Science.gov

Sample records for peptide venom components

  1. Bioactive Components in Fish Venoms

    PubMed Central

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  2. Peptide Toxins in Solitary Wasp Venoms

    PubMed Central

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  3. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-17

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  4. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    PubMed Central

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  5. Two novel antimicrobial peptides from centipede venoms.

    PubMed

    Peng, Kanfu; Kong, Yi; Zhai, Lei; Wu, Xiongfei; Jia, Peng; Liu, Jingze; Yu, Haining

    2010-01-01

    Centipede venoms are complex mixtures of biochemically and pharmacologically active components such as peptides and proteins. Very few are known about their pharmacological actions. The present work reports the structural and functional characterization of two antimicrobial peptides (scolopin 1 and -2) identified from centipede venoms of Scolopendra subspinipes mutilans by Sephadex gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequences of scolopin 1 and -2 were FLPKMSTKLRVPYRRGTKDYH and GILKKFMLHRGTKVYKMRTLSKRSH determined by Edman degradation and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Both scolopin 1 and -2 showed strong antimicrobial activities against tested microorganisms including Gram-positive/negative bacteria and fungi. They also showed moderate hemolytic activity against both human and rabbit red cells. This is the first report of antimicrobial peptides from centipedes.

  6. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of the venom have not been studied, but venom peptides from other organisms have been identified ...

  7. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components

    PubMed Central

    2010-01-01

    Background Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus. Results A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions. Conclusions This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins. PMID:20663230

  8. Spider-Venom Peptides as Therapeutics

    PubMed Central

    Saez, Natalie J.; Senff, Sebastian; Jensen, Jonas E.; Er, Sing Yan; Herzig, Volker; Rash, Lachlan D.; King, Glenn F.

    2010-01-01

    Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction. PMID:22069579

  9. Comparisons of Protein and Peptide Complexity in Poneroid and Formicoid Ant Venoms.

    PubMed

    Aili, Samira R; Touchard, Axel; Koh, Jennifer M S; Dejean, Alain; Orivel, Jérôme; Padula, Matthew P; Escoubas, Pierre; Nicholson, Graham M

    2016-09-02

    Animal venom peptides are currently being developed as novel drugs and bioinsecticides. Because ants use venoms for defense and predation, venomous ants represent an untapped source of potential bioactive toxins. This study compared the protein and peptide components of the poneroid ants Neoponera commutata, Neoponera apicalis, and Odontomachus hastatus and the formicoid ants Ectatomma tuberculatum, Ectatomma brunneum, and Myrmecia gulosa. 1D and 2D PAGE revealed venom proteins in the mass range <10 to >250 kDa. NanoLC-ESI-QTOF MS/MS analysis of tryptic peptides revealed the presence of common venom proteins and also many undescribed proteins. RP-HPLC separation followed by MALDI-TOF MS of the venom peptides also revealed considerable heterogeneity. It was found that the venoms contained between 144 and 1032 peptides with 5-95% of peptides in the ranges 1-4 and 1-8 kDa for poneroid and formicoid ants, respectively. By employing the reducing MALDI matrix 1,5-diaminonapthalene, up to 28 disulfide-bonded peptides were also identified in each of the venoms. In particular, the mass range of peptides from poneroid ants is lower than peptides from other venoms, indicating possible novel structures and pharmacologies. These results indicate that ant venoms represent an enormous, untapped source of novel therapeutic and bioinsecticide leads.

  10. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    PubMed Central

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  11. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps.

    PubMed

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-22

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.

  12. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  13. Hormone-like peptides in the venoms of marine cone snails

    PubMed Central

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T.; Purcell, Anthony W.; Norton, Raymond S.; Safavi-Hemami, Helena

    2015-01-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey’s nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. PMID:26301480

  14. Hormone-like peptides in the venoms of marine cone snails.

    PubMed

    Robinson, Samuel D; Li, Qing; Bandyopadhyay, Pradip K; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T; Purcell, Anthony W; Norton, Raymond S; Safavi-Hemami, Helena

    2017-04-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins.

  15. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A2 are the Main Venom Components

    PubMed Central

    Kovalchuk, Sergey I.; Ziganshin, Rustam H.; Starkov, Vladislav G.; Tsetlin, Victor I.; Utkin, Yuri N.

    2016-01-01

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A2, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the “kaznakovi” complex. PMID:27077884

  16. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    PubMed

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  17. Scorpion venom peptides with no disulfide bridges: a review.

    PubMed

    Almaaytah, Ammar; Albalas, Qosay

    2014-01-01

    Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.

  18. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal.

    PubMed

    Ma, Yibao; He, Yawen; Zhao, Ruiming; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2012-02-16

    Venom is an important genetic development crucial to the survival of scorpions for over 400 million years. We studied the evolution of the scorpion venom arsenal by means of comparative transcriptome analysis of venom glands and phylogenetic analysis of shared types of venom peptides and proteins between buthids and euscorpiids. Fifteen types of venom peptides and proteins were sequenced during the venom gland transcriptome analyses of two Buthidae species (Lychas mucronatus and Isometrus maculatus) and one Euscorpiidae species (Scorpiops margerisonae). Great diversity has been observed in translated amino acid sequences of these transcripts for venom peptides and proteins. Seven types of venom peptides and proteins were shared between buthids and euscorpiids. Molecular phylogenetic analysis revealed that at least five of the seven common types of venom peptides and proteins were likely recruited into the scorpion venom proteome before the lineage split between Buthidae and Euscorpiidae with their corresponding genes undergoing individual or multiple gene duplication events. These are α-KTxs, βKSPNs (β-KTxs and scorpines), anionic peptides, La1-like peptides, and SPSVs (serine proteases from scorpion venom). Multiple types of venom peptides and proteins were demonstrated to be continuously recruited into the venom proteome during the evolution process of individual scorpion lineages. Our results provide an insight into the recruitment pattern of the scorpion venom arsenal for the first time.

  19. Adaptive radiation of venomous marine snail lineages and the accelerated evolution of venom peptide genes

    PubMed Central

    Olivera, Baldomero M.; Watkins, Maren; Bandyopadhyay, Pradip; Imperial, Julita S.; de la Cotera, Edgar P. Heimer; Aguilar, Manuel B.; Vera, Estuardo López; Concepcion, Gisela P.; Lluisma, Arturo

    2012-01-01

    An impressive biodiversity (>10,000 species) of marine snails (suborder Toxoglossa or superfamily Conoidea) have complex venoms, containing ca. 100 biologically active, disulfide-rich peptides. In the genus Conus, the most intensively investigated toxoglossan lineage (~500 species), a small set of venom gene superfamilies undergo rapid sequence hyperdiversification within their mature toxin regions. Each major lineage of Toxoglossa has its own distinct set of venom gene superfamilies. Two recently identified venom gene superfamilies are expressed in the large Turridae clade, but not in Conus. Thus, as major venomous molluscan clades expand, a small set of lineage specific venom gene superfamilies undergo accelerated evolution. The juxtaposition of extremely conserved signal sequences with hypervariable mature peptide regions is unprecedented and raises the possibility that in these gene superfamilies, the signal sequences are conserved as a result of an essential role they play in enabling rapid sequence evolution of the region of the gene that encodes the active toxin. PMID:22954218

  20. Spider-Venom Peptides as Bioinsecticides

    PubMed Central

    Windley, Monique J.; Herzig, Volker; Dziemborowicz, Sławomir A.; Hardy, Margaret C.; King, Glenn F.; Nicholson, Graham M.

    2012-01-01

    Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides. PMID:22741062

  1. Duck-billed platypus venom peptides induce Ca2+ influx in neuroblastoma cells.

    PubMed

    Kita, Masaki; Black, David StC; Ohno, Osamu; Yamada, Kaoru; Kigoshi, Hideo; Uemura, Daisuke

    2009-12-23

    The duck-billed platypus (Ornithorhynchus anatinus) is one of the few venomous Australian mammals. We previously found that its crude venom potently induces Ca(2+) influx in human neuroblastoma IMR-32 cells. Guided by this bioassay, we identified 11 novel peptides, including the heptapeptide H-His-Asp-His-Pro-Asn-Pro-Arg-OH (1). Compounds 1-4 and 5-11 coincided with the 6-9 N-terminal residues of Ornithorhynchus venom C-type natriuretic peptide (OvCNP) and the 132-150 part of OvCNP precursor peptide, respectively. Heptapeptide 1, which is one of the primary components of the venom fluid (approximately 200 ng/microL), induced a significant increase in [Ca(2+)](i) in IMR-32 cells at 75 microM. To the best of our knowledge, this is the first example of the isolation of the N-terminal linear fragments of CNPs in any mammal.

  2. Inhibition of Hemorragic Snake Venom Components: Old and New Approaches

    PubMed Central

    Panfoli, Isabella; Calzia, Daniela; Ravera, Silvia; Morelli, Alessandro

    2010-01-01

    Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedicine. Direct electric current from low voltage showed neutralizing properties against venom phospholipase A2 and metalloproteases. This mini-review summarizes new achievements in venom key component inhibition. A deeper knowledge of alternative ways to inhibit venom toxins may provide supplemental treatments to serum therapy. PMID:22069593

  3. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components.

    PubMed

    Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2016-12-09

    Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.

  4. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components

    PubMed Central

    Santibáñez-López, Carlos E.; Cid-Uribe, Jimena I.; Batista, Cesar V. F.; Ortiz, Ernesto; Possani, Lourival D.

    2016-01-01

    Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms. PMID:27941686

  5. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis.

    PubMed

    Cooper, Allen M; Kelln, Wayne J; Hayes, William K

    2014-12-01

    Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.

  6. Bioactive Mimetics of Conotoxins and other Venom Peptides

    PubMed Central

    Duggan, Peter J.; Tuck, Kellie L.

    2015-01-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  7. A perspective on toxicology of Conus venom peptides.

    PubMed

    Kumar, Palanisamy Satheesh; Kumar, Dhanabalan Senthil; Umamaheswari, Sundaresan

    2015-05-01

    The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.

  8. Computational Studies of Venom Peptides Targeting Potassium Channels

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2015-01-01

    Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K+ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone. PMID:26633507

  9. Linear antimicrobial peptides from Ectatomma quadridens ant venom.

    PubMed

    Pluzhnikov, Kirill A; Kozlov, Sergey A; Vassilevski, Alexander A; Vorontsova, Olga V; Feofanov, Alexei V; Grishin, Eugene V

    2014-12-01

    Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 μg/g.

  10. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica

    PubMed Central

    Ariki, Nathanial K.; Muñoz, Lisa E.; Armitage, Elizabeth L.; Goodstein, Francesca R.; George, Kathryn G.; Smith, Vanessa L.; Vetter, Irina; Herzig, Volker; King, Glenn F.; Loening, Nikolaus M.

    2016-01-01

    We present the solution-state NMR structures and preliminary functional characterizations of three venom peptides identified from the spitting spider Scytodes thoracica. Despite little sequence identity to other venom peptides, structural characterization reveals that these peptides contain an inhibitor cystine knot motif common to many venom peptides. These are the first structures for any peptide or protein from spiders of the Scytodidae family. Many venom peptides target neuronal ion channels or receptors. However, we have not been able to determine the target of these Scytodes peptides so we can only state with certainty the channels and receptors that they do not target. PMID:27227898

  11. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.

    PubMed

    Dutertre, Sébastien; Jin, Ai-hua; Kaas, Quentin; Jones, Alun; Alewood, Paul F; Lewis, Richard J

    2013-02-01

    Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50-200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of

  12. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas

    PubMed Central

    2013-01-01

    Backgound The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different geographical areas seem to be similar, and are rich in peptides that have of the same molecular masses of the peptides

  13. Scorpion venom components as potential candidates for drug development.

    PubMed

    Ortiz, Ernesto; Gurrola, Georgina B; Schwartz, Elisabeth Ferroni; Possani, Lourival D

    2015-01-01

    Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion venoms.

  14. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    PubMed Central

    Yee, Khin Than; Pitts, Morgan; Tongyoo, Pumipat; Rojnuckarin, Ponlapat; Wilkinson, Mark C.

    2016-01-01

    Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs) are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs): RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS) approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs) were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation. PMID:28042812

  15. Synaptic effects of low molecular weight components from Chilean Black Widow spider venom.

    PubMed

    Parodi, Jorge; Romero, Fernando

    2008-11-01

    alpha-Latrotoxin is the principal component of the venom from the euroasiatic Black Widow spider and has been studied for its pharmacological use as a synaptic modulator. Interestingly, smaller molecular weight fractions have been found to be associated with this toxin, but their cellular actions have not been studied in detail. The venom from the Chilean Black Widow spider (Latrodectus mactans) does not produce alpha-latrotoxin, however it does contain several small polypeptides. We have recently demonstrated cellular effects of these peptides at the synaptic level using whole-cell patch clamp techniques. Purified venom from the glands of L. mactans was studied in 12 DIV rat hippocampal neuronal cultures. Venom at a concentration of 10nM was able to decrease neuronal conductance thereby increasing membrane resistance. This effect on the passive properties of the neurons induced a change in action potential kinetics simulating the action of classic potassium channel blockers. These changes produced an increase in spontaneous synaptic activity in rat hippocampal cultures in the presence of the venom in a concentration- and time-dependent manner. These results indicate that venom from Chilean spider L. mactans is capable of increasing cell membrane resistance, prolonging the action potential and generating an increase in synaptic activity demonstrating an interesting pharmacological effect of these low molecular weight fragments.

  16. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    PubMed Central

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  17. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity

    PubMed Central

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  18. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae.

    PubMed

    Perkin, Lindsey C; Friesen, Kenlee S; Flinn, Paul W; Oppert, Brenda

    2015-01-01

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of A. calandrae venom have not been studied, but venom from other organisms contains proteins with potential applications, such as pest management tools and treatments for human diseases. We dissected female A. calandrae and collected venom and associated glands. Using high throughput sequencing, a venom gland transcriptome was assembled that contained 45,432 contigs, 25,726 of which had BLASTx hits. The majority of hits were to Nasonia vitripennis, an ectoparasitoid from the same taxonomic family, as well as other bees, wasps, and ants. Gene ontology grouped sequences into eleven molecular functions, among which binding and catalytic activity had the most representatives. In this study, we highlighted the most abundant sequences, including those that are likely the functional components of the venom. Specifically, we focused on genes encoding proteins potentially involved in host developmental arrest, disrupting the host immune system, host paralysis, and transcripts that support these functions. Our report is the first to characterize components of the A. calandrae venom gland that may be useful as control tools for insect pests and other applications.

  19. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    PubMed Central

    Perkin, Lindsey C; Friesen, Kenlee S; Flinn, Paul W; Oppert, Brenda

    2015-01-01

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of A. calandrae venom have not been studied, but venom from other organisms contains proteins with potential applications, such as pest management tools and treatments for human diseases. We dissected female A. calandrae and collected venom and associated glands. Using high throughput sequencing, a venom gland transcriptome was assembled that contained 45,432 contigs, 25,726 of which had BLASTx hits. The majority of hits were to Nasonia vitripennis, an ectoparasitoid from the same taxonomic family, as well as other bees, wasps, and ants. Gene ontology grouped sequences into eleven molecular functions, among which binding and catalytic activity had the most representatives. In this study, we highlighted the most abundant sequences, including those that are likely the functional components of the venom. Specifically, we focused on genes encoding proteins potentially involved in host developmental arrest, disrupting the host immune system, host paralysis, and transcripts that support these functions. Our report is the first to characterize components of the A. calandrae venom gland that may be useful as control tools for insect pests and other applications. PMID:26998218

  20. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.

    PubMed

    Calvete, Juan J; Fasoli, Elisa; Sanz, Libia; Boschetti, Egisto; Righetti, Pier Giorgio

    2009-06-01

    We report the proteomic characterization of the venom of the medically important North American western diamondback rattlesnake, Crotalus atrox, using two complementary approaches: snake venomics (to gain an insight of the overall venom proteome), and two solid-phase combinatorial peptide ligand libraries (CPLL), followed by 2D electrophoresis and mass spectrometric characterization of in-gel digested protein bands (to capture and "amplify" low-abundance proteins). The venomics approach revealed approximately 24 distinct proteins belonging to 2 major protein families (snake venom metalloproteinases, SVMP, and serine proteinases), which represent 69.5% of the total venom proteins, 4 medium abundance families (medium-size disintegrin, PLA(2), cysteine-rich secretory protein, and l-amino acid oxidase) amounting to 25.8% of the venom proteins, and 3 minor protein families (vasoactive peptides, endogenous inhibitor of SVMP, and C-type lectin-like). This toxin profile potentially explains the cytotoxic, myotoxic, hemotoxic, and hemorrhagic effects evoked by C. atrox envenomation. Further, our results showing that C. atrox exhibits a similar level of venom variation as Sistrurus miliarius points to a "diversity gain" scenario in the lineage leading to the Sistrurus catenatus taxa. On the other hand, the two combinatorial hexapeptide libraries captured distinct sets of proteins. Although the CPLL-treated samples did not retain a representative venom proteome, protein spots barely, or not at all, detectable in the whole venom were enriched in the two CPLL-treated samples. The amplified low copy number C. atrox venom proteins comprised a C-type lectin-like protein, several PLA(2) molecules, PIII-SVMP isoforms, glutaminyl cyclase isoforms, and a 2-cys peroxiredoxin highly conserved across the animal kingdom. Peroxiredoxin and glutaminyl cyclase may participate, respectively, in redox processes leading to the structural/functional diversification of toxins, and in the N

  1. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found.

    PubMed

    Cid Uribe, Jimena Isaias; Jiménez Vargas, Juana Maria; Ferreira Batista, Cesar Vicente; Zamudio Zuñiga, Fernando; Possani, Lourival Domingos

    2017-01-01

    Venom from male and female scorpions of the species Centruroides limpidus were separated by HPLC and their molecular masses determined by mass spectrometry. The relative concentration of components eluting in equivalent retention times from the HPLC column shows some differences. A new peptide with 29 amino acids, cross-linked by three disulfide bonds was found in male scorpions and its structure determined. Another unknown peptide present in female venom, with sequence identity similar to K(+)-channel blocking peptide was isolated. This peptide contains 39 amino acid residues linked by three disulfide bonds. Due to sequence similarities, a systematic number (αKTx2.18) was assigned. Venom from male and female scorpions was separated by Sephadex G-50 gel filtration. Components of fraction I of this chromatogram were analyzed by two-dimensional gel electrophoresis and 41 spots were selected (20 from female and 21 from male). The spots were excised from the gel, enzymatically digested and sequenced by LC-MS/MS. This procedure allowed the identification of several proteins containing similar amino acid sequence of other known proteins registered on UniProt database. Among these proteins the presence of metalloproteinases (proteolytic enzymes), hyaluronidases and phosphatases were experimentally determined and shown to be present in both venom samples. The results shown here should help further work aimed at fully identification of the structure and function of venom components form C. limpidus male and female scorpions.

  2. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches.

    PubMed

    Zhang, Yi-Ya; Huang, Yong; He, Quan-Ze; Luo, Ji; Zhu, Li; Lu, Shan-Shan; Liu, Jin-Yan; Huang, Peng-Fei; Zeng, Xiong-Zhi; Liang, Song-Ping

    2015-05-29

    Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity.

  3. Proteomics and deep sequencing comparison of seasonally active venom glands in the platypus reveals novel venom peptides and distinct expression profiles.

    PubMed

    Wong, Emily S W; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M; Temple-Smith, Peter; Renfree, Marilyn B; Whittington, Camilla M; King, Glenn F; Warren, Wesley C; Papenfuss, Anthony T; Belov, Katherine

    2012-11-01

    The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.

  4. Therapeutic potential of cone snail venom peptides (conopeptides).

    PubMed

    Vetter, Irina; Lewis, Richard J

    2012-01-01

    Cone snails have evolved many 1000s of small, structurally stable venom peptides (conopeptides) for prey capture and defense. Whilst < 0.1% have been pharmacologically characterised, those with known function typically target membrane proteins of therapeutic importance, including ion channels, transporters and GPCRs. Several conopeptides reduce pain in animals models, with one in clinical development (χ-conopeptide analogue Xen2174) and one marketed (ω- conotoxin MVIIA or Prialt) for the treatment of severe pain. In addition to their therapeutic potential, conopeptides have been valuable probes for studying the role of a number of key membrane proteins in normal and disease physiology.

  5. Opossum peptide that can neutralize rattlesnake venom is expressed in Escherichia coli

    PubMed Central

    Komives, Claire F.; Sanchez, Elda E.; Rathore, Anurag S.; White, Brandon; Suntravat, Montamas; Balderrama, Michael; Cifelli, Angela; Joshi, Varsha

    2016-01-01

    An eleven amino acid ribosomal peptide was shown to completely neutralize Western Diamondback Rattlesnake (Crotalus atrox) venom in mice when a lethal dose of the venom was pre-incubated with the peptide prior to intravenous injection. We have expressed the peptide as a concatenated chain of peptides and cleaved them apart from an immobilized metal affinity column using a protease. After ultrafiltration steps, the mixture was shown to partially neutralize rattlesnake venom in mice. Preliminary experiments are described here that suggest a potential life-saving therapy could be developed. To date, no recombinant therapies targeting cytotoxic envenomation have been reported. PMID:27718338

  6. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo.

  7. A rapidly diverging superfamily of peptide toxins in venomous Gemmula species.

    PubMed

    Heralde, Francisco M; Imperial, Julita; Bandyopadhyay, Pradip K; Olivera, Baldomero M; Concepcion, Gisela P; Santos, Ameurfina D

    2008-04-01

    The gem turrids (genus Gemmula Weinkauff, 1875) are venomous snails in the family Turridae. A gene superfamily of disulfide-rich peptides expressed in Gemmula venom ducts was characterized. Gemmula speciosa (Reeve, 1843) venom duct cDNA clones revealed two different conotoxin-like prepropeptide precursors, with identical signal sequences, a largely conserved pro region, and a cysteine-rich C-terminal mature peptide region. The conserved signal sequence was used to successfully amplify homologous genes from three other Gemmula species; all had the same pattern of Cys residues in the predicted mature venom peptide. Although the signal sequence and propeptide regions were highly conserved, the mature toxin regions diverged greatly in sequence, except that the Cys residues were conserved. We designate this as the Pg-gene superfamily (Pg-superfamily) of Gemmula venom peptides. Purification of two members of the family directly from G. speciosa venom was achieved; amino acid sequence analysis revealed that these peptides are highly posttranslationally modified. With at least 10-fold as many species of turrids as cone snails, identification of rapidly diversifying gene superfamilies such as the Pg-superfamily of Gemmula is essential before the facile and systematic discovery and characterization of peptide toxins from turrid venoms can be achieved.

  8. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests.

    PubMed

    King, Glenn F; Hardy, Margaret C

    2013-01-01

    Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.

  9. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns.

    PubMed

    Olivera, B M; Walker, C; Cartier, G E; Hooper, D; Santos, A D; Schoenfeld, R; Shetty, R; Watkins, M; Bandyopadhyay, P; Hillyard, D R

    1999-05-18

    All 500 species of cone snails (Conus) are venomous predators. From a biochemical/genetic perspective, differences among Conus species may be based on the 50-200 different peptides in the venom of each species. Venom is used for prey capture as well as for interactions with predators and competitors. The venom of every species has its own distinct complement of peptides. Some of the interspecific divergence observed in venom peptides can be explained by differential expression of venom peptide superfamilies in different species and of peptide superfamily branching in various Conus lineages into pharmacologic groups with different targeting specificity. However, the striking interspecific divergence of peptide sequences is the dominant factor in the differences observed between venoms. The small venom peptides (typically 10-35 amino acids in length) are processed from larger prepropeptide precursors (ca. 100 amino acids). If interspecific comparisons are made between homologous prepropeptides, the three different regions of a Conus peptide precursor (signal sequence, pro-region, mature peptide) are found to have diverged at remarkably different rates. Analysis of synonymous and nonsynonymous substitution rates for the different segments of a prepropeptide suggests that mutation frequency varies by over an order of magnitude across the segments, with the mature toxin region undergoing the highest rate. The three sections of the prepropeptide which exhibit apparently different mutation rates are separated by introns. This striking segment-specific rate of divergence of Conus prepropeptides suggests a role for introns in evolution: exons separated by introns have the potential to evolve very different mutation rates. Plausible mechanisms that could underlie differing mutational frequency in the different exons of a gene are discussed.

  10. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    PubMed

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.

  11. Elemental analysis of scorpion venoms

    PubMed Central

    Al-Asmari, AbdulRahman K; Kunnathodi, Faisal; Al Saadon, Khalid; Idris, Mohammed M

    2016-01-01

    Scorpion venom is a rich source of biomolecules, which can perturb physiological activity of the host on envenomation and may also have a therapeutic potential. Scorpion venoms produced by the columnar cells of venom gland are complex mixture of mucopolysaccharides, neurotoxic peptides and other components. This study was aimed at cataloguing the elemental composition of venoms obtained from medically important scorpions found in the Arabian peninsula. The global elemental composition of the crude venom obtained from Androctonus bicolor, Androctonus crassicauda and Leiurus quinquestriatus scorpions were estimated using ICP-MS analyzer. The study catalogued several chemical elements present in the scorpion venom using ICP-MS total quant analysis and quantitation of nine elements exclusively using appropriate standards. Fifteen chemical elements including sodium, potassium and calcium were found abundantly in the scorpion venom at PPM concentrations. Thirty six chemical elements of different mass ranges were detected in the venom at PPB level. Quantitative analysis of the venoms revealed copper to be the most abundant element in Androctonus sp. venom but at lower level in Leiurus quinquestriatus venom; whereas zinc and manganese was found at higher levels in Leiurus sp. venom but at lower level in Androctonus sp. venom. These data and the concentrations of other different elements present in the various venoms are likely to increase our understanding of the mechanisms of venom activity and their pharmacological potentials. PMID:27826410

  12. Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): a comparison of the intra- and inter-colony compositions.

    PubMed

    Dias, Nathalia Baptista; de Souza, Bibiana Monson; Gomes, Paulo Cesar; Palma, Mario Sergio

    2014-01-01

    The venoms of the social wasps evolved to be used as defensive tools to protect the colonies of these insects against the attacks of predators. Previous studies estimated the presence of a dozen peptide components in the venoms of each species of these insects, which altogether comprise up to 70% of the weight of freeze-dried venoms. In the present study, an optimized experimental protocol is reported that utilizes liquid chromatography coupled to electrospray ionization mass spectrometry for the detection of peptides in the venom of the social wasp Polybia paulista; peptide profiles for both intra- and inter-colonial comparisons were obtained using this protocol. The results of our study revealed a surprisingly high level of intra- and inter-colonial variability for the same wasp species. We detected 78-108 different peptides in the venom of different colonies of P. paulista in the molar mass range from 400 to 3000Da; among those, only 36 and 44 common peptides were observed in the inter- and intra-colony comparisons, respectively.

  13. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    PubMed Central

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  14. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins.

    PubMed

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-04-19

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  15. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis.

    PubMed

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-02-28

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms-that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  16. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus.

    PubMed

    Konno, Katsuhiro; Picolo, Gisele; Gutierrez, Vanessa P; Brigatte, Patrícia; Zambelli, Vanessa O; Camargo, Antonio C M; Cury, Yara

    2008-08-01

    We have shown that the venom of the South American rattlesnake Crotalus durissus terrificus induces a long-lasting antinociceptive effect mediated by activation of kappa- and delta-opioid receptors. Despite being mediated by opioid receptors, prolonged treatment with the crotalid venom does not cause the development of peripheral tolerance or abstinence symptoms upon withdrawal. In the present study, we have isolated and chemically characterized a novel and potent antinociceptive peptide responsible for the oral opioid activity of this crotalid venom. The amino acid sequence of this peptide, designated crotalphine, was determined by mass spectrometry and corroborated by solid-phase synthesis to be component of this snake venom. Crotalphine, when orally administered (0.008-25mug/kg), induces antinociceptive effect in the prostaglandin E(2)- and carrageenin-induced mechanical hyperalgesia models in rats and in the hot-plate test in mice. Crotalphine was also effective when administered by intravenous (0.0032-0.04mug/kg) or intraplantar (s.c., 0.00006-0.3mug/paw) routes. In the mechanical hyperalgesia models, crotalphine shows a long-lasting (5 days) antinociceptive effect. d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr amide (CTOP) and N,N-diallyl-Tyr-Aib-Aib-Phe-Leu (ICI 174,864), antagonists of mu- and delta-opioid receptors, respectively, did not alter the antinociceptive effect of the peptide, whereas nor-binaltorphimine, an antagonist of kappa-opioid receptors, blocked this effect. These results indicate that crotalphine induces antinociception mediated by activation of kappa-opioid receptors and may contribute to the antinociceptive effect of the crotalid venom.

  17. Combinatorial peptide libraries in drug design: lessons from venomous cone snails.

    PubMed

    Olivera, B M; Hillyard, D R; Marsh, M; Yoshikami, D

    1995-10-01

    Many present-day drugs are derived from compounds that are natural products, a traditional source of which is fermentation broths of microorganisms. The venoms of cone snails are a new natural resource of peptides that may have a pharmaceutical potential equivalent to those from traditional sources, particularly for developing drugs that target cell-surface receptors or ion channels. In effect, cone snails have used a combinatorial library strategy to evolve their small, highly bioactive venom peptides. The methods by which the snails have generated thousands of peptides with remarkable specificity and high affinity for their targets may provide important lessons in designing combinatorial libraries for drug development.

  18. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.

    PubMed Central

    Corzo, G; Escoubas, P; Villegas, E; Barnham, K J; He, W; Norton, R S; Nakajima, T

    2001-01-01

    Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms. PMID:11563967

  19. Sample Limited Characterization of a Novel Disulfide-Rich Venom Peptide Toxin from Terebrid Marine Snail Terebra variegata

    PubMed Central

    Anand, Prachi; Grigoryan, Alexandre; Bhuiyan, Mohammed H.; Ueberheide, Beatrix; Russell, Victoria; Quinoñez, Jose; Moy, Patrick; Chait, Brian T.; Poget, Sébastien F.; Holford, Mandë

    2014-01-01

    Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides. PMID:24713808

  20. Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms

    PubMed Central

    Romano, Joseph D.; Tatonetti, Nicholas P.

    2016-01-01

    Venoms and venom-derived compounds constitute a rich and largely unexplored source of potentially therapeutic compounds. To facilitate biomedical research, it is necessary to design a robust informatics infrastructure that will allow semantic computation of venom concepts in a standardized, consistent manner. We have designed an ontology of venom-related concepts — named Venom Ontology — that reuses an existing public data source: UniProt’s Tox-Prot database. In addition to describing the ontology and its construction, we have performed three separate case studies demonstrating its utility: (1) An exploration of venom peptide similarity networks within specific genera; (2) A broad overview of the distribution of available data among common taxonomic groups spanning the known tree of life; and (3) An analysis of the distribution of venom complexity across those same taxonomic groups. Venom Ontology is publicly available on BioPortal at http://bioportal.bioontology.org/ontologies/CU-VO. PMID:27570672

  1. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses.

    PubMed

    Garb, Jessica E

    2014-11-03

    Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level.

  2. Extraction of Venom and Venom Gland Microdissections from Spiders for Proteomic and Transcriptomic Analyses

    PubMed Central

    Garb, Jessica E.

    2014-01-01

    Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level. PMID:25407635

  3. Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom

    PubMed Central

    Blank, Simon; Seismann, Henning; McIntyre, Mareike; Ollert, Markus; Wolf, Sara; Bantleon, Frank I.; Spillner, Edzard

    2013-01-01

    Background/Objectives Anaphylaxis due to hymenoptera stings is one of the most severe clinical outcomes of IgE-mediated hypersensitivity reactions. Although allergic reactions to hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, venom immunotherapy is still hampered by severe systemic side effects and incomplete protection. The identification and detailed characterization of all allergens of hymenoptera venoms might result in an improvement in this field and promote the detailed understanding of the allergological mechanism. Our aim was the identification and detailed immunochemical and allergological characterization of the low abundant IgE-reactive 200 kDa proteins of Apis mellifera and Vespula vulgaris venom. Methods/Principal Findings Tandem mass spectrometry-based sequencing of a 200 kDa venom protein yielded peptides that could be assigned to honeybee vitellogenin. The coding regions of the honeybee protein as well as of the homologue from yellow jacket venom were cloned from venom gland cDNA. The newly identified 200 kDa proteins share a sequence identity on protein level of 40% and belong to the family of vitellogenins, present in all oviparous animals, and are the first vitellogenins identified as components of venom. Both vitellogenins could be recombinantly produced as soluble proteins in insect cells and assessed for their specific IgE reactivity. The particular vitellogenins were recognized by approximately 40% of sera of venom-allergic patients even in the absence of cross-reactive carbohydrate determinants. Conclusion With the vitellogenins of Apis mellifera and Vespula vulgaris venom a new homologous pair of venom allergens was identified and becomes available for future applications. Due to their allergenic properties the honeybee and the yellow jacket venom vitellogenin were designated as allergens Api m 12 and Ves v 6, respectively. PMID:23626765

  4. Venom peptides from solitary hunting wasps induce feeding disorder in lepidopteran larvae.

    PubMed

    Baek, Ji Hyeong; Ji, Yeounjung; Shin, Jeon-Soo; Lee, Seunghwan; Lee, Si Hyeock

    2011-03-01

    The cell lytic activity and toxicity against lepidopteran larvae of 13 venom peptides (4 OdVPs and 9 EpVPs) from two solitary hunting wasps, Orancistrocerus drewseni and Eumenes pomiformis, were examined with mastoparan as a reference peptide. Of the 13 peptides, 7 were predicted to have α-helical structures that exhibit the typical character of amphipathic α-helical antimicrobial peptides. The remaining peptides exhibited coil structures; among these, EpVP5 possesses two Cys residues that form an internal disulfide bridge. All the helical peptides including mastoparan showed antimicrobial and insect cell lytic activities, whereas only two of them were hemolytic against human erythrocytes. The helical peptides induced a feeding disorder when injected into the vicinity of the head and thorax of Spodoptera exigua larvae, perhaps because their non-specific neurotoxic or myotoxic action induced cell lysis. At low concentrations, however, these helical peptides increased cell permeability without inducing cell lysis. These findings suggest that the helical venom peptides may function as non-specific neurotoxins or myotoxins and venom-spreading factors at low concentrations, as well as preservatives for long-term storage of the prey via antimicrobial, particularly antifungal, activities.

