinant therapeutic proteins that can occur during manufacturing, storage, or administration. Asp isomerization in the complementarity-determining regions of a monoclonal antibody may affect the target binding and thus a sufficiently robust quality control method for routine monitoring is desirable. In this work, we utilized a liquid chromatography-mass spectrometry (LC/MS)-based approach to identify the Asp isomerization in the complementarity-determining regions of a therapeutic monoclonal antibody. To quantitate the site-specific Asp isomerization of the monoclonal antibody, a UV detection-based quantitation assay utilizing the same LC platform was developed. The assay was qualified and implemented for routine monitoring of this product-specific modification. Compared with existing methods, this analytical paradigm is applicable to identify Asp isomerization (or other modifications) and subsequently develop a rapid, sufficiently robust quality control method for routine site-specific monitoring and quantitation to ensure product quality. This approach first identifies and locates a product-related impurity (a critical quality attribute) caused by isomerization, deamidation, oxidation, or other post-translational modifications, and then utilizes synthetic peptides and MS to assist the development of a LC-UV-based chromatographic method that separates and quantifies the product-related impurities by UV peaks. The established LC-UV method has acceptable peak specificity, precision, linearity, and accuracy; it can be validated and used in a good manufacturing practice environment for lot release and stability testing.

  17. Epitope mapping of B-cell determinants on the 15-kilodalton lipoprotein of Treponema pallidum (Tpp15) with synthetic peptides.

    PubMed Central

    Baughn, R E; Demecs, M; Taber, L H; Musher, D M

    1996-01-01

    The antigenicity of the 15-kDa lipoprotein of Treponema pallidum (Tpp15 or TpN15) was comprehensively evaluated in epitope-scanning studies with overlapping deca- and octapeptides and polygonal rabbit and human infant immunoglobulins (Igs) and antisera. This approach enabled us to identify potentially important regions and to determine the optimal dilutions of Igs or antisera for use in further studies. IgM and IgG from both species were capable of recognizing multiple, continuous epitopes. A total of 13 peptides, principally clustered in the central regions of the protein, were recognized by all syphilitic sera and Ig fractions. On the basis of window analyses, frequency profiles, and alanine substitution studies, five heptapeptides were selected for mimetic studies. Two of these five immunodominant, continuous epitopes initially appeared to be species specific; however, antisera elicited against mimetics of all five epitopes were polyspecific, recognizing similar motifs on several other treponemal proteins, including those of avirulent organisms. The only mimetic which yielded positive reactions with infant IgM and syphilitic sera in the absence of cross-reactions with rabbit antisera to avirulent treponemes was the variant of the VMYASSG motif. These findings are relevant to the development of simple, inexpensive assays for the serodiagnosis of active syphilis. PMID:8698467

  18. Mapping of the Communication-Mediating Interface in Nonribosomal Peptide Synthetases Using a Genetically Encoded Photocrosslinker Supports an Upside-Down Helix-Hand Motif.

    PubMed

    Dehling, Eva; Volkmann, Gerrit; Matern, Julian C J; Dörner, Wolfgang; Alfermann, Jonas; Diecker, Julia; Mootz, Henning D

    2016-10-23

    Nonribosomal peptide synthetases (NRPSs) are large modular protein templates that assemble bioactive peptides, many of which possess therapeutic importance. Protein-protein interactions between subunits of bacterial NRPSs are essential for proper template formation. The structural basis of the typical subunit interface between epimerization (E) and condensation domains is only poorly understood. Conflicting helix-helix and helix-hand models were previously proposed. Here, the genetically encoded photocrosslinker p-benzoylphenylalanine (BpF) was incorporated into the C-terminal communication-mediating domain (COM) of GrsA. Using the partner elongation module TycB1 to form a dipeptide product, we could correlate the ability to form covalent crosslinks with the functional module interaction. Perturbation of the module interaction with the large side chain of BpF in a scan at 19 positions demonstrated the importance of three hydrophobic residues in an α-helical arrangement. Mapping of covalent crosslinks using tandem mass spectrometry revealed the residues from the interior of the condensation domain as part of the protein interface; a finding not predicted by the helix-helix model. The epimerization domain of GrsA was found to be important for the interaction. Together with multiple sequence analyses and structural modeling, our results suggest an upside-down helix-hand model in which the C-terminal COM-helix is embedded in a hand motif with a hydrophobic core in a reversed orientation compared to a previous proposal. Our results provide a more detailed and the first direct structural understanding of the COM domain interaction and will contribute to successful biocombinatorial engineering attempts in the design of artificial NRPS templates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mapping forest inventory and analysis data attributes within the framework of double sampling for stratification design

    Treesearch

    David C. Chojnacky; Randolph H. Wynne; Christine E. Blinn

    2009-01-01

    Methodology is lacking to easily map Forest Inventory and Analysis (FIA) inventory statistics for all attribute variables without having to develop separate models and methods for each variable. We developed a mapping method that can directly transfer tabular data to a map on which pixels can be added any way desired to estimate carbon (or any other variable) for a...

  20. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    NASA Astrophysics Data System (ADS)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  1. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    NASA Astrophysics Data System (ADS)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-06-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker.

  2. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda.