  5. Components of Asobara venoms and their effects on hosts.

    PubMed

    Moreau, Sébastien J M; Vinchon, Sophie; Cherqui, Anas; Prévost, Geneviève

    2009-01-01

    Hymenoptera of the Asobara genus are endophagous parasitoids of Drosophila larvae. In these apocrita insects whose venom gland is associated with the female reproductive tract, the wasp venom is injected into the host along with the parasitoid egg during oviposition. We conducted a comparative study of the venom apparatuses from three Asobara spp.: the European Asobara tabida, the Asiatic A. japonica and the African A. citri. Light and electron microscopy of venom glands, together with the biochemical analysis of their contents, revealed important differences between Asobara spp. In addition, the physiological effects of female wasp's venom injected into Drosophila larvae differed greatly between the tested Asobara spp.

  6. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom.

    PubMed

    Horta, C C; Rezende, B A; Oliveira-Mendes, B B R; Carmo, A O; Capettini, L S A; Silva, J F; Gomes, M T; Chávez-Olórtegui, C; Bravo, C E S; Lemos, V S; Kalapothakis, E

    2013-09-01

    Members of the spider genus Lasiodora are widely distributed in Brazil, where they are commonly known as caranguejeiras. Lasiodora spider venom is slightly harmful to humans. The bite of this spider causes local pain, edema and erythema. However, Lasiodora sp. spider venom may be a source of important pharmacological tools. Our research group has described previously that Lasiodora sp. venom produces bradycardia in the isolated rat heart. In the present work, we sought to evaluate the vascular effect of Lasiodora sp. venom and to isolate the vasoactive compounds from the venom. The results showed that Lasiodora spider venom induced a concentration-dependent vasodilation in rat aortic rings, which was dependent on the presence of a functional endothelium and abolished by the nitric oxide synthase (NOS) inhibitor L-NAME. Western blot experiments revealed that the venom also increased endothelial NOS function by increasing phosphorylation of the Ser¹¹⁷⁷ residue. Assay-directed fractionation isolated a vasoactive fraction from Lasiodora sp. venom. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) assays identified a mixture of two compounds: adenosine diphosphate (ADP, approximately 90%) and adenosine monophosphate (AMP, approximately 10%). The vasodilator effects of Lasiodora sp. whole venom, as well as ADP, were significantly inhibited by suramin, which is a purinergic P2-receptor antagonist. Therefore, the results of the present work indicate that ADP is a main vasodilator component of Lasiodora sp. spider venom.

  7. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha.

    PubMed

    Santos, D M; Verly, R M; Piló-Veloso, D; de Maria, M; de Carvalho, M A R; Cisalpino, P S; Soares, B M; Diniz, C G; Farias, L M; Moreira, D F F; Frézard, F; Bemquerer, M P; Pimenta, A M C; de Lima, M E

    2010-06-01

    LyeTx I, an antimicrobial peptide isolated from the venom of Lycosa erythrognatha, known as wolf spider, has been synthesised and its structural profile studied by using the CD and NMR techniques. LyeTx I has shown to be active against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Candida krusei and Cryptococcus neoformans) and able to alter the permeabilisation of L: -alpha-phosphatidylcholine-liposomes (POPC) in a dose-dependent manner. In POPC containing cholesterol or ergosterol, permeabilisation has either decreased about five times or remained unchanged, respectively. These results, along with the observed low haemolytic activity, indicated that antimicrobial membranes, rather than vertebrate membranes seem to be the preferential targets. However, the complexity of biological membranes compared to liposomes must be taken in account. Besides, other membrane components, such as proteins and even specific lipids, cannot be discarded to be important to the preferential action of the LyeTx I to the tested microorganisms. The secondary structure of LyeTx I shows a small random-coil region at the N-terminus followed by an alpha-helix that reached the amidated C-terminus, which might favour the peptide-membrane interaction. The high activity against bacteria together with the moderate activity against fungi and the low haemolytic activity have indicated LyeTx I as a good prototype for developing new antibiotic peptides.

  8. Anxiolytic-like effect of a novel peptide isolated from the venom of the social wasp Synoeca surinama.

    PubMed

    Gomes, Flávia M M; Paniago, Cássia K; Freire, Daniel O; Souza, Adolfo C B; Lima, Marcos R; Oliveira-Júnior, Nelson G; Franco, Octavio L; Mortari, Márcia R

    2016-11-01

    Pathological anxiety is among the most common psychiatric illnesses, but current treatment is highly limited. In this study, we investigated the potential anxiolytic-like effects of a peptide isolated from Synoeca surinama venom. Rats treated with this peptide spent more time exploring the open arms of elevated plus maze, which indicates an anxiolytic-like profile for this peptide. This study is the first to show the pharmacological use of S. surinama venom in the treatment of anxiety.

  9. Purification and pharmacological characterization of peptide toxins from the black mamba (Dendroaspis polylepis) venom.

    PubMed

    Schweitz, H; Bidard, J N; Lazdunski, M

    1990-01-01

    This paper reports the purification of 28 different peptides from the venom of the snake Dendroaspis polylepis. These peptides represent 99% of the total peptide fraction in the venom. The 14 most cationic peptides form a structurally and functionally homogeneous group of analogs of the most abundant dendrotoxin toxin I (DTXI). They recognize antibodies raised against DTXI as well as brain membrane binding sites corresponding to K+ channels that are sensitive to DTXI and the bee venom peptide MCD. Similarly to DTXI these 14 peptides induce convulsions after intracerebroventricular injections in mice and induce GABA release from synaptosomes. However, members in this iso-DTXI family differ widely in their affinity for the DTXI/MCD receptors and in their contractility promoting action on intestinal smooth muscle. The 14 other less cationic peptides do not interact with the DTXI receptor or with DTXI antibodies and they do not evoke GABA release. Their targets seem to be essentially of a peripheral nature. Half of them contract guinea pig ileum. In this group of toxins there might be new tools to study membrane excitability.

  10. [Isolation and partial structural characteristics of major toxic components of Latrodectus pallidus venom].

    PubMed

    Charakha, A R; Shevchenko, L V; Molodkin, A K; Pluzhnikov, K A; Volkova, T M; Grishin, E V

    1997-03-01

    Toxic components of the Latrodectus pallidus spider venom were isolated and characterized. The venom was shown to contain a toxin specific for mammals and at least one insectospecific toxin. Partial amino acid sequences of both toxins were determined, and their high structural homology with previously studied alpha-latrotoxin and alpha-latroinsectotoxin from L. mactans tredecimguttatus was found.

  11. A novel ICK peptide from the Loxosceles intermedia (brown spider) venom gland: cloning, heterologous expression and immunological cross-reactivity approaches.

    PubMed

    Matsubara, Fernando Hitomi; Gremski, Luiza Helena; Meissner, Gabriel Otto; Constantino Lopes, Eduardo Soares; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2013-09-01

    The venom of a Loxosceles spider is composed of a complex mixture of biologically active components, consisting predominantly of low molecular mass molecules (3-45 kDa). Transcriptome analysis of the Loxosceles intermedia venom gland revealed ESTs with similarity to the previously described LiTx peptides. Sequences similar to the LiTx3 isoform were the most abundant, representing approximately 13.9% of all ESTs and 32% of the toxin-encoding messengers. These peptides are grouped in the ICK (Inhibitor Cystine Knot) family, which contains single chain molecules with low molecular mass (3-10 kDa). Due to their high number of cysteine residues, ICK peptides form intramolecular disulfide bridges. The aims of this study were to clone and express a novel ICK peptide isoform, as well as produce specific hyperimmune serum for immunoassays. The corresponding cDNA was amplified by PCR using specific primers containing restriction sites for the XhoI and BamHI enzymes; this PCR product was then ligated in the pET-14b vector and transformed into E. coli AD494 (DE3) cells. The peptide was expressed by IPTG induction for 4 h at 30 °C and purified by affinity chromatography with Ni-NTA resin. Hyperimmune serum to the recombinant peptide was produced in rabbits and was able to specifically recognize both the purified recombinant peptide and the native form present in the venom. Furthermore, the recombinant peptide was recognized by antisera raised against L. intermedia, L. gaucho and L. laeta whole venoms. The recombinant peptide obtained will enable future studies to characterize its biological activity, as well as investigations regarding possible biotechnological applications.

  12. Venom Peptides From Cone Snails: Pharmacological Probes for Voltage-Gated Sodium Channels.

    PubMed

    Green, B R; Olivera, B M

    2016-01-01

    The venoms of cone snails provide a rich source of neuroactive peptides (conotoxins). Several venom peptide families have been identified that are either agonists (ι- and δ-conotoxins) or antagonists (μ- and μO-conotoxins) of voltage-gated sodium channels (VGSCs). Members of these conotoxin classes have been integral in identifying and characterizing specific neurotoxin binding sites on the channel. Furthermore, given the specificity of some of these peptides for one sodium channel subtype over another, conotoxins have also proven useful in exploring differences between VGSC subtypes. This chapter summarizes the current knowledge of the structure and function based on the results of conotoxin interactions with VGSCs and correlates the peptides with the phylogeny of the Conus species from which they were derived.

  13. Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli

    PubMed Central

    Saez, Natalie J.; Seshadri, Radha; Lau, Ho Yee; Bende, Niraj S.; Undheim, Eivind A. B.; Rash, Lachlan D.; Mobli, Mehdi; King, Glenn F.

    2013-01-01

    Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2–6 disulfide bonds. PMID:23667680

  14. Immunological characterization of a non-toxic peptide conferring protection against the toxic fraction (AahG50) of the Androctonus australis hector venom.

    PubMed

    Srairi-Abid, Najet; Kaabi, Hajer; Mlayah-Bellalouna, Saoussen; Mejri, Thouraya; Sampieri, François; El Ayeb, Mohamed

    2008-03-01

    KAaH1 and KAaH2 are non-toxic peptides, isolated from the venom of the Androctonus australis hector (Aah) scorpion. In a previous study, we showed these peptides to be the most abundant (approximately 10% each) in the toxic fraction (AahG50) of the Aah venom. KAaH1 and KAaH2 showed high sequence identities (approximately 60%) with birtoxin-like peptides, which likewise are the major peptidic components of Parabuthus transvaalicus scorpion venom. Here, we report the immunological characterization of KAaH1 and KAaH2. These peptides were found to be specifically recognized by polyclonal antibodies raised against AahII, the most toxic peptide of Aah venom, and represents the second antigenic group, including toxins from different scorpion species in the world. Moreover, KAaH1 partially inhibits AahII binding to its specific antibody, suggesting some common epitopes between these two peptides. The identification of possible key antigenic residues in KAaH1 was deduced from comparison of its 3-D model with the experimental structure of AahII. Two clusters of putative antigenically important residues were found at the exposed surface; one could be constituted of V3 and D53, the other of D10, T15 and Y16. Polyclonal antibodies raised against KAaH1 in mice were found to cross-react with both AahII and AahG50, and neutralizing 5LD(50)/ml of the toxic fraction. Mice vaccinated with KAaH1 were protected against a challenge of 2LD(50) of AahG50 fraction. All these data suggest that KAaH1 has clear advantages over the use of the whole or part of the venom. KAaH1 is not toxic and could produce sera-neutralizing scorpion toxins, not only from Aah venom, but also toxins of other venoms from Buthus, Leiurus, or Parabuthus scorpion species presenting antigenically related toxins.

  15. Characterization of Venom and Oviduct Components of Parasitoid Wasp Asobara japonica

    PubMed Central

    Furihata, Shunsuke; Matsumura, Takashi; Hirata, Makiko; Mizutani, Tetsuya; Nagata, Noriyo; Kataoka, Michiyo; Katayama, Yukie; Omatsu, Tsutomu; Matsumoto, Hitoshi; Hayakawa, Yoichi

    2016-01-01

    During natural parasitization, Asobara japonica wasps introduce lateral oviduct (LO) components into their Drosophila hosts soon after the venom injection to neutralize its strong toxicity; otherwise, the host will die. Although the orchestrated relationship between the venom and LO components necessary for successful parasitism has attracted the attention of many researchers in this field, the molecular natures of both factors remain ambiguous. We here showed that precipitation of the venom components by ultracentrifugation yielded a toxic fraction that was inactivated by ultraviolet light irradiation, boiling, and sonication, suggesting that it is a virus-like entity. Morphological observation of the precipitate after ultracentrifugation showed small spherical heterogeneous virus-like particles 20–40 nm in diameter. The venom’s detrimental effect on D. melanogaster larvae was not directly neutralized by the LO components but blocked by a hemolymphal neutralizing factor activated by the LO factor. Furthermore, we found that A. japonica venom and LO components acted similarly on the larvae of the common cutworm Spodoptera litura: the venom injection caused mortality but coinjection of the LO factor protected S. litura larvae from the venom’s toxicity. In contrast, D. ficusphila and D. bipectinata, which are closely related to D. melanogaster but non-habitual host species of A. japonica, were not negatively affected by A. japonica venom due to an intrinsic neutralizing activity in their hemolymph, indicating that these species must have acquired a neutralizer of A. japonica venom during evolution. These results give new insights into the characteristics of both the venom and LO components: A. japonica females have utilized the virus-like toxic venom factor to exploit a wider range of host species after the evolutionary process enabled them to use the LO factor for activation of the host hemolymph neutralizer precursor, although the non-habitual host Drosophila

  16. A sleep-inducing peptide from the venom of the Indian cone snail Conus araneosus.

    PubMed

    Franklin, Jayaseelan Benjamin; Rajesh, Rajaian Pushpabai

    2015-09-01

    The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins.

  17. A family of excitatory peptide toxins from venomous crassispirine snails: using Constellation Pharmacology to assess bioactivity.

    PubMed

    Imperial, Julita S; Cabang, April B; Song, Jie; Raghuraman, Shrinivasan; Gajewiak, Joanna; Watkins, Maren; Showers-Corneli, Patrice; Fedosov, Alexander; Concepcion, Gisela P; Terlau, Heinrich; Teichert, Russell W; Olivera, Baldomero M

    2014-10-01

    The toxinology of the crassispirine snails, a major group of venomous marine gastropods within the superfamily Conoidea, is largely unknown. Here we define the first venom peptide superfamily, the P-like crassipeptides, and show that the organization of their gene sequences is similar to conotoxin precursors. We provide evidence that one peptide family within the P-like crassipeptide superfamily includes potassium-channel (K-channel) blockers, the κP-crassipeptides. Three of these peptides were chemically synthesized (cce9a, cce9b and iqi9a). Using conventional electrophysiology, cce9b was shown to be an antagonist of both a human Kv1.1 channel isoform (Shaker subfamily of voltage-gated K channels) and a Drosophila K-channel isoform. We assessed the bioactivity of these peptides in native mammalian dorsal root ganglion neurons in culture. We demonstrate that two of these crassipeptides, cce9a and cce9b, elicited an excitatory phenotype in a subset of small-diameter capsaicin-sensitive mouse DRG neurons that were also affected by κJ-conotoxin PlXIVA (pl14a), a blocker of Kv1.6 channels. Given the vast complexity of heteromeric K-channel isoforms, this study demonstrates that the crassispirine venoms are a potentially rich source for discovering novel peptides that can help to identify and characterize the diversity of K-channel subtypes expressed in native neurons and other cell types.

  18. Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae).

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock

    2010-04-01

    Three venom peptides (OdVP1, OdVP2 and OdVP3) were isolated from the venom of the solitary wasp Orancistrocerus drewseni (Hymenoptera: Eumenidae). The mature venom peptide sequences were determined via ESI-Q-TOF MS/MS and by searching the O. drewseni venom gland/sac-specific EST library. All of the OdVPs shared the typical characteristics of amidated C-termini proteins and contained a high content of hydrophobic and positively charged amino acids, suggesting that they adopt an amphipathic alpha-helical secondary structure, as is the case for mastoparan from Vespula lewisii. The cDNA sequence of the OdVP1 precursor was obtained by 5'- and 3'-rapid amplification of cDNA ends (RACE), and the OdVP2 and OdVP3 precursor transcripts were identified from the venom gland/sac-specific EST library. While the mature peptide sequences were distinct from one another, the overall transcript structure of the OdVPs showed a high homology to that of mastoparan-B from Vespa basalis in that they contained a signal sequence, a prosequence, a mature peptide and a C-terminal glycine. The OdVPs, particularly OdVP2 and OdVP2L (an analog of OdVP2), exhibited strong antifungal activities, but poor antibacterial activities. OdVP2L, which possessed additional Glu-Pro residues, did not have antimicrobial activity against bacteria or Gram-positive yeast but retained activity against Botrytis cinerea.

  19. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin.

    PubMed

    Park, Hee Geun; Kyung, Seung Su; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Kwon, Hyung Wook; Je, Yeon Ho; Jin, Byung Rae

    2014-12-01

    Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide.

  20. Hannahpep: A novel fibrinolytic peptide from the Indian King Cobra (Ophiophagus hannah) venom.

    PubMed

    Gomes, A; De, P

    1999-12-20

    A novel fibrinolytic peptide (Hannahpep) was isolated and purified from the venom of the Indian King Cobra (Ophiophagus hannah) by thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The MW of the peptide was found to be 610 Da and the amino acid sequence of Hannahpep was determined to be Arg, His, Ala, Arg, His, Asp. Hannahpep produced defibrinogenating activity in male albino mice. It exhibited significant fibrinolytic and fibrinogenolytic activity in vitro. Hannahpep showed plasma-anticlotting activity. However, it lacked hemolytic, hemorrhagic, or phospholipase activity. This peptide may have possible therapeutic application in the management of thrombosis or occlusion of a blood vessel.

  1. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus.

    PubMed

    Matsubara, F H; Meissner, G O; Herzig, V; Justa, H C; Dias, B C L; Trevisan-Silva, D; Gremski, L H; Gremski, W; Senff-Ribeiro, A; Chaim, O M; King, G F; Veiga, S S

    2017-02-01

    Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins.

  2. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis.

    PubMed

    Tong-ngam, Pirut; Roytrakul, Sittiruk; Sritanaudomchai, Hathaitip

    2015-01-01

    Scorpion venom peptides recently have attracted attention as alternative chemotherapeutic agents that may overcome the limitations of current drugs, providing specific cytotoxicity for cancer cells with an ability to bypass multidrug-resistance mechanisms, additive effects in combination therapy and safety. In the present study, BmKn-2 scorpion venom peptide and its derivatives were chosen for assessment of anticancer activities. BmKn-2 was identified as the most effective against human oral squamous cells carcinoma cell line (HSC-4) by screening assays with an IC50 value of 29 μg/ml. The BmKn-2 peptide killed HSC-4 cells through induction of apoptosis, as confirmed by phase contrast microscopy and RT-PCR techniques. Typical morphological features of apoptosis including cell shrinkage and rounding characteristics were observed in treated HSC-4 cells. The results were further confirmed by increased expression of pro-apoptotic genes such as caspase-3, -7, and -9 but decrease mRNA level of anti-apoptotic BCL-2 in BmKn-2 treated cells, as determined by RT-PCR assay. In summary, the BmKn-2 scorpion venom peptide demonstrates specific membrane binding, growth inhibition and apoptogenic activity against human oral cancer cells.

  3. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.

    PubMed

    Gao, Bin; Harvey, Peta J; Craik, David J; Ronjat, Michel; De Waard, Michel; Zhu, Shunyi

    2013-06-27

    The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon-intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.

  4. Role of the Wasp Venom Peptide Mastoparan in the Study of Mechanisms Involved in Cell Death

    DTIC Science & Technology

    1989-08-23

    Involved in Cell Death 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...study of mechanisms involved in cell death " beyond brief excerpts is with the permission of the copyright owner, and will save and hold harmless...Dissertation: Role of the wasp venom peptide mastoparan in the study of mechanisms involved in cell death . Samuel P. Eng, Master of Science, 1989

  5. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers.

    PubMed

    Graham, Robert Leslie James; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  6. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  7. In vitro diagnosis of Hymenoptera venom allergy and further development of component resolved diagnostics.

    PubMed

    Ebo, Didier G; Van Vaerenbergh, Matthias; de Graaf, Dirk C; Bridts, Chris H; De Clerck, Luc S; Sabato, Vito

    2014-03-01

    For most people Hymenoptera stings result in transient and bothersome local inflammatory responses characterized by pain, itching, redness and swelling. In contrast, for those presenting an IgE-mediated allergic reaction, a re-sting may cause life-threatening reactions. In such patients, correct diagnosis is an absolute prerequisite for effective management, i.e. venom-specific immunotherapy. Generally, identification of the offending insect involves a detailed history along with quantification of venom-specific IgE antibodies and venom skin tests. Unfortunately, due to uncertainties associated with both tests, correct diagnosis is not always straightforward. This review summarizes the potentials and limitations of the various in vitro tests that are currently being used in the diagnosis of Hymenoptera venom allergy. Particular attention is paid to the potential of novel cellular tests such as basophil activation tests and component-resolved diagnosis with recombinant venom allergens in the diagnostic approach of patients with difficult diagnosis, i.e. cases in whom traditional venom specific IgE and skin tests yield equivocal or negative results. Finally, this review also covers the recent discoveries in the field of proteome research of Hymenoptera venoms and the selection of cell types for recombinant allergens production.

  8. Protection against the toxic effects of Loxosceles intermedia spider venom elicited by mimotope peptides.

    PubMed

    de Moura, J; Felicori, L; Moreau, V; Guimarães, G; Dias-Lopes, C; Molina, L; Alvarenga, L M; Fernandes, P; Frézard, F; Ribeiro, R R; Fleury, C; Nguyen, C; Molina, F; Granier, C; Chávez-Olórtegui, C

    2011-10-19

    The venom of Loxosceles intermedia (Li) spiders is responsible for cutaneous lesions and other clinical manifestations. We previously reported that the monoclonal antibody LimAb7 can neutralize the dermonecrotic activity of crude Li venom. In this study, we observed that this antibody recognizes several proteins from the venom dermonecrotic fraction (DNF), including LiD1. Identifying the epitope of such a neutralizing antibody could help designing immunogens for producing therapeutic sera or vaccination approaches. To this aim, two sets of 25- and 15-mer overlapping peptides that cover the complete amino acid sequence of LiD1 were synthesized using the SPOT technique. None of them was recognized by LimAb7, suggesting that the epitope is discontinuous. Then, the screening of four peptide phage-display libraries yielded four possible epitope mimics that, however, did not show any obvious similarity with the LiD1 sequence. These mimotopes, together with a 3D model of LiD1, were used to predict with the MIMOP bioinformatic tool the putative epitope region (residues C197, Y224, W225, T226, D228, K229, R230, T232 and Y248 of LiD1) recognized by LimAb7. This analysis and the results of alanine-scanning experiments highlighted a few residues (such as W225 and D228) that are found in the active site of different SMases D and that may be important for LiD1 enzymatic activity. Finally, the only mimotope NCNKNDHLFACW that interacts with LimAb7 by SPOT and its analog NSNKNDHLFASW were used as immunogens in rabbits. The resulting antibodies could neutralize some of the biological effects induced by crude Li venom, demonstrating a mimotope-induced protection against L. intermedia venom.

  9. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.

    PubMed

    Hou, Chunsheng; Guo, Liqiong; Lin, Junfang; You, Linfeng; Wu, Wuhua

    2014-12-01

    Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed.

  10. Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold.

    PubMed Central

    Torres, A M; de Plater, G M; Doverskog, M; Birinyi-Strachan, L C; Nicholson, G M; Gallagher, C H; Kuchel, P W

    2000-01-01

    The venom of the male Australian duck-billed platypus contains a family of four polypeptides of appox. 5 kDa, which are referred to as defensin-like peptides (DLPs). They are unique in that their amino acid sequences have no significant similarities to those of any known peptides; however, the tertiary structure of one of them, DLP-1, has recently been shown to be similar to beta-defensin-12 and to the sodium neurotoxin peptide ShI (Stichodactyla helianthus neurotoxin I). Although DLPs are the major peptides in the platypus venom, little is known about their biological roles. In this study, we determined the three-dimensional structure of DLP-2 by NMR spectroscopy, with the aim of gaining insights into the natural function of the DLPs in platypus venom. The DLP-2 structure was found to incorporate a short helix that spans residues 9-12, and an antiparallel beta-sheet defined by residues 15-18 and 37-40. The overall fold and cysteine-pairing pattern of DLP-2 were found to be similar to those of DLP-1, and hence beta-defensin-12; however, the sequence similarities between the three molecules are relatively small. The distinct structural fold of the DLP-1, DLP-2, and beta-defensin-12 is based upon several key residues that include six cysteines. DLP-3 and DLP-4 are also likely to be folded similarly since they have high sequence similarity with DLP-2. The DLPs, and beta-defensin-12 may thus be grouped together into a class of polypeptide molecules which have a common or very similar global fold. The fact that the DLPs did not display antimicrobial, myotoxic, or cell-growth-promoting activities implies that the nature of the side chains in this group of peptides is likely to play an important role in defining the biological function(s). PMID:10839998

  11. Selective ruthenium labeling of the tryptophan residue in the bee venom Peptide melittin.

    PubMed

    Perekalin, Dmitry S; Novikov, Valentin V; Pavlov, Alexander A; Ivanov, Igor A; Anisimova, Natalia Yu; Kopylov, Alexey N; Volkov, Dmitry S; Seregina, Irina F; Bolshov, Michail A; Kudinov, Alexander R

    2015-03-23

    Melittin is a membrane-active peptide from bee venom with promising antimicrobial and anticancer activity. Herein we report on a simple and selective method for labeling of the tryptophan residue in melittin by the organometallic fragment [(C5 H5 )Ru](+) in aqueous solution and in air. Ruthenium coordination does not disturb the secondary structure of the peptide (as verified by 2D NMR spectroscopy), but changes the pattern of its intermolecular interactions resulting in an 11-fold decrease of hemolytic activity. The high stability of the organometallic conjugate allowed the establishment of the biodistribution of the labeled melittin in mice by inductively coupled plasma MS analysis of ruthenium.

  12. Synthetic peptide antigens derived from long-chain alpha-neurotoxins: Immunogenicity effect against elapid venoms.

    PubMed

    de la Rosa, Guillermo; Pastor, Nina; Alagón, Alejandro; Corzo, Gerardo

    2017-02-01

    Three-finger toxins (3FTXs), especially α-neurotoxins, are the most poorly neutralized elapid snake toxins by current antivenoms. In this work, the conserved structural similarity and motif arrangements of long-chain α-neurotoxins led us to design peptides with consensus sequences. Eight long-chain α-neurotoxins (also known as Type II) were used to generate a consensus sequence from which two peptides were chemically synthesized, LCP1 and LCP2. Rabbit sera raised against them were able to generate partially-neutralizing antibodies, which delayed mice mortality in neutralization assays against Naja haje, Dendrospis polylepis and Ophiophagus hannah venoms.

  13. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    PubMed Central

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-01-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  14. Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7

    PubMed Central

    Chen, Yaoqing; Cao, Luyang; Zhong, Maohua; Zhang, Yan; Han, Chen; Li, Qiaoli; Yang, Jingyi; Zhou, Dihan; Shi, Wei; He, Benxia; Liu, Fang; Yu, Jie; Sun, Ying; Cao, Yuan; Li, Yaoming; Li, Wenxin; Guo, Deying; Cao, Zhijian; Yan, Huimin

    2012-01-01

    For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC50 value of 2.76 µg/ml (1.65 µM) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1. PMID:22536342

  15. Characterization of a novel cDNA encoding a short venom peptide derived from venom gland of scorpion Buthus martensii Karsch: trans-splicing may play an important role in the diversification of scorpion venom peptides.

    PubMed

    Zeng, Xian-Chun; Luo, Feng; Li, Wen-Xin

    2006-04-01

    A novel cDNA clone (named BmKT-u) which is a hybrid molecule of the 5'-terminal region of BmKT' cDNA and the 3'-terminal region of an undocumented cDNA (named BmKu), was isolated from a cDNA library made from the venom gland of scorpion Buthus martensii Karsch. BmKT-u codes for a 30 amino acid residue precursor peptide composed of a 20-residue signal sequence, and a putative 10-residue novel mature peptide. Northern blot hybridization showed BmKT-u cDNA is generated from a transcript. RT-PCR experiments excluded the possibility that BmKT-u cDNA is an artifact generated during reverse transcription. Genomic amplifications performed with three pairs of BmKT-u gene-specific primers showed the BmKT-u gene does not exist in the genome of the scorpion as a single transcriptional unit. Genomic cloning for BmKT' showed that the BmKT' gene contains an intron of 509 bp inserted into the region encoding the C-terminal region of the signal peptide. A sequence alignment comparison of the cDNA of BmKT-u with genomic BmKT' revealed that the junction site of the hybrid molecule is located at the 5'-splicing site of the intron. The data suggest that the BmKT-u transcript is a naturally occurring mature mRNA that is generated by trans-splicing. Trans-splicing may contribute to the diversity of venom peptides from venomous animals.

  16. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    PubMed Central

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.; Song, Albert S.; Boomsma, Wouter; Bandyopadhyay, Pradip K.; Gruber, Christian W.; Purcell, Anthony W.; Yandell, Mark; Olivera, Baldomero M.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea. PMID:26957604

  17. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics.

    PubMed

    Garcia, Francia; Villegas, Elba; Espino-Solis, Gerardo Pavel; Rodriguez, Alexis; Paniagua-Solis, Jorge F; Sandoval-Lopez, Gabriel; Possani, Lourival D; Corzo, Gerardo

    2013-01-01

    Two antimicrobial peptides (AMPs), named La47 and Css54, were isolated from the venom of the spider Lachesana sp. and from the scorpion Centruroides suffusus suffusus, respectively. The primary structures of both La47 and Css54 were determined using N-terminal sequencing and mass spectrometry. La47 is identical to the AMP latarcin 3a obtained previously from the venom of the spider Lachesana tarabaevi, but the primary structure of Css54 is unique having 60% identities to the AMP ponericin-W2 from the venom of the ant Pachycondyla goeldii. Both La47 and Css54 have typical α-helix secondary structures in hydrophobic mimicking environments. The biological activities of both La47 and Css54 were compared with the AMP Pin2 isolated from the venom of the scorpion Pandinus imperator. La47 has lower antimicrobial and hemolytic activities compared with Css54 and Pin2. In addition, La47 and Pin2 were evaluated in the presence of the commercial antibiotics, chloramphenicol, ampicillin, novobiocin, streptomycin and kanamycin. Interestingly, the best antimicrobial combinations were obtained with mixtures of La47 and Pin2 with the antibiotics chloramphenicol, streptomycin and kanamycin, respectively. Furthermore, the novel peptide Css54 was evaluated in the presence of antibiotics used for the treatment of tuberculosis, isoniazid, rifampicin, pyrazinamide and ethambutol. Although the mixtures of Css54 with isoniazid, pyrazinamide or ethambutol inhibit the growth of Staphylococcus aureus, the best effect was found with rifampicin. Overall, these data show a motivating outlook for potential clinical treatments of bacterial infections using AMPs and commercial antibiotics.

  18. Snake Venom Components and Their Cross Reactivity: A Short Review

    DTIC Science & Technology

    1988-10-01

    PLA 2), L-amino acid oxidase, and phosphodiesterase. PLA2 is a protein of approximately 14000 molecular weight, which hydrolizes phosphatidylcholine...to lysophosphatidylcholine and a fatty acid (22). This activity causes the destruction of cell membranes, leading to hemolysis. In the last decade...flavoviridis, Bothrops asper, Pseudoechis australis, and Enhydrina schistosa (20, 33, 42, 43, 54 56). L-amino acid oxidase is detected in venomous snakes

  19. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis.

    PubMed

    Vijayasarathy, Marimuthu; Basheer, Soorej M; Franklin, Jayaseelan Benjamin; Balaram, Padmanabhan

    2017-02-03

    The occurrence of contryphans, a class of single-disulfide-bond-containing peptides, is demonstrated by the analysis of the venom of nine species of cone snails. Ten full gene sequences and two partial gene sequences coding for contryphan precursor proteins have been identified by next-generation sequencing and compared with available sequences. The occurrence of mature peptides in isolated venom has been demonstrated by LC-ESI-MS/MS analysis. De novo sequencing of reduced, alkylated contryphans from C. frigidus and C. araneosus provides evidence of sequence variation and post-translational modification, notably gamma carboxylation of glutamic acid. The characterization of Fr965 (C. frigidus) provides a rare example of a sequence lacking Pro at position 5 in the disulfide loop. The widespread occurrence of contryphan genes and mature peptides in the venom of diverse cone snails is suggestive of their potential biological significance.

  20. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  1. Purification and characterization of a novel antinociceptive peptide from venom of Agkistrodon halys Pallas.

    PubMed

    Ye, Yong; Li, Mingyang; Chen, Xuelan

    2013-04-01

    Venom of Agkistrodon halys Pallas can control severe pain such as cancer pain and neuropathic pain, but it is made up of complicated components. Aim of this study is to separate major analgesic fraction from venom of A. halys Pallas, and to reveal its biochemical and pharmacological properties. Three steps with ion exchange column first and molecular sieve columns next were used to separate and purify the fractions of venom. Analgesic effects were evaluated by hot plate tests and writhing tests in mice. The molecular weight (MW), isoelectric point, amino acid sequence, purity were respectively determined by SDS-PAGE electrophoresis, isoelectric focusing, Edman degradation and HPLC. The dependence and tolerance were observed by withdrawal test in rats, and analgesic effects were observed in mice during 7 days administration. Fourteen fractions were obtained by separation; the best analgesic fraction named Pallanalgesin was selected by ED50 and LD50. It had single band in electrophoresis, relative purity 92.16 %, MW 16.6 kDa, isoelectric point 8.8, and former sequence of ten amino acids H-L-L-Q-F-R-K-M-I-K. It showed significant analgesic effect without tolerance and dependence. As a novel analgesic, Pallanalgesin has been found to explain the function of venom of A. halys Pallas on severe pain control in traditional uses.

  2. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    PubMed Central

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  3. Orthogonal separation and identification of long-chain peptides from scorpion Buthus martensi Karsch venom by using two-dimensional mixed-mode reversed phase-reversed phase chromatography coupled to tandem mass spectrometry.

    PubMed

    Xu, Junyan; Zhang, Xiuli; Guo, Zhimou; Yan, Jingyu; Yu, Long; Li, Xiuling; Xue, Xingya; Liang, Xinmiao

    2013-03-21

    Peptide components of scorpion venom have been employed as useful pharmacological tools in the study of ion channel function. The isolation of individual components is necessary for determination of their biological significance. Here, we have described a novel reversed phase (RP)/ion exchange stationary phase, Click oligo ethylene glycol (Click OEG), and the chromatographic efficiency of its mixed-mode sorbent in peptide separation experiments. The Click OEG presents a mixed-mode RP/weak anion-exchange type stationary phase at pH 3.5 and mixed-mode RP/weak cation-exchange type stationary phase at pH 6.0, and it was suitable for separation of long-chain peptides in scorpion venom. Subsequently, a two dimensional mixed-mode RP-RP system based Click OEG and C18 with different pH values in two dimensions was developed for orthogonal separation of scorpion venom. Furthermore, two fractions were analyzed in depth, and 11 long-chain peptides were purified and sequences were identified by using tandem mass spectrometry incorporating the tryptic approach. Among these, we isolated six novel peptides including one peptide with a new sequence and five transcript-level peptides, and speculated on their possible bioactivities.

  4. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  5. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1.

    PubMed

    Hong, Wei; Li, Tian; Song, Yu; Zhang, Runhong; Zeng, Zhengyang; Han, Shisong; Zhang, Xianzheng; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen that causes severe diseases, but there are not effective and safe drugs in clinical therapy besides acyclovir (ACV) and related nucleoside analogs. In this study, two new venom peptides from the scorpion Heterometrus petersii were identified with effective inhibitory effect on HSV-1 infection in vitro. Both Hp1036 and Hp1239 peptides exhibited potent virucidal activities against HSV-1 (EC50=0.43±0.09 and 0.41±0.06μM, respectively) and effective inhibitory effects when added at the viral attachment (EC50=2.87±0.16 and 5.73±0.61μM, respectively), entry (EC50=4.29±0.35 and 4.32±0.47μM, respectively) and postentry (EC50=7.86±0.80 and 8.41±0.73μM, respectively) steps. Both Hp1036 and Hp1239 peptides adopted α-helix structure in approximate membrane environment and resulted in the destruction of the viral morphology. Moreover, Hp1036 and Hp1239 peptides entered Vero cells and reduced the intracellular viral infectivity. Taken together, Hp1036 and Hp1239 peptides are two anti-viral peptides with effective inhibitory effect on multiple steps of HSV-1 life cycle and therefore are good candidate for development as virucides.

  6. Monotreme glucagon-like peptide-1 in venom and gut: one gene – two very different functions

    PubMed Central

    Tsend-Ayush, Enkhjargal; He, Chuan; Myers, Mark A.; Andrikopoulos, Sof; Wong, Nicole; Sexton, Patrick M.; Wootten, Denise; Forbes, Briony E.; Grutzner, Frank

    2016-01-01

    The importance of Glucagon like peptide 1 (GLP-1) for metabolic control and insulin release sparked the evolution of genes mimicking GLP-1 action in venomous species (e.g. Exendin-4 in Heloderma suspectum (gila monster)). We discovered that platypus and echidna express a single GLP-1 peptide in both intestine and venom. Specific changes in GLP-1 of monotreme mammals result in resistance to DPP-4 cleavage which is also observed in the GLP-1 like Exendin-4 expressed in Heloderma venom. Remarkably we discovered that monotremes evolved an alternative mechanism to degrade GLP-1. We also show that monotreme GLP-1 stimulates insulin release in cultured rodent islets, but surprisingly shows low receptor affinity and bias toward Erk signaling. We propose that these changes in monotreme GLP-1 are the result of conflicting function of this peptide in metabolic control and venom. This evolutionary path is fundamentally different from the generally accepted idea that conflicting functions in a single gene favour duplication and diversification, as is the case for Exendin-4 in gila monster. This provides novel insight into the remarkably different metabolic control mechanism and venom function in monotremes and an unique example of how different selective pressures act upon a single gene in the absence of gene duplication. PMID:27898108

  7. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers.

    PubMed

    Falcao, C B; de La Torre, B G; Pérez-Peinado, C; Barron, A E; Andreu, D; Rádis-Baptista, G

    2014-11-01

    Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides-also called antimicrobial peptides (AMPs)-expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)-distant relatives of Asian cobras and kraits, previously shown to express cathelicidins-and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.

  8. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival.

  9. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom.

    PubMed

    Da Silva, S L; Dias-Junior, C A; Baldasso, P A; Damico, D C S; Carvalho, B M A; Garanto, A; Acosta, G; Oliveira, E; Albericio, F; Soares, A M; Marangoni, S; Resende, R R

    2012-08-01

    Crotalus oreganus abyssus is a rattlesnake that is usually found in the Grand Canyon, United States of America. Knowledge regarding the composition of C. o. abyssus venom is scarce. New natriuretic peptides (NPs) have been isolated and characterized from the venoms of members of the Crotalinae family. The NP family comprises three members, ANP (atrial natriuretic peptide), BNP (b-type natriuretic peptide) and CNP (c-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. The aim of the present study was to characterize a novel natriuretic-like peptide (Coa_NP2), isolated from C. o. abyssus venom. The Coa_NP2 presents an average molecular mass of 3419.88Da (theoretical average molecular mass 3418.94Da, monoisotopic molecular mass 3416.66Da and theoretical PI 7.78) and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides. The peptide has 32 amino acids and its complete sequence is SYGISSGCFGLKLDRIGTMSGLGCWRLLQDSP. Coa_NP2 is a natriuretic peptide of the ANP/BNP-like family, since the carboxyterminal region of CNP has its own NP domain. We demonstrate, herein, that Coa_NP2 produces a dose-dependent decrease in mean arterial pressure in rats, followed by significant increases in concentrations of markers of nitric oxide formation measured in the plasma and vasorelaxation in a thoracic aortic ring bath. The structural and biological aspects confirm Coa_NP2 as a new natriuretic peptide, isolated from snake venom.

  10. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  11. Molecular cloning and characterization of a new cDNA sequence encoding a venom peptide from the centipede Scolopendra subspinipes mutilans.

    PubMed

    Liu, Wanhong; Luo, Feng; He, Jing; Cao, Zhijian; Miao, Lixia

    2012-01-01

    Many studies have been performed on venomous peptides derived from animals. However, little of this research has focused on peptides from centipede venoms. Here, a venom gland cDNA library was successfully constructed for the centipede Scolopendra subspinipes mutilans. A new cDNA encoding the precursor of a venom peptide, named SsmTx, was cloned from the venomous gland cDNA library of the centipede S. subspinipes mutilans. The full-length SsmTx cDNA sequence is 465 nt, including a 249 nt ORF, a 45 nt 5' UTR and a 171 nt 3' UTR. There is a signal tail AATAAA 31 nt upstream of the poly (A) tail. The precursor nucleotide sequence of SsmTx encodes a signal peptide of 25 residues and a mature peptide of 57 residues, which is bridged by two pairs of disulfide bonds. SsmTx displays a unique cysteine motif that is completely different from that of other venomous animal toxins. This is the first reported cDNA sequence encoding a venom peptide from the centipede S. subspinipes mutilans.

  12. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae).

    PubMed

    Abdel-Rahman, Mohamed A; Quintero-Hernandez, Veronica; Possani, Lourival D

    2013-11-01

    Proteomic analysis of the scorpion venom Scorpio maurus palmatus was performed using reverse-phase HPLC separation followed by mass spectrometry determination. Sixty five components were identified with molecular masses varying from 413 to 14,009 Da. The high percentage of peptides (41.5%) was from 3 to 5 KDa which may represent linear antimicrobial peptides and KScTxs. Also, 155 expressed sequence tags (ESTs) were analyzed through construction the cDNA library prepared from a pair of venomous gland. About 77% of the ESTs correspond to toxin-like peptides and proteins with definite open reading frames. The cDNA sequencing results also show the presence of sequences whose putative products have sequence similarity with antimicrobial peptides (24%), insecticidal toxins, β-NaScTxs, κ-KScTxs, α-KScTxs, calcines and La1-like peptides. Also, we have obtained 23 atypical types of venom molecules not recorded in other scorpion species. Moreover, 9% of the total ESTs revealed significant similarities with proteins involved in the cellular processes of these scorpion venomous glands. This is the first set of molecular masses and transcripts described from this species, in which various venom molecules have been identified. They belong to either known or unassigned types of scorpion venom peptides and proteins, and provide valuable information for evolutionary analysis and venomics.

  13. Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom.

    PubMed

    Harrison, Patrick L; Heath, George R; Johnson, Benjamin R G; Abdel-Rahman, Mohamed A; Strong, Peter N; Evans, Stephen D; Miller, Keith

    2016-11-01

    Determining the mechanism of action of antimicrobial peptides (AMPs) is critical if they are to be developed into the clinical setting. In recent years high resolution techniques such as atomic force microscopy (AFM) have increasingly been utilised to determine AMP mechanism of action on planar lipid bilayers and live bacteria. Here we present the biophysical characterisation of a prototypical AMP from the venom of the North African scorpion Scorpio maurus palmatus termed Smp24. Smp24 is an amphipathic helical peptide containing 24 residues with a charge of +3 and exhibits both antimicrobial and cytotoxic activity and we aim to elucidate the mechanism of action of this peptide on both membrane systems. Using AFM, quartz crystal microbalance-dissipation (QCM-D) and liposomal leakage assays the effect of Smp24 on prototypical synthetic prokaryotic (DOPG:DOPC) and eukaryotic (DOPE:DOPC) membranes has been determined. Our data points to a toroidal pore mechanism against the prokaryotic like membrane whilst the formation of hexagonal phase non-lamellar phase structures is seen in eukaryotic like membrane. Also, phase segregation is observed against the eukaryotic membrane and this study provides direct evidence of the same peptide having multiple mechanisms of action depending on the membrane lipid composition.

  14. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani.

    PubMed

    Liu, Zi-Chao; Zhang, Rong; Zhao, Feng; Chen, Zhong-Ming; Liu, Hao-Wen; Wang, Yan-Jie; Jiang, Ping; Zhang, Yong; Wu, Ying; Ding, Jiu-Ping; Lee, Wen-Hui; Zhang, Yun

    2012-12-07

    Centipedes have venom glands in their first pair of limbs, and their venoms contain a large number of components with different biochemical and pharmacological properties. However, information about the compositions and functions of their venoms is largely unknown. In this study, Scolopendra subspinipes dehaani venoms were systematically investigated by transcriptomic and proteomic analysis coupled with biological function assays. After random screening approximately 1500 independent clones, 1122 full length cDNA sequences, which encode 543 different proteins, were cloned from a constructed cDNA library using a pair of venom glands from a single centipede species. Neurotoxins, ion channel acting components and venom allergens were the main fractions of the crude venom as revealed by transcriptomic analysis. Meanwhile, 40 proteins/peptides were purified and characterized from crude venom of S. subspinipes dehaani. The N-terminal amino acid sequencing and mass spectrum results of 29 out of these 40 proteins or peptides matched well with their corresponding cDNAs. The purified proteins/peptides showed different pharmacological properties, including the following: (1) platelet aggregating activity; (2) anticoagulant activity; (3) phospholipase A(2) activity; (4) trypsin inhibiting activity; (5) voltage-gated potassium channel activities; (6) voltage-gated sodium channel activities; (7) voltage-gated calcium channel activities. Most of them showed no significant similarity to other protein sequences deposited in the known public database. This work provides the largest number of protein or peptide candidates with medical-pharmaceutical significance and reveals the toxin nature of centipede S. subspinipes dehaani venom.

  15. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    PubMed

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.

  16. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann.

    PubMed

    Garcia, Consuelo; Calderón-Aranda, Emma S; Anguiano, Gerardo A V; Becerril, Baltazar; Possani, Lourival D

    2003-03-01

    Three different immunogens from the venom of the Mexican scorpion Centruroides noxius Hoffmann were used to study protective antibody response in mice and rabbits, challenged with toxin Cn2, one of the most abundant toxic peptide of this venom. The immunogens were: Cn5, a crustacean specific toxin; a recombinant protein containing the peptide Cn5 linked to the maltose transporter and a sub-fraction (F.II.5) containing 25 distinct peptides, among which is Cn5. Mice immunized with these three preparations, when directly challenged with Cn2 presented no apparent protection, whereas anti-sera produced in rabbits with these three immunogens were capable of partially neutralizing the effect of Cn2, when injected into naive mice. Cn5 rabbit anti-serum showed a better protective effect on mice, than the rabbit sera obtained against the two other antigens. The subcutaneous route of challenging mice was shown to be better than intraperitoneal injections. Comparative structural analysis of Cn5 with other toxins of this venom showed that our results are important to be taken into consideration, when choosing appropriate immunogens aimed at the production of better anti-venoms or for the rational design of possible vaccines.

  17. Solution structure of a defensin-like peptide from platypus venom.

    PubMed Central

    Torres, A M; Wang, X; Fletcher, J I; Alewood, D; Alewood, P F; Smith, R; Simpson, R J; Nicholson, G M; Sutherland, S K; Gallagher, C H; King, G F; Kuchel, P W

    1999-01-01

    Three defensin-like peptides (DLPs) were isolated from platypus venom and sequenced. One of these peptides, DLP-1, was synthesized chemically and its three-dimensional structure was determined using NMR spectroscopy. The main structural elements of this 42-residue peptide were an anti-parallel beta-sheet comprising residues 15-18 and 37-40 and a small 3(10) helix spanning residues 10-12. The overall three-dimensional fold is similar to that of beta-defensin-12, and similar to the sodium-channel neurotoxin ShI (Stichodactyla helianthus neurotoxin I). However, the side chains known to be functionally important in beta-defensin-12 and ShI are not conserved in DLP-1, suggesting that it has a different biological function. Consistent with this contention, we showed that DLP-1 possesses no anti-microbial properties and has no observable activity on rat dorsal-root-ganglion sodium-channel currents. PMID:10417345

  18. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    PubMed Central

    Engmark, Mikael; Andersen, Mikael R.; Laustsen, Andreas H.; Patel, Jigar; Sullivan, Eric; de Masi, Federico; Hansen, Christian S.; Kringelum, Jens V.; Lomonte, Bruno; Gutiérrez, José María; Lund, Ole

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens. In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes at the functional sites of toxins was observed. With these results, high-density peptide microarray technology is for the first time introduced in the field of toxinology and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of distinctive toxic motifs are elucidated. PMID:27824133

  19. Pharmacological action of Australian animal venoms.

    PubMed

    Hodgson, W C

    1997-01-01

    1. Australia has some of the most venomous fauna in the world. Although humans are not usually perceived as being predators against these animals they are often envenomated, accidentally or otherwise. This has led to the development of antivenoms against some of the potentially lethal venoms. However, further understanding of the mechanism(s) of action of these and other venoms is important, not only for developing new treatment strategies but also in the search for novel research tools. 2. The present review discusses the pharmacology of some of the components found in venoms and outlines the research undertaken on some of Australia's venomous animals, with the exception of snakes. 3. Biogenic amines, peptides and enzymes are common venom components and produce a wide range of effects in envenomated humans. For example, respiratory failure observed after envenomation by the box jellyfish (Chirnex fleckeri) and Sydney funnel-web spider (Atrax robustus) is most likely due to potent neurotoxins in the venoms. Stonefish (Synanceja trachynis) and platypus (Ornithorhynchus anatinus) venoms, although not considered lethal, cause severe pain. However, the components responsible for these effects have not been isolated. Venom components, as yet unidentified, may be responsible for the cutaneous necrotic lesions that have been reported after some spider bites (e.g. Lampona cylindrata). Other venoms, such as those of the jumper ant (Myrmecia pilosula) and bull ant (M. pyriformis), may produce only mild skin irritation to the majority of humans but a severe anaphylactic response in sensitized victims. 4. While there has been a renewed interest in toxinology, further research is required to fully elucidate the pharmacological action of many of these venoms.

  20. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog.

    PubMed

    Almaaytah, Ammar; Zhou, Mei; Wang, Lei; Chen, Tianbao; Walker, Brian; Shaw, Chris

    2012-06-01

    The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.

  1. Cardiovascular-Active Venom Toxins: An Overview.

    PubMed

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  2. Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa 1. Isolation, characterization and chemical synthesis.

    PubMed

    Hill, J M; Atkins, A R; Loughnan, M L; Jones, A; Adams, D A; Martin, R C; Lewis, R J; Craik, D J; Alewood, P F

    2000-08-01

    A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transL-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.

  3. Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators*

    PubMed Central

    Yang, Shilong; Liu, Zhonghua; Xiao, Yao; Li, Yuan; Rong, Mingqiang; Liang, Songping; Zhang, Zhiye; Yu, Haining; King, Glenn F.; Lai, Ren

    2012-01-01

    Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. PMID:22595790

  4. Cone venom--from accidental stings to deliberate injection.

    PubMed

    McIntosh, J M; Jones, R M

    2001-10-01

    Cone snails have long been of note due to their colorful shells and deadly venom. Over the years, a number of people who have encountered these molluscs have been injured or killed by their sting. Biochemical analysis of the venom components has revealed a plethora of peptides and proteins that target a variety of receptors and ion channels. Pharmaceutical companies are now utilizing the selectivity and potency of Conus-derived peptides to develop novel medications for pain, epilepsy and other disorders.

  5. Centipede venom peptide SsmTX-I with two intramolecular disulfide bonds shows analgesic activities in animal models.

    PubMed

    Wang, Ying; Li, Xiaojie; Yang, Meifeng; Wu, Chunyun; Zou, Zhirong; Tang, Jing; Yang, Xinwang

    2017-03-01

    Pain is a major symptom of many diseases and results in enormous pressures on human body or society. Currently, clinically used analgesic drugs, including opioids and nonsteroidal anti-inflammatory drugs, have adverse reactions, and thus, the development of new types of analgesic drug candidates is urgently needed. Animal venom peptides have proven to have potential as new types of analgesic medicine. In this research, we describe the isolation and characterization of an analgesic peptide from the crude venom of centipede, Scolopendra subspinipes mutilans. The amino acid sequence of this peptide was identical with SsmTX-I that was previously reported as a specific Kv2.1 ion channel blocker. Our results revealed that SsmTX-I was produced by posttranslational processing of a 73-residue prepropeptide. The intramolecular disulfide bridge motifs of SsmTX-I was Cys1-Cys3 and Cys2-Cys4. Functional assay revealed that SsmTX-I showed potential analgesic activities in formalin-induced paw licking, thermal pain, and acetic acid-induced abdominal writhing mice models. Our research provides the first report of cDNA sequences, disulfide motif, successful synthesis, and analgesic potential of SsmTX-I for the development of pain-killing drugs. It indicates that centipede peptide toxins could be a treasure trove for the search of novel analgesic drug candidates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  6. An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera.

    PubMed

    Corzo, Gerardo; Diego-García, Elia; Clement, Herlinda; Peigneur, Steve; Odell, George; Tytgat, Jan; Possani, Lourival D; Alagón, Alejandro

    2008-11-01

    The soluble venom of the Mexican theraposid spider Brachypelma smithi was screened for insecticidal peptides based on toxicity to house crickets. An insecticidal peptide, named Bs1 (which stands for Brachypelma smithi toxin 1) was obtained in homogeneous form after the soluble venom was fractionated using reverse-phase and cation-exchange chromatography. It contains 41 amino acids cross-linked by three disulfide bridges. Its sequence is similar to an insecticidal peptide isolated from the theraposid spider Ornithoctonus huwena from China, and another from the hexathelid spider Macrothelegigas from Japan, indicating that they are phylogenetically related. A cDNA library was prepared from the venomous glands of B. smithi and the gene that code for Bs1 was cloned. Sequence analysis of the nucleotides of Bs1 showed similarities to that of the hexathelid spider from Japan proving additional evidence for close genetic relationship between these spider peptides. The mRNAs of these toxins code for signal peptides that are processed at the segment rich in acidic and basic residues. Their C-terminal amino acids are amidated. However, they contain only a glycine residue at the most C-terminal position, without the presence of additional basic amino acid residues, normally required for post-translation processing of other toxins reported in the literature. The possible mechanism of action of Bs1 was investigated using several ion channels as putative receptors. Bs1 had minor, but significant effects on the Para/tipE insect ion channel, which could indirectly correlate with the observed lethal activity to crickets.

  7. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees.

    PubMed

    Nakasu, Erich Y T; Williamson, Sally M; Edwards, Martin G; Fitches, Elaine C; Gatehouse, John A; Wright, Geraldine A; Gatehouse, Angharad M R

    2014-07-22

    Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.

  8. The bee venom peptide tertiapin underlines the role of IKACh in acetylcholine-induced atrioventricular blocks

    PubMed Central

    Drici, Milou-Daniel; Diochot, Sylvie; Terrenoire, Cécile; Romey, Georges; Lazdunski, Michel

    2000-01-01

    Acetylcholine (ACh) is an important neuromodulator of cardiac function that is released upon stimulation of the vagus nerve. Despite numerous reports on activation of IKACh by acetylcholine in cardiomyocytes, it has yet to be demonstrated what role this channel plays in cardiac conduction. We studied the effect of tertiapin, a bee venom peptide blocking IKACh, to evaluate the role of IKACh in Langendorff preparations challenged with ACh.ACh (0.5 μM) reproducibly and reversibly induced complete atrioventricular (AV) blocks in retroperfused guinea-pig isolated hearts (n=12).Tertiapin (10 to 300 nM) dose-dependently and reversibly prevented the AV conduction decrements and the complete blocks in unpaced hearts (n=8, P<0.01).Tertiapin dose-dependently blunted the ACh-induced negative chronotropic response from an ACh-induced decrease in heart rate of 39±16% in control conditions to 3±3% after 300 nM tertiapin (P=0.01). These effects were not accompanied by any significant change in QT intervals.Tertiapin blocked IKACh with an IC50 of 30±4 nM with no significant effect on the major currents classically associated with cardiac repolarisation process (IKr, IKs, Ito1, Isus, IK1 or IKATP) or AV conduction (INa and ICa(L)).In summary, tertiapin prevents dose-dependently ACh-induced AV blocks in mammalian hearts by inhibiting IKACh. PMID:11015309

  9. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors

    PubMed Central

    Schwartz, Elisabeth F; Capes, E Michelle; Diego-García, Elia; Zamudio, Fernando Z; Fuentes, Oscar; Possani, Lourival D; Valdivia, Héctor H

    2009-01-01

    Background and purpose: Members of the calcin family, presently including imperatoxin A, maurocalcin, opicalcins and hemicalcin, are basic, 33-mer peptide activators of ryanodine receptors (RyRs), the calcium channels of the sarcoplasmic reticulum (SR) that provide the majority of calcium for muscle contraction. Here we describe hadrucalcin, a novel member of this family. Experimental approach: Hadrucalcin was isolated from the venom of Hadrurus gertschi. Amino acid sequence and mass were determined by Edman degradation and mass spectrometry respectively. A cDNA library was constructed to generate clones for DNA sequence determination. Biological activity of native toxin was confirmed with [3H]ryanodine binding, by using SR vesicles from cardiac and skeletal muscle, and with single skeletal (RyR1) and cardiac (RyR2) channels reconstituted in lipid bilayers. Hadrucalcin was applied to intact ventricular myocytes to investigate effects on calcium transients. The secondary structure of hadrucalcin was computer-modelled by using atomic coordinates from maurocalcin, a structurally similar peptide. Key results: Hadrucalcin is distinguished from previously described congeners by two additional amino acids in its primary sequence and the lack of prominent amphipathicity. Hadrucalcin activated RyRs with high affinity (EC50= 37 nmol·L−1), induced a long-lasting subconductance state on RyR1 and RyR2, and rapidly (lag time ∼2 s) penetrated ventricular cardiomyocytes, eliciting discharge of internal calcium stores and spontaneous contractions. Conclusions and implications: Hadrucalcin is a cell-permeant, powerful activator of RyRs, which has translational potential for targeted delivery of drugs to RyR as novel therapeutic intervention in arrhythmogenic disease. PMID:19389159

  10. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates

    PubMed Central

    Chen, Meimei; Ye, Xiaohui; Ming, Xin; Chen, Yahui; Wang, Ying; Su, Xingli; Su, Wen; Kong, Yi

    2015-01-01

    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development. PMID:26035670

  11. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion

    PubMed Central

    Juárez-González, Víctor Rivelino; Possani, Lourival D.

    2015-01-01

    Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative

  12. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion.

    PubMed

    Luna-Ramírez, Karen; Quintero-Hernández, Verónica; Juárez-González, Víctor Rivelino; Possani, Lourival D

    2015-01-01

    Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative

  13. Functional and Structural Diversification of the Anguimorpha Lizard Venom System*

    PubMed Central

    Fry, Bryan G.; Winter, Kelly; Norman, Janette A.; Roelants, Kim; Nabuurs, Rob J. A.; van Osch, Matthias J. P.; Teeuwisse, Wouter M.; van der Weerd, Louise; Mcnaughtan, Judith E.; Kwok, Hang Fai; Scheib, Holger; Greisman, Laura; Kochva, Elazar; Miller, Laurence J.; Gao, Fan; Karas, John; Scanlon, Denis; Lin, Feng; Kuruppu, Sanjaya; Shaw, Chris; Wong, Lily; Hodgson, Wayne C.

    2010-01-01

    Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight

  14. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques.

    PubMed

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-12-13

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A₂ and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  15. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques

    PubMed Central

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-01-01

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5′-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor. PMID:27983581

  16. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    PubMed Central

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Flávia; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andréia; Gonçalves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, Márcia

    2015-01-01

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. PMID:26295258

  17. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin.

    PubMed

    de Melo, Edinara Targino; Estrela, Andréia Bergamo; Santos, Elizabeth Cristina Gomes; Machado, Paula Renata Lima; Farias, Kleber Juvenal Silva; Torres, Taffarel Melo; Carvalho, Enéas; Lima, João Paulo Matos Santos; Silva-Júnior, Arnóbio Antonio; Barbosa, Euzébio Guimarães; Fernandes-Pedrosa, Matheus de Freitas

    2015-06-01

    A new antimicrobial peptide, herein named Stigmurin, was selected based on a transcriptomic analysis of the Brazilian yellow scorpion Tityus stigmurus venom gland, an underexplored source for toxic peptides with possible biotechnological applications. Stigmurin was investigated in silico, by circular dichroism (CD) spectroscopy, and in vitro. The CD spectra suggested that this peptide interacts with membranes, changing its conformation in the presence of an amphipathic environment, with predominance of random coil and beta-sheet structures. Stigmurin exhibited antibacterial and antifungal activity, with minimal inhibitory concentrations ranging from 8.7 to 69.5μM. It was also showed that Stigmurin is toxic against SiHa and Vero E6 cell lines. The results suggest that Stigmurin can be considered a potential anti-infective drug.

  18. Are ticks venomous animals?

    PubMed Central

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. Conclusions Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary

  19. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera.

    PubMed

    Chapuis, Hubert; Slaninová, Jiřina; Bednárová, Lucie; Monincová, Lenka; Buděšínský, Miloš; Čeřovský, Václav

    2012-11-01

    The impact of inserting hydrocarbon staples into short α-helical antimicrobial peptides lasioglossin III and melectin (antimicrobial peptides of wild bee venom) on their biological and biophysical properties has been examined. The stapling was achieved by ring-closing olefin metathesis, either between two S-2-(4'-pentenyl) alanine residues (S (5)) incorporated at i and i + 4 positions or between R-2-(7'-octenyl) alanine (R (8)) and S (5) incorporated at the i and i + 7 positions, respectively. We prepared several lasioglossin III and melectin analogs with a single staple inserted into different positions within the peptide chains as well as analogs with double staples. The stapled peptides exhibited a remarkable increase in hemolytic activity, while their antimicrobial activities decreased. Some single stapled peptides showed a higher resistance against proteolytic degradation than native ones, while the double stapled analogs were substantially more resistant. The CD spectra of the singly stapled peptides measured in water showed only a slightly better propensity to form α-helical structure when compared to native peptides, whereas the doubly stapled analogs exhibited dramatically enhanced α-helicity.

  20. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins

    PubMed Central

    Cremonez, Caroline M.; Maiti, Mohitosh; Peigneur, Steve; Cassoli, Juliana Silva; Dutra, Alexandre A. A.; Waelkens, Etienne; Lescrinier, Eveline; Herdewijn, Piet; de Lima, Maria Elena; Pimenta, Adriano M. C.; Arantes, Eliane C.; Tytgat, Jan

    2016-01-01

    To date, several families of peptide toxins specifically interacting with ion channels in scorpion venom have been described. One of these families comprise peptide toxins (called KTxs), known to modulate potassium channels. Thus far, 202 KTxs have been reported, belonging to several subfamilies of KTxs (called α, β, γ, κ, δ, and λ-KTxs). Here we report on a previously described orphan toxin from Tityus serrulatus venom, named Ts11. We carried out an in-depth structure-function analysis combining 3D structure elucidation of Ts11 and electrophysiological characterization of the toxin. The Ts11 structure is highlighted by an Inhibitor Cystine Knot (ICK) type scaffold, completely devoid of the classical secondary structure elements (α-helix and/or β-strand). This has, to the best of our knowledge, never been described before for scorpion toxins and therefore represents a novel, 6th type of structural fold for these scorpion peptides. On the basis of their preferred interaction with voltage-gated K channels, as compared to all the other targets tested, it can be postulated that Ts11 is the first member of a new subfamily, designated as ε-KTx. PMID:27706049

  1. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees

    PubMed Central

    Nakasu, Erich Y. T.; Williamson, Sally M.; Edwards, Martin G.; Fitches, Elaine C.; Gatehouse, John A.; Wright, Geraldine A.; Gatehouse, Angharad M. R.

    2014-01-01

    Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a ‘carrier’ protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a ‘carrier’, is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50 > 100 µg bee−1) or injection of fusion protein. Bees fed acute (100 µg bee−1) or chronic (0.35 mg ml−1) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides. PMID:24898372

  2. Defensins and the convergent evolution of platypus and reptile venom genes.

    PubMed

    Whittington, Camilla M; Papenfuss, Anthony T; Bansal, Paramjit; Torres, Allan M; Wong, Emily S W; Deakin, Janine E; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P; Temple-Smith, Peter; Warren, Wesley C; Kuchel, Philip W; Belov, Katherine

    2008-06-01

    When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules.

  3. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening.

    PubMed

    Sciani, Juliana Mozer; Vigerelli, Hugo; Costa, André Santos; Câmara, Diana Aparecida Dias; Junior, Paulo Luiz-de-Sá; Pimenta, Daniel Carvalho

    2017-01-01

    Efficient drug delivery systems are currently one of the greatest challenges in pharmacokinetics, and the transposition of the gap between in vitro candidate molecule and in vivo test drug is, sometimes, poles apart. In this sense, the cell-penetrating peptides (CPP) may be the bridge uniting these worlds. Here, we describe a technique to rapidly identify unlabeled CPPs after incubation with liposomes, based on commercial desalting (size exclusion) columns and liquid chromatography-MS/MS, for peptide de novo sequencing. Using this approach, we found it possible to identify one new CPP - interestingly, a classical bradykinin-potentiating peptide - in the peptide-rich low molecular mass fraction of the Bothrops jararaca venom, which was also able to penetrate live cell membranes, as confirmed by classical approaches employing fluorescence-labeled analogues of this CPP. Moreover, both the labeled and unlabeled CPPs caused no metabolic, cell-cycle or morphologic alterations, proving to be unmistakably cargo deliverers and not drugs themselves. In sum, we have developed and validated a method for screening label-free peptides for CPP activity, regardless of their biological origin, which could lead to the identification of new and more efficient drug delivery systems. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  4. Venom Components of Iranian Scorpion Hemiscorpius lepturus Inhibit the Growth and Replication of Human Immunodeficiency Virus 1 (HIV-1)

    PubMed Central

    Zabihollahi, Rezvan; Bagheri, Kamran Pooshang; Keshavarz, Zohreh; Motevalli, Fatemeh; Bahramali, Golnaz; Siadat, Seyed Davar; Momen, Seyed Bahman; Shahbazzadeh, Delavar; Aghasadeghi, Mohammad Reza

    2016-01-01

    Background: During the recent years, significant progress has been achieved on development of novel anti-viral drugs. Natural products are assumed as the potential sources of novel anti-viral drugs; therefore, there are some previous studies reporting the anti-viral compounds from venomous animals. Based on the significant value for tracing of non-toxic anti-viral agents from natural resources, this study was aimed to investigate the anti-viral activity of some HPLC purified fractions derived from the venom of Iranian scorpion, Hemiscorpius lepturus, against human immunodeficiency virus 1 (HIV-1) and herpes simplex virus 1 (HSV-1). Methods: H. Lepturus crude venom was subjected to reverse phase HPLC analysis to determine its active components precisely where four dominant fractions obtained at retention time of 156-160 minutes. The phospholipase A2 and hemolytic activities of the purified fractions were first evaluated. Then the anti-viral activity was measured using single cycle HIV (NL4-3) replication and HSV (KOS) plaque reduction assays. Results: The H. lepturus crude venom inhibited HIV replication by 73% at the concentration of 200 µg/ml, while it did not show significant anti-HSV activity. It also inhibited the cell-free viral particles in a virucidal assay, while it showed no toxicity for the target cells in a proliferation assay. The four HPLC fractions purified from H. lepturus inhibited HIV with IC50 of 20 µg/ml. Conclusion: H. lepturus venom contains components with considerable anti-HIV activity insofar as it has virucidal activity that offers a novel therapeutic approach against HIV infection. Our results suggest a promising pilot for anti-HIV drug discovery with H. lepturus scorpion venom. PMID:27594443

  5. Peptidome profiling of venom from the social wasp Polybia paulista.

    PubMed

    Dias, Nathalia Batista; de Souza, Bibiana Monson; Gomes, Paulo Cesar; Brigatte, Patricia; Palma, Mario Sergio

    2015-12-01

    Most crude venom from Polybia paulista is composed of short, linear peptides; however, only five of these peptides are structurally and functionally characterized. Therefore, the peptides in this venom were profiled using an HPLC-IT-TOF/MS and MS(n) system. The presence of type -d and -w ions that are generated from the fragmentation of the side chains was used to resolve I/L ambiguity. The distinction between K and Q residues was achieved through esterification of the α- and ε-amino groups in the peptide chains, followed by mass spectrometry analysis. Fourteen major peptides were detected in P. paulista venom and sequenced; all the peptides were synthesized on solid-phase and submitted to a series of bioassays. Five of them had been previously characterized, and nine were novel toxins. The novel peptides correspond to two wasp kinins, two chemotactic components, three mastoparans, and two peptides of unknown function. The seven novel peptides with identified functions appear to act synergistically with the previously known ones, constituting three well-known families of peptide toxins (wasp kinins, chemotactic peptides, and mastoparans) in the venom of social wasps. These multifunctional toxins can cause pain, oedema formation, haemolysis, chemotaxis of PMNLs, and mast cell degranulation in victims who are stung by wasps.

  6. Animal venom studies: Current benefits and future developments

    PubMed Central

    Utkin, Yuri N

    2015-01-01

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom of these animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  7. Animal venom studies: Current benefits and future developments.