    PubMed

    McVeigh, Paul; Leech, Suzanne; Mair, Gunnar R; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2005-09-01

    This study reports a series of systematic BLAST searches of nematode ESTs on the Genbank database, using search strings derived from known nematode FLPs (those encoded by Caenorhabditis elegans flp genes as well as those isolated from other nematodes including Ascaris suum), as well as query sequences representative of theoretical FLPs. Over 1000 putative FLP-encoding ESTs were identified from multiple nematode species. A total of 969 ESTs representing sequelogs of the 23 known C. elegans flp genes were identified in 32 species, from clades I, III, IV and V. Numerical analysis of EST numbers suggests that flp-1, flp-11 and flp-14 are amongst the most highly expressed flp genes. Speculative BLAST searches were performed using theoretical FLP C-termini as queries, in an attempt to identify putative novel FLP sequences in the EST database. These searches yielded eight multi-species sequelogs encoding FLPs with novel signatures that are believed to identify distinct flp genes. These novel genes encode 25 distinct previously unidentified FLPs, and raise the current total of known nematode flp genes to 31. Additionally, software-based analyses of the presence of signal peptides were performed, with signal peptides being identified on at least one member of each group of flp ESTs, further confirming their status as secreted peptides. The data reveal that nematode FLPs encompass the most complex neuropeptide family known within the metazoa. Moreover, individual FLPs and FLP motifs are highly conserved across the nematodes with little evidence for inter-clade or inter-lifestyle variation, supporting their fundamental role in free-living and parasitic species.

  3. Performance analysis of different database in new internet mapping system

    NASA Astrophysics Data System (ADS)

    Yao, Xing; Su, Wei; Gao, Shuai

    2017-03-01

    In the Mapping System of New Internet, Massive mapping entries between AID and RID need to be stored, added, updated, and deleted. In order to better deal with the problem when facing a large number of mapping entries update and query request, the Mapping System of New Internet must use high-performance database. In this paper, we focus on the performance of Redis, SQLite, and MySQL these three typical databases, and the results show that the Mapping System based on different databases can adapt to different needs according to the actual situation.

  4. Analysis of peptides using an integrated microchip HPLC-MS/MS system.

    SciTech Connect

    Kirby, Brian J.; Chirica, Gabriela S.; Reichmuth, David S.

    2004-06-01

    Hyphendated LC-MS techniques are quickly becoming the standard tool for protemic analyses. For large homogeneous samples, bulk processing methods and capillary injection and separation techniques are suitable. However, for analysis of small or heterogeneous samples, techniques that can manipulate picoliter samples without dilution are required or samples will be lost or corrupted; further, static nanospray-type flowrates are required to maximize SNR. Microchip-level integration of sample injection with separation and mass spectrometry allow small-volume analytes to be processed on chip and immediately injected without dilution for analysis. An on-chip HPLC was fabricated using in situ polymerization of both fixed and mobile polymer monoliths. Integration of the chip with a nanospray MS emitter enables identification of peptides by the use of tandem MS. The chip is capable of analyzing of very small sample volumes (< 200 pl) in short times (< 3 min).

  5. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies.

    PubMed

    Sforza, Stefano; Corradini, Roberto; Tedeschi, Tullia; Marchelli, Rosangela

    2011-01-01

    This tutorial review will address the issue of DNA determination in food by using Peptide Nucleic Acid (PNA) probes with different technological platforms, with a particular emphasis on the applications devoted to food authentication. After an introduction aimed at describing PNAs structure, binding properties and their use as genetic probes, the review will then focus specifically on the use of PNAs in the field of food analysis. In particular, the following issues will be considered: detection of genetically modified organisms (GMOs), of hidden allergens, of microbial pathogens and determination of ingredient authenticity. Finally, the future perspectives for the use of PNAs in food analysis will be briefly discussed according to the most recent developments.

  6. Proteomic Characterization of Helicobacter pylori CagA Antigen Recognized by Child Serum Antibodies and Its Epitope Mapping by Peptide Array

    PubMed Central

    Akada, Junko; Okuda, Masumi; Hiramoto, Narumi; Kitagawa, Takao; Zhang, Xiulian; Kamei, Shuichi; Ito, Akane; Nakamura, Mikiko; Uchida, Tomohisa; Hiwatani, Tomoko; Fukuda, Yoshihiro; Nakazawa, Teruko; Kuramitsu, Yasuhiro; Nakamura, Kazuyuki

    2014-01-01

    Serum antibodies against pathogenic bacteria play immunologically protective roles, and can be utilized as diagnostic markers of infection. This study focused on Japanese child serum antibodies against Helicobacter pylori, a chronically-infected gastric bacterium which causes gastric cancer in adults. Serological diagnosis for H. pylori infection is well established for adults, but it needs to be improved for children. Serum samples from 24 children, 22 H. pylori (Hp)-positive and 2 Hp-negative children, were used to catalogue antigenic proteins of a Japanese strain CPY2052 by two-dimensional electrophoresis followed by immunoblot and LC-MS/MS analysis. In total, 24 proteins were identified as candidate antigen proteins. Among these, the major virulence factor, cytotoxin-associated gene A protein (CagA) was the most reactive antigen recognized by all the Hp-positive sera even from children under the age of 3 years. The major antigenic part of CagA was identified in the middle region, and two peptides containing CagA epitopes were identified using a newly developed peptide/protein-combined array chip method, modified from our previous protein chip method. Each of the epitopes was found to contain amino acid residue(s) unique to East Asian CagA. Epitope analysis of CagA indicated importance of the regional CagA antigens for serodiagnosis of H. pylori infection in children. PMID:25141238

  7. MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions.

    PubMed

    Maccarrone, Giuseppina; Nischwitz, Sandra; Deininger, Sören-Oliver; Hornung, Joachim; König, Fatima Barbara; Stadelmann, Christine; Turck, Christoph W; Weber, Frank

    2017-03-15

    Multiple sclerosis is a disease of the central nervous system characterized by recurrent inflammatory demyelinating lesions in the early disease stage. Lesion formation and mechanisms leading to lesion remyelination are not fully understood. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry imaging (MALDI-IMS) is a technology which analyses proteins and peptides in tissue, preserves their spatial localization, and generates molecular maps within the tissue section. In a pilot study we employed MALDI imaging mass spectrometry to profile and identify peptides and proteins expressed in normal-appearing white matter, grey matter and multiple sclerosis brain lesions with different extents of remyelination. The unsupervised clustering analysis of the mass spectra generated images which reflected the tissue section morphology in luxol fast blue stain and in myelin basic protein immunohistochemistry. Lesions with low remyelination extent were defined by compounds with molecular weight smaller than 5300Da, while more completely remyelinated lesions showed compounds with molecular weights greater than 15,200Da. An in-depth analysis of the mass spectra enabled the detection of cortical lesions which were not seen by routine luxol fast blue histology. An ion mass, mainly distributed at the rim of multiple sclerosis lesions, was identified by liquid chromatography and tandem mass spectrometry as thymosin beta-4, a protein known to be involved in cell migration and in restorative processes. The ion mass of thymosin beta-4 was profiled by MALDI imaging mass spectrometry in brain slides of 12 multiple sclerosis patients and validated by immunohistochemical analysis. In summary, our results demonstrate the ability of the MALDI-IMS technology to map proteins within the brain parenchyma and multiple sclerosis lesions and to identify potential markers involved in multiple sclerosis pathogenesis and/or remyelination. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae).

    PubMed

    Coquet, Laurent; Kolodziejek, Jolanta; Jouenne, Thierry; Nowotny, Norbert; King, Jay D; Conlon, J Michael

    2016-09-01

    The Uganda clawed frog Xenopus ruwenzoriensis with a karyotype of 2n=108 is one of the very few vertebrates with dodecaploid status. Peptidomic analysis of norepinephrine-stimulated skin secretions from this species led to the isolation and structural characterization of 23 host-defense peptides belonging to the following families: magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 6 peptides), xenopsin precursor fragment (XPF; 3 peptides), caerulein precursor fragment (CPF; 8 peptides), and caerulein precursor fragment-related peptide (CPF-RP; 3 peptides). In addition, the secretions contained caerulein, identical to the peptide from Xenopus laevis, and two peptides that were identified as members of the trefoil factor family (TFF). The data indicate that silencing of the host-defense peptide genes following polyploidization has been appreciable and non-uniform. Consistent with data derived from comparison of nucleotide sequences of mitochrondrial and nuclear genes, cladistic analyses based upon the primary structures of the host-defense peptides provide support for an evolutionary scenario in which X. ruwenzoriensis arose from an allopolyploidization event involving an octoploid ancestor of the present-day frogs belonging to the Xenopus amieti species group and a tetraploid ancestor of Xenopus pygmaeus. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  10. Tandem mass spectrometric analysis of novel peptide-modified gemini surfactants used as gene delivery vectors.

    PubMed

    Al-Dulaymi, M; El-Aneed, A

    2017-06-01

    Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide-modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time-of-flight mass spectrometer, and a multi-stage MS/MS analysis was conducted using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H](3+) species were observed in the single-stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide-related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N-terminus part of the gemini surfactants. In addition, a charge-directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α-amino-ε-caprolactam ion and its complimentary C-terminus ion that contains quaternary amines. MS/MS and MS(3) analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Automated carboxy-terminal sequence analysis of peptides and proteins using diphenyl phosphoroisothiocyanatidate.

    PubMed Central

    Bailey, J. M.; Nikfarjam, F.; Shenoy, N. R.; Shively, J. E.

    1992-01-01

    peptides covalently attached to carboxylic acid-modified polyethylene and proteins (200 pmol to 5 nmol) noncovalently applied to Zitex (porous Teflon). The generality of our automated C-terminal sequencing methodology was examined by sequencing model peptides containing all 20 of the common amino acids. All of the amino acids tested were found to sequence in good yield except for proline, which was found not to be capable of derivatization. In spite of this limitation, the methodology should be a valuable tool for the C-terminal sequence analysis of peptides and proteins.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1304893

  12. Insights from the analysis of predicted Rv0679c protein peptide from Mycobacterium tuberculosis with Toll like Receptors in host

    PubMed Central

    Lavarti, Rupa; Ganugapati, Jayasree; Ratcha, Shirisa; Rao, Lakshmana SS; SivaSai, Krovvidi SR