    PubMed

    Utkin, Yuri N

    2015-05-26

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom of these animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  8. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    PubMed

    Wong, Emily S W; Nicol, Stewart; Warren, Wesley C; Belov, Katherine

    2013-01-01

    Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  9. Functional and immuno-reactive characterization of a previously undescribed peptide from the venom of the scorpion Centruroides limpidus.

    PubMed

    Olamendi-Portugal, Timoteo; Restano-Cassulini, Rita; Riaño-Umbarila, Lidia; Becerril, Baltazar; Possani, Lourival D

    2017-01-01

    A previously undescribed toxic peptide named Cl13 was purified from the venom of the Mexican scorpion Centruroides limpidus. It contains 66 amino acid residues, including four disulfide bonds. The physiological effects assayed in 7 different subtypes of voltage gated Na(+)-channels, showed that it belongs to the β-scorpion toxin type. The most notorious effects were observed in subtypes Nav1.4, Nav1.5 and Nav1.6. Although having important sequence similarities with two other lethal toxins from this scorpion species (Cll1m and Cll2), the recently developed single chain antibody fragments (scFv) of human origin were not capable of protecting against Cl13. At the amino acid sequence level, in 3 stretches of peptide Cl13 (positions 7-9, 30-38 and 62-66) some differences with respect to other similar toxins are observed. Some of these differences coincide with contact points with the human antibody fragments.

  10. Venom-based biotoxins as potential analgesics.

    PubMed

    Gazerani, Parisa; Cairns, Brian Edwin

    2014-11-01

    Chronic pain is a common debilitating condition with negative social and economic consequences. Management of chronic pain is challenging and the currently available medications do not yet yield satisfactory outcomes for many patients. Venom-derived biotoxins from various venomous species consist of several substances with different structures and compositions that include peptides. A unique characteristic of some venom-based biotoxins is the ability to block essential components of the pain signaling system, notably ion channels. This property is leading to the evaluation of the potential of biotoxins as analgesics to manage chronic pain. In addition to their therapeutic potential, biotoxins have also been essential tools to probe mechanisms underlying pain signaling, channelopathies and receptor expression. This review discusses venom-derived peptidergic biotoxins that are in preclinical stages or already in clinical trials. Some promising results from preliminary in vitro studies, ongoing challenges and unmet needs will also be discussed.

  11. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Wilson, P T

    1987-01-01

    Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha

  12. Short-chain peptides identification of scorpion Buthus martensi Karsch venom by employing high orthogonal 2D-HPLC system and tandem mass spectrometry.

    PubMed

    Xu, Junyan; Zhang, Xiuli; Guo, Zhimou; Yan, Jingyu; Yu, Long; Li, Xiuling; Xue, Xingya; Liang, Xinmiao

    2012-10-01

    Scorpion venom contains a considerable variety of neurotoxic peptides that can act on ionic channels. Here, we describe an orthogonal 2D-reversed phase/hydrophilic interaction chromatography system (RPLC/HILIC) and use it to separate short-chain peptides from Asian scorpion Buthus martensi Karsch (BmK) venom in a high throughput format. Due to its high orthogonality and efficiency, 18 homogenous peptides were purified and sequence identified by MS/MS with collision-induced dissociation. Among them, four peptides were discovered, which only have evidence at transcript-level, were first purified from crude venom in this study. Two peptides named BmKK2-b and Martentoxin-b were found the new cleaved chains of known BmKK2 and Martentoxin. In addition, two novel peptides named BmKK12 and BmKK16 in this paper were sequenced by de novo MS/MS, which we predict, are members of potassium channel toxin α-KTx 17 subfamily by homology to other known peptides found in the Swiss-Prot protein database.

  13. Anxiolytic activity and evaluation of potentially adverse effects of a bradykinin-related peptide isolated from a social wasp venom.

    PubMed

    dos Anjos, Lilian Carneiro; Gomes, Flávia Maria Medeiros; do Couto, Lucianna Lopes; Mourão, Cecília Alves; Moreira, Karla Graziela; Silva, Luciano Paulino; Mortari, Márcia Renata

    2016-03-15

    Anxiety disorders are major health problems in terms of costs stemming from sick leave, disabilities, healthcare and premature mortality. Despite the availability of classic anxiolytics, some anxiety disorders are still resistant to treatment, with higher rates of adverse effects. In this respect, several toxins isolated from arthropod venoms are useful in identifying new compounds to treat neurological disorders, particularly pathological anxiety. Thus, the aims of this study were to identify and characterize an anxiolytic peptide isolated from the venom of the social wasp Polybia paulista. The peptide was identified as Polisteskinin R, with nominal molecular mass [M+H](+)=1301Da and primary structure consisting of Ala-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH. The anxiolytic effect was tested using the elevated plus maze test. Moreover, adverse effects on the spontaneous behavior and motor coordination of animals were assessed using the open field and rotarod tests. Polisteskinin R induced a dose-dependent anxiolytic effect. Animals treated with the peptide and diazepam spent significantly more time into the open arms when compared to the groups treated with the vehicle and pentylenetetrazole. No significant differences in spontaneous behavior or motor coordination were observed between the groups, showing that the peptide was well tolerated. The interaction by agonists in both known BK receptors induces a variability of physiological effects; Polisteskinin R can act on these receptors, inducing modulatory activity and thus, attenuating anxiety behaviors. The results of this study demonstrated that the compound Polisteskinin R exerted potent anxiolytic effects and its analogues are promising candidates for experimental pharmacology.

  14. Pertussis toxin-insensitive effects of mastoparan, a wasp venom peptide, in PC12 cells.

    PubMed

    Murayama, T; Oda, H; Nomura, Y

    1996-12-01

    Recent studies have shown that mastoparan, an amphiphilic peptide derived from wasp venom, modifies the secretion of neurotransmitters and hormones from a variety of cell types. Mastoparan interacts with heterotrimeric guanine nucleotide-binding proteins (G proteins) such as Gi and G(o), which are ADP-ribosylated by pertussis toxin (PTX) and thereby uncoupled from receptors. Previously, some of the effects of mastoparan including secretion were reported to be modified selectively by PTX but not by cholera toxin (CTX). In the present study, we examined the influence of bacterial toxins on the effects of mastoparan in PC12 cells. Mastoparan stimulated [3H]noradrenaline (NA) release from prelabeled PC12 cells in the absence of CaCl2, although high K+ or ATP-stimulated the release in a Ca(2+)-dependent manner. Pretreatment with CTX, not PTX, for 24 h inhibited mastoparan-stimulated [3H]NA release. Mastoparan inhibited forskolin-stimulated cyclic AMP accumulation in a dose-dependent manner, although mastoparan had no effect by itself. Pretreatment with PTX completely abolished the inhibitory effect of carbachol via Gi on cyclic AMP accumulation and partially reduced the effect of mastoparan. However, the inhibitory effect of 20 microM mastoparan was not modified by pretreatment with PTX. Thus, we investigated the effect of mastoparan on CTX-catalyzed [32P]ADP-ribosylation of proteins in PC12 cells. A subunit of CTX (CTX-A) catalyzed [32P]ADP-ribosylation of many proteins in the cytosolic fraction of PC12 cells. One of these was a 20 kDa protein, named ADP-ribosylating factor (ARF). The addition of mastoparan to assay mixtures inhibited ADP-ribosylation of many proteins including ARF and CTX-A in the presence of the cytosolic fraction. In the absence of the cytosolic fraction, however, mastoparan slightly enhanced ADP-ribosylation of bovine serum albumin and auto-ADP-ribosylation by CTX-A. Mastoparan did not inhibit ADP-ribosylation of the alpha subunit of Gs in the

  15. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo.

    PubMed

    Uddin, Md Bashir; Lee, Byeong-Hoon; Nikapitiya, Chamilani; Kim, Jae-Hoon; Kim, Tae-Hwan; Lee, Hyun-Cheol; Kim, Choul Goo; Lee, Jong-Soo; Kim, Chul-Joong

    2016-12-01

    Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.

  16. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution.

    PubMed

    Santibáñez-López, Carlos E; Possani, Lourival D

    2015-12-01

    Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.

  17. Studies on Bee Venom and Its Medical Uses

    NASA Astrophysics Data System (ADS)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  18. Ophiophagus hannah venom: proteome, components bound by Naja kaouthia antivenin and neutralization by N. kaouthia neurotoxin-specific human ScFv.

    PubMed

    Danpaiboon, Witchuda; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Sakolvaree, Yuwaporn; Thanongsaksrikul, Jeeraphong; Dong-din-on, Fonthip; Srimanote, Potjanee; Thueng-in, Kanyarat; Chaicumpa, Wanpen

    2014-05-13

    Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5'-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins.

  19. Peptides with in vitro anti-tumor activity from the venom of the Eastern green mamba, Dendroaspis angusticeps (Elapidae)

    PubMed Central

    Conlon, J Michael; Prajeep, Manju; Mechkarska, Milena; Arafat, Kholoud; Attoub, Samir; Adem, Abdu; Pla, Davinia; Calvete, Juan J

    2014-01-01

    Two structurally related (48.6% amino acid sequence identity) peptides with cytotoxic activity against human non-small cell lung adenocarcinoma A549 cells were purified from the venom of the Eastern green mamba Dendroaspis angusticeps using reversed phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by mass fingerprinting of tryptic digests. The more potent peptide (LC50 against A549 cells = 56±4µg/ml) was identical to the previously described toxin C13S1C1 and the less active peptide (LC50 against A549 cells = 106±5µg/ml) was identical to toxin F-VIII. Toxin C13S1C1 was also cytotoxic against breast adenocarcinoma MDA-MB-231 cells (LC50 = 62±2µg/ml) and colorectal adenocarcinoma HT-29 cells (LC50 = 110±4µg/ml). Although the peptide was appreciably less hemolytic activity against human erythrocytes (LC50 >600µg/ml), it was cytotoxic to human umbilical vein endothelial HUVEC cells (57±3µg/ml) indicating no differential activity against cell lines derived from neoplastic tissues. Toxin F-VIII was not cytotoxic to MDA-MB-231, HT-29 cells, and HUVEC cells at concentrations up to 300µg/ml and was not hemolytic at concentrations up to 1mg/ml. Neither peptide inhibited growth of reference strains of Escherichia coli or Staphylococcus aureus (MIC values >200μg/ml). PMID:25035794

  20. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs.

    PubMed

    Monincová, Lenka; Budesínský, Milos; Slaninová, Jirina; Hovorka, Oldrich; Cvacka, Josef; Voburka, Zdenek; Fucík, Vladimír; Borovicková, Lenka; Bednárová, Lucie; Straka, Jakub; Cerovský, Václav

    2010-08-01

    Two novel antimicrobial peptides, named halictines, were isolated from the venom of the eusocial bee Halictus sexcinctus. Their primary sequences were established by ESI-QTOF mass spectrometry, Edman degradation and enzymatic digestion as Gly-Met-Trp-Ser-Lys-Ile-Leu-Gly-His-Leu-Ile-Arg-NH2 (HAL-1), and Gly-Lys-Trp-Met-Ser-Leu-Leu-Lys-His-Ile-Leu-Lys-NH2 (HAL-2). Both peptides exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria but also noticeable hemolytic activity. The CD spectra of HAL-1 and HAL-2 measured in the presence of trifluoroethanol or SDS showed ability to form an amphipathic alpha-helical secondary structure in an anisotropic environment such as bacterial cell membrane. NMR spectra of HAL-1 and HAL-2 measured in trifluoroethanol/water confirmed formation of helical conformation in both peptides with a slightly higher helical propensity in HAL-1. Altogether, we prepared 51 of HAL-1 and HAL-2 analogs to study the effect of such structural parameters as cationicity, hydrophobicity, alpha-helicity, amphipathicity, and truncation on antimicrobial and hemolytic activities. The potentially most promising analogs in both series are those with increased net positive charge, in which the suitable amino acid residues were replaced by Lys. This improvement basically relates to the increase of antimicrobial activity against pathogenic Pseudomonas aeruginosa and to the mitigation of hemolytic activity.

  1. Fast K(+) currents from cerebellum granular cells are completely blocked by a peptide purified from Androctonus australis Garzoni scorpion venom.

    PubMed

    Pisciotta, M; Coronas, F I; Bloch, C; Prestipino, G; Possani, L D

    2000-09-29

    A novel peptide was purified from the venom of the scorpion Androctonus australis Garzoni (abbreviated Aa1, corresponding to the systematic number alpha KTX4.4). It contains 37 amino acid residues, has a molecular mass of 3850 Da, is closely packed by three disulfide bridges and a blocked N-terminal amino acid. This peptide selectively affects the K(+) currents recorded from cerebellum granular cells. Only the fast activating and inactivating current, with a kinetics similar to I(A)-type current, is completely blocked by the addition of low micromolar concentrations (K(i) value of 150 nM) of peptide Aa1 to the external side of the cell preparation. The blockade is partially reversible in our experimental conditions. Aa1 blocks the channels in both the open and the closed states. The blockage is test potential independent and is not affected by changes in the holding potential. The kinetics of the current are not affected by the addition of Aa1 to the preparation; it means that the block is a simple 'plugging mechanism', in which a single toxin molecule finds a specific receptor site in the external vestibule of the K(+) channel and thereby occludes the outer entry to the K(+) conducting pore.

  2. Rational Engineering Defines a Molecular Switch That Is Essential for Activity of Spider-Venom Peptides against the Analgesics Target NaV1.7.

    PubMed

    Klint, Julie K; Chin, Yanni K-Y; Mobli, Mehdi

    2015-12-01

    Many spider-venom peptides are known to modulate the activity of the voltage-gated sodium (NaV) subtype 1.7 (NaV1.7) channel, which has emerged as a promising analgesic target. In particular, a class of spider-venom peptides (NaSpTx1) has been found to potently inhibit NaV1.7 (nanomolar IC50), and has been shown to produce analgesic effects in animals. However, one member of this family [µ-TRTX-Hhn2b (Hhn2b)] does not inhibit mammalian NaV channels expressed in dorsal root ganglia at concentrations up to 100 µM. This peptide is classified as a NaSpTx1 member by virtue of its cysteine spacing and sequence conservation over functionally important residues. Here, we have performed detailed structural and functional analyses of Hhn2b, leading us to identify two nonpharmacophore residues that contribute to human NaV1.7 (hNaV1.7) inhibition by nonoverlapping mechanisms. These findings allowed us to produce a double mutant of Hhn2b that shows nanomolar inhibition of hNaV1.7. Traditional structure/function analysis did not provide sufficient resolution to identify the mechanism underlying the observed gain of function. However, by solving the high-resolution structure of both the wild-type and mutant peptides using advanced multidimensional NMR experiments, we were able to uncover a previously unknown network of interactions that stabilize the pharmacophore region of this class of venom peptides. We further monitored the lipid binding properties of the peptides and identified that one of the key amino acid substitutions also selectively modulates the binding of the peptide to anionic lipids. These results will further aid the development of peptide-based analgesics for the treatment of chronic pain.

  3. Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina

    PubMed Central

    Gay, Carolina; Sanz, Libia; Calvete, Juan J.; Pla, Davinia

    2015-01-01

    Snake species within genus Bothrops are responsible for more than 80% of the snakebites occurring in South America. The species that cause most envenomings in Argentina, B. diporus, is widely distributed throughout the country, but principally found in the Northeast, the region with the highest rates of snakebites. The venom proteome of this medically relevant snake was unveiled using a venomic approach. It comprises toxins belonging to fourteen protein families, being dominated by PI- and PIII-SVMPs, PLA2 molecules, BPP-like peptides, L-amino acid oxidase and serine proteinases. This toxin profile largely explains the characteristic pathophysiological effects of bothropic snakebites observed in patients envenomed by B. diporus. Antivenomic analysis of the SAB antivenom (Instituto Vital Brazil) against the venom of B. diporus showed that this pentabothropic antivenom efficiently recognized all the venom proteins and exhibited poor affinity towards the small peptide (BPPs and tripeptide inhibitors of PIII-SVMPs) components of the venom. PMID:26712790

  4. Melt with this kiss: Paralysing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae).

    PubMed

    Walker, Andrew A; Madio, Bruno; Jin, Jiayi; Undheim, Eivind A B; Fry, Bryan G; King, Glenn F

    2017-01-27

    Assassin bugs (Hemiptera: Heteroptera: Reduviidae) are venomous insects, most of which prey on invertebrates. Assassin bug venom has features in common with venoms from other animals, such as paralysing and lethal activity when injected, and a molecular composition that includes disulfide-rich peptide neurotoxins. Uniquely, this venom also has strong liquefying activity that has been hypothesised to facilitate feeding through the narrow channel of the proboscis - a structure inherited from sap- and phloem-feeding phytophagous hemipterans and adapted during the evolution of Heteroptera into a fang and feeding structure. However, further understanding of the function of assassin bug venom is impeded by the lack of proteomic studies detailing its molecular composition. By using a combined transcriptomic/proteomic approach we show that the venom proteome of the harpactorine assassin bug Pristhesancus plagipennis includes a complex suite of >100 proteins comprising disulfide-rich peptides, CUB-domain proteins, cystatins, putative cytolytic toxins, triabin-like protein, odorant binding protein, serine proteases, catabolic enzymes, putative nutrient-binding proteins, plus eight families of proteins without homology to characterised proteins. Serine proteases, CUB domain proteins, putative cytolytic toxins, and other novel proteins in the 10-16 kDa mass range, were the most abundant venom components. Thus, in addition to putative neurotoxins, assassin bug venom includes a high proportion of enzymatic and cytolytic venom components likely to be well suited to tissue liquefaction. Our results also provide insight into the trophic switch to blood-feeding by the kissing bugs (Reduviidae: Triatominae). While some protein families such as triabins occur in the venoms of both predaceous and blood-feeding reduviids, the composition of venoms produced by these two groups is revealed to differ markedly. These results provide insights into the venom evolution in the insect suborder

  5. Effects of Animal Venoms and Toxins on Hallmarks of Cancer.

    PubMed

    Chaisakul, Janeyuth; Hodgson, Wayne C; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components.

  6. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    PubMed Central

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  7. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells.

    PubMed

    Slaninová, Jiřina; Mlsová, Veronika; Kroupová, Hilda; Alán, Lukáš; Tůmová, Tereza; Monincová, Lenka; Borovičková, Lenka; Fučík, Vladimír; Ceřovský, Václav

    2012-01-01

    Recently, we have isolated and characterized remarkable antimicrobial peptides (AMPs) from the venom reservoirs of wild bees. These peptides (melectin, lasioglossins, halictines and macropin) and their analogs display high antimicrobial activity against Gram-positive and -negative bacteria, antifungal activity and low or moderate hemolytic activity. Here we describe cytotoxicity of the above-mentioned AMPs and some of their analogs toward two normal cell lines (human umbilical vein endothelial cells, HUVEC, and rat intestinal epithelial cells, IEC) and three cancer cell lines (HeLa S3, CRC SW 480 and CCRF-CEM T). HeLa S3 cells were the most sensitive ones (concentration causing 50% cell death in the case of the most toxic analogs was 2.5-10 μM) followed by CEM cells. For the other cell lines to be killed, the concentrations had to be four to twenty times higher. These results bring promising outlooks of finding medically applicable drugs on the basis of AMPs. Experiments using fluorescently labeled lasioglossin III (Fl-VNWKKILGKIIKVVK-NH(2)) as a tracer confirmed that the peptides entered the mammalian cells in higher quantities only after they reached the toxic concentration. After entering the cells, their concentration was the highest in the vicinity of the nucleus, in the nucleolus and in granules which were situated at very similar places as mitochondria. Experiments performed using cells with tetramethylrhodamine labeled mitochondria showed that mitochondria were fragmented and lost their membrane potential in parallel with the entrance of the peptides into the cell and the disturbance of the cell membrane.

  8. Comparative analysis of proteases in the injected and dissected venom of cone snail species.

    PubMed

    Möller, Carolina; Vanderweit, Nicole; Bubis, José; Marí, Frank

    2013-04-01

    The venom of cone snails has been the subject of intense studies because it contains small neuroactive peptides of therapeutic value. However, much less is known about their larger proteins counterparts and their role in prey envenomation. Here, we analyzed the proteolytic enzymes in the injected venom of Conus purpurascens and Conus ermineus (piscivorous), and the dissected venom of C. purpurascens, Conus marmoreus (molluscivorous) and Conus virgo (vermivorous). Zymograms show that all venom samples displayed proteolytic activity on gelatin. However, the electrophoresis patterns and sizes of the proteases varied considerably among these four species. The protease distribution also varied dramatically between the injected and dissected venom of C. purpurascens. Protease inhibitors demonstrated that serine and metalloproteases are responsible for the gelatinolytic activity. We found fibrinogenolytic activity in the injected venom of C. ermineus suggesting that this venom might have effects on the hemostatic system of the prey. Remarkable differences in protein and protease expression were found in different sections of the venom duct, indicating that these components are related to the storage granules and that they participate in venom biosynthesis. Consequently, different conoproteases play major roles in venom processing and prey envenomation.

  9. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista.

    PubMed

    Wang, Kairong; Yan, Jiexi; Chen, Ru; Dang, Wen; Zhang, Bangzhi; Zhang, Wei; Song, Jingjing; Wang, Rui

    2012-06-01

    The extensive use of antibiotics in medicine, the food industry, and agriculture has resulted in the frequent emergence of multidrug-resistant bacteria, which creates an urgent need for new antibiotics. It is now widely recognized that antimicrobial peptides (AMPs) could play a promising role in fighting multidrug-resistant bacteria. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and studied its action mode of antibacterial activity. Our results revealed that polybia-CP has potent antibacterial activity against both Gram-positive and Gram-negative bacteria. The results from both the real bacterial membrane and the in vitro model membrane showed that polybia-CP is membrane active and that its action target is the membrane of bacteria. It is difficult for bacteria to develop resistance to polybia-CP, which may thus offer a new strategy for defending against resistant bacteria in medicine and the food and farming industries.

  10. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion.

    PubMed

    de Oliveira, Ursula Castro; Candido, Denise Maria; Dorce, Valquíria Abrão Coronado; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2015-03-01

    Scorpion venom is a mixture of peptides, including antimicrobial, bradykinin-potentiating and anionic peptides and small to medium proteins, such as ion channel toxins, metalloproteinases and phospholipases that together cause severe clinical manifestation. Tityus bahiensis is the second most medically important scorpion species in Brazil and it is widely distributed in the country with the exception of the North Region. Here we sequenced and analyzed the transcripts from the venom glands of T. bahiensis, aiming at identifying and annotating venom gland expressed genes. A total of 116,027 long reads were generated by pyrosequencing and assembled in 2891 isotigs. An annotation process identified transcripts by similarity to known toxins, revealing that putative venom components represent 7.4% of gene expression. The major toxins identified are potassium and sodium channel toxins, whereas metalloproteinases showed an unexpected high abundance. Phylogenetic analysis of deduced metalloproteinases from T. bahiensis and other scorpions revealed a pattern of ancient and intraspecific gene expansions. Other venom molecules identified include antimicrobial, anionic and bradykinin-potentiating peptides, besides several putative new venom components. This report provides the first attempt to massively identify the venom components of this species and constitutes one of the few transcriptomic efforts on the genus Tityus.

  11. Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa 2. Three-dimensional solution structure.

    PubMed

    Hill, J M; Alewood, P F; Craik, D J

    2000-08-01

    The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D 1H NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and muO-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18+/-0.05 A for the backbone atoms and 1.39+/-0.33 A for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.

  12. Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus

    PubMed Central

    Valdez-Velázquez, Laura L.; Quintero-Hernández, Verónica; Romero-Gutiérrez, Maria Teresa; Coronas, Fredy I. V.; Possani, Lourival D.

    2013-01-01

    Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases. PMID:23840487

  13. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity.

    PubMed

    Nisani, Zia; Boskovic, Danilo S; Dunbar, Stephen G; Kelln, Wayne; Hayes, William K

    2012-09-01

    We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production.

  14. Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom.

    PubMed

    Conceição, Katia; Santos, Juliane M; Bruni, Fernanda M; Klitzke, Clécio F; Marques, Elineide E; Borges, Márcia H; Melo, Robson L; Fernandez, Jorge H; Lopes-Ferreira, Mônica

    2009-12-01

    Brazilian freshwater stingrays, Potamotrygon gr. orbigyni, are relatively common in the middle-western regions of Brazil, where they are considered an important public health threat. In order to identify some of their naturally occurring toxin peptides available in very low amounts, we combine analytical protocols such as reversed-phase high-performance liquid chromatography (RP-HPLC), followed by a biological microcirculatory screening and mass spectrometry analysis. Using this approach, one bioactive peptide was identified and characterized, and two analogues were synthesized. The natural peptide named Porflan has the primary structure ESIVRPPPVEAKVEETPE (MW 2006.09 Da) and has no similarity with any bioactive peptide or protein found in public data banks. Bioassay protocols characterized peptides as presenting potent activity in a microcirculatory environment. The primary sequences and bioassay results, including interactions with the membrane phospholipids, suggest that these toxins are a new class of fish toxins, directly involved in the inflammatory processes of a stingray sting.

  15. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    PubMed Central

    Walker, Andrew A.; Weirauch, Christiane; Fry, Bryan G.; King, Glenn F.

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  16. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits.

    PubMed

    Walker, Andrew A; Weirauch, Christiane; Fry, Bryan G; King, Glenn F

    2016-02-12

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  17. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus.

    PubMed

    Olamendi-Portugal, Timoteo; Bartok, Adam; Zamudio-Zuñiga, Fernando; Balajthy, Andras; Becerril, Baltazar; Panyi, Gyorgy; Possani, Lourival D

    2016-06-01

    Six new peptides were isolated from the venom of the Mexican scorpion Centruroides tecomanus; their primary structures were determined and the effects on ion channels were verified by patch-clamp experiments. Four are K(+)-channel blockers of the α-KTx family, containing 32 to 39 amino acid residues, cross-linked by three disulfide bonds. They all block Kv1.2 in nanomolar concentrations and show various degree of selectivity over Kv1.1, Kv1.3, Shaker and KCa3.1 channels. One peptide has 42 amino acids cross-linked by four disulfides; it blocks ERG-channels and belongs to the γ-KTx family. The sixth peptide has only 32 amino acid residues, three disulfide bonds and has no effect on the ion-channels assayed. It also does not have antimicrobial activity. Systematic numbers were assigned (time of elution on HPLC): α-KTx 10.4 (time 24.1); α-KTx 2.15 (time 26.2); α-KTx 2.16 (time 23.8); α-KTx 2.17 (time 26.7) and γ-KTx 1.9 (elution time 29.6). A partial proteomic analysis of the short chain basic peptides of this venom, which elutes on carboxy-methyl-cellulose column fractionation, is included. The pharmacological properties of the peptides described in this study may provide valuable tools for understanding the structure-function relationship of K(+) channel blocking scorpion toxins.

  18. Analgesic effect of Persian Gulf Conus textile venom

    PubMed Central

    Tabaraki, Nasim; Shahbazzadeh, Delavar; Moradi, Ali Mashinchian; Vosughi, Gholamhossein; Mostafavi, Pargol Ghavam

    2014-01-01

    Objective(s): Cone snails are estimated to consist of up to 700 species. The venom of these snails has yielded a rich source of novel peptides. This study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. Materials and Methods: Samples were collected in Larak Island. The venom ducts were Isolated and kept on ice then homogenized. The mixture centrifuged at 10000 × g for 20 min. Supernatant was considered as extracted venom. The protein profile of venom determined using 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Venom was administered intraperitoneally (IP) to evaluate the LD50 in Swiss albino mice. Different concentrations of Conus textile venom were injected intrathecally to mice to evaluate their analgesic effect in comparison to morphine. Injection was carried out between the L5 and L6 vertebrae. Differences between groups in the first and second phase were tested with Two-Way analysis of variance (ANOVA). Results: SDS-PAGE indicated 12 bands ranged between 6 and 180 KDa. Finally, ten ng of Conus crude venom showed the best analgesic activity in formalin test. No death observed up to 100 mg/kg. Analgesic activity of crude venom was more significant (P<0.05) in acute pain than inflammatory pain. The analgesic effect of 10 ng Conus venom was the same as morphine for reduction of inflammatory pain (P=0.27). Conclusion: The venom of Persian Gulf Conus textile contains an analgesic component for reliving of acute pain which can lead to find an analgesic drug. PMID:25729549

  19. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner.

    PubMed

    Hou, Huanhuan; Yan, Weili; Du, Kexing; Ye, Yangjing; Cao, Qianqian; Ren, Wenhua

    2013-12-01

    Antimicrobial peptide scolopin 1 (AMP-scolopin 1) is a small cationic peptide identified from centipede venoms of Scolopendra subspinipes mutilans. It has broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We first report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antimicrobial peptide AMP-scolopin 1. The fusion protein expressed in a soluble form was purified to a purity of 95% by Ni-IDA chromatography. After the SUMO-scolopin 1 fusion protein was cleaved by the SUMO protease at 30°C for 1 h, the cleaved sample was reapplied to a Ni-IDA. The recombinant scolopin1 had similar antimicrobial properties to the synthetic scolopin 1. Thus, we successfully established a system for purifying peptide of centipede, which could be used for further research.

  20. An Unusual Family of Glycosylated Peptides Isolated from Dendroaspis angusticeps Venom and Characterized by Combination of Collision Induced and Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Quinton, Loïc; Gilles, Nicolas; Smargiasso, Nicolas; Kiehne, Andrea; de Pauw, Edwin

    2011-11-01

    This study describes the structural characterization of a totally new family of peptides from the venom of the snake green mamba ( Dendroaspis angusticeps). Interestingly, these peptides differ in several points from other already known mamba toxins. First of all, they exhibit very small molecular masses, ranging from 1.3 to 2.4 kDa. The molecular mass of classical mamba toxins is in the range of 7 to 25 kDa. Second, the new peptides do not contain disulfide bonds, a post-translational modification commonly encountered in animal toxins. The third difference is the very high proportion of proline residues in the sequence accounting for about one-third of the sequence. Finally, these new peptides reveal a carbohydrate moiety, indicating a glycosylation in the sequence. The last two features have made the structural characterization of the new peptides by mass spectrometry a real analytical challenge. Peptides were characterized by a combined use of MALDI- TOF/TOF and nanoESI-IT-ETD experiments to determine not only the peptide sequence but also the composition and the position of the carbohydrate moiety. Anyway, such small glycosylated and proline-rich toxins are totally different from any other known snake peptide and form, as a consequence, a new family of peptides.

  1. [Toxicology of Hymenoptera venoms].

    PubMed

    Ciszowski, Krzysztof; Mietka-Ciszowska, Aneta

    2012-01-01

    Hymenoptera venom is a secretion of special poison glands of insects. It serves both as a defensive substance against aggressors, as well as weapon used to paralyze the victim during gaining food. Chemically, the venom is a mixture of biologically active substances of high-, medium-, and small molecular weight with a variety of physiological functions. Individual substances may have toxic effects on stung human contributing to certain clinical signs and symptoms of venom poisoning. In the present paper, chemical structure, physiological role and toxicity of particular components of Hymenoptera venom are described.

  2. Snake venom toxins. The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor, from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-04-25

    The amino acid sequence of venom component Vi2, a protein of low toxicity from Dendroaspis polylepis polylepis venom was determined by automatic sequence analysis in combination with sequence studies on tryptic peptides. This protein, the most retarded fraction of this venom on a cation-exchange resin, is a homologue of bovine pancreatic trypsin inhibitor consisting of a single chain of 57 amino acid residues containing six half-cystine residues. The active site lysyl residue of bovine trypsin inhibitor is conserved in Vi2 although large differences are found in the rest of the molecule.

  3. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a

    PubMed Central

    Deuis, Jennifer R.; Dekan, Zoltan; Wingerd, Joshua S.; Smith, Jennifer J.; Munasinghe, Nehan R.; Bhola, Rebecca F.; Imlach, Wendy L.; Herzig, Volker; Armstrong, David A.; Rosengren, K. Johan; Bosmans, Frank; Waxman, Stephen G.; Dib-Hajj, Sulayman D.; Escoubas, Pierre; Minett, Michael S.; Christie, Macdonald J.; King, Glenn F.; Alewood, Paul F.; Lewis, Richard J.; Wood, John N.; Vetter, Irina

    2017-01-01

    Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40–1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid. PMID:28106092

  4. Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus

    PubMed Central

    Luna-Ramirez, Karen; Tonk, Miray; Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2017-01-01

    The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25–30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity. PMID:28067810

  5. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom.

    PubMed

    Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N; Licea-Navarro, Alexei F

    2016-02-05

    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.

  6. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom

    PubMed Central

    Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E.; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N.; Licea-Navarro, Alexei F.

    2016-01-01

    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action. PMID:26861394

  7. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a.

    PubMed

    Deuis, Jennifer R; Dekan, Zoltan; Wingerd, Joshua S; Smith, Jennifer J; Munasinghe, Nehan R; Bhola, Rebecca F; Imlach, Wendy L; Herzig, Volker; Armstrong, David A; Rosengren, K Johan; Bosmans, Frank; Waxman, Stephen G; Dib-Hajj, Sulayman D; Escoubas, Pierre; Minett, Michael S; Christie, Macdonald J; King, Glenn F; Alewood, Paul F; Lewis, Richard J; Wood, John N; Vetter, Irina

    2017-01-20

    Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40-1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid.

  8. Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus.

    PubMed

    Luna-Ramirez, Karen; Tonk, Miray; Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2017-01-06

    The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25-30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity.

  9. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland.

    PubMed

    Mello, Clarissa Perdigão; Lima, Danya Bandeira; Menezes, Ramon Róseo Paula Pessoa Bezerra de; Bandeira, Izabel Cristina Justino; Tessarolo, Louise Donadello; Sampaio, Tiago Lima; Falcão, Claudio Borges; Rádis-Baptista, Gandhi; Martins, Alice Maria Costa

    2017-05-01

    Antimicrobial peptides (AMPs) are potential alternatives to conventional antibiotics, as they have a fast mode of action, a low likelihood of resistance development and can act in conjunction with existing drug regimens. We report in this study the effects of batroxicidin (BatxC), a cathelicidin-related AMP from Bothrops atrox venom gland, over Trypanosoma cruzi, a protozoan that causes Chagas' disease. BatxC inhibited all T. cruzi (Y strain: benznidazole-resistant) developmental forms, with selectivity index of 315. Later, separate flow cytometry assays showed T. cruzi cell labeling by 7-aminoactinomycin D, the increase in reactive oxygen species and the loss of mitochondrial membrane potential when the parasite was treated with BatxC, which are indication of necrosis. T. cruzi cell death pathway by a necrotic mechanism was finally confirmed by scanning electron microscopy which observed loss of cell membrane integrity. In conclusion, BatxC was able to inhibit T. cruzi, with high selectivity index, by inducing necrosis.