    2016-01-01

    Peptides of Rv0679c a membrane protein of the cell envelope (16.6 KDa) of Mycobacterium tuberculosis (M. tb), inhibited entry of live bacilli into epithelial (A549) and macrophage (U937) cell lines in vitro, suggesting a possible role in invasion. Receptors associated with Rv0679c antigen entry into cell lines were not characterized. We are reporting that Rv0679c peptides could bind to Toll like receptors (TLRs), the principal class of pathogen recognition receptors on host cells (PRR) by docking studies. Peptide structures were predicted using PEP FOLD and docking of truncated peptides with TLR’s was performed using Cluspro 2.0. Docked complexes were analyzed using Swiss-PDB Viewer. Nine peptides of Rv0679c protein assessed were able to bind to TLR2-1 and TLR 4-MD2; however the binding energy was better with TLR 4-MD2. Peptide 30985 (-866.4 kcal/mol) has better binding energy with TLR2-1, in contrast peptide 30982 showed a better binding energy to TLR 4-MD2 dimer with a score of -1291.7 kcal/mol. Interactive residue analysis revealed that GLU 173 and SER 454 of TLR 1; ARG 447 and ARG 486 of TLR2; ARG 264 of TLR 4 and SER 120, LYS 122 and GLU 92 of MD2 region are predominant residues interacting with peptides of Rv0679c protein. Our study suggests that predominant residues and receptors of TLR2 and TLR4 are important for Rv0679c protein binding, which could further lead to invasion of M. tb into the host cell. PMID:28246463

  13. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    PubMed

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  14. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    PubMed Central

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  15. Mechanism of interaction of optimized Limulus-derived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis

    PubMed Central

    Andrä, Jörg; Howe, Jörg; Garidel, Patrick; Rössle, Manfred; Richter, Walter; Leiva-León, José; Moriyon, Ignacio; Bartels, Rainer; Gutsmann, Thomas; Brandenburg, Klaus

    2007-01-01

    On the basis of formerly investigated peptides corresponding to the endotoxin-binding domain from LALF [Limulus anti-LPS (lipopolysaccharide) factor], a protein from Limulus polyphemus, we have designed and synthesized peptides of different lengths with the aim of obtaining potential therapeutic agents against septic shock syndrome. For an understanding of the mechanisms of action, we performed a detailed physicochemical and biophysical analysis of the interaction of rough mutant LPS with these peptides by applying FTIR (Fourier-transform infrared) spectroscopy, SAXS (small-angle X-ray scattering), calorimetric techniques [DSC (differential scanning calorimetry) and ITC (isothermal titration calorimetry)] and FFTEM (freeze-fracture transmission electron microscopy). Also, the action of the peptides on bacteria of different origin in microbial assays was investigated. Using FTIR and DSC, our results indicated a strong fluidization of the lipid A acyl chains due to peptide binding, with a decrease in the endothermic melting enthalpy change of the acyl chains down to a complete disappearance in the 1:0.5 to 1:2 [LPS]:[peptide] molar ratio range. Via ITC, it was deduced that the binding is a clearly exothermic process which becomes saturated at a 1:0.5 to 1:2 [LPS]:[peptide] molar ratio range. The results obtained with SAXS indicated a drastic change of the aggregate structures of LPS into a multilamellar stack, which was visualized in electron micrographs as hundreds of lamellar layers. This can be directly correlated with the inhibition of the LPS-induced production of tumour necrosis factor α in human mononuclear cells, but not with the action of the peptides on bacteria. PMID:17501719

  16. The therapeutic potential of C-peptide in kidney disease: a protocol for a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background Kidney disease remains a major cause of morbidity and mortality in Canada and worldwide. New medical treatments are needed to reduce the progression of kidney disease to improve patient outcomes. C-peptide is normally released by pancreatic beta-cells along with insulin in healthy individuals, and has been shown to have intrinsic biological activity and to potentially be renoprotective. The effect of exogenous C-peptide on kidney structure and function, and the role of C-peptide in the treatment of kidney disease have not yet been fully elucidated. Methods/Design We will conduct a systematic review of the literature in human clinical trials and mammalian experimental models to ascertain the current evidence for the role of C-peptide as a potential therapeutic agent for the treatment of kidney disease. We aim to identify whether exogenously delivered C-peptide has an effect on clinically relevant outcomes such as glomerular filtration rate, proteinuria, kidney histology, requirement of renal replacement therapy, and mortality. We will search MEDLINE, EMBASE, and the Cochrane Central Databases for human or animal studies in which C-peptide was administered and renal endpoints were subsequently measured. Study quality will be assessed using the Cochrane Collaboration’s tool for assessing risk of bias. If appropriate, a meta-analysis will be performed as per standard techniques. Discussion The results of this study will determine the potential role of C-peptide as a therapeutic intervention for patients with kidney disease and will help guide subsequent clinical trials. The study may also provide insight into which patients or disease states are likely to benefit the most from C-peptide. Systematic review registration PROSPERO CRD42014007472 PMID:24887028

  17. Use of multiple cluster analysis methods to explore the validity of a community outcomes concept map.

    PubMed

    Orsi, Rebecca

    2017-02-01

    Concept mapping is now a commonly-used technique for articulating and evaluating programmatic outcomes. However, research regarding validity of knowledge and outcomes produced with concept mapping is sparse. The current study describes quantitative validity analyses using a concept mapping dataset. We sought to increase the validity of concept mapping evaluation results by running multiple cluster analysis methods and then using several metrics to choose from among solutions. We present four different clustering methods based on analyses using the R statistical software package: partitioning around medoids (PAM), fuzzy analysis (FANNY), agglomerative nesting (AGNES) and divisive analysis (DIANA). We then used the Dunn and Davies-Bouldin indices to assist in choosing a valid cluster solution for a concept mapping outcomes evaluation. We conclude that the validity of the outcomes map is high, based on the analyses described. Finally, we discuss areas for further concept mapping methods research.