  10. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics.

    PubMed

    Zainal Abidin, Syafiq Asnawi; Rajadurai, Pathmanathan; Chowdhury, Md Ezharul Hoque; Ahmad Rusmili, Muhamad Rusdi; Othman, Iekhsan; Naidu, Rakesh

    2016-10-18

    Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A₂, ʟ-amino acid oxidase, serine proteases, 5'-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri-it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  11. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.

    PubMed

    Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2017-01-16

    A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents.

  12. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    PubMed Central

    Zainal Abidin, Syafiq Asnawi; Rajadurai, Pathmanathan; Chowdhury, Md Ezharul Hoque; Ahmad Rusmili, Muhamad Rusdi; Othman, Iekhsan; Naidu, Rakesh

    2016-01-01

    Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, l-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications. PMID:27763534

  13. Antiplatelet Aggregation and Antithrombosis Efficiency of Peptides in the Snake Venom of Deinagkistrodon acutus: Isolation, Identification, and Evaluation.

    PubMed

    Ding, Bin; Xu, Zhenghong; Qian, Chaodong; Jiang, Fusheng; Ding, Xinghong; Ruan, Yeping; Ding, Zhishan; Fan, Yongsheng

    2015-01-01

    Two peptides of Pt-A (Glu-Asn-Trp 429 Da) and Pt-B (Glu-Gln-Trp 443 Da) were isolated from venom liquor of Deinagkistrodon acutus. Their antiplatelet aggregation effects were evaluated with platelet-rich human plasma in vitro; the respective IC50 of Pt-A and Pt-B was 66 μM and 203 μM. Both peptides exhibited protection effects on ADP-induced paralysis in mice. After ADP administration, the paralysis time of different concentration of Pt-A and Pt-B lasted as the following: 80 mg/kg Pt-B (152.8 ± 57.8 s) < 40 mg/kg Pt-A (163.5 ± 59.8 s) < 20 mg/kg Pt-A (253.5 ± 74.5 s) < 4 mg/kg clopidogrel (a positive control, 254.5 ± 41.97 s) < 40 mg/kg Pt-B (400.8 ± 35.9 s) < 10 mg/kg Pt-A (422.8 ± 55.4 s), all of which were statistically shorter than the saline treatment (666 ± 28 s). Pulmonary tissue biopsy confirmed that Pt-A and Pt-B prevented the formation of thrombi in the lung. Unlike ADP injection alone, which caused significant reduction of peripheral platelet count, Pt-A treatment prevented the drop of peripheral platelet counts; interestingly, Pt-B could not, even though the same amount of Pt-B also showed protection effects on ADP-induced paralysis and thrombosis. More importantly, intravenous injection of Pt-A and Pt-B did not significantly increase the hemorrhage risks as clopidogrel.

  14. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    PubMed

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.

  15. Venomics of the Australian eastern brown snake (Pseudonaja textilis): Detection of new venom proteins and splicing variants.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Trusch, Maria; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho; Arni, Raghuvir K; Schlüter, Hartmut; Betzel, Christian; Mirtschin, Peter; Dunstan, Nathan; Spencer, Patrick Jack

    2015-12-01

    The eastern brown snake is the predominant cause of snakebites in mainland Australia. Its venom induces defibrination coagulopathy, renal failure and microangiopathic hemolytic anemia. Cardiovascular collapse has been described as an early cause of death in patients, but, so far, the mechanisms involved have not been fully identified. In the present work, we analysed the venome of Pseudonaja textilis by combining high throughput proteomics and transcriptomics, aiming to further characterize the components of this venom. The combination of these techniques in the analysis and identification of toxins, venom proteins and putative toxins allowed the sequence description and the identification of the following: prothrombinase coagulation factors, neurotoxic textilotoxin phospholipase A2 (PLA2) subunits and "acidic PLA2", three-finger toxins (3FTx) and the Kunitz-type protease inhibitor textilinin, venom metalloproteinase, C-type lectins, cysteine rich secretory proteins, calreticulin, dipeptidase 2, as well as evidences of Heloderma lizard peptides. Deep data-mining analysis revealed the secretion of a new transcript variant of venom coagulation factor 5a and the existence of a splicing variant of PLA2 modifying the UTR and signal peptide from a same mature protein. The transcriptome revealed the diversity of transcripts and mutations, and also indicates that splicing variants can be an important source of toxin variation.

  16. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    PubMed

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated.

  17. Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus.

    PubMed

    Mille, Bea G; Peigneur, Steve; Diego-García, Elia; Predel, Reinhard; Tytgat, Jan

    2014-06-01

    Since it is an apocrine secretion, scorpion venom is a complex mixture that contains a variety of low-molecular-weight basic proteins (neurotoxins), mucus, salts, as well as a large number of other constituents. Diversity of scorpion venom peptides exists also at the transcript level. Two kinds of venom peptides are typically considered: the neurotoxins and the antimicrobial peptides. We constructed a cDNA library and carried an EST (Expressed Sequence Tag) approach to overview the different peptides in the transcriptome of the telson from Parabuthus stridulus. P. stridulus are psammophilous and highly venomous scorpions endemic to Namibia (Prendini 2004) with medical relevance because of important human envenomation occurrence. We obtained 111 ESTs, 20% of them corresponding to cellular process transcripts, 7% to hypothetical proteins and 17% were sequences without good matches, but the majority of ESTs, 56%, corresponds to transcripts encoding for different venom components, including voltage-gated sodium, potassium and calcium channel toxins, antimicrobial peptides and other venom and cell proteins. To the best of our knowledge this report contains the first transcriptome analysis of genes transcribed by the venomous gland of the scorpion species P. stridulus, belonging to the family of medically important Buthidae scorpions. One hundred and eleven ESTs were analyzed, showing an important number of genes that encode for products similar to known scorpion venom components. In total, 17 unique and novel sequences were indentified. The identification and characterization of these compounds will be a good source of novel pharmacological tools for studying ion channels and the understanding of the physiological effects of toxins in P. stridulus envenomations at a molecular level.

  18. Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula.

    PubMed

    Chow, Chun Yuen; Cristofori-Armstrong, Ben; Undheim, Eivind A B; King, Glenn F; Rash, Lachlan D

    2015-06-30

    Voltage-gated sodium (NaV) channels are responsible for propagating action potentials in excitable cells. NaV1.7 plays a crucial role in the human pain signalling pathway and it is an important therapeutic target for treatment of chronic pain. Numerous spider venom peptides have been shown to modulate the activity of NaV channels and these peptides represent a rich source of research tools and therapeutic lead molecules. The aim of this study was to determine the diversity of NaV1.7-active peptides in the venom of an Australian Phlogius sp. tarantula and to characterise their potency and subtype selectivity. We isolated three novel peptides, μ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, that inhibit human NaV1.7 (hNaV1.7). Phlo1a and Phlo1b are 35-residue peptides that differ by one amino acid and belong in NaSpTx family 2. The partial sequence of Phlo2a revealed extensive similarity with ProTx-II from NaSpTx family 3. Phlo1a and Phlo1b inhibit hNaV1.7 with IC50 values of 459 and 360 nM, respectively, with only minor inhibitory activity on rat NaV1.2 and hNaV1.5. Although similarly potent at hNaV1.7 (IC50 333 nM), Phlo2a was less selective, as it also potently inhibited rNaV1.2 and hNaV1.5. All three peptides cause a depolarising shift in the voltage-dependence of hNaV1.7 activation.

  19. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands.

    PubMed

    Meissner, Gabriel Otto; de Resende Lara, Pedro Túlio; Scott, Luis Paulo Barbour; Braz, Antônio Sérgio Kimus; Chaves-Moreira, Daniele; Matsubara, Fernando Hitomi; Soares, Eduardo Mendonça; Trevisan-Silva, Dilza; Gremski, Luiza Helena; Veiga, Silvio Sanches; Chaim, Olga Meiri

    2016-09-01

    Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.

  20. Black mamba venom peptides target acid-sensing ion channels to abolish pain.

    PubMed

    Diochot, Sylvie; Baron, Anne; Salinas, Miguel; Douguet, Dominique; Scarzello, Sabine; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Friend, Valérie; Alloui, Abdelkrim; Lazdunski, Michel; Lingueglia, Eric

    2012-10-25

    Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.

  1. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif

    PubMed Central

    Ayroza, Gabriela; Ferreira, Ivan L. C.; Sayegh, Raphael S. R.; Tashima, Alexandre K.; da Silva, Pedro I.

    2012-01-01

    The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid chromatography. Juruentoxins have a putative inhibitory cystine knot (ICK) motif, generally found in neurotoxins, which are also resistant to proteolysis. One juruentoxin that has 38 amino acid residues and three disulfide bonds were characterized, to which we proposed the name Juruin. Based on liquid growth inhibition assays, it has potent antifungal activity in the micromolar range. Importantly, Juruin lacks haemolytic activity on human erythrocytes at the antimicrobial concentrations. Based on the amino acid sequence, it is highly identical to the insecticidal peptides from the theraposid spiders Selenocosmia huwena, Chilobrachys jingzhao, and Haplopelma schmidti from China, indicating they belong to a group of conserved toxins which are likely to inhibit voltage-gated ion channels. Juruin is a cationic AMP, and Lys22 and Lys23 show maximum positive charge localization that might be important for receptor recognition. Although it shows marked sequence similarity to neurotoxic peptides, Juruin is a novel exciting molecule with potent antifungal activity, which could be used as a novel template for development of drugs against clinical resistant fungi strains. PMID:22973266

  2. Identification and characterization of B-cell epitopes of 3FTx and PLA(2) toxins from Micrurus corallinus snake venom.

    PubMed

    Castro, K L; Duarte, C G; Ramos, H R; Machado de Avila, R A; Schneider, F S; Oliveira, D; Freitas, C F; Kalapothakis, E; Ho, P L; Chávez-Olortegui, C

    2015-01-01

    The main goal of this work was to develop a strategy to identify B-cell epitopes on four different three finger toxins (3FTX) and one phospholipase A2 (PLA2) from Micrurus corallinus snake venom. 3FTx and PLA2 are highly abundant components in Elapidic venoms and are the major responsibles for the toxicity observed in envenomation by coral snakes. Overlapping peptides from the sequence of each toxin were prepared by SPOT method and three different anti-elapidic sera were used to map the epitopes. After immunogenicity analysis of the spot-reactive peptides by EPITOPIA, a computational method, nine sequences from the five toxins were chemically synthesized and antigenically and immunogenically characterized. All the peptides were used together as immunogens in rabbits, delivered with Freund's adjuvant for a first cycle of immunization and Montanide in the second. A good antibody response against individual synthetic peptides and M. corallinus venom was achieved. Anti-peptide IgGs were also cross-reactive against Micrurus frontalis and Micrurus lemniscatus crude venoms. In addition, anti-peptide IgGs inhibits the lethal and phospholipasic activities of M. corallinus crude venom. Our results provide a rational basis to the identification of neutralizing epitopes on coral snake toxins and show that their corresponding synthetic peptides could improve the generation of immuno-therapeutics. The use of synthetic peptide for immunization is a reasonable approach, since it enables poly-specificity, low risk of toxic effects and large scale production.

  3. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    PubMed Central

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  4. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities.

    PubMed

    Guo, Xiaoxiao; Ma, Chengbang; Du, Qiang; Wei, Ran; Wang, Lei; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2013-09-01

    Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160 μM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5 μM) and the yeast, Candida albicans (10 μM). Haemolytic activity of TsAP-1 was low (4% at 160 μM) and in contrast, that of TsAP-2 was considerably higher (18% at 20 μM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5 μM for S. aureus/C. albicans and 5 μM for E. coli but with an associated large increase in haemolytic activity (30% at 5 μM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E. coli lowering this from >320 μM to 5 μM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 μM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.

  5. Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms

    PubMed Central

    Guilhelmelli, Fernanda; Vilela, Nathália; Smidt, Karina S.; de Oliveira, Marco A.; da Cunha Morales Álvares, Alice; Rigonatto, Maria C. L.; da Silva Costa, Pedro H.; Tavares, Aldo H.; de Freitas, Sônia M.; Nicola, André M.; Franco, Octávio L.; Derengowski, Lorena da Silveira; Schwartz, Elisabeth F.; Mortari, Márcia R.; Bocca, Anamélia L.; Albuquerque, Patrícia; Silva-Pereira, Ildinete

    2016-01-01

    The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 μM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals. PMID:27917162

  6. Chemical and biological characterization of four new linear cationic α-helical peptides from the venoms of two solitary eumenine wasps.

    PubMed

    Rangel, Marisa; Cabrera, Marcia Perez dos Santos; Kazuma, Kohei; Ando, Kenji; Wang, Xiaoyu; Kato, Manabu; Nihei, Ken-ichi; Hirata, Izaura Yoshico; Cross, Tyra J; Garcia, Angélica Nunes; Faquim-Mauro, Eliana L; Franzolin, Marcia Regina; Fuchino, Hiroyuki; Mori-Yasumoto, Kanami; Sekita, Setsuko; Kadowaki, Makoto; Satake, Motoyoshi; Konno, Katsuhiro

    2011-06-01

    Four novel peptides were isolated from the venoms of the solitary eumenine wasps Eumenes rubrofemoratus and Eumenes fraterculus. Their sequences were determined by MALDI-TOF/TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry) analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R (LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two, EMP-ER (FDIMGLIKKVAGAL-NH(2)) and EMP-EF (FDVMGIIKKIAGAL-NH(2)), are similar to eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, they can be predicted to adopt an amphipathic α-helix secondary structure. In fact, the CD (circular dichroism) spectra of these peptides showed significant α-helical conformation content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity.

  7. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

    PubMed

    Gonçalves-Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B; Leitão-De-Araújo, Moema; Alves, Maria Lúcia M; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais-Zani, Karen; Fernandes, Wilson; Tanaka-Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B; Gutiérrez, José María; Corrêa-Netto, Carlos; Calvete, Juan J

    2016-03-01

    Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog.

  8. Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri) Venom

    PubMed Central

    Jouiaei, Mahdokht; Casewell, Nicholas R.; Yanagihara, Angel A.; Nouwens, Amanda; Cribb, Bronwen W.; Whitehead, Darryl; Jackson, Timothy N. W.; Ali, Syed A.; Wagstaff, Simon C.; Koludarov, Ivan; Alewood, Paul; Hansen, Jay; Fry, Bryan G.

    2015-01-01

    Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health. By utilizing scanning electron microscopy and light microscopy, we examined nematocyst external morphology before and after ethanol treatment and verified nematocyst discharge. Further, to investigate nematocyst content or “venom” recovery, we utilized both top-down and bottom-up transcriptomics–proteomics approaches and compared the proteome profile of this new ethanol recovery based method to a previously reported high activity and recovery protocol, based upon density purified intact cnidae and pressure induced disruption. In addition to recovering previously characterized box jellyfish toxins, including CfTX-A/B and CfTX-1, we recovered putative metalloproteases and novel expression of a small serine protease inhibitor. This study not only reveals a much more complex toxin profile of Australian box jellyfish venom but also suggests that ethanol extraction method could augment future cnidarian venom proteomics research efforts. PMID:25793725

  9. Wasp Venom Toxins as a Potential Therapeutic Agent.

    PubMed

    Dongol, Yashad; Dhananjaya, Bhadrapara L; Shrestha, Rakesh K; Aryal, Gopi

    2016-01-01

    It is high time now to discover novel drugs due to the increasing rate of drug resistance by the pathogen organisms and target cells as well as the dependence or tolerance of the body towards the drug. As it is obvious that significant numbers of the modern day pharmaceuticals are derived from natural products, it is equally astonishing to accept that venoms of various origins have therapeutic potentials. Wasp venoms are also a rich source of therapeutically important toxins which includes short cationic peptides, kinins, polyamines and polyDNA viruses, to name a few indentified. Wasp venom cationic peptides, namely mastoparan and its analogs, show a very important potency as an antimicrobial and anticancer agents of the future. They have proven to be the better candidates due to their lesser toxic effects and higher selectivity upon chemical modification and charge optimization. They also have superiority over the conventional chemical drugs as the target cells very rarely develop resistance against them because these peptides primarily imparts its effect through biophysical interaction with the target cell membrane which is dependent upon the net charge of the peptide, its hydrophobicity and anionicity and fluidity of the target cell membranes. Besides, the other components of wasp venom such as kinins, polyamines and polyDNA viruses show various pharmacological promise in the treatment of pain, inflammatory disease, and neurodegenerative diseases such as epilepsy and aversion.

  10. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes*

    PubMed Central

    Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.

    2012-01-01

    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed

  11. Channel-forming activity in the venom of the cockroach-hunting wasp, Ampulex compressa.

    PubMed

    Gincel, Dan; Haspel, Gal; Libersat, Frederic

    2004-05-01

    The parasitoid solitary wasp Ampulex compressa uses the cockroach Periplaneta americana as a food supply for its larvae. To subdue its prey, the wasp injects a venom cocktail into the brain of the cockroach. We investigated channel activity of A. compressa venom by collecting venom and incorporating it into a planar lipid bilayer. The venom, reconstituted into the bilayer, showed ion channel activity, forming a fast-fluctuating channel with a small conductance of 20+/-0.1pS, with no voltage sensitivity. These channels were not observed when the venom was digested with proteases before application to the bilayer, but were not affected by exposure to protease after their incorporation into the bilayer, indicating that the active venom component is a peptide. The channels were found to be cation selective with similar selectivity for the monovalent cations K(+), Li(+) and Na(+), but showed high selectivity against anions (Cl(-)) and divalent cations (Ca(2+) and Mg(2+)). This study is the first demonstration and biophysical characterization of channel activity in the venom of A. compressa. The possible functional significance of this channel activity is discussed in light of the unusual nature of the effects of this wasp venom on the behavior of its prey.

  12. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS).

  13. Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom.

    PubMed

    Ferreira, L A; Galle, A; Raida, M; Schrader, M; Lebrun, I; Habermehl, G

    1998-04-01

    In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.

  14. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    PubMed Central

    2010-01-01

    Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular

  15. Mastoparan, a wasp venom peptide, stimulates release of prolactin from cultured rat anterior pituitary cells.

    PubMed

    Mau, S E; Witt, M R; Vilhardt, H

    1994-07-01

    Studies have shown that mastoparan and other amphiphilic peptides induce exocytosis of hormones from anterior pituitary cells. We have studied the effect of mastoparan on the secretion of prolactin from cultured rat anterior pituitary cells and on the concomitant functional status of signal-transducing pathways in lactotroph-enriched cell cultures. Mastoparan stimulation of prolactin secretion was dose-dependent, time-dependent, reversible and required the presence of calcium. Pretreatment of pituitary cell cultures with cholera and pertussis toxin had no effect on the secretory response, whereas encapsulation of guanosine 5-[beta-thio]diphosphate (GDP-beta-S) by reversible electropermeabilization inhibited mastoparan-stimulated secretion. Incubation of mastoparan with myo-[3H]inositol-labelled lactotroph-enriched anterior pituitary cell cultures resulted in increased formation of inositol phosphates compared with control cells, and encapsulation of GDP-beta-S blocked mastoparan-induced inositol lipid hydrolysis. Mastoparan caused translocation of protein kinase C activity from a soluble to a membrane-attached form. Mastoparan was able to increase the intracellular Ca2+ concentration in Fura-2-loaded individual lactotrophs. Omission of Ca2+ from the extracellular medium did not change the Ca2+ response in lactotrophs when stimulated with mastoparan. On the basis of these results it is concluded that mastoparan-induced release of prolactin is preceded by activation of the inositol(1,4,5)trisphosphate/diacylglycerol pathway with resulting translocation of protein kinase activity and increment in intracellular Ca2+. However, other signal-transducing pathways may be involved in the secretory process.

  16. A tarantula-venom peptide that antagonises the TRPA1 nociceptor ion channel by binding to the S1-S4 gating domain

    PubMed Central

    Gui, Junhong; Liu, Boyi; Cao, Guan; Lipchik, Andrew M.; Perez, Minervo; Dekan, Zoltan; Mobli, Mehdi; Daly, Norelle L.; Alewood, Paul F.; Parker, Laurie L.; King, Glenn F.; Zhou, Yufeng; Jordt, Sven-Eric; Nitabach, Michael N.

    2014-01-01

    Background The venoms of predators such as spiders, scorpions, cone snails, sea anemones, and snakes, have been an excellent source of pharmacological diversity for drug discovery and as pharmacological tools for elucidating the structure, function, and physiological properties of ion channels. Here we describe the first known peptide antagonist of the nociceptor ion channel transient receptor potential ankyrin 1 (TRPA1). Results We constructed a recombinant cDNA library encoding ∼100 diverse GPI-anchored peptide toxins (t-toxins) derived from spider venoms and screened this library by co-expression in Xenopus oocytes with TRPA1. This screen resulted in identification of protoxin-I (ProTx-I), a 35-residue peptide from the venom of the Peruvian green-velvet tarantula, Thrixopelma pruriens, as the first known high-affinity peptide TRPA1 antagonist. Interestingly, ProTx-I was previously identified as an antagonist of voltage-gated sodium (NaV) channels. To identify the surfaces of ProTx-I by which it binds to these distinct ion channel types, we constructed a t-toxin library of ProTx-I alanine-scanning mutants and screened this library against NaV1.2 and TRPA1. This revealed distinct partially overlapping surfaces of ProTx-I by which it binds to these two ion channels, and whose specific chemical features explain its higher affinity for NaV1.2 than for TRPA1. Importantly, this mutagenesis yielded two novel ProTx-I variants that are only active against either TRPA1or NaV1.2, but not both. By testing its activity against chimeric channels, we identified the extracellular loops of the TRPA1 S1-S4 gating domain as the ProTx-I binding site. Conclusions These studies establish screening of t-toxin libraries of native and mutated toxins, which we term “toxineering”, as a generally applicable method for isolation of novel ion channel modifiers and for design of ion channel modifiers with altered target selectivity. They also suggest that ProTx-I will be a valuable

  17. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands

    PubMed Central

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W.; Tambourgi, Denise V.

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533

  18. Electrophysiological characterization of a novel small peptide from the venom of Conus californicus that targets voltage-gated neuronal Ca2+ channels.

    PubMed

    Bernaldez, Johanna; López, Omar; Licea, Alexei; Salceda, Emilio; Arellano, Rogelio O; Vega, Rosario; Soto, Enrique

    2011-01-01

    Conus californicus belongs to a genus of marine gastropods with more than 700 extant species. C. californicus has been shown to be distantly related to all Conus species, but showing unusual biological features. We report a novel peptide isolated from C. californicus with a significant inhibitory action over neuronal voltage-gated calcium channels. The new toxin is formed by 13-amino acid residues with two disulfide bonds, whose sequence (NCPAGCRSQGCCM) is strikingly different from regular ω-conotoxins. In the HPLC purification procedure, the venom fraction eluted in the first 10-15 min produced a significant decrease (54% ± 3%) of the Ca(2+) current in Xenopus laevis oocytes transfected with purified rat-brain mRNA. A specific peptide obtained from the elution at 13 min decreased the Ca(2+) current in the adult rat dorsal-root ganglion neurons in a primary culture by 34% ± 2%. The cysteine pattern of this peptide corresponds to the framework XVI described for the M-superfamily of conopeptides and is unprecedented among Conus peptides acting on Ca(2+) channels.

  19. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes.

    PubMed

    Abdel-Rahman, Mohamed A; Omran, Mohamed Alaa A; Abdel-Nabi, Ismail M; Ueda, Hitoshi; McVean, Alistair

    2009-03-01

    The present study was conducted to explore the following hypotheses: (i) do scorpions (Scorpio maurus palmatus) from different biotopes exhibit intraspecific diversity in their venom? (ii) if so, is this variation associated with ecological or genetic factors, geographical distance, and/or multiple interrelated parameters? To address these questions, scorpions were collected from four geographically isolated localities in Egypt. Three of these locations are from mutually isolated pockets in the arid biotope of Southern Sinai (Wadi Sahab, El-Agramia and Rahaba plains). The fourth population was sampled from the semiarid biotope of Western Mediterranean Costal Desert (WMCD). Using reducing gel electrophoresis (SDS-PAGE), we have shown biotope-specific variation in the expression of peptides from scorpions collected from these distinct areas. WMCD sourced venom samples contain higher molecular weight protein components (219, 200, 170, 139, 116 kDa) than Southern Sinai scorpion venom samples. The Southern Sinai venom is characterized by the presence of 11 protein bands (93-0.58 kDa) that are not mirrored in the individual venom samples of WMCD. Bands of 33 and 3.4 kDa were characteristics of all individual venom samples of the scorpion populations. Even within Southern Sinai area, Sahab venom contains five fractions that are not detected in both El-Agramia and Rahaba venom samples. Moreover, male and female venom analysis revealed some sex-related proteomic similarities and differences between scorpion populations. Female venom appears to be more complicated than the male venom. Female venom samples showed bands of 219, 200, 77.5, 55.5, 45, 39, 37, 24 and 16 kDa which were absent in the male venom. The random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic distance between the four scorpion populations. The RAPD data confirmed the genetic diversity at molecular level among the sampled populations. More than 77 RAPD bands (ranging in size

  20. Understanding and utilising mammalian venom via a platypus venom transcriptome.

    PubMed

    Whittington, Camilla M; Koh, Jennifer M S; Warren, Wesley C; Papenfuss, Anthony T; Torres, Allan M; Kuchel, Philip W; Belov, Katherine

    2009-03-06

    Only five mammalian species are known to be venomous, and while a large amount of research has been carried out on reptile venom, mammalian venom has been poorly studied to date. Here we describe the status of current research into the venom of the platypus, a semi-aquatic egg-laying Australian mammal, and discuss our approach to platypus venom transcriptomics. We propose that such construction and analysis of mammalian venom transcriptomes from small samples of venom gland, in tandem with proteomics studies, will allow the identification of the full range of mammalian venom components. Functional studies and pharmacological evaluation of the identified toxins will then lay the foundations for the future development of novel biomedical substances. A large range of useful molecules have already been identified in snake venom, and many of these are currently in use in human medicine. It is therefore hoped that this basic research to identify the constituents of platypus venom will eventually yield novel drugs and new targets for painkillers.

  1. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

    PubMed

    Freitas-de-Sousa, L A; Amazonas, D R; Sousa, L F; Sant'Anna, S S; Nishiyama, M Y; Serrano, S M T; Junqueira-de-Azevedo, I L M; Chalkidis, H M; Moura-da-Silva, A M; Mourão, R H V

    2015-11-01

    Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments.

  2. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion

    PubMed Central

    Tourki, Bochra; Matéo, Philippe; Morand, Jessica; Elayeb, Mohamed; Godin-Ribuot, Diane; Marrakchi, Naziha; Belaidi, Elise; Messadi, Erij

    2016-01-01

    Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction. PMID

  3. Hydrostatin-TL1, an Anti-Inflammatory Active Peptide from the Venom Gland of Hydrophis cyanocinctus in the South China Sea

    PubMed Central

    Wang, Ningyuan; Huang, Yan; Li, An; Jiang, Hailong; Wang, Jie; Li, Jianzhong; Qiu, Lei; Li, Ka; Lu, Yiming

    2016-01-01

    Tumor necrosis factor (TNF)-α is a pleiotropic cytokine with intense pro-inflammatory and immunomodulatory properties, and anti-TNF-α biologics are effective therapies for various inflammatory diseases such as inflammatory bowel disease (IBD) and sepsis. Snake venom, as a traditional Chinese medicine, has been used in the treatment of inflammatory diseases in China for centuries. In this research, we constructed a venom gland T7 phage display library of the sea snake Hydrophis cyanocinctus to screen bioactive compounds that antagonize TNF-α and identified a novel nine-amino-acid peptide, termed hydrostatin-TL1 (H-TL1). In enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analyses, H-TL1 inhibited the interaction between TNF-α and TNF receptor 1 (TNFR1). Further, H-TL1 attenuated the cytotoxicity of TNF-α in L929 cells as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. H-TL1 also decreased the mRNA expression of TNF-α/TNFR1 downstream targets and suppressed the phosphorylation of well-characterized proteins of downstream signal transduction pathways in HEK-293 cells. In vivo data demonstrated that H-TL1 protects animals against dextran sodium sulfate (DSS)-induced acute colitis and lipopolysaccharide (LPS)-induced acute shock. Given its significant anti-inflammatory activity in vitro and in vivo, H-TL1 is a potential peptide for the development of new agents to treat TNF-α-associated inflammatory diseases. PMID:27879679

  4. Imperatoxin A, a Cell-Penetrating Peptide from Scorpion Venom, as a Probe of Ca2+-Release Channels/Ryanodine Receptors

    PubMed Central

    Gurrola, Georgina B.; Capes, E. Michelle; Zamudio, Fernando Z.; Possani, Lourival D.; Valdivia, Héctor H.

    2010-01-01

    Scorpion venoms are rich in ion channel-modifying peptides, which have proven to be invaluable probes of ion channel structure-function relationship. We previously isolated imperatoxin A (IpTxa), a 3.7 kDa peptide activator of Ca2+-release channels/ryanodine receptors (RyRs) [1,2,3] and founding member of the calcin family of scorpion peptides. IpTxa folds into a compact, mostly hydrophobic molecule with a cluster of positively-charged, basic residues polarized on one side of the molecule that possibly interacts with the phospholipids of cell membranes. To investigate whether IpTxa permeates external cellular membranes and targets RyRs in vivo, we perfused IpTxa on intact cardiomyocytes while recording field-stimulated intracellular Ca2+ transients. To further investigate the cell-penetrating capabilities of the toxin, we prepared thiolated, fluorescent derivatives of IpTxa. Biological activity and spectroscopic properties indicate that these derivatives retain high affinity for RyRs and are only 5- to 10-fold less active than native IpTxa. Our results demonstrate that IpTxa is capable of crossing cell membranes to alter the release of Ca2+ in vivo, and has the capacity to carry a large, membrane-impermeable cargo across the plasma membrane, a finding with exciting implications for novel drug delivery. PMID:20668646

  5. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei.

    PubMed

    Sanz, Libia; Ayvazyan, Naira; Calvete, Juan J

    2008-07-21

    Venoms from the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei were analyzed by RP-HPLC, N-terminal sequencing, MALDI-TOF mass fingerprinting and CID-MS/MS. The venom proteins of M.l. obtusa and V. raddei belong to 9 and 11 families, respectively. The two mountain viper venoms share bradykinin-potentiating/C-natriuretic peptides, and proteins from the dimeric distegrin, DC-fragment, CRISP, PLA(2), serine proteinase, C-type lectin-like, L-amino acid oxidase, and Zn(2+)-dependent metalloproteinase families, albeit each species exhibits distinct relative abundances. M.l. obtusa and V. raddei venoms contain unique components, e.g. the short disintegrin obtustatin in M.l. obtusa, and Kunitz-type serine proteinase inhibitor and VEGF-like molecules in V. raddei. The toxin formulation of M.l. obtusa and V. raddei venoms may be related to their adaptation to rocky mountain ecosystems. On the other hand, the possibility that the VEGF-like proteins from V. raddei underlie the reported potential therapeutic value of V. raddei venom for regenerating damaged peripheral nerves deserves further investigations. Using a similarity coefficient, we estimate that the similarity of venom proteins between M. l. obtusa and M. l. transmediterranea is less than 4%. Although this result would support the classification of M.l. obtusa and M.l. transmediterranea as different species, additional detailed genomic analyses are also required.

  6. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    PubMed

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed.

  7. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.

  8. Diversity, phylogenetic distribution, and origins of venomous catfishes

    PubMed Central

    2009-01-01

    Background The study of venomous fishes is in a state of relative infancy when compared to that of other groups of venomous organisms. Catfishes (Order Siluriformes) are a diverse group of bony fishes that have long been known to include venomous taxa, but the extent and phylogenetic distribution of this venomous species diversity has never been documented, while the nature of the venoms themselves also remains poorly understood. In this study, I used histological preparations from over 100 catfish genera, basic biochemical and toxicological analyses of fin spine extracts from several species, and previous systematic studies of catfishes to examine the distribution of venom glands in this group. These results also offer preliminary insights into the evolutionary history of venom glands in the Siluriformes. Results Histological examinations of 158 catfish species indicate that approximately 1250-1625+ catfish species should be presumed to be venomous, when viewed in conjunction with several hypotheses of siluriform phylogeny. Maximum parsimony character optimization analyses indicate two to three independent derivations of venom glands within the Siluriformes. A number of putative toxic peptides were identified in the venoms of catfish species from many of the families determined to contain venomous representatives. These peptides elicit a wide array of physiological effects in other fishes, though any one species examined produced no more than three distinct putative toxins in its venom. The molecular weights and effects produced by these putative toxic peptides show strong similarities to previously characterized toxins found in catfish epidermal secretions. Conclusion Venom glands have evolved multiple times in catfishes (Order Siluriformes), and venomous catfishes may outnumber the combined diversity of all other venomous vertebrates. The toxic peptides found in catfish venoms may be derived from epidermal secretions that have been demonstrated to accelerate the

  9. Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family.

    PubMed

    Mourão, Caroline B F; Heghinian, Mari D; Barbosa, Eder A; Marí, Frank; Bloch, Carlos; Restano-Cassulini, Rita; Possani, Lourival D; Schwartz, Elisabeth F

    2013-04-09

    Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom. Ap1a consists of 48 amino acid residues and has a molecular mass of 5457.79 Da. The cloned gene encodes a putative sequence of 23 amino acid residues for the signal peptide and 27 for the pro-peptide. The sequence of the mature peptide is 60-84% identical with those of toxins of the HWTX-II family. Different from the structural pattern proposed for these toxins, the disulfide pairing of Ap1a is of the ICK type motif, which is also shared by the U1-TRTX-Bs1a toxin. Ap1a induced a dose-dependent and reversible paralytic effect in Spodoptera frugiperda caterpillars, with an ED50 of 13.0 ± 4.2 μg/g 8 h after injections. In the Drosophila melanogaster Giant Fiber circuit, Ap1a (1.14-22.82 μg/g) reduces both the amplitude and frequency of responses from GF-TTM and GF-DLM pathways, suggesting an action at the neuromuscular junction, which is mediated by glutamatergic receptors. It is also lethal to mice (1.67 μg/g, intracranial route), inducing effects similar to those reported with intracerebroventricular administration of NMDA. Ap1a (1 μM) does not alter the response induced by acetylcholine on the rhabdomyosarcoma cell preparation and shows no significant effects on hNav1.2, hNav1.4, hNav1.5, and hNav1.6 channels. Because of its unique sequence and cysteine assignment to the HWTX-II family, Ap1a is a significant contribution to the structure-function study of this family of toxins.