  18. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2015-04-21

    A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.

  19. Integrating Recent Land Cover Mapping Efforts to Update the National Gap Analysis Program's Species Habitat Map

    NASA Astrophysics Data System (ADS)

    McKerrow, A. J.; Davidson, A.; Earnhardt, T. S.; Benson, A. L.

    2014-11-01

    Over the past decade, great progress has been made to develop national extent land cover mapping products to address natural resource issues. One of the core products of the GAP Program is range-wide species distribution models for nearly 2000 terrestrial vertebrate species in the U.S. We rely on deductive modeling of habitat affinities using these products to create models of habitat availability. That approach requires that we have a thematically rich and ecologically meaningful map legend to support the modeling effort. In this work, we tested the integration of the Multi-Resolution Landscape Characterization Consortium's National Land Cover Database 2011 and LANDFIRE's Disturbance Products to update the 2001 National GAP Vegetation Dataset to reflect 2011 conditions. The revised product can then be used to update the species models. We tested the update approach in three geographic areas (Northeast, Southeast, and Interior Northwest). We used the NLCD product to identify areas where the cover type mapped in 2011 was different from what was in the 2001 land cover map. We used Google Earth and ArcGIS base maps as reference imagery in order to label areas identified as "changed" to the appropriate class from our map legend. Areas mapped as urban or water in the 2011 NLCD map that were mapped differently in the 2001 GAP map were accepted without further validation and recoded to the corresponding GAP class. We used LANDFIRE's Disturbance products to identify changes that are the result of recent disturbance and to inform the reassignment of areas to their updated thematic label. We ran species habitat models for three species including Lewis's Woodpecker (Melanerpes lewis) and the White-tailed Jack Rabbit (Lepus townsendii) and Brown Headed nuthatch (Sitta pusilla). For each of three vertebrate species we found important differences in the amount and location of suitable habitat between the 2001 and 2011 habitat maps. Specifically, Brown headed nuthatch habitat in

  20. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    SciTech Connect

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.

    1985-01-01

    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.

  1. Performance metrics for evaluating system suitability in liquid chromatography--Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies.

    PubMed

    Zhou, Mowei; Gucinski, Ashley C; Boyne, Michael T

    2015-01-01

    The use of liquid chromatography--mass spectrometry (LC-MS) for the characterization of proteins can provide a plethora of information related to their structure, including amino acid sequence determination and analysis of posttranslational modifications. The variety of LC-MS based applications has led to the use of LC-MS characterization of therapeutic proteins and monoclonal antibodies as an integral part of the regulatory approval process. However, the improper use of an LC-MS system, related to intrinsic instrument limitations, improper tuning parameters, or poorly optimized methods may result in the production of low quality data. Improper system performance may arise from subtle changes in operating conditions that limit the ability to detect low abundance species. To address this issue, we systematically evaluated LC-MS/MS operating parameters to identify a set of metrics that can be used in a workflow to determine if a system is suitable for its intended purpose. Development of this workflow utilized a bovine serum albumin (BSA) digest standard spiked with synthetic peptides present at 0.1% to 100% of the BSA digest peptide concentration to simulate the detection of low abundance species using a traditional bottom-up workflow and data-dependent MS(2) acquisition. BSA sequence coverage, a commonly used indicator for instrument performance did not effectively identify settings that led to limited dynamic range or poorer absolute mass accuracy on 2 separate LC-MS systems. Additional metrics focusing on the detection limit and sensitivity for peptide identification were determined to be necessary to establish system suitability for protein therapeutic characterization by LC-MS.

  2. Performance metrics for evaluating system suitability in liquid chromatography—Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies

    PubMed Central

    Zhou, Mowei; Gucinski, Ashley C; Boyne, Michael T

    2015-01-01

    The use of liquid chromatography – mass spectrometry (LC-MS) for the characterization of proteins can provide a plethora of information related to their structure, including amino acid sequence determination and analysis of posttranslational modifications. The variety of LC-MS based applications has led to the use of LC-MS characterization of therapeutic proteins and monoclonal antibodies as an integral part of the regulatory approval process. However, the improper use of an LC-MS system, related to intrinsic instrument limitations, improper tuning parameters, or poorly optimized methods may result in the production of low quality data. Improper system performance may arise from subtle changes in operating conditions that limit the ability to detect low abundance species. To address this issue, we systematically evaluated LC-MS/MS operating parameters to identify a set of metrics that can be used in a workflow to determine if a system is suitable for its intended purpose. Development of this workflow utilized a bovine serum albumin (BSA) digest standard spiked with synthetic peptides present at 0.1% to 100% of the BSA digest peptide concentration to simulate the detection of low abundance species using a traditional bottom-up workflow and data-dependent MS2 acquisition. BSA sequence coverage, a commonly used indicator for instrument performance did not effectively identify settings that led to limited dynamic range or poorer absolute mass accuracy on 2 separate LC-MS systems. Additional metrics focusing on the detection limit and sensitivity for peptide identification were determined to be necessary to establish system suitability for protein therapeutic characterization by LC-MS. PMID:26218711

  3. A Comparative Analysis of Global Cropping Systems Models and Maps

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W.