  10. Membrane perturbation action mode and structure-activity relationships of Protonectin, a novel antimicrobial peptide from the venom of the neotropical social wasp Agelaia pallipes pallipes.

    PubMed

    Wang, Kairong; Dang, Wen; Yan, Jiexi; Chen, Ru; Liu, Xin; Yan, Wenjin; Zhang, Bangzhi; Xie, Junqiu; Zhang, Jindao; Wang, Rui

    2013-10-01

    With the extensive use of antibiotics, multidrug-resistant bacteria emerge frequently. New antimicrobial agents with novel modes of action are urgently needed. It is now widely accepted that antimicrobial peptides (AMPs) could be promising alternatives to conventional antibiotics. In this study, we aimed to study the antimicrobial activity and mechanism of action of protonectin, a cationic peptide from the venom of the neotropical social wasp Agelaia pallipes pallipes. We demonstrated that protonectin exhibits potent antimicrobial activity against a spectrum of bacteria, including multidrug-resistant strains. To further understand this mechanism, the structural features of protonectin and its analogs were studied by circular dichroism (CD). The CD spectra demonstrated that protonectin and its natural analog polybia-CP formed a typical α-helical conformation in the membrane-mimicking environment, while its proline-substituted analog had much lower or even no α-helix conformation. Molecular dynamics simulations indicated that the α-helical conformation in the membrane is required for the exhibition of antibacterial activity. In conclusion, protonectin exhibits potent antimicrobial activity by disruption of the integrity of the bacterial membrane, and its α-helical confirmation in the membrane is essential for this action.

  11. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  12. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites

    PubMed Central

    Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  13. Transcriptomic Messiness in the Venom Duct of Conus miles Contributes to Conotoxin Diversity*

    PubMed Central

    Jin, Ai-hua; Dutertre, Sébastien; Kaas, Quentin; Lavergne, Vincent; Kubala, Petra; Lewis, Richard J.; Alewood, Paul F.

    2013-01-01

    Marine cone snails have developed sophisticated chemical strategies to capture prey and defend themselves against predators. Among the vast array of bioactive molecules in their venom, peptide components called conotoxins or conopeptides dominate, with many binding with high affinity and selectivity to a broad range of cellular targets, including receptors and transporters of the nervous system. Whereas the conopeptide gene precursor organization has a conserved topology, the peptides in the venom duct are highly processed. Indeed, deep sequencing transcriptomics has uncovered on average fewer than 100 toxin gene precursors per species, whereas advanced proteomics has revealed >10-fold greater diversity at the peptide level. In the present study, second-generation sequencing technologies coupled to highly sensitive mass spectrometry methods were applied to rapidly uncover the conopeptide diversity in the venom of a worm-hunting species, Conus miles. A total of 662 putative conopeptide encoded sequences were retrieved from transcriptomic data, comprising 48 validated conotoxin sequences that clustered into 10 gene superfamilies, including 3 novel superfamilies and a novel cysteine framework (C-C-C-CCC-C-C) identified at both transcript and peptide levels. A surprisingly large number of conopeptide gene sequences were expressed at low levels, including a series of single amino acid variants, as well as sequences containing deletions and frame and stop codon shifts. Some of the toxin variants generate alternative cleavage sites, interrupted or elongated cysteine frameworks, and highly variable isoforms within families that could be identified at the peptide level. Together with the variable peptide processing identified previously, background genetic and phenotypic levels of biological messiness in venoms contribute to the hypervariability of venom peptides and their ability to evolve rapidly. PMID:24043424

  14. Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS.

    PubMed

    Van Vaerenbergh, Matthias; Debyser, Griet; Smagghe, Guy; Devreese, Bart; de Graaf, Dirk C

    2015-08-01

    Within the Apidae, the largest family of bees with over 5600 described species, the honeybee is the sole species with a well studied venom proteome. So far, only little research has focused on bumblebee venom. Recently, the genome sequence of the European large earth bumblebee (Bombus terrestris) became available and this allowed the first in-depth proteomic analysis of its venom composition. We identified 57 compounds, with 52 of them never described in bumblebee venom. Remarkably, 72% of the detected compounds were found to have a honeybee venom homolog, which reflects the similar defensive function of both venoms and the high degree of homology between both genomes. However, both venoms contain a selection of species-specific toxins, revealing distinct damaging effects that may have evolved in response to species-specific attackers. Further, this study extends the list of potential venom allergens. The availability of both the honeybee and bumblebee venom proteome may help to develop a strategy that solves the current issue of false double sensitivity in allergy diagnosis, which is caused by cross-reactivity between both venoms. A correct diagnosis is important as it is recommended to perform an immunotherapy with venom of the culprit species.

  15. Neutralizing capacity of murine sera induced by different antigens of scorpion venom.

    PubMed

    Calderon-Aranda, E S; Hozbor, D; Possani, L D

    1993-03-01

    Approximately 700 people die in Mexico each year from scorpion stings. The only useful therapy available is antiserum obtained from horses immunized with macerates of venomous gland from scorpions of the genus Centruroides. We report the results of experiments conducted with mice and rats in order to evaluate the relevant components of the venom from Centruroides noxius in the induction of a protective response against scorpion envenomation, either in vivo or in vitro. Gland macerates of whole telsons (stinger), soluble venom extracted by electrical stimulation, toxic fractions from gel filtration on Sephadex G-50 and highly purified toxin 2 from this scorpion venom were all used to produce hyperimmune mice and rats, which were challenged in vivo with the equivalent of the lethal dose 50% (LD50) of soluble venom, or their sera were prepared for in vitro neutralization experiments using non-immunized animals. The maximum neutralizing capacity (100%) was obtained when soluble venom was used as antigen, while purified toxin 2 produces 80% survival in vivo. The neutralizing capacity of murine antisera evaluated in vitro was: sera antifraction II > antitoxin 2 > antitotal venom > anti-gland macerates of whole telsons. Two additional aspects were further investigated in the present work. One is the demonstration by immunoblotting that proteins corresponding to the electrophoretic mobility of toxins known to block sodium channels are highly immunodominant in this venom. Second, there is a strong cross-reactivity of antisera produced with Centruroides noxius when assayed against venoms from other dangerous species of Centruroides scorpions from Mexico, but not against the Israeli scorpion Leiurus quinquestriatus. Finally, the immunodominance of toxic fractions in the immune response was observed either with immunization using Freund's adjuvant or by means of adsorption to nitrocellulose membranes. This latter vehicle was shown to be an excellent detoxifying agent, without

  16. Biochemical, genetic and physiological characterization of venom components from two species of scorpions: Centruroides exilicauda Wood and Centruroides sculpturatus Ewing.

    PubMed

    Valdez-Cruz, Norma A; Dávila, Sonia; Licea, Alexei; Corona, Miguel; Zamudio, Fernando Z; García-Valdes, Jesús; Boyer, Leslie; Possani, Lourival D

    2004-06-01

    Current literature concerning the taxonomic names of two possibly distinct species of scorpions from the genus Centruroides (sculpturatus and/or exilicauda) is controversial. This communication reports the results of biochemical, genetic and electrophysiological experiments conducted with C. exilicauda Wood of Baja California (Mexico) and C. sculpturatus Ewing of Arizona (USA). The chromatographic profile fractionation of the soluble venom from both species of scorpions is different. The N-terminal amino acid sequence for nine toxins of C. exilicauda was determined and compared with those from C. sculpturatus. Lethality tests conducted in mice support the idea that C. exilicauda venom should be expected to be medically less important than C. sculpturatus. Thirteen genes from the venomous glands of the scorpion C. exilicauda were obtained and compared with previously published sequences from genes of the species C. sculpturatus. Genes coding for cytochrome oxidase I and II of both species were also sequenced. A phylogenetic tree was generated with this information showing important differences between them. Additionally, the results of electrophysiological assays conducted with the venom from both species on the Ca(2+)-dependent K(+)-channels, showed significant differences. These results strongly support the conclusion that C. exilicauda and C. sculpturatus are in fact two distinct species of scorpions.

  17. Snake venom toxins: toxicity and medicinal applications.

    PubMed

    Chan, Yau Sang; Cheung, Randy Chi Fai; Xia, Lixin; Wong, Jack Ho; Ng, Tzi Bun; Chan, Wai Yee

    2016-07-01

    Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed.

  18. Exploring the therapeutic potential of jellyfish venom.

    PubMed

    Daly, Norelle L; Seymour, Jamie; Wilson, David

    2014-10-01

    The venom of certain jellyfish has long been known to be potentially fatal to humans, but it is only recently that details of the proteomes of these fascinating creatures are emerging. The molecular contents of the nematocysts from several jellyfish species have now been analyzed using proteomic MS approaches and include the analysis of Chironex fleckeri, one of the most venomous jellyfish known. These studies suggest that some species contain toxins related to peptides and proteins found in other venomous creatures. The detailed characterization of jellyfish venom is likely to provide insight into the diversification of toxins and might be a valuable resource in drug design.

  19. The pharmacological activity of fish venoms.

    PubMed

    Church, Jarrod E; Hodgson, Wayne C

    2002-08-01

    Venomous creatures have been the source of much recent research in the effort to find novel physiological tools and pharmaceuticals. However, due to the technical difficulties with obtaining and storing venom extracts, the venoms of marine animals, particularly fish, remain a largely untapped source of novel compounds. The most potent effects of piscine venoms are on the cardiovascular system. All piscine venoms produce profound cardiovascular changes, both in vitro and in vivo, including the release of nitric oxide from endothelial cells, smooth muscle contraction, and differing effects on atria. Although there is a complex balance between different components of the venom response, similarities exist between the responses to the venoms of all species of fish. In addition to their cardiovascular effects, piscine venoms possess neuromuscular activity. Once again, the activities of most piscine venoms are very similar, usually consisting of a depolarising action on both nerve and muscle cells. Most piscine venoms have potent cytolytic activity, and it seems likely that this activity is the mechanism behind many of their cardiovascular and neuromuscular effects. Piscine venoms all seem to share similar activity, probably as a result of evolving for a common purpose, and cross-reactivity with stonefish antivenom, both functionally in experimental models and in Western immunoblotting analysis, suggesting that piscine venoms may also possess structural similarities in addition to their functional similarities.

  20. Rapid peptide metabolism: A major component of soil nitrogen cycling?

    NASA Astrophysics Data System (ADS)

    Farrell, Mark; Hill, Paul W.; Wanniarachchi, Sudas D.; Farrar, John; Bardgett, Richard D.; Jones, Davey L.

    2011-09-01

    Proteinaceous and peptidic nitrogen is a potential direct nutrient source for both plants and microbes in the soil, without prior degradation to amino acids and mineralization. We used a series of five sites along an elevation gradient from 15 m a.s.l. to 710 m a.s.l. along which primary productivity decreases to investigate peptide utilization rates by soil microbes. Using 14C-labeled L-alanine, L-dialanine, and L-trialanine in a series of incubation experiments, we show that peptides are directly and rapidly assimilated by soil microbes, and that they are utilized for both biomass production and respiration. Alanine, dialanine, and trialanine were mineralized rapidly by soil microbes from the five sites along the gradient. Across all five sites, dialanine and trialanine were mineralized faster than alanine. In competition experiments, a 100-fold excess of alanine had no effect on the rate of trialanine mineralization in four of the five sites, and the same excess of trialanine had no effect on alanine mineralization. This is indicative of uptake of the intact peptide by the soil microbial community. Our findings have implications for understanding terrestrial nitrogen cycling because they point to a short-circuit whereby large peptides and proteins need only be extracellularly cleaved to short chain length peptides before direct assimilation by microbes.

  1. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides.

    PubMed

    Zeng, Xian-Chun; Wang, Sanxia; Nie, Yao; Zhang, Lei; Luo, Xuesong

    2012-01-01

    BmKbpp is a novel cationic and α-helical peptide from the Chinese scorpion Mesobuthus martensii Karsch, of which function or biological activity has not been characterized so far. Here we showed that BmKbpp possesses strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with a MIC range from 2.3 μM to 68.2 μM for the majority of tested bacteria. BmKbpp also inhibits the growth of tested fungi with an IC50 range from 0.2 μM to 3.1 μM. Because BmKbpp potently inhibits the growth of some antibiotics-resistant pathogens, and shows very weak hemolytic activity, it has considerable potentials for therapeutic applications. Moreover, we found that BmKbpp markedly inhibits the superoxide production in granulocytes or HL-60 cells at the concentrations of submicromolar level; this suggests that BmKbpp can act as a signaling molecule involving innate immune regulation at low concentrations. The C-terminal region of BmKbpp (BmKbpp-C) shows 72% similarity to the peptide K-12, a bradykinin-potentiating peptide. We found that both BmKbpp and BmKbpp-C possess bradykinin-potentiating activity, and the activity of BmKbpp-C is stronger than that of BmKbpp. PCR amplification for the genomic gene of BmBpp showed that it is not a continuous sequence in the genome; it suggests that BmKbpp could come from a recombination event in transcript level. Taken together, our data suggest that multi-functionalization of a single peptide, which is probably mediated by trans-splicing, could be a new mechanism for the functional diversification of scorpion venom peptides.

  2. Polypeptide toxins from animal venoms.

    PubMed

    Kozlov, Sergey A

    2007-01-01

    In the course of evolution, venomous animals developed highly specialized venomous systems that provided for drastic increase in hunting and defense efficiency. Venoms of a vast number of animal species represent complex mixtures of compounds such as ions, biogenic amines, polyamines, polypeptide neurotoxins, cytolytic peptides, enzymes, etc. that exert different functions. Natural toxins are sequentially variable molecules that are very stable structurally and produce pronounced biological effects on molecular targets. High activity made them very attractive in terms of novel structure discovery and characterization. In the present review we draw attention to the structure of polypeptide molecules preferably in the 2-12 kDa molecular mass range produced by various venomous animals that were published in patent literature. The structures were reviewed on the basis of functional relation to molecular targets. We also compared the sequence information from patents with Uniprot and other protein databanks to define structures that were patented but missing from the public databases.

  3. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp

    PubMed Central

    Siebert, Aisha L.; Wheeler, David; Werren, John H.

    2015-01-01

    A new method is developed to investigate functions of venom components, using venom gene RNA interference knockdown in the venomous animal coupled with RNA sequencing in the envenomated host animal. The vRNAi/eRNA-Seq approach is applied to the venom calreticulin component (v-crc) of the parasitoid wasp Nasonia vitripennis. Parasitoids are common, venomous animals that inject venom proteins into host insects, where they modulate physiology and metabolism to produce a better food resource for the parasitoid larvae. vRNAi/eRNA-Seq indicates that v-crc acts to suppress expression of innate immune cell response, enhance expression of clotting genes in the host, and up-regulate cuticle genes. V-crc KD also results in an increased melanization reaction immediately following envenomation. We propose that v-crc inhibits innate immune response to parasitoid venom and reduces host bleeding during adult and larval parasitoid feeding. Experiments do not support the hypothesis that v-crc is required for the developmental arrest phenotype observed in envenomated hosts. We propose that an important role for some venom components is to reduce (modulate) the exaggerated effects of other venom components on target host gene expression, physiology, and survival, and term this venom mitigation. A model is developed that uses vRNAi/eRNA-Seq to quantify the contribution of individual venom components to total venom phenotypes, and to define different categories of mitigation by individual venoms on host gene expression. Mitigating functions likely contribute to the diversity of venom proteins in parasitoids and other venomous organisms. PMID:26359852

  4. Heterologous expressed toxic and non-toxic peptide variants of toxin CssII are capable to produce neutralizing antibodies against the venom of the scorpion Centruroides suffusus suffusus.

    PubMed

    Hernández-Salgado, Kenya; Estrada, Georgina; Olvera, Alejandro; Coronas, Fredy I; Possani, Lourival D; Corzo, Gerardo

    2009-08-15

    Two toxic and one non-toxic recombinant peptide variants of the mammalian neurotoxin CssII was cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage site. The toxic recombinant peptides rCssII, HisrCssII and the non-toxic rCssIIE15R were expressed under induction with isopropyl thiogalactoside (IPTG), isolated using chromatographic techniques and folded correctly in vitro. The three recombinant variants showed similar secondary structures as the native CssII, but only the rCssIIE15R was not toxic to mice at concentrations up to 30microg/20g mouse body weight when injected intraperitoneally. All three recombinant peptides were capable of displacing the native CssII from their receptor sites in rat brain synaptosomes, suggesting that they had similar structural and functional characteristics of the native peptides. The three recombinant variants of CssII and the native one were used as antigens for immunization of New Zealand rabbits. The antibodies present in the rabbit antisera were able to recognize the native CssII. Additionally and more importantly, the sera of the immunized rabbits were able to neutralize both the native toxin CssII and the whole soluble venom of the scorpion Centruroides suffusus suffusus. These results indicate that the recombinant peptides can be used to produce antidotes against the venom of this species of scorpion.

  5. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  6. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    PubMed

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  7. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches.

    PubMed

    Petras, Daniel; Heiss, Paul; Süssmuth, Roderich D; Calvete, Juan J

    2015-06-05

    We report on the first application of top-down mass spectrometry in snake venomics. De novo sequence tags generated by, and ProSight Lite supported analysis of, combined collisional based dissotiations (CID and HCD) recorded in a hybrid LTQ Orbitrap instrument in data-dependent mode identified a number of proteins from different toxin families, namely, 11 three-finger toxins (7-7.9 kDa), a Kunitz-type inhibitor (6.3 kDa), ohanin (11.9 kDa), a novel phospholipase A2 molecule (13.8 kDa), and the cysteine-rich secretory protein (CRISP) ophanin (25 kDa) from Indonesian king cobra venom. Complementary bottom-up MS/MS analyses contributed to the completion of a locus-resolved venom phenotypic map for Ophiophagus hannah, the world's longest venomous snake and a species of medical concern across its wide distribution range in forests from India to Southeast Asia. Its venom composition, comprising 32-35 proteins/peptides from 10 protein families, is dominated by α-neurotoxins and convincingly explains the main neurotoxic effects of human envenoming caused by king cobra bite. The integration of efficient chromatographic separation of the venom's components and locus-resolved toxin identification through top-down and bottom-up MS/MS-based species-specific database searching and de novo sequencing holds promise that the future will be bright for the field of venom research.

  8. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    PubMed

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-05

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification.

  9. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).

    PubMed

    Urra, Félix A; Pulgar, Rodrigo; Gutiérrez, Ricardo; Hodar, Christian; Cambiazo, Verónica; Labra, Antonieta

    2015-12-15

    Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.

  10. Peptide pal9a from the venom of the turrid snail Polystira albida from the Gulf of Mexico: purification, characterization, and comparison with P-conotoxin-like (framework IX) conoidean peptides

    PubMed Central

    Aguilar, Manuel B.; Chan de la Rosa, Ruby A.; Falcón, Andrés; Olivera, Baldomero M.; Heimer de la Cotera, Edgar P.

    2009-01-01

    A novel peptide, pal9a, was purified from the venom duct extract of the turrid snail, Polystira albida (superfamily Conoidea, family Turridae), collected in the Gulf of Mexico. Its primary structure was determined by automated Edman degradation and confirmed by mass spectrometry. Turritoxin pal9a contains 34 amino acid residues, including 6 Cys residues arranged in the pattern C-C-C-C-C-C (framework IX, where “-“ represents one or more non-Cys amino acids), which characterizes the P-conotoxins. Peptide pal9a is the first P-conotoxin-like turritoxin characterized from a member of family Turridae of the Western Atlantic. The primary structure of turritoxin pal9a, NVCDGDACPDGVCRSGCTCDFNVAQRKDTCFYPQ-nh2 (-nh2, amidated C-terminus; calculated monoisotopic mass, 3679.48 Da; experimental monoisotopic mass, 3678.84 Da), shows variable degrees of low sequence similarity with framework IX-toxins from turrid (three species of Lophiotoma, and four species of Gemmula), terebrid (Hastula hectica), and Conus species of the Indo-Pacific (C. textile, C. gloriamaris, C. amadis, and C. litteratus) and of the Western Atlantic (C. regius). During the comparison of peptide pal9a with the other framework IX-toxins known to date, we realized that, in general, these peptides are hydrophilic, acidic compounds that have not been found in the fish-hunting Conus species studied thus far; we also found support for the notion that they may belong to several distinct gene superfamilies, even those from the same species. Given the broad distribution of framework IX-toxins within superfamily Conoidea, it will be interesting to identify the still-unknown molecular targets of P-conotoxins, P-conotoxin-like turritoxins, and P-conotoxin-like augertoxins. PMID:18948154

  11. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom.

    PubMed

    Gutiérrez, José María; Sanz, Libia; Escolano, José; Fernández, Julián; Lomonte, Bruno; Angulo, Yamileth; Rucavado, Alexandra; Warrell, David A; Calvete, Juan J

    2008-10-01

    The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase

  12. Snake venom toxins. The amino-acid sequence of a short-neurotoxin homologue from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-06-01

    The third most abundant component of black mamba venom, named FS2, was sequenced with the aid of sequenator studies and peptides derived by tryptic and chymotryptic digestion. Cyanogen bromide digests provided extra information to support the proposed structure. This protein is a homologue of the short neurotoxins of snake venom, but is much less toxic. Its structure is quite different from both neurotoxins and the other mamba proteins, called angusticeps types (neurotoxin homologues). Comparison of the known angusticeps-type toxins from mamba venom with mamba neurotoxins and each other leads to proposals that these proteins of low toxicity are inventions of the group of mambas and that three different, as yet unknown, functions will be associated with the three subgroups that are discernable.

  13. Differential metalloprotease content and activity of three Loxosceles spider venoms revealed using two-dimensional electrophoresis approaches.

    PubMed

    Trevisan-Silva, Dilza; Bednaski, Aline Viana; Gremski, Luiza Helena; Chaim, Olga Meiri; Veiga, Silvio Sanches; Senff-Ribeiro, Andrea

    2013-12-15

    Loxosceles bites have been associated with characteristic dermonecrotic lesions with gravitational spreading and systemic manifestations. Venom primarily comprises peptides and protein molecules (5-40 kDa) with multiple biological activities. Although poorly studied, metalloproteases have been identified in venoms of several Loxosceles species, presenting proteolytic effects on extracellular matrix components. The characterization of an Astacin-like protease (LALP) in Loxosceles intermedia venom was the first report of an Astacin family member as a component of animal venom. Recently, these proteases were described as a gene family in L. intermedia, Loxosceles laeta and Loxosceles gaucho. Herein, the whole venom complexity of these three Loxosceles species was analyzed using two-dimensional electrophoresis (2DE). Subproteomes of LALPs were explored through 2DE immunostaining using anti-LALP1 antibodies and 2DE gelatin zymogram. Proteins presented molecular masses ranging from 24 to 29 kDa and the majority of these molecules had basic or neutral isoelectric points (6.89-9.93). Likewise, the measurement of gelatinolytic effects of Loxosceles venom using fluorescein-gelatin showed that the three venoms have distinct proteolytic activities. The metalloprotease fibrinogenolytic activities were also evaluated. All venoms showed fibrinogenolytic activity with different proteolytic effects on Aα and Bβ chains of fibrinogen. The results reported herein suggest that the LALP family is larger than indicated in previously published data and that the complex profile of the gelatinolytic activity reflects their relevance in loxoscelism. Furthermore, our investigation implicates the brown spider venom as a source of Astacin-like proteases for use in loxoscelism studies, cell biology research and biotechnological applications.

  14. Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology.

    PubMed

    Olivera, Baldomero M; Showers Corneli, Patrice; Watkins, Maren; Fedosov, Alexander

    2014-02-01

    Venomous marine snails (superfamily Conoidea) are a remarkably biodiverse marine invertebrate lineage (featuring more than 10,000 species). Conoideans use complex venoms (up to 100 different components for each species) to capture prey and for other biotic interactions. Molecular phylogeny and venom peptide characterization provide an unusual multidisciplinary view of conoidean biodiversity at several taxonomic levels. Venom peptides diverge between species at an unprecedented rate through hypermutation within gene families. Clade divergence within a genus occurs without recruiting new gene families when a saltatory event, such as colonization of new prey types (e.g., fish), leads to a new radiation. Divergence between genera in the same family involves substantial divergence in gene families. In the superfamily Conoidea, the family groups recruited distinct sets of different venom gene superfamilies. The associated morphological, behavioral, and prey-preference changes that accompany these molecular changes are unknown for most conoidean lineages, except for one genus, Conus, for which many associated phenotypic changes have been documented.

  15. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.

    PubMed

    Dhananjaya, B L; Sivashankari, P R

    2015-01-01

    Snake venom is a complex mixture of biologically and pharmacologically active components, comprising hydrolytic enzymes, non-enzymatic proteins/peptides, and small amounts of organic and inorganic molecules. The venom components are known to vary with geographic location, season, species and age of the snakes. The role of the venom in the snake is not primarily for self-defense, but in prey immobilization and its subsequent digestion. Hence, several digestive enzymes in venoms, in addition to their hydrolytic activity have evolved to interfere in diverse physiological processes that help in the immobilization of prey/victim. As snake components are capable of modulating the physiological response of envenomated prey/victim, they show promise as potential pharmacological tools, as drug leads and in diagnostic applications. This, in a practical sense to be a reality has to be linked to the advances in toxinology that provide investigators with an understanding of the pharmacodynamics of toxins together with improved understanding of the etiology of many human diseases and identification of potential sites for therapeutic intervention. This review aims at providing an overview on snake venom toxins and their derivatives that have potential anti-angiogenic effects for cancer treatment. Some of the anti-angiogenic components of snake venom like Snake venom metalloproteinases (SVMPs), Disintegrins, Phospholipases A2 (PLA2), CType Lectins (CLP), Vascular Apoptosis inducing Proteins (VAP) and L-Amino Acid Oxidases (LAAO) are discussed. This review aims at giving an overall view of these molecules and their mechanism of action as an effective antiangiogenic agent towards the treatment of cancer.

  16. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats.

    PubMed

    Emerich, Bruna Luiza; Ferreira, Renata C M; Cordeiro, Marta N; Borges, Márcia Helena; Pimenta, Adriano M C; Figueiredo, Suely G; Duarte, Igor Dimitri G; de Lima, Maria Elena

    2016-04-12

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E₂, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB₁ receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models.

  17. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats

    PubMed Central

    Emerich, Bruna Luiza; Ferreira, Renata C. M.; Cordeiro, Marta N.; Borges, Márcia Helena; Pimenta, Adriano M. C.; Figueiredo, Suely G.; Duarte, Igor Dimitri G.; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  18. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis

    PubMed Central

    Komegae, Evilin Naname; Souza, Tais Aparecida Matozo; Grund, Lidiane Zito; Lima, Carla

    2017-01-01

    The pathological condition of multiple sclerosis (MS) relies on innate and adaptive immunity. New types of agents that beneficially modify the course of MS, stopping the progression and repairing the damage appear promising. Here, we studied TnP, a small stable synthetic peptide derived from fish venom in the control of inflammation and demyelination in experimental autoimmune encephalomyelitis as prophylactic treatment. TnP decreased the number of the perivascular infiltrates in spinal cord, and the activity of MMP-9 by F4/80+ macrophages were decreased after different regimen treatments. TnP reduces in the central nervous system the infiltration of IFN-γ-producing Th1 and IL-17A-producing Th17 cells. Also, treatment with therapeutic TnP promotes the emergence of functional Treg in the central nervous system entirely dependent on IL-10. Therapeutic TnP treatment accelerates the remyelination process in a cuprizone model of demyelination. These findings support the beneficial effects of TnP and provides a new therapeutic opportunity for the treatment of MS. PMID:28235052

  19. Expression and purification of an antitumor-analgesic peptide from the venom of Mesobuthus martensii Karsch by small ubiquitin-related modifier fusion in Escherichia coli.

    PubMed

    Cao, Peng; Yu, Jiemiao; Lu, Wuguang; Cai, Xueting; Wang, Zhigang; Gu, Zhenhua; Zhang, Juan; Ye, Tingmei; Wang, Min

    2010-01-01

    To prevent protein aggregation, some proteins are usually expressed as fusion proteins from which target proteins can be released by proteolytic or chemical reagents. In this report, small ubiquitin-related modifier (SUMO) linked with a hexa-histidine tag was used as a fusion partner for the antitumor-analgesic peptide from the venom of Buthus martensii (Karsch) scorpion (AGAP). The optimal expression level of the soluble fusion protein, SUMO-AGAP, was up to 40% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease (Ulp1) to obtain the recombinant AGAP (rAGAP), which was further purified by Ni-NTA affinity chromatography. The purified final product was >95% pure by SDS-PAGE stained with Coomassie brilliant blue R-250. Mass spectroscopic analysis indicated the protein to be 7142.63 Dalton, which equaled the theoretically expected mass. N-terminal sequencing of rAGAP showed the sequence corresponded to the native protein. MTT assay indicated the rAGAP could significantly inhibit the proliferation of Jurkat and Hut 78 T lymphoma cell lines. The further writhing experiment showed that the rAGAP had an intensive analgesic effect. The expression strategy presented in this study allows convenient high yield and easy purification of the rAGAP with native sequences.

  20. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes.

    PubMed

    Díaz, Patricia; D'Suze, Gina; Salazar, Víctor; Sevcik, Carlos; Shannon, John D; Sherman, Nicholas E; Fox, Jay W

    2009-11-01

    Six novel peptides (named bactridines) were isolated from Tityus discrepans scorpion venom. From mass spectrometry molecular masses were 6916, 7362, 7226, 7011, 7101 and 7173 Da (bactridines 1-6). Bactridines 1 and 2 were sequenced by Edman degradation. The sequences and in silico analysis, indicated that they are positively charged polypeptides comprised of 61 and 64 amino acids (AA), respectively, bactridine 1 and bactridine 2 containing 4 disulfide bridges. Bactridine 1 was only toxic to cockroaches and crabs, and bactridine 2-6 were only toxic to mice. Bactridine 1 has a 78% sequence identity with ardiscretin. Ardisctretin is an insect specific sodium toxin which also produces a small depolarization and induces repetitive firing in squid axons resembling those of DDT [1,10(pchlorobenzyl) 2-trichloretane] in its ability to slow down action potential, to induce repetitive firing. Measured as the minimal inhibitory concentration, bactridines had high antibacterial activity against a wide range of gram positive and gram negative bacteria. Complete bacterial growth inhibition occurred at concentrations from 20 to 80 microM depending on the bacteria and peptide tested. Effects on membrane Na(+) permeability induced by bactridines were observed on Yersinia enterocolitica loaded with 1 microM CoroNa Red. CoroNa Red fluorescence leakage from bacteria was observed after exposure to 0.3 microM of any bactridine tested, indicating that they modified Na(+) membrane permeability. This effect was blocked by 10 microM amiloride and by 25 microM mibefradil drugs that affect Na(+) and Ca(2+) channels respectively. We found no evidence of changes of K(+) or Ca(2+) concentrations neither inside nor outside the bacteria in experiments using the fluorescent dyes Fluo 4AM (10 microM) and PBFI (20 microM).

  1. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails.

    PubMed

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-05-28

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution.

  2. Purification and pharmacological characterization of BmKK2 (alpha-KTx 14.2), a novel potassium channel-blocking peptide, from the venom of Asian scorpion Buthus martensi Karsch.

    PubMed

    Li, Ming-Hua; Zhang, Nai-Xia; Chen, Xue-Qin; Wu, Gong; Wu, Houming; Hu, Guo-Yuan

    2004-06-15

    BmKK2 (alpha-KTx 14.2) is one of the novel short-chain peptides found in molecular cloning of a venom gland cDNA library from Asian scorpion Buthus martensi Karsch. Based upon its amino acid sequence, the peptide was proposed to adopt a classical alpha/beta-scaffold for alpha-KTxs. In the present study, we purified BmKK2 from the venom of B. martensi Karsch, and investigated its action on voltage-dependent K+ currents in dissociated hippocampal neurons from neonatal rats. BmKK2 (10-100 microM) selectively inhibited the delayed rectifier K+ current, but did not affect the fast transient K+ current. The inhibition of BmKK2 on the delayed rectifier K+ current was reversible and voltage-independent. The peptide did not affect the steady-state activation of the current, but caused a depolarizing shift (about 9 mV) of its steady-state inactivation curve. The results demonstrate that BmKK2 is a novel K+ channel-blocking scorpion peptide.

  3. Peptidomic and transcriptomic profiling of four distinct spider venoms.

    PubMed

    Oldrati, Vera; Koua, Dominique; Allard, Pierre-Marie; Hulo, Nicolas; Arrell, Miriam; Nentwig, Wolfgang; Lisacek, Frédérique; Wolfender, Jean-Luc; Kuhn-Nentwig, Lucia; Stöcklin, Reto

    2017-01-01

    Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae), Poecilotheria formosa (Theraphosidae), Viridasius fasciatus (Viridasiidae) and Latrodectus mactans (Theridiidae). This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK) structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins), revealed the presence of 14 cysteine rich

  4. The Biochemical Toxin Arsenal from Ant Venoms

    PubMed Central

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  5. The Biochemical Toxin Arsenal from Ant Venoms.

    PubMed

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-20

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  6. Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach.

    PubMed

    Violette, Aude; Biass, Daniel; Dutertre, Sébastien; Koua, Dominique; Piquemal, David; Pierrat, Fabien; Stöcklin, Reto; Favreau, Philippe

    2012-09-18

    Predatory marine snails of the genus Conus use venom containing a complex mixture of bioactive peptides to subdue their prey. Here we report on a comprehensive analysis of the protein content of injectable venom from Conus consors, an indo-pacific fish-hunting cone snail. By matching MS/MS data against an extensive set of venom gland transcriptomic mRNA sequences, we identified 105 components out of ~400 molecular masses detected in the venom. Among them, we described new conotoxins belonging to the A, M- and O1-superfamilies as well as a novel superfamily of disulphide free conopeptides. A high proportion of the deduced sequences (36%) corresponded to propeptide regions of the A- and M-superfamilies, raising the question of their putative role in injectable venom. Enzymatic digestion of higher molecular mass components allowed the identification of new conkunitzins (~7 kDa) and two proteins in the 25 and 50 kDa molecular mass ranges respectively characterised as actinoporin-like and hyaluronidase-like protein. These results provide the most exhaustive and accurate proteomic overview of an injectable cone snail venom to date, and delineate the major protein families present in the delivered venom. This study demonstrates the feasibility of this analytical approach and paves the way for transcriptomics-assisted strategies in drug discovery.

  7. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles.

    PubMed

    Peichoto, María E; Tavares, Flávio L; Santoro, Marcelo L; Mackessy, Stephen P

    2012-12-01

    Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat.