    2013-12-01

    Agricultural practices have dramatically altered the land cover of the Earth, but the spatial extent and intensity of these practices is often difficult to catalogue. Cropland accounts for nearly 15 million km2 of the Earth's land cover - amounting to 12% of the Earth's ice-free land surface - yet information on the distribution and performance of specific crops is often available only through national or sub-national statistics. While remote sensing products offer spatially disaggregated information, those currently available on a global scale are ill-suited for many applications due to the limited separation of crop types within the area classified as cropland. Recently, however, there have been multiple independent efforts to incorporate the detailed information available from statistical surveys with supplemental spatial information to produce a spatially explicit global dataset specific to individual cropss for the year 2000. While these datasets provide analysts and decision makers with improved information on global cropping systems, the final global cropping maps differ from one another substantially. This study aims to explore and quantify systematic similarities and differences between four major global cropping systems products: the monthly irrigated and rainfed crop areas around the year 2000 (MIRAC2000) dataset, the spatial production allocation model (SPAM), the global agro-ecological zone (GAEZ) dataset, and the dataset developed by Monfreda et al., 2008. The analysis explores not only the final cropping systems maps but also the interdependencies of each product, methodological differences and modeling assumptions, which will provide users with information vital for discerning between datasets in selecting a product appropriate for each intended application.

  4. Coumarin tags for analysis of peptides by MALDI-TOF MS and MS/MS. 2. Alexa Fluor 350 tag for increased peptide and protein Identification by LC-MALDI-TOF/TOF MS.

    PubMed

    Pashkova, Anna; Chen, Hsuan-Shen; Rejtar, Tomas; Zang, Xin; Giese, Roger; Andreev, Victor; Moskovets, Eugene; Karger, Barry L

    2005-04-01

    The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.

  5. Applications of Circular Dichroism for Structural Analysis of Gelatin and Antimicrobial Peptides

    PubMed Central

    Gopal, Ramamourthy; Park, Jin Soon; Seo, Chang Ho; Park, Yoonkyung

    2012-01-01

    Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications. PMID:22489150

  6. Mapping and geological analysis of Mercury radar data

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Strobell, M. E.; Schaber, G. G.; Jurgens, R. F.; Downs, G. S.

    1984-01-01

    Although many radar profiles and images of the area within 20 deg of Mercury's equator had been obtained from 1971 to 1981, at both Goldstone and Arecibo radar facilities, surprisingly little geological analysis had been done with these data until recently. Topographic profiles and radar roughness reflectivity images which can be derived from these data will be crucial in completing the geological mapping of Mercury now underway at the U.S. Geological Survey. Processing of available radar data must be completed to establish any systematic relationship between radar reflectivities and roughness, density, dielectric constant, and other related geological parameters. Specific tasks accomplished for these purposes include the following. Documentation was located and searched to establish the type and quantity of Goldstone 12.5 cm radar observations which were available for Mercury. Data has been collected during approximately 50 observation periods from 1971 to 1981. About half of the data, collected during 1972 and 1973, have been processed, but without adequate documentation. A standardized, well-documented procedure for processing and analysis for all Goldstone Earth-based observations of Mercury was established.

  7. Fine mapping by composite genome-wide association analysis.

    PubMed

    Casellas, Joaquim; Cañas-Álvarez, Jhon Jacobo; Fina, Marta; Piedrafita, Jesús; Cecchinato, Alessio

    2017-06-06

    Genome-wide association (GWA) studies play a key role in current genetics research, unravelling genomic regions linked to phenotypic traits of interest in multiple species. Nevertheless, the extent of linkage disequilibrium (LD) may provide confounding results when significant genetic markers span along several contiguous cM. In this study, we have adapted the composite interval mapping approach to the GWA framework (composite GWA), in order to evaluate the impact of including competing (possibly linked) genetic markers when testing for the additive allelic effect inherent to a given genetic marker. We tested model performance on simulated data sets under different scenarios (i.e., qualitative trait loci effects, LD between genetic markers and width of the genomic region involved in the analysis). Our results showed that the genomic region had a small impact on the number of competing single nucleotide polymorphisms (SNPs) as well as on the precision of the composite GWA analysis. A similar conclusion was derived from the preferable range of LD between the tested SNP and competing SNPs, although moderate-to-high LD seemed to attenuate the loss of statistical power. The composite GWA improved specificity and reduced the number of significant genetic markers. The composite GWA model contributes a novel point of view for GWA analyses where testing circumscribed to the genomic region flanking each SNP (delimited by the nearest competing SNPs) and conditioning on linked markers increases the precision to locate causal mutations, but possibly at the expense of power.

  8. A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space.

    PubMed

    Sukuru, Sai Chetan K; Nigsch, Florian; Quancard, Jean; Renatus, Martin; Chopra, Rajiv; Brooijmans, Natasja; Mikhailov, Dmitri; Deng, Zhan; Cornett, Allen; Jenkins, Jeremy L; Hommel, Ulrich; Davies, John W; Glick, Meir

    2010-11-01

    We present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple-category naïve Bayes model, trained on the two-dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions. The positional awareness of the method allows us to identify the most similar substrate positions between proteases. Our analysis reveals that proteases from different families, based on the traditional classification (aspartic, cysteine, serine, and metallo), could have substrates that differ at the cleavage site (P1-P1') but are similar away from it. Caspase-3 (cysteine protease) and granzyme B (serine protease) are previously known examples of cross-family neighbors identified by this method. To assess whether peptide substrate similarity between unrelated proteases could reliably translate into the discovery of low molecular weight synthetic inhibitors, a lead discovery strategy was tested on two other cross-family neighbors--namely cathepsin L2 and matrix metallo proteinase 9, and calpain 1 and pepsin A. For both these pairs, a naïve Bayes classifier model trained on inhibitors of one protease could successfully enrich those of its neighbor from a different family and vice versa, indicating that this approach could be prospectively applied to lead discovery for a novel protease target with no known synthetic inhibitors.

  9. A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space

    PubMed Central

    Sukuru, Sai Chetan K; Nigsch, Florian; Quancard, Jean; Renatus, Martin; Chopra, Rajiv; Brooijmans, Natasja; Mikhailov, Dmitri; Deng, Zhan; Cornett, Allen; Jenkins, Jeremy L; Hommel, Ulrich; Davies, John W; Glick, Meir

    2010-01-01

    We present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple-category naïve Bayes model, trained on the two-dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions. The positional awareness of the method allows us to identify the most similar substrate positions between proteases. Our analysis reveals that proteases from different families, based on the traditional classification (aspartic, cysteine, serine, and metallo), could have substrates that differ at the cleavage site (P1–P1′) but are similar away from it. Caspase-3 (cysteine protease) and granzyme B (serine protease) are previously known examples of cross-family neighbors identified by this method. To assess whether peptide substrate similarity between unrelated proteases could reliably translate into the discovery of low molecular weight synthetic inhibitors, a lead discovery strategy was tested on two other cross-family neighbors—namely cathepsin L2 and matrix metallo proteinase 9, and calpain 1 and pepsin A. For both these pairs, a naïve Bayes classifier model trained on inhibitors of one protease could successfully enrich those of its neighbor from a different family and vice versa, indicating that this approach could be prospectively applied to lead discovery for a novel protease target with no known synthetic inhibitors. PMID:20799349

  10. Structure-activity analysis of quorum-sensing signaling peptides from Streptococcus mutans.

    PubMed

    Syvitski, Raymond T; Tian, Xiao-Lin; Sampara, Kamal; Salman, Alan; Lee, Song F; Jakeman, David L; Li, Yung-Hua

    2007-02-01

    Streptococcus mutans secretes and utilizes a 21-amino-acid signaling peptide pheromone to initiate quorum sensing for genetic competence, biofilm formation, stress responses, and bacteriocin production. In this study, we designed and synthesized a series of truncated peptides and peptides with amino acid substitutions to investigate their structure-activity relationships based on the three-dimensional structures of S. mutans wild-type signaling peptide UA159sp and C-terminally truncated peptide TPC3 from mutant JH1005 defective in genetic competence. By analyzing these peptides, we demonstrated that the signaling peptide of S. mutans has at least two functional domains. The C-terminal structural motif consisting of a sequence of polar hydrophobic charged residues is crucial for activation of the signal transduction pathway, while the core alpha-helical structure extending from residue 5 to the end of the peptide is required for receptor binding. Peptides in which three or more residues were deleted from the C terminus did not induce genetic competence but competitively inhibited quorum sensing activated by UA159sp. Disruption of the amphipathic alpha-helix by replacing the Phe-7, Phe-11, or Phe-15 residue with a hydrophilic residue resulted in a significant reduction in or complete loss of the activity of the peptide. In contrast to the C-terminally truncated peptides, these peptides with amino acid substitutions did not compete with UA159sp to activate quorum sensing, suggesting that disruption of the hydrophobic face of the alpha-helical structure results in a peptide that is not able to bind to the receptor. This study is the first study to recognize the importance of the signaling peptide C-terminal residues in streptococcal quorum sensing.

  11. Digital floodplain mapping and an analysis of errors involved

    USGS Publications Warehouse

    Hamblen, C.S.; Soong, D.T.; Cai, X.

    2007-01-01

    Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation

  12. Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics.

    PubMed

    Gobom, J; Schuerenberg, M; Mueller, M; Theiss, D; Lehrach, H; Nordhoff, E

    2001-02-01

    We present a new MALD1 sample preparation technique for peptide analysis using the matrix alpha-cyano-4-hydroxy-cinnamic acid (CHCA) and prestructured sample supports. The preparation integrates sample purification, based on the affinity of microcrystalline CHCA for peptides, thereby simplifying the analysis of crude peptide mixtures. Enzymatic digests can thus be prepared directly, without preceding purification. Prepared samples are homogeneous, facilitating automatic spectra acquisition. This method allows preparation of large numbers of samples with little effort and without the need for automation. These features make the described preparation suitable for cost-efficient high-throughput protein identification. Performance of the sample preparation is demonstrated with in situ proteolytic digests of human brain proteins separated by two-dimensional gel electrophoresis.

  13. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis.