  8. Computational Reverse-Engineering of a Spider-Venom Derived Peptide Active Against Plasmodium falciparum SUB1

    PubMed Central

    Bastianelli, Giacomo; Bouillon, Anthony; Nguyen, Christophe; Crublet, Elodie; Pêtres, Stéphane; Gorgette, Olivier; Le-Nguyen, Dung

    2011-01-01

    Background Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. Findings Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged −5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P.falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1. Conclusions Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering. PMID:21818266

  9. Centipede Venom: Recent Discoveries and Current State of Knowledge

    PubMed Central

    Undheim, Eivind A. B.; Fry, Bryan G.; King, Glenn F.

    2015-01-01

    Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes. PMID:25723324

  10. Centipede venom: recent discoveries and current state of knowledge.

    PubMed

    Undheim, Eivind A B; Fry, Bryan G; King, Glenn F

    2015-02-25

    Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.

  11. Colubrid Venom Composition: An -Omics Perspective

    PubMed Central

    Junqueira-de-Azevedo, Inácio L. M.; Campos, Pollyanna F.; Ching, Ana T. C.; Mackessy, Stephen P.

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  12. Colubrid Venom Composition: An -Omics Perspective.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-07-23

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.

  13. Venom: the sharp end of pain therapeutics.

    PubMed

    Trim, Steven A; Trim, Carol M

    2013-11-01

    Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host animal may actually turn out to contain the next generation of analgesics when injected by the clinician. The last 12 months have seen dramatic discoveries of analgesic tools within venoms. Spiders, snakes and even centipedes are yielding peptides with immense therapeutic potential. Significant advances are also taking place in delivery methods that can improve bioavailability and pharmacokinetics of these exciting natural resources. Turning proteinaceous venom into pharmaceutical liquid gold is the goal of venomics and the focus of this article.

  14. Venom: the sharp end of pain therapeutics

    PubMed Central

    Trim, Carol M

    2013-01-01

    Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host animal may actually turn out to contain the next generation of analgesics when injected by the clinician. The last 12 months have seen dramatic discoveries of analgesic tools within venoms. Spiders, snakes and even centipedes are yielding peptides with immense therapeutic potential. Significant advances are also taking place in delivery methods that can improve bioavailability and pharmacokinetics of these exciting natural resources. Turning proteinaceous venom into pharmaceutical liquid gold is the goal of venomics and the focus of this article. PMID:26516522

  15. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms.

    PubMed

    Mladic, Marija; Zietek, Barbara M; Iyer, Janaki Krishnamoorthy; Hermarij, Philip; Niessen, Wilfried M A; Somsen, Govert W; Kini, R Manjunatha; Kool, Jeroen

    2016-02-01

    Snake venoms comprise complex mixtures of peptides and proteins causing modulation of diverse physiological functions upon envenomation of the prey organism. The components of snake venoms are studied as research tools and as potential drug candidates. However, the bioactivity determination with subsequent identification and purification of the bioactive compounds is a demanding and often laborious effort involving different analytical and pharmacological techniques. This study describes the development and optimization of an integrated analytical approach for activity profiling and identification of venom constituents targeting the cardiovascular system, thrombin and factor Xa enzymes in particular. The approach developed encompasses reversed-phase liquid chromatography (RPLC) analysis of a crude snake venom with parallel mass spectrometry (MS) and bioactivity analysis. The analytical and pharmacological part in this approach are linked using at-line nanofractionation. This implies that the bioactivity is assessed after high-resolution nanofractionation (6 s/well) onto high-density 384-well microtiter plates and subsequent freeze drying of the plates. The nanofractionation and bioassay conditions were optimized for maintaining LC resolution and achieving good bioassay sensitivity. The developed integrated analytical approach was successfully applied for the fast screening of snake venoms for compounds affecting thrombin and factor Xa activity. Parallel accurate MS measurements provided correlation of observed bioactivity to peptide/protein masses. This resulted in identification of a few interesting peptides with activity towards the drug target factor Xa from a screening campaign involving venoms of 39 snake species. Besides this, many positive protease activity peaks were observed in most venoms analysed. These protease fingerprint chromatograms were found to be similar for evolutionary closely related species and as such might serve as generic snake protease

  16. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties].

    PubMed

    Iwaniak, Anna; Darewicz, Małgorzata; Minkiewicz, Piotr; Protasiewicz, Monika; Borawska, Justyna

    2014-06-01

    Food proteins are the source of peptides with many biological activities. One of them is their impact on blood circulatory system. This group of peptides includes the ones with the ability to reduce the blood pressure (inhibitors of angiotensin converting enzyme--ACE), antithrombotic, and to lower the cholesterol level. Among the above-mentioned peptides' bioactivities, the most of them act as the ACE inhibitors. Some of them are the functional food components and nutraceuticals and possess the status of food with special use. The main known source of antithrombotic and cholesterol lowering peptides are milk and soy proteins, respectively. However, the scientists make the efforts to find new alternative sources of peptides with the above-mentioned activities. It should be noted, that although the bioactive peptides are considered as the safe food components and thus be supportive in the cardiovascular diseases therapy, they cannot substitute the drugs. This review shows the characteristics of selected peptides with: blood pressure reducing, antithrombotic, and cholesterol level reducing activities. We focused on the sequences that were identified in food proteins as well as were tested on humans or animals.

  17. Intraspecific variation of venom injected by fish-hunting Conus snails.

    PubMed

    Jakubowski, Jennifer A; Kelley, Wayne P; Sweedler, Jonathan V; Gilly, William F; Schulz, Joseph R

    2005-08-01

    Venom peptides from two species of fish-hunting cone snails (Conus striatus and Conus catus) were characterized using microbore liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and electrospray ionization-ion trap-mass spectrometry. Both crude venom isolated from the venom duct and injected venom obtained by milking were studied. Based on analysis of injected venom samples from individual snails, significant intraspecific variation (i.e. between individuals) in the peptide complement is observed. The mixture of peptides in injected venom is simpler than that in the crude duct venom from the same snail, and the composition of crude venom is more consistent from snail to snail. While there is animal-to-animal variation in the peptides present in the injected venom, the composition of any individual's injected venom remains relatively constant over time in captivity. Most of the Conus striatus individuals tested injected predominantly a combination of two neuroexcitatory peptides (s4a and s4b), while a few individuals had unique injected-venom profiles consisting of a combination of peptides, including several previously characterized from the venom duct of this species. Seven novel peptides were also putatively identified based on matches of their empirically derived masses to those predicted by published cDNA sequences. Profiling injected venom of Conus catus individuals using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry demonstrates that intraspecific variation in the mixture of peptides extends to other species of piscivorous cone snails. The results of this study imply that novel regulatory mechanisms exist to select specific venom peptides for injection into prey.

  18. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs.

  19. Angioedema induced by a peptide derived from complement component C2

    PubMed Central

    1988-01-01

    Synthetic peptides that correspond to the COOH-terminal portion of C2b enhance vascular permeability in human and guinea pig skin. In human studies, 1 nmol of the most active peptide of 25-amino acid residues produced substantial local edema. A pentapeptide and a heptapeptide corresponding to the COOH-terminal sequence of C2b each induced contraction of estrous rat uterus in the micromole range; a peptide of 25 amino acids from this region induced a like contraction of rat uterus at a concentration 20-fold lower than the smaller peptides. The vascular permeability of guinea pig skin was enhanced by doses of these synthetic peptides in a similar fashion as that observed for the concentration of rat uterus. The induction of localized edema by intradermal injection in both the guinea pig and the human proceeds in the presence of antihistaminic drugs, suggesting that there is a histamine-independent component to the observed increase in vascular permeability. Cleavage of C2 with the enzymic subcomponent of C1, C1s, yields only C2a and C2b, and no small peptides, whereas cleavage of C2 with C1s and plasmin yields a set of small peptides. These plasmin- cleaved peptides are derived from the COOH terminus of C2b, and they induce the contraction of estrous rat uterus. PMID:2972793

  20. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    PubMed

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species.

  1. Angiotensin converting enzymes in fish venom.

    PubMed

    Dos Santos, Dávida Maria Ribeiro Cardoso; de Souza, Cledson Barros; Pereira, Hugo Juarez Vieira

    2017-06-01

    Animal venoms are multifaceted mixtures, including proteins, peptides and enzymes produced by animals in defense, predation and digestion. These molecules have been investigated concerning their molecular mechanisms associated and possible pharmacological applications. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, nausea, vomiting, and syncope. Recently, the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri and Scorpaena plumieri, endemic fishes in northeastern coast of Brazil, has been described. The ACE converts angiotensin I (Ang I) into angiotensin II (Ang II) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis, however, their function in these venoms remains an unknown. This article provides an overview of the current knowledge on ACE in the venoms of Thalassophryne nattereri and Scorpaena plumier.

  2. PPIase is associated with the diversity of conotoxins from cone snail venom glands.

    PubMed

    Wang, Lei; Tang, Wei; Wang, Xiaomin; Chen, Yu; Wu, Yun; Qiang, Yuanyuan; Feng, Yuchao; Ren, Zhenghua; Chen, Shangwu; Xu, Anlong

    2015-05-01

    Cone snails are incredibly rich sources of bioactive conopeptides with potential for use in neuroscience research and novel drug development. In order to investigate the synthesis of diversified conopeptides in venom glands, the proteome and peptidome profiles of conus venom were analyzed using HPLC and mass spectrometry. The peptidome profile of the venom components with a molecular weight under 10 kDa showed that the peptides with unique mass values from the venom glands of Conus caracteristicus, Conus lividus and Conus textile are 188, 413 and 265, respectively, and there are 39 overlapping peptides among the three species. Proteome profiling of the components with molecular weights above 10 kDa showed that the most abundant proteins (38.6%) are involved in metabolism and that approximately 6.8% of proteins are involved in protein synthesis, folding and post-translational modification. Among these proteins, PPIase is one protein identified from C. textile based on proteomic analysis. Conus PPIase was successfully expressed as a fusion protein with TRX in an Escherichia coli expression system for further function study. In-vitro enzyme activity assays showed that cone snail PPIase could induce the cis-trans isomerization of the substrate succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The HPLC mapping analyses of linear lt14a, a conotoxin with 3 prolines, showed that different lt14a isoforms appear after incubation with PPIase. Our results suggest that PPIase may modify conotoxins containing prolines and play an important role in the process of peptide folding and modification in venom glands and contribute to conotoxin diversity.

  3. Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Prezotto-Neto, José Pedro; Riedner, Maria; Sanches, Leonardo; Nishimura, Paula Juliana; Oguiura, Nancy; Pimenta, Daniel Carvalho; Schlüter, Hartmut; Betzel, Christian; Arni, Raghuvir Krishnaswami; Spencer, Patrick Jack

    2015-12-01

    The investigation of venoms has many clinical, pharmacological, ecological and evolutionary outcomes. The Crotalus spp. venom can cause hemorrhage, neurotoxicity, myotoxicity, coagulopathy and hypotension. Although neurotoxicity and hemorrhage usually does not occur for the same species, the rare Venezuelan species Crotalus vegrandis presents both characteristic. Different from the other species it has a restricted ecological niche and geographical distribution. Nevertheless, it has a raising medical importance as this rattlesnake population is increasing. Few works describe its neurotoxic and hemorrhagic features, but other toxins might play an important role in envenomation. We combined proteomic methods to identify for the first time the main components of it venom: 2D SDS-PAGE and gel-filtration chromatography for protein mixture decomplexation; LC-MS(2) of low molecular mass fractions and tryptic peptides; bioinformatic identification of toxin families and specific protein species based on unique peptide analysis and sequence database enriched with species-specific venom gland transcripts; and finally polyclonal anti-crotamine Western-blotting. Our results point to a broad arsenal of toxins in C. vegrandis venom: PIII and PII metalloproteases, crotoxin subunits, other phospholipases, isoforms of serine proteases and lectins, l-amino-acid oxidase, nerve growth factor, as well as other less abundant toxins.

  4. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  5. AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities.

    PubMed

    Du, Qiang; Hou, Xiaojuan; Wang, Lei; Zhang, Yingqi; Xi, Xinping; Wang, Hui; Zhou, Mei; Duan, Jinao; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2015-01-23

    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation.

  6. Observations on white and yellow venoms from an individual southern Pacific rattlesnake (Crotalus viridis helleri).

    PubMed

    Johnson, E K; Kardong, K V; Ownby, C L

    1987-01-01

    Biochemical differences in white and yellow venoms produced in the separate venom glands of an individual southern Pacific rattlesnake (Crotalus viridis helleri) were investigated. Compared to the yellow venom, the white venom contained fewer low molecular weight components and was considerably less toxic. Although the exact LD50 was not determined, the white venom did not produce toxic effects in mice when injected i.v. at concentrations up to 10 mg/kg. The i.v. LD50 of the yellow venom was approximately 1.6 mg/kg. Both white and yellow venoms had hemorrhagic activity, but the white venom caused less intradermal hemorrhage in mice. No L-amino acid oxidase activity was measured in the white venom and protease and phospholipase A2 activities of the white venom were much less than in the yellow venom. The white and yellow venoms both produced myonecrosis at 1, 3 and 24 hr after i.m. injection into mice, however, there were some qualitative differences in the myonecrosis produced. When the venom samples were reacted against Wyeth's polyvalent (Crotalidae) antivenom using immunodiffusion, three precipitin bands formed against the yellow venom, whereas only one formed against the white venom. When reacted against an antiserum to myotoxin alpha from C. viridis viridis venom, both the white and yellow venoms produced one precipitin band each.

  7. Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology.

    PubMed

    Imperial, Julita S; Kantor, Yuri; Watkins, Maren; Heralde, Francisco M; Stevenson, Bradford; Chen, Ping; Hansson, Karin; Stenflo, Johan; Ownby, John-Paul; Bouchet, Philippe; Olivera, Baldomero M

    2007-12-15

    The >10,000 living venomous marine snail species [superfamily Conoidea (Fleming, 1822)] include cone snails (Conus), the overwhelming focus of research. Hastula hectica (Linnaeus, 1758), a venomous snail in the family Terebridae (Mörch, 1852) was comprehensively investigated. The Terebridae comprise a major monophyletic group within Conoidea. H. hectica has a striking radular tooth to inject venom that looks like a perforated spear; in Conus, the tooth looks like a hypodermic needle. H. hectica venom contains a large complement of small disulfide-rich peptides, but with no apparent overlap with Conus in gene superfamilies expressed. Although Conus peptide toxins are densely post-translationally modified, no post-translationally modified amino acids were found in any Hastula venom peptide. The results suggest that different major lineages of venomous molluscs have strikingly divergent toxinological and venom-delivery strategies.

  8. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus.

    PubMed

    Becerril, B; Corona, M; Coronas, F I; Zamudio, F; Calderon-Aranda, E S; Fletcher, P L; Martin, B M; Possani, L D

    1996-02-01

    Seven toxic peptides from the venom of Tityus bahiensis and Tityus stigmurus was isolated and sequenced, five of them to completion. The most abundant peptide from each of these two species of scorpion was 95% identical with that of toxin gamma from the venom of Tityus serrulatus. They were consequently named gamma-b and gamma-st respectively. The genes encoding these new gamma-like peptides were cloned and sequenced by utilizing oligonucleotides synthesized according to known cDNA sequences of toxin gamma, and amplified by PCR on templates of DNA purified from both T. bahiensis and T. stigmurus. They contain an intron of approx. 470 bp. Possible mechanisms of processing and expressing these peptides are discussed, in view of the fact that glycine is the first residue of the N-terminal sequence of T. stigmurus, whereas lysine is the residue at position 1 of toxin gamma from T. serrulatus and T. bahiensis. In addition, chemical characterization of the less abundant toxic peptides showed the presence of at least four distinct families of peptides in all three species of the genus Tityus studied. There is a large degree of similarity among peptides from different venoms of the same family. By using specific horse and rabbit antisera, the venoms of T. bahiensis, T. serrulatus and T. stigmurus were compared. They showed an extended degree of cross-reactivity. Thus these three species of scorpion have similar toxic components, the genes of which are similarly organized, processed and expressed.

  9. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus.

    PubMed Central

    Becerril, B; Corona, M; Coronas, F I; Zamudio, F; Calderon-Aranda, E S; Fletcher, P L; Martin, B M; Possani, L D

    1996-01-01

    Seven toxic peptides from the venom of Tityus bahiensis and Tityus stigmurus was isolated and sequenced, five of them to completion. The most abundant peptide from each of these two species of scorpion was 95% identical with that of toxin gamma from the venom of Tityus serrulatus. They were consequently named gamma-b and gamma-st respectively. The genes encoding these new gamma-like peptides were cloned and sequenced by utilizing oligonucleotides synthesized according to known cDNA sequences of toxin gamma, and amplified by PCR on templates of DNA purified from both T. bahiensis and T. stigmurus. They contain an intron of approx. 470 bp. Possible mechanisms of processing and expressing these peptides are discussed, in view of the fact that glycine is the first residue of the N-terminal sequence of T. stigmurus, whereas lysine is the residue at position 1 of toxin gamma from T. serrulatus and T. bahiensis. In addition, chemical characterization of the less abundant toxic peptides showed the presence of at least four distinct families of peptides in all three species of the genus Tityus studied. There is a large degree of similarity among peptides from different venoms of the same family. By using specific horse and rabbit antisera, the venoms of T. bahiensis, T. serrulatus and T. stigmurus were compared. They showed an extended degree of cross-reactivity. Thus these three species of scorpion have similar toxic components, the genes of which are similarly organized, processed and expressed. PMID:8611151

  10. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    NASA Astrophysics Data System (ADS)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  11. Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus.

    PubMed

    Coronas, Fredy I V; Diego-García, Elia; Restano-Cassulini, Rita; de Roodt, Adolfo R; Possani, Lourival D

    2015-06-01

    A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.

  12. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus.

    PubMed

    Wagstaff, Simon C; Sanz, Libia; Juárez, Paula; Harrison, Robert A; Calvete, Juan J

    2009-01-30

    Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large

  13. Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae and determination of its disulfide bonding pattern.

    PubMed

    Nagao, Junya; Miyashita, Masahiro; Nakagawa, Yoshiaki; Miyagawa, Hisashi

    2015-08-01

    La1 is a 73-residue cysteine-rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N-acylurea approach with Fmoc-SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom.

  14. Scorpions from Mexico: From Species Diversity to Venom Complexity

    PubMed Central

    Santibáñez-López, Carlos E.; Francke, Oscar F.; Ureta, Carolina; Possani, Lourival D.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  15. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    PubMed

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2015-12-24

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.

  16. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  17. The effect of venom skin testing on venom RAST titers.

    PubMed

    Green, R L; Levine, M I

    1982-03-01

    Venom RAST titers were measured in 20 insect-sensitive patients before and two to three weeks after skin testing with insect venoms to determine whether venom testing might cause a rise in venom IgE titers. No significant rise in venom-specific RAST titers for honey bee, wasp and yellow jacket venoms was observed.

  18. Snake Venom: Any Clue for Antibiotics and CAM?

    PubMed Central

    2005-01-01

    Lately several naturally occurring peptides presenting antimicrobial activity have been described in the literature. However, snake venoms, which are an enormous source of peptides, have not been fully explored for searching such molecules. The aim of this work is to review the basis of antimicrobial mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore, it includes (i) a description of the constituents of the snake venoms involved in their main biological effects during the envenomation process; (ii) examples of snake venom molecules of commercial use; (iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics and complementary and alternative medicine (CAM). PMID:15841277

  19. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom.

    PubMed

    Duzzi, Bruno; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Kodama, Roberto Tadashi; Gozzo, Fabio Cesar; Fioramonte, Mariana; Tambourgi, Denise Vilarinho; Portaro, Fernanda Vieira; Rioli, Vanessa

    2016-06-01

    The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.

  20. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    PubMed

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species.

  1. The humoral immune response induced by snake venom toxins.

    PubMed

    da Silva, Wilmar Dias; Tambourgi, Denise V

    2011-10-01

    This review summarizes the key contributions to our knowledge regarding the immune response induced by snake venom toxins, focusing particularly on the production of antibodies and their venom-neutralizing effects. We cover the past and present state of the art of anti-snake venom production, followed by an overview of the venomous snakes and their venoms. The toxic properties of relevant snake venom toxins are approached in some details, with particular emphasis on the molecular domains responsible for binding to cells or plasma components in victims. The interactions of these domains are also reviewed, particularly the putatively relevant epitopes, along with the immune system and the resulting antibodies. We also review trials aimed at reducing the quantities of non-relevant antibodies in the antivenoms by substituting whole venoms with purified toxins to immunize animals, or the immunogenicity of the heterologous antivenom antibodies by humanizing their molecules.

  2. Proteomic interrogation of venom delivery in marine cone snails: novel insights into the role of the venom bulb.

    PubMed

    Safavi-Hemami, Helena; Young, Neil D; Williamson, Nicholas A; Purcell, Anthony W

    2010-11-05

    Cone snails of the genus Conus are predatory marine gastropods mainly found in the shallow waters of the tropics and warm temperate seas. To prey on other marine organisms including fish, cone snails have evolved complex venoms synthesized and delivered by a highly sophisticated venom apparatus. Upon prey discovery, the venom is perfused through a harpoon-like radula tooth and rapidly injected into the prey to cause paralysis. While the venom components of cone snails have been intensively characterized, the mechanism of venom translocation and loading prior to and during injection remains elusive. The involvement of the venom bulb, a muscular dilation of the venom gland has been suggested, however evidence is sparse. Here, we use a combination of proteomics, molecular biology, and morphological examination to elucidate the potential role of the venom bulb in venom translocation and delivery. Analysis of the venom bulb proteome clearly demonstrated a function of this organ in muscular movement and, more interestingly, in burst muscle contraction. Morphological examination revealed high structural similarities to the mantle muscle of squids, animals known for their rapid escape response. We sequenced and further characterized arginine kinase, a key protein of rapid muscular movement in invertebrates and show high concentrations of this enzyme in the bulb when compared to the venom gland and the foot muscle. Proteins characteristic for venom biosynthesis were low in abundance. On the basis of our findings, we suggest that the bulb of cone snails is a highly specialized organ of venom translocation. Delivery of venom is driven by burst contractions of the bulb rapidly forcing the venom through the radula tooth into the prey.

  3. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles.

    PubMed

    Park, Min-Ho; Kim, Ju-Heon; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Cho, Cheong-Weon

    2015-08-18

    It is known that allergic people was potentially vulnerable to bee venom (BV), which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT) and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide) (PLGA) has been broadly studied as a carrier for drug delivery systems (DDS) of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs). The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  4. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution.

    PubMed

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-03-10

    Alzheimer's disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD's neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer's Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ-Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD.

  5. Production of Recombinant Alpha Neurotoxin of Scorpion Venom Mesobuthus eupeus and Analysis of its Immunogenicity

    PubMed Central

    Eskandari, Ghafar; Jolodar, Abbas; Seyfiabad Shapouri, Masoud Reza; Bahmainmehr, Ardeshir; Navidpour, Shahrokh

    2014-01-01

    Background: Scorpion venom is important and rich source of peptides, most of which have been widely used as pharmacological tools for unraveling structure-function relationship of various ion channels. Naturally occurring toxins can be also considered as lead compounds in the development of novel drugs. Objectives: In this context, the scorpion-derived peptide neurotoxins specific to sodium channels have shown promise as potential therapeutic targets for the treatment of various human diseases. Materials and Methods: A cDNA library from the extracted RNA was constructed using RT-PCR and semi-nested RT-PCR. DNA sequencing followed by phylogenetic analysis was applied to screen the cDNA library clones. For molecular characterization of the BMK gene we used cloning and recombinant protein expression techniques based on E.coli systems. Then we performed mice immunization and Western blot and Immunodot analyses. Results: A novel BMK neurotoxin has been cloned, expressed and characterized from the Iranian scorpion M. eupeus venom. We analyzed the recombinant BMK by immunoblotting with treated antiserum. The result showed that mice antiserum can react also with scorpion crude venom, so is able to recognize native BMK toxin. Conclusion: The newly produced recombinant protein BMK revealed to be immunogenic. Moreover, anti-BMK antibodies produced in mice were able to recognize both the recombinant BMK neurotoxin and the one in M. eupeus crude venome. Taken together, the molecular characterization and recombinant production of the Iranian scorpion M. eupeus venom component can serve as a new probe for further studies of sodium channels function and physiology. This provides a promising perspective for the future design of selective drugs, as well as for research of antivenom production. PMID:24719721

  6. Venom on ice: first insights into Antarctic octopus venoms.

    PubMed

    Undheim, E A B; Georgieva, D N; Thoen, H H; Norman, J A; Mork, J; Betzel, C; Fry, B G

    2010-11-01

    The venom of Antarctic octopus remains completely unstudied. Here, a preliminary investigation was conducted into the properties of posterior salivary gland (PSG) extracts from four Antarctica eledonine (Incirrata; Octopodidae) species (Adelieledone polymorpha, Megaleledone setebos, Pareledone aequipapillae, and Pareledone turqueti) collected from the coast off George V's Land, Antarctica. Specimens were assayed for alkaline phosphatase (ALP), acetylcholinesterase (AChE), proteolytic, phospholipase A(2) (PLA(2)), and haemolytic activities. For comparison, stomach tissue from Cirroctopus sp. (Cirrata; Cirroctopodidae) was also assayed for ALP, AChE, proteolytic and haemolytic activities. Dietary and morphological data were collected from the literature to explore the ecological importance of venom, taking an adaptive evolutionary approach. Of the incirrate species, three showed activities in all assays, while P. turqueti did not exhibit any haemolytic activity. There was evidence for cold-adaptation of ALP in all incirrates, while proteolytic activity in all except P. turqueti. Cirroctopus sp. stomach tissue extract showed ALP, AChE and some proteolytic activity. It was concluded that the AChE activity seen in the PSG extracts was possibly due to a release of household proteins, and not one of the secreted salivary toxins. Although venom undoubtedly plays an important part in prey capture and processing by Antarctica eledonines, no obvious adaptations to differences in diet or morphology were apparent from the enzymatic and haemolytic assays. However, several morphological features including enlarged PSG, small buccal mass, and small beak suggest such adaptations are present. Future studies should be conducted on several levels: Venomic, providing more detailed information on the venom compositions as well as the venom components themselves; ecological, for example application of serological or genetic methods in identifying stomach contents; and behavioural

  7. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  8. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    PubMed Central

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M.; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-01-01

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. PMID:26025559

  9. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    PubMed

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  10. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components.

    PubMed

    Voigt, Jürgen; Janek, Katharina; Textoris-Taube, Kathrin; Niewienda, Agathe; Wöstemeyer, Johannes

    2016-02-01

    Essential precursors of the cocoa-specific aroma notes are formed during fermentation of the cocoa beans by acid-induced proteolysis. It has been shown that, in addition to free amino acids, hydrophilic peptides derived from the vicilin-class(7S) globular storage protein are required for the generation of the cocoa-specific aroma notes during the roasting process. To identify those peptides responsible for the generation of the cocoa-specific aroma components, we have developed a procedure for the fractionation of the aroma precursor extract from well-fermented cocoa beans by ligand-exchange and subsequent Sephadex-LH20 chromatography. The cocoa-specific aroma precursor fractions were characterised by matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and the determination of their amino acid sequences by electrospray ionisation mass spectrometry (ESI-MS/MS).

  11. Venom Proteins from Parasitoid Wasps and Their Biological Functions

    PubMed Central

    Moreau, Sébastien J. M.; Asgari, Sassan

    2015-01-01

    Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies. PMID:26131769

  12. Venom Proteins from Parasitoid Wasps and Their Biological Functions.

    PubMed

    Moreau, Sébastien J M; Asgari, Sassan

    2015-06-26

    Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies.

  13. Peptidomic and transcriptomic profiling of four distinct spider venoms

    PubMed Central

    Oldrati, Vera; Koua, Dominique; Allard, Pierre-Marie; Hulo, Nicolas; Arrell, Miriam; Nentwig, Wolfgang; Lisacek, Frédérique; Wolfender, Jean-Luc; Kuhn-Nentwig, Lucia; Stöcklin, Reto

    2017-01-01

    Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae), Poecilotheria formosa (Theraphosidae), Viridasius fasciatus (Viridasiidae) and Latrodectus mactans (Theridiidae). This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK) structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins), revealed the presence of 14 cysteine rich

  14. Hymenoptera venom allergy in humans.

    PubMed

    Cichocka-Jarosz, Ewa

    2012-01-01

    Reactions to Hymenoptera stings may appear as local or systemic responses. According to European data, the incidence of systemic reactions to Hymenoptera stings in the general population is 0.3-7.5%, with the value being 0.3-0.8% in children and 14-43% in beekeepers. The most common systemic allergic (anaphylactic) reactions are caused by honeybees (Apis mellifera), and certain species of wasps in the family Vespidae. Severe generalized immediate-type allergic (anaphylactic) reactions to insect stings are of the highest clinical importance. They affect skin, gastrointestinal tract, respiratory and cardiovascular system. The classification of severity of anaphylactic reaction following insect stings is based on the 4-grade Mueller scale. Crucial in patomechanism of anaphylaxis are specific IgE antibodies directed against the components of the venom, which mediate the activation of mast cells, the main effector cells of anaphylaxis. Therapeutic management in insect venom allergy should be considered in the context of prophylaxis, intervention in case symptoms develop, prevention in the form of venom specific immunotherapy (VIT). There are two steps of VIT 1. Initial dose venom immunotherapy (given according to four protocols which differ the time to reach the maintenance dose) 2. Maintenance dose VIT, usually equal 100 µg. Standard treatment time should span 3-5 years. The main mechanisms of immune tolerance that are initiated by VIT are associated with: 1. a decreased reactivity of effector cells, 2. expansion of T regulatory lymphocytes with IL-10 expression. Therapeutic effectiveness amounts to 90-100% in wasp venom allergy and approximately 80% in bee venom allergy.

  15. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom.

    PubMed

    Collaço, Rita de Cássia O; Randazzo-Moura, Priscila; Tamascia, Mariana L; da Silva, Igor Rapp F; Rocha, Thalita; Cogo, José C; Hyslop, Stephen; Sanny, Charles G; Rodrigues-Simioni, Léa

    2017-01-01

    In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA2, proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai.

  16. Allergies to Insect Venom

    MedlinePlus

    Allergies To Insect Venom Facts About Allergies The tendency to develop allergies may be inherited. If you have allergic tendencies and ... lives of those who are sensitive to it...insect venom! Although less common than pollen allergy, insect ...

  17. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics.

    PubMed

    Escano, Jerome; Stauffer, Byron; Brennan, Jacob; Bullock, Monica; Smith, Leif

    2014-12-01

    Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes.

  18. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle.

    PubMed

    Friedel, T; Nentwig, W

    1989-01-01

    Immobilizing and lethal effects of the venoms obtained from six spider species (Brachypelma albopilosum, Atrax robustus, Cupiennius salei, Selenops mexicanus, Tegenaria atrica, Argiope bruennichi) were tested on Blatta orientalis (cockroach) and Tenebrio molitor (common mealbeetle). The immobilizing effects were quantified by measuring insect locomotor activity in circle arenas observed over 72 hr after venom injection. Both insect species showed cramps, quivering and jerking of the limbs as well as flaccid paralysis after venom injection. Through relative toxicity of the venoms tested is the same in T. molitor and B. orientalis, T. molitor is absolutely less sensitive to spider venoms. The effects on locomotor activity show time characteristics specific for each venom. A dependence of the venom paralyzing effects on insect locomotor activity, low intensity of the initial excitatory phase of the venom effects and partial recovery of the insects was found with A. bruennichi and T. atrica venom. The maximal venom yields of A. bruennichi and S. mexicanus are not lethal to B. orientalis, indicating that the mere immobilizing effects of spider venoms are far more crucial to prey capture than their lethal effects. The contribution of a variety of differently acting neurotoxic components in spider venoms to the observed venom effects on insects and the significance of the venoms in spider nutrition, hunting behaviour and ecology are discussed.

  19. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    PubMed

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  20. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  1. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    PubMed

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms.

  2. A comparative study of the molecular composition and electrophysiological activity of the venoms from two fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous.

    PubMed

    Li, Jiayan; Li, Dan; Zhang, Fan; Wang, Hengyun; Yu, Hai; Liu, Zhonghua; Liang, Songping

    2014-06-01

    Dolomedes mizhoanus and Dolomedes sulfurous are two venomous spiders found in the same area in southern China and are characterized by living in water plants and feeding on fish. In this study, the chemical compositions and activities of these venoms were compared. Both venoms contain hundreds of peptides as shown by off-line RP-HPLC/MALDI-TOF-MS analysis, but have a different peptide distribution, with D. mizhoanus venom containing fewer high molecular mass (7000-9000 Da) peptides (3%) than D. sulfurous venom (25.6%). Patch-clamp analyses showed that both venoms inhibited voltage-activated Na(+), K(+) and Ca(2+) channels in rat DRG neurons, however, differences in their inhibitory effects were observed. In general, D. mizhoanus venom had lower inhibitory activity than D. sulfurous venom and both venoms had a different inhibitory spectrum against these ion channels, showing that both venoms are useful for identifying antagonists to them. In addition, intrathoracic injection of both venoms caused severe neurotoxic effects in zebrafish and death at higher concentrations, respectively. Considering that both spiders belong to the same genus, live in the same area and have similar habits, elucidation of the differences between the peptide toxins from both venoms would provide new molecular insights into the evolution of spider peptides.

  3. Cotiarinase is a novel prothrombin activator from the venom of Bothrops cotiara.

    PubMed

    Kitano, Eduardo S; Garcia, Thalita C; Menezes, Milene C; Tashima, Alexandre K; Zelanis, André; Serrano, Solange M T

    2013-08-01

    Snake venom serine proteinases (SVSPs) may affect hemostatic pathways by specifically activating components involved in coagulation, fibrinolysis and platelet aggregation or by unspecific proteolytic degradation. In this study, we purified and characterized an SVSP from Bothrops cotiara venom, named cotiarinase, which generated thrombin upon incubation with prothrombin. Cotiarinase was isolated by a two-step procedure including gel-filtration and cation-exchange chromatographies and showed a single protein band with a molecular mass of 29 kDa by SDS-polyacrylamide gel electrophoresis under reducing conditions. Identification of cotiarinase by mass spectrometric analysis revealed peptides that matched sequences of viperid SVSPs. Cotiarinase did not show fibrinogen-clotting, platelet-aggregating, fibrinogenolytic and factor X activating activities. Upon incubation with prothrombin the generation of thrombin was detected using the peptide substrate d-Phe-Pip-Arg-pNA. Moreover, mass spectrometric identification of prothrombin fragments generated by cotiarinase in the absence of co-factors (phospholipids, factor Va, factor Xa and Ca(2+) ions), indicated the limited proteolysis of this protein to release prothrombin 1, fragment 1 and thrombin. Cotiarinase is a novel SVSP that acts on prothrombin to release active thrombin that does not match any group of the current classification of snake venom prothrombin activators.

  4. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus).

    PubMed

    Segura, Álvaro; Herrera, María; Reta Mares, Francisco; Jaime, Claudia; Sánchez, Andrés; Vargas, Mariángela; Villalta, Mauren; Gómez, Aarón; Gutiérrez, José María; León, Guillermo

    2017-03-31

    The venom of the Mexican west-coast rattlesnake (Crotalus basiliscus) was characterized for its protein composition, toxicological profile and immunogenic properties. This venom is composed of 68% Zn(2+)-dependent metalloproteinases (SVMPs), 14% phospholipases A2 (PLA2s), 11% serine proteinases, 4% SVMPs-inhibitor tripeptides (SVMP-ITs), 2% bradykinin-potentiating peptides (BPPs), 0.6% cysteine-rich secretory proteins (CRISPs), and 0.2% l-amino acid oxidases (LAAOs). SVMPs present in the venom are responsible for azocasein hydrolysis and hemorrhagic activity, but their contribution to the lethal activity of the venom in mice is masked by the neurotoxic activity of PLA2s, which in addition are also responsible for myotoxic activity. Despite its relatively high content of serine proteinases, the venom of C. basiliscus did not exert in vitro coagulant or in vivo defibrinogenating activities. The ability of antivenoms raised against the venoms of C. basiliscus and C. simus (from Costa Rica) to neutralize homologous and heterologous venoms revealed antigenic similarities between toxins of both venoms. Preclinical evaluation of an antivenom produced by using the venom of C. basiliscus as immunogen demonstrated that it is able to neutralize not only the most relevant toxic activities of C. basiliscus venom, but also those exerted by Costa Rican C. simus venom, including coagulant and defibrinogenating activities.

  5. Early evolution of the venom system in lizards and snakes.

    PubMed

    Fry, Bryan G; Vidal, Nicolas; Norman, Janette A; Vonk, Freek J; Scheib, Holger; Ramjan, S F Ryan; Kuruppu, Sanjaya; Fung, Kim; Hedges, S Blair; Richardson, Michael K; Hodgson, Wayne C; Ignjatovic, Vera; Summerhayes, Robyn; Kochva, Elazar

    2006-02-02

    Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.

  6. Antibacterial properties of KwaZulu natal snake venoms.

    PubMed

    Blaylock, R S

    2000-11-01

    The objective was to ascertain whether local snake venoms have antibacterial properties. The venoms of the common night adder (Causus rhombeatus), gaboon adder (Bitis gabonica), puff adder (Bitis arietans), black mamba (Dendroaspis polylepis), eastern green mamba (Dendroaspis augusticeps), forest cobra (Naja melanoleuca), snouted cobra (Naja annulifera) and Mozambique spitting cobra (Naja mossambica) were collected and, by gel diffusion, tested against the bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeriginosa, Bacteriodes fragilis, Bacteroides intermedius, Clostridium sordellii and Clostridium perfringens. All snake venoms showed antibacterial activity, with the adders showing most activity against the aerobes while the cobras showed lesser, but equal activity against the aerobes and anaerobes. Black mamba venom only showed activity against C. perfringens. In conclusion, local snake venoms have antibacterial properties which are dependent on the venom and bacterial type; and in the Naja spp., for anaerobic bacteria, diminish in winter. There is liable to be more than one toxin component responsible.

  7. Integrative approach reveals composition of endoparasitoid wasp venoms.

    PubMed

    Goecks, Jeremy; Mortimer, Nathan T; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A

    2013-01-01

    The fruit fly Drosophila melanogaster and its endoparasitoid wasps are a developing model system for interactions between host immune responses and parasite virulence mechanisms. In this system, wasps use diverse venom cocktails to suppress the conserved fly cellular encapsulation response. Although numerous genetic tools allow detailed characterization of fly immune genes, lack of wasp genomic information has hindered characterization of the parasite side of the interaction. Here, we use high-throughput nucleic acid and amino acid sequencing methods to describe the venoms of two related Drosophila endoparasitoids with distinct infection strategies, Leptopilina boulardi and L. heterotoma. Using RNA-seq, we assembled and quantified libraries of transcript sequences from female wasp abdomens. Next, we used mass spectrometry to sequence peptides derived from dissected venom gland lumens. We then mapped the peptide spectral data against the abdomen transcriptomes to identify a set of putative venom genes for each wasp species. Our approach captured the three venom genes previously characterized in L. boulardi by traditional cDNA cloning methods as well as numerous new venom genes that were subsequently validated by a combination of RT-PCR, blast comparisons, and secretion signal sequence search. Overall, 129 proteins were found to comprise L. boulardi venom and 176 proteins were found to comprise L. heterotoma venom. We found significant overlap in L. boulardi and L. heterotoma venom composition but also distinct differences that may underlie their unique infection strategies. Our joint transcriptomic-proteomic approach for endoparasitoid wasp venoms is generally applicable to identification of functional protein subsets from any non-genome sequenced organism.

  8. Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes

    PubMed Central

    Chaim, Olga Meiri; Trevisan-Silva, Dilza; Chaves-Moreira, Daniele; Wille, Ana Carolina M.; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Mangili, Oldemir Carlos; da Silveira, Rafael Bertoni; Gremski, Luiza Helena; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2011-01-01

    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins. PMID:22069711

  9. The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus).

    PubMed

    Yang, Daryl C; Deuis, Jennifer R; Dashevsky, Daniel; Dobson, James; Jackson, Timothy N W; Brust, Andreas; Xie, Bing; Koludarov, Ivan; Debono, Jordan; Hendrikx, Iwan; Hodgson, Wayne C; Josh, Peter; Nouwens, Amanda; Baillie, Gregory J; Bruxner, Timothy J C; Alewood, Paul F; Lim, Kelvin Kok Peng; Frank, Nathaniel; Vetter, Irina; Fry, Bryan G

    2016-10-18

    Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which exists in myriad points along an evolutionary continuum. Neofunctionalisation of toxins is facilitated by positive selection at functional hotspots on the ancestral protein and venom proteins have undergone dynamic diversification in helodermatid and varanid lizards as well as advanced snakes. A spectacular point on the venom system continuum is the long-glanded blue coral snake (Calliophis bivirgatus), a specialist feeder that preys on fast moving, venomous snakes which have both a high likelihood of prey escape but also represent significant danger to the predator itself. The maxillary venom glands of C. bivirgatus extend one quarter of the snake's body length and nestle within the rib cavity. Despite the snake's notoriety its venom has remained largely unstudied. Here we show that the venom uniquely produces spastic paralysis, in contrast to the flaccid paralysis typically produced by neurotoxic snake venoms. The toxin responsible, which we have called calliotoxin (δ-elapitoxin-Cb1a), is a three-finger toxin (3FTx). Calliotoxin shifts the voltage-dependence of NaV1.4 activation to more hyperpolarised potentials, inhibits inactivation, and produces large ramp currents, consistent with its profound effects on contractile force in an isolated skeletal muscle preparation. Voltage-gated sodium channels (NaV) are a particularly attractive pharmacological target as they are involved in almost all physiological processes including action potential generation and conduction. Accordingly, venom peptides that interfere with NaV function provide a key defensive and predatory advantage to a range of invertebrate venomous

  10. Venomics: integrative venom proteomics and beyond.

    PubMed

    Calvete, Juan J

    2017-02-20

    Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.

  11. Cone snail venomics: from novel biology to novel therapeutics.

    PubMed

    Prashanth, Jutty Rajan; Brust, Andreas; Jin, Ai-Hua; Alewood, Paul F; Dutertre, Sébastien; Lewis, Richard J

    2014-10-01

    Peptide neurotoxins from cone snails called conotoxins are renowned for their therapeutic potential to treat pain and several neurodegenerative diseases. Inefficient assay-guided discovery methods have been replaced by high-throughput bioassays integrated with advanced MS and next-generation sequencing, ushering in the era of 'venomics'. In this review, we focus on the impact of venomics on the understanding of cone snail biology as well as the application of venomics to accelerate the discovery of new conotoxins. We also discuss the continued importance of medicinal chemistry approaches to optimize conotoxins for clinical use, with a descriptive case study of MrIA featured.

  12. Analysis of scorpion venom composition by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  13. Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms.

    PubMed

    Violette, Aude; Leonardi, Adrijana; Piquemal, David; Terrat, Yves; Biass, Daniel; Dutertre, Sébastien; Noguier, Florian; Ducancel, Frédéric; Stöcklin, Reto; Križaj, Igor; Favreau, Philippe

    2012-02-01

    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms ("injectable venom" stands for the venom variety obtained by milking of the snails. This is in contrast to the "dissected venom", which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.

  14. Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera

    PubMed Central

    Wang, He; Chen, Xiaole; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Secretory phospholipase A2 (sPLA2) is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each) from the venoms of the Western bush viper (Atheris chlorechis), the Great Lakes bush viper (Atheris nitschei) and the Variable bush viper (Atheris squamigera), using a “shotgun cloning” strategy. Open-reading frames of respective cloned cDNAs contained putative 16 residue signal peptides and mature proteins composed of 121 to 123 amino acid residues. Alignment of mature protein sequences revealed high degrees of structural conservation and identity with Group II venom PLA2 proteins from other taxa within the Viperidae. Reverse-phase High Performance Liquid Chromatography (HPLC) profiles of these three snake venoms were obtained separately and chromatographic fractions were assessed for phospholipase activity using an egg yolk suspension assay. The molecular masses of mature proteins were all identified as approximately 14 kDa. Mass spectrometric analyses of the fractionated oligopeptides arising from tryptic digestion of intact venom proteins, was performed for further structural characterization. PMID:27258312

  15. Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata.

    PubMed

    Aili, Samira R; Touchard, Axel; Petitclerc, Frédéric; Dejean, Alain; Orivel, Jérôme; Padula, Matthew P; Escoubas, Pierre; Nicholson, Graham M

    2017-03-03

    Ants have evolved venoms rich in peptides and proteins used for predation, defense, and communication. However, they remain extremely understudied due to the minimal amount of venom secreted by each ant. The present study investigated the differences in the proteome and peptidome of the venom from the bullet ant, Paraponera clavata. Venom samples were collected from a single colony either by manual venom gland dissection or by electrical stimulation and were compared using proteomic methods. Venom proteins were separated by 2D-PAGE and identified by nanoLC-ESI-QTOF MS/MS. Venom peptides were initially separated using C18 reversed-phase high-performance liquid chromatography, then analyzed by MALDI-TOF MS. The proteomic analysis revealed numerous proteins that could be assigned a biological function (total 94), mainly as toxins, or roles in cell regulation and transport. This investigation found that ca. 73% of the proteins were common to venoms collected by the two methods. The peptidomic analysis revealed a large number of peptides (total 309) but with <20% shared by the two collection methods. There was also a marked difference between venoms obtained by venom gland dissection from different ant colonies. These findings demonstrate the rich composition and variability of P. clavata venom.

  16. In Vitro and In Vivo Evaluation of Polyherbal Formulation against Russell's Viper and Cobra Venom and Screening of Bioactive Components by Docking Studies

    PubMed Central

    Sakthivel, G.; Dey, Amitabha; Nongalleima, Kh.; Chavali, Murthy; Rimal Isaac, R. S.; Singh, N. Surjit; Deb, Lokesh

    2013-01-01

    The present study emphasizes to reveal the antivenom activity of Aristolochia bracteolata Lam., Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. which were evaluated against venoms of Daboia russelli russelli (Russell's viper) and Naja naja (Indian cobra). The aqueous extracts of leaves and roots of the above-mentioned plants and their polyherbal (1 : 1 : 1) formulation at a dose of 200 mg/kg showed protection against envenomed mice with LD50 doses of 0.44 mg/kg and 0.28 mg/kg against Russell's viper and cobra venom, respectively. In in vitro antioxidant activities sample extracts showed free radical scavenging effects in dose dependent manner. Computational drug design and docking studies were carried out to predict the neutralizing principles of type I phospholipase A2 (PLA2) from Indian common krait venom. This confirmed that aristolochic acid and leucasin can neutralize type I PLA2 enzyme. Results suggest that these plants could serve as a source of natural antioxidants and common antidote for snake bite. However, further studies are needed to identify the lead molecule responsible for antidote activity. PMID:23533518

  17. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.

    PubMed

    Schmitt, Paulina; Rosa, Rafael D; Destoumieux-Garzón, Delphine

    2016-05-01

    Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  18. Animal Venoms as a Source of Natural Antimicrobials: An overview.

    PubMed

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina Hk

    2017-03-10

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin is not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens.

  19. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression

    PubMed Central

    McCowan, Caryn; Garb, Jessica E.

    2014-01-01

    Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (L. geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin’s placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods. PMID:24316130

  20. Cone snail milked venom dynamics--a quantitative study of Conus purpurascens.

    PubMed

    Chun, Joycelyn B S; Baker, Margaret R; Kim, Do H; Leroy, Majdouline; Toribo, Priamo; Bingham, Jon-Paul

    2012-07-01

    Milked venom from cone snails represent a novel biological resource with a proven track record for drug discovery. To strengthen this correlation, we undertook a chromatographic and mass spectrometric study of individual milked venoms from Conus purpurascens. Milked venoms demonstrate extensive peptide differentiation amongst individual specimens and during captivity. Individual snails were found to lack a consistent set of described conopeptides, but instead demonstrated the ability to change venom expression, composition and post-translational modification incorporation; all variations contribute to an increase in chemical diversity and prey targeting strategies. Quantitative amino acid analysis revealed that milked venom peptides are expressed at ranges up to 3.51-121.01 μM within single milked venom samples. This provides for a 6.37-20,965 fold-excess of toxin to induce apparent IC₅₀ for individual conopeptides identified in this study. Comparative molecular mass analysis of duct venom, milked venom and radula tooth extracts from single C. purpurascens specimens demonstrated a level of peptide continuity. Numerous highly abundant and unique conopeptides remain to be characterized. This study strengthens the notion that approaches in conopeptide drug lead discovery programs will potentially benefit from a greater understanding of the toxinological nature of the milked venoms of Conus.

  1. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

    PubMed Central

    Atkinson, Darcy J; Naysmith, Briar J; Furkert, Daniel P

    2016-01-01

    Rising resistance to current clinical antibacterial agents is an imminent threat to global public health and highlights the demand for new lead compounds for drug discovery. One such potential lead compound, the peptide antibiotic teixobactin, was recently isolated from an uncultured bacterial source, and demonstrates remarkably high potency against a wide range of resistant pathogens without apparent development of resistance. A rare amino acid residue component of teixobactin, enduracididine, is only known to occur in a small number of natural products that also possess promising antibiotic activity. This review highlights the presence of enduracididine in natural products, its biosynthesis together with a review of analogues of enduracididine. Reported synthetic approaches to the cyclic guanidine structure of enduracididine are discussed, illustrating the challenges encountered to date in the development of efficient synthetic routes to facilitate drug discovery efforts inspired by the discovery of teixobactin. PMID:28144300

  2. Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome

    PubMed Central

    Chatterjee, Sanjay; Ghosal, Samit; Chatterjee, Saurav

    2016-01-01

    Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome. PMID:27795818

  3. Modern trends in animal venom research - omics and nanomaterials

    PubMed Central

    Utkin, Yuri N

    2017-01-01

    Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a long time. The traditional reductionist approach has been to isolate individual toxins and then study their structure and function. Unfortunately, the characterization of the venom as a whole system and its multiple effects on an entire organism were not possible until recent times. The development of new methods in mass spectrometry and sequencing have allowed such characterizations of venom, encompassing the identification of new toxins present in venoms at extremely low concentrations to changes in metabolism of prey organisms after envenomation. In particular, this type of comprehensive research has become possible due to the development of the various omics technologies: Proteomics, peptidomics, transcriptomics, genomics and metabolomics. As in other research fields, these omics technologies ushered in a revolution for venom studies, which is now entering the era of big data. Nanotechnology is a very new branch of technology and developing at an extremely rapid pace. It has found application in many spheres and has not bypassed the venom studies. Nanomaterials are quite promising in medicine, and most studies combining venoms and nanomaterials are dedicated to medical applications. Conjugates of nanoparticles with venom components have been proposed for use as drugs or diagnostics. For example, nanoparticles conjugated with chlorotoxin - a toxin in scorpion venom, which has been shown to bind specifically to glioma cells - are considered as potential glioma-targeted drugs, and conjugates of neurotoxins with fluorescent semiconductor nanoparticles or quantum dots may be used to detect endogenous targets expressed in live cells. The data on application of omics and

  4. Pipa carvalhoi skin secretion profiling: absence of peptides and identification of kynurenic acid as the major constitutive component.

    PubMed

    Mariano, Douglas Oscar Ceolin; Yamaguchi, Lydia Fumiko; Jared, Carlos; Antoniazzi, Marta Maria; Sciani, Juliana Mozer; Kato, Massuo Jorge; Pimenta, Daniel Carvalho

    2015-01-01

    The presence of peptides has been identified in all African pipid genera; nevertheless, little is known about skin secretion of South American frog genus Pipa. Skin secretion from captive and wild Pipa carvalhoi were obtained in the presence or absence of norepinephrine stimulation. The <10 kDa fraction was analyzed by liquid chromatography and mass spectrometry, searching for peptides. Chromatographic profiles show the presence of a major component in this secretion, regardless of the stimulation method (norepinephrine or mechanical stimulation) and the origin of the animal (captivity or wild), as well as in the absence of any stimulus. The general mass distribution profile in P. carvalhoi skin secretion shows numerous components below 800 Da. Moreover, no peptide could be identified, regardless of the chromatographic approach. The major component was purified and identified as kynurenic acid, an L-tryptophan derivative. P. carvalhoi does not secrete peptides as toxins in its skin. In addition, we here report that kynurenic acid is the main component of P. carvalhoi skin secretion. Although no biological activity was associated with kynurenic acid, we propose that this molecule is a pheromone that signals the presence of a co-specific in the shady environment in which this animal lives. In this study we demonstrate the absence of peptidic toxins in the skin secretion of P. carvalhoi, a break of paradigm in the pipid family.

  5. [Use of medicinal plants against scorpionic and ophidian venoms].

    PubMed

    Memmi, A; Sansa, G; Rjeibi, I; El Ayeb, M; Srairi-Abid, N; Bellasfer, Z; Fekhih, A

    2007-01-01

    The scorpionic and ophidian envenomations are a serious public health problem in Tunisia especially in Southeastern regions. In these regions Artemisia campestris L is a plant well known which has a very important place in traditional medicine for its effectiveness against alleged venom of scorpions and snakes. In this work, we tested for the first time, the anti-venomous activity of Artemisia campestris L against the scorpion Androctonus australis garzonii and the viper Macrovipera lebetina venoms. Assays were conducted by fixing the dose of extract to3 mg/mouse while doses of venom are variable. The leaves of Artemisia campestris L were extracted by various organic solvents (Ether of oil, ethyl acetate, methanol and ethanol) and each extract was tested for its venom neutralizing capacity. For the ethanolic extract, a significant activity with respect to the venoms of scorpion Androctonus australis garzonii (Aag), was detected. Similarly, a significant neutralizing activity against the venom of a viper Macrovipera lebetina (Ml), was obtained with the dichloromethane extract. These results suggest the presence of two different type of chemical components in this plant: those neutralizing the venom of scorpion are soluble in ethanol whereas those neutralizing the venom of viper are soluble in dichloromethane.

  6. Proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae).

    PubMed

    Zhu, Jia-Ying; Fang, Qi; Wang, Lei; Hu, Cui; Ye, Gong-Yin

    2010-09-01

    Parasitoid venom is a complex mixture of active substances with diversified biological functions. Because of its range of activities, venom is an important resource with respect to potential application in agriculture and medicine. Only a limited number of peptides, proteins, and enzymes have been identified and characterized from parasitoid venom. Here we describe a proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Venom resolved by two-dimensional electrophoresis yielded 56 protein spots with major proteins in the pI range 4-7 and molecular mass range of 25-66.2 kDa. The amino acid sequences of the proteins were identified by mass spectrometry. Several venom proteins such as calreticulin, venom acid phosphatase, serine protease, arginine kinase, serine protease homolog, aminotransferase-like venom protein, and heat shock protein 70, were identified in silico based on their amino acid sequences. The full-length cDNAs of calreticulin and arginine kinase were cloned. Calreticulin showed 62% identity with calreticulin in the venom of Cotesia rubecula. Arginine kinase showed a high level of sequence identity (92%) with its counterpart in the venom of Cyphononyx dorsalis. RT-PCR analysis revealed that the transcript levels of calreticulin and arginine kinase were developmentally changed, suggesting a possible correlation with the oviposition process. This study contributes to our appreciation of a parasitoid wasp venom composition.

  7. Identification and characterization of venom proteins of two solitary wasps, Eumenes pomiformis and Orancistrocerus drewseni.

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock

    2010-09-15

    Secretory proteins were identified in the venoms of two solitary hunting wasps, Eumenes pomiformis and Orancistrocerus drewseni, by SDS-PAGE in conjunction with mass analysis. More than 30 protein bands (2-300 kDa) were detected from the crude venom of each wasp. With the aid of the previously constructed venom gland/sac-specific EST libraries, a total of 31 and 20 proteins were identified from 18 to 20 distinctive protein bands of E. pomiformis and O. drewseni venoms, respectively. Arginine kinase was the most predominant protein in both wasp venoms. Along with the full-length arginine kinase, a truncated form, which was known to have paralytic activity on a spider, was a common predominant protein in the two wasp venoms. Insulin/insulin-like peptide-binding protein was abundantly found only in E. pomiformis venom, which might be due to its unique behaviors of oviposition and provision. The presence of various immune response-related proteins and antioxidants suggested that wasps might use their venom to maintain prey fresh while feeding wasp larvae by protecting the prey from microbial invasion and physiological stresses. It seemed that some venom proteins are secreted into venom fluid from venom gland cells via exosomes, not by signal sequence-mediated transport processes.

  8. General biochemical and immunological characteristics of the venom from Peruvian scorpion Hadruroides lunatus.

    PubMed

    Costal-Oliveira, F; Duarte, C G; Machado de Avila, R A; Melo, M M; Bordon, K C F; Arantes, E C; Paredes, N C; Tintaya, B; Bonilla, C; Bonilla, R E; Suarez, W S; Yarleque, A; Fernandez, J M; Kalapothakis, E; Chávez-Olórtegui, Carlos

    2012-10-01

    This communication describes the general biochemical properties and some immunological characteristics of the venom from the Peruvian scorpion Hadruroides lunatus, which is the most medically relevant species in Peru. The soluble venom of this scorpion is toxic to mice, the LD₅₀ determined was 0.1 mg/kg and 21.55 mg/kg when the venom was injected intracranial or intraperitoneally, respectively. The soluble venom displayed proteolytic, hyaluronidasic, phospholipasic and cardiotoxic activities. High performance liquid chromatography of the soluble venom resulted in the separation of 20 fractions. Two peptides with phospholipasic activity were isolated to homogeneity and their molecular masses determined by mass spectrometry (MALDI TOF). Anti-H. lunatus venom sera were produced in rabbits. Western blotting analysis showed that most of the protein content of this venom is immunogenic. H. lunatus anti-venom displayed consistent cross-reactivity with venom antigens from the new World-scorpions Tityus serrulatus and Centruroides sculpturatus venoms; however, a weaker reactivity was observed against the venom antigens from the old World-scorpion Androctonus australis Hector.

  9. Venomous mammals: a review.

    PubMed

    Ligabue-Braun, Rodrigo; Verli, Hugo; Carlini, Célia Regina

    2012-06-01

    The occurrence of venom in mammals has long been considered of minor importance, but recent fossil discoveries and advances in experimental techniques have cast new light into this subject. Mammalian venoms form a heterogeneous group having different compositions and modes of action and are present in three classes of mammals, Insectivora, Monotremata, and Chiroptera. A fourth order, Primates, is proposed to have venomous representatives. In this review we highlight recent advances in the field while summarizing biochemical characteristics of these secretions and their effects upon humans and other animals. Historical aspects of venom discovery and evolutionary hypothesis regarding their origin are also discussed.

  10. The venom optimization hypothesis revisited.

    PubMed

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum.

  11. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    PubMed

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2015-10-01

    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality.

  12. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    PubMed Central

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  13. A strategy for the generation of specific human antibodies by directed evolution and phage display. An example of a single-chain antibody fragment that neutralizes a major component of scorpion venom.

    PubMed

    Riaño-Umbarila, Lidia; Juárez-González, Victor Rivelino; Olamendi-Portugal, Timoteo; Ortíz-León, Mauricio; Possani, Lourival Domingos; Becerril, Baltazar

    2005-05-01

    This study describes the construction of a library of single-chain antibody fragments (scFvs) from a single human donor by individual amplification of all heavy and light variable domains (1.1 x 10(8) recombinants). The library was panned using the phage display technique, which allowed selection of specific scFvs (3F and C1) capable of recognizing Cn2, the major toxic component of Centruroides noxius scorpion venom. The scFv 3F was matured in vitro by three cycles of directed evolution. The use of stringent conditions in the third cycle allowed the selection of several improved clones. The best scFv obtained (6009F) was improved in terms of its affinity by 446-fold, from 183 nm (3F) to 410 pm. This scFv 6009F was able to neutralize 2 LD(50) of Cn2 toxin when a 1 : 10 molar ratio of toxin-to-antibody fragment was used. It was also able to neutralize 2 LD(50) of the whole venom. These results pave the way for the future generation of recombinant human antivenoms.

  14. Recent Advances in Research on Widow Spider Venoms and Toxins

    PubMed Central

    Yan, Shuai; Wang, Xianchun

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  15. Morphology and ultrastructure of the venom apparatus in the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae).

    PubMed

    Zhu, Jia-Ying; Ye, Gong-Yin; Hu, Cui

    2008-10-01

    The venom apparatus of the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) was studied with light and electron microscope and was subjected to the electrophoretic and immunohistochemical analyses. Typically its venom apparatus consists of an unbranched venom gland and a venom reservoir, which is associated with a Dufour gland. The venom gland is lined by a series of secretory units. Each secretory unit comprises a secretory cell and a duct cell. The secretory cell is associated with an end apparatus to collect its secretions into the gland lumen. Secretory cells in the venom gland are characterized by extensive rough endoplasmic reticulum and numerous electron-dense vesicles in the distal and middle parts. They also exhibit several secretory granules and vacuoles. The venom reservoir presents three distinct regions: an external layer, composed by numerous fine muscle fibers; an internal layer, represented by epithelial cell with large nucleus; and an intima portion, represented by thin and uniform organization. The morphological aspect of numerous well-developed organelles responsible for protein generation observed is in agreement with the electrophoretic and immunohistochemical results which reveal that the rich proteinaceous components are present in the venom gland and venom reservoir. The venom proteins are first mainly produced in the secretory unit of venom gland, then drained to the lumen through the end apparatus, and are finally collected and stored in the venom reservoir.

  16. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    PubMed Central

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  17. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex.

    PubMed

    Sousa, Leijiane F; Nicolau, Carolina A; Peixoto, Pedro S; Bernardoni, Juliana L; Oliveira, Sâmella S; Portes-Junior, José Antonio; Mourão, Rosa Helena V; Lima-dos-Santos, Isa; Sano-Martins, Ida S; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB--soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.

  18. Unraveling the processing and activation of snake venom metalloproteinases.

    PubMed

    Portes-Junior, José A; Yamanouye, Norma; Carneiro, Sylvia M; Knittel, Paloma S; Sant'Anna, Sávio S; Nogueira, Fabio C S; Junqueira, Magno; Magalhães, Geraldo S; Domont, Gilberto B; Moura-da-Silva, Ana M

    2014-07-03

    Snake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation. Using antibodies obtained by immunization with a recombinant prodomain, bands of zymogen molecular mass and prodomain peptides were detected mostly in gland extracts all along the venom production cycle and in the venom collected from the lumen at the peak of venom production. Prodomain was detected in secretory cells mostly in the secretory vesicles near the Golgi. We hypothesize that the processing of SVMPs starts within secretory vesicles and continues in the lumen of the venom gland just after enzyme secretion and involves different steps compared to ADAMs and MMPs but can be used as a model for studying the relevance of peptides resulting from prodomain processing and degradation for controlling the activity of metalloproteinases.

  19. Anti-fungal activity of Ctn[15-34], the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin.

    PubMed

    Cavalcante, Carolina Sidrim P; Falcão, Cláudio B; Fontenelle, Raquel Os; Andreu, David; Rádis-Baptista, Gandhi

    2017-03-01

    Crotalicidin (Ctn), a 34-residue cathelicidin from a South American rattlesnake, and its fragment (Ctn[15-34]) have shown anti-infective and cytotoxic activities against Gram-negative bacteria and certain tumor lines, respectively. The extent of such effects has been related to physicochemical characteristics such as helicity and hydrophobicity. We now report the anti-fungal activity of Ctn and its fragments (Ctn[1-14]) and (Ctn[15-34]). MIC determination and luminescent cell viability assays were used to evaluate the anti-infective activity of Ctn and its fragments (Ctn[1-14]) and (Ctn[15-34]) as anti-fungal agents against opportunistic yeast and dermatophytes. Cytotoxicity towards healthy eukaryotic cells was assessed in vitro with healthy human kidney-2 (HK-2) cells and erythrocytes. The checkerboard technique was performed to estimate the effects of combining either one of the peptides with amphotericin B. Ctn was the most active peptide against dermatophytes and also the most toxic to healthy eukaryotic cells. Fragments Ctn[1-14] and Ctn[15-35] lost activity against dermatophytes, but became more active against pathogenic yeasts, including several Candida species, both clinical isolates and standard strains, with MICs as low as 5 μm. Interestingly, the two peptide fragments were less cytotoxic to healthy HK-2 cells and less hemolytic to human erythrocytes than the standard-of-care amphotericin B. Also noteworthy was the synergy between Ctn peptides and amphotericin B, with consequent reduction in MICs of both drug and peptides. Altogether, Ctn and its fragments, particularly Ctn[15-34], are promising leads, either alone or in combined regimen with amphotericin B, for the treatment of fungal diseases.

  20. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.

    PubMed

    Himaya, S W A; Jin, Ai-Hua; Dutertre, Sébastien; Giacomotto, Jean; Mohialdeen, Hoshyar; Vetter, Irina; Alewood, Paul F; Lewis, Richard J

    2015-10-02

    Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with ∼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides.

  1. Venom variation during prey capture by the cone snail, Conus textile.

    PubMed

    Prator, Cecilia A; Murayama, Kellee M; Schulz, Joseph R

    2014-01-01

    Observations of the mollusc-hunting cone snail Conus textile during feeding reveal that prey are often stung multiple times in succession. While studies on the venom peptides injected by fish-hunting cone snails have become common, these approaches have not been widely applied to the analysis of the injected venoms from mollusc-hunters. We have successfully obtained multiple injected venom samples from C. textile individuals, allowing us to investigate venom compositional variation during prey capture. Our studies indicate that C. textile individuals alter the composition of prey-injected venom peptides during single feeding events. The qualitative results obtained by MALDI-ToF mass spectrometry are mirrored by quantitative changes in venom composition observed by reverse-phase high performance liquid chromatography. While it is unclear why mollusc-hunting cone snails inject prey multiple times prior to engulfment, our study establishes for the first time a link between this behavior and compositional changes of the venom during prey capture. Changes in venom composition during hunting may represent a multi-step strategy utilized by these venomous animals to slow and incapacitate prey prior to engulfment.

  2. Venom Variation during Prey Capture by the Cone Snail, Conus textile

    PubMed Central

    Prator, Cecilia A.; Murayama, Kellee M.; Schulz, Joseph R.

    2014-01-01

    Observations of the mollusc-hunting cone snail Conus textile during feeding reveal that prey are often stung multiple times in succession. While studies on the venom peptides injected by fish-hunting cone snails have become common, these approaches have not been widely applied to the analysis of the injected venoms from mollusc-hunters. We have successfully obtained multiple injected venom samples from C. textile individuals, allowing us to investigate venom compositional variation during prey capture. Our studies indicate that C. textile individuals alter the composition of prey-injected venom peptides during single feeding events. The qualitative results obtained by MALDI-ToF mass spectrometry are mirrored by quantitative changes in venom composition observed by reverse-phase high performance liquid chromatography. While it is unclear why mollusc-hunting cone snails inject prey multiple times prior to engulfment, our study establishes for the first time a link between this behavior and compositional changes of the venom during prey capture. Changes in venom composition during hunting may represent a multi-step strategy utilized by these venomous animals to slow and incapacitate prey prior to engulfment. PMID:24940882

  3. Biotechnological applications of brown spider (Loxosceles genus) venom toxins.

    PubMed

    Senff-Ribeiro, Andrea; Henrique da Silva, Paulo; Chaim, Olga Meiri; Gremski, Luiza Helena; Paludo, Kátia Sabrina; Bertoni da Silveira, Rafael; Gremski, Waldemiro; Mangili, Oldemir Carlos; Veiga, Silvio Sanches

    2008-01-01

    Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5-40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6-7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.

  4. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  5. Exon Shuffling and Origin of Scorpion Venom Biodiversity

    PubMed Central

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-01-01

    Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences. PMID:28035955

  6. A K⁺ channel blocking peptide from the Cuban scorpion Rhopalurus garridoi.

    PubMed

    Rodríguez-Ravelo, Rodolfo; Restano-Cassulini, Rita; Zamudio, Fernando Z; Coronas, Fredy I V; Espinosa-López, Georgina; Possani, Lourival D

    2014-03-01

    A proteomic analysis of the venom obtained from the Cuban scorpion Rhopalurus garridoi was performed. Venom was obtained by electrical stimulation, separated by high performance liquid chromatography, and the molecular masses of their 50 protein components were identified by mass spectrometry. A peptide of 3940 Da molecular mass was obtained in pure form and its primary structure determined. It contains 37 amino acid residues, including three disulfide bridges. Electrophysiological experiments showed that this peptide is capable of blocking reversibly K(+)-channels hKv1.1 with a Kd close to 1 μM, but is not effective against hKv1.4, hERG1 and EAG currents, at the same concentration. This is the first protein component ever isolated from this species of scorpion and was assigned the systematic number α-KTx 2.14.

  7. The Snake with the Scorpion’s Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus)

    PubMed Central

    Yang, Daryl C.; Deuis, Jennifer R.