    PubMed

    Vijayasarathy, Marimuthu; Basheer, Soorej M; Franklin, Jayaseelan Benjamin; Balaram, Padmanabhan

    2017-02-03

    The occurrence of contryphans, a class of single-disulfide-bond-containing peptides, is demonstrated by the analysis of the venom of nine species of cone snails. Ten full gene sequences and two partial gene sequences coding for contryphan precursor proteins have been identified by next-generation sequencing and compared with available sequences. The occurrence of mature peptides in isolated venom has been demonstrated by LC-ESI-MS/MS analysis. De novo sequencing of reduced, alkylated contryphans from C. frigidus and C. araneosus provides evidence of sequence variation and post-translational modification, notably gamma carboxylation of glutamic acid. The characterization of Fr965 (C. frigidus) provides a rare example of a sequence lacking Pro at position 5 in the disulfide loop. The widespread occurrence of contryphan genes and mature peptides in the venom of diverse cone snails is suggestive of their potential biological significance.

  14. Analysis of physical interactions between peptides and HLA molecules and application to the detection of human immunodeficiency virus 1 antigenic peptides

    PubMed Central

    1990-01-01

    The physical association of 40 antigenic peptides and purified HLA class I and class II molecules was monitored using a direct peptide binding assay (PBA) in solid phase and an inhibition peptide binding assay (IPBA) in which the competing peptide was present in a soluble phase. We also examined the ability of different peptides to inhibit the lytic activity of human antiviral cytolytic T cells towards cells incubated with the corresponding target peptide. Our results showed that: (a) Binding of a given human T cell-recognized peptide to several HLA class I and class II molecules occurred frequently. Nevertheless, preferential binding of peptides to their respective restriction molecules was also observed. (b) Binding of HLA molecules to peptides recognized by murine T cells occurred less frequently. (c) 11 of 24 (46%) randomly selected HIV-1 peptides contained agretopic residues allowing their binding to HLA molecules. (d) The kinetics of HLA/peptide association depended on the peptide tested and were faster than or similar to those reported for Ia molecules. Dissociation of these complexes was very low. (e) Peptide/HLA molecule binding was dependent on length, number of positive charges, and presence of hydrophobic residue in the peptide. (f) A correlation was demonstrated between a peptide inhibitory effect in the IPBA and its blocking effect in the cytolytic test. Our data indicated that the restriction phenomenon observed in T cell responses was not strictly related to either an elective HLA/peptide association, or a high binding capacity of a peptide to HLA molecules. These data also showed that the PBA and IPBA are appropriate for the detection of agretopic residues within HIV- 1 proteins. PMID:2388036

  15. Data analysis and mapping of the mountain permafrost distribution

    NASA Astrophysics Data System (ADS)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-04-01

    the permafrost occurrence where it is unknown, the mentioned supervised learning techniques inferred a classification function from labelled training data (pixels of permafrost absence and presence). A particular attention was given to the pre-processing of the dataset, with the study of its complexity and the relation between permafrost data and employed environmental variables. The application of feature selection techniques completed this analysis and informed about redundant or valueless predictors. Classification performances were assessed with AUROC on independent validation sets (0.81 for LR, 0.85 with SVM and 0.88 with RF). At the micro scale obtained permafrost maps illustrate consistent results compared to the field reality thanks to the high resolution of the dataset (10 meters). Moreover, compared to classical models, the permafrost prediction is computed without recurring to altitude thresholds (above which permafrost may be found). Finally, as machine learning is a non-deterministic approach, mountain permafrost distribution maps are presented and discussed with corresponding uncertainties maps, which provide information on the quality of the results.

  16. Intact Transition Epitope Mapping (ITEM)

    NASA Astrophysics Data System (ADS)

    Yefremova, Yelena; Opuni, Kwabena F. M.; Danquah, Bright D.; Thiesen, Hans-Juergen; Glocker, Michael O.

    2017-08-01

    Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods.

  17. Conformational analysis of lipid molecules by self-organizing maps

    NASA Astrophysics Data System (ADS)

    Murtola, Teemu; Kupiainen, Mikko; Falck, Emma; Vattulainen, Ilpo

    2007-02-01

    The authors have studied the use of the self-organizing map (SOM) in the analysis of lipid conformations produced by atomic-scale molecular dynamics simulations. First, focusing on the methodological aspects, they have systematically studied how the SOM can be employed in the analysis of lipid conformations in a controlled and reliable fashion. For this purpose, they have used a previously reported 50ns atomistic molecular dynamics simulation of a 1-palmitoyl-2-linoeayl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayer and analyzed separately the conformations of the headgroup and the glycerol regions, as well as the diunsaturated fatty acid chain. They have elucidated the effect of training parameters on the quality of the results, as well as the effect of the size of the SOM. It turns out that the main conformational states of each region in the molecule are easily distinguished together with a variety of other typical structural features. As a second topic, the authors applied the SOM to the PLPC data to demonstrate how it can be used in the analysis that goes beyond the standard methods commonly used to study the structure and dynamics of lipid membranes. Overall, the results suggest that the SOM method provides a relatively simple and robust tool for quickly gaining a qualitative understanding of the most important features of the conformations of the system, without a priori knowledge. It seems plausible that the insight given by the SOM could be applied to a variety of biomolecular systems and the design of coarse-grained models for these systems.

  18. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate

  19. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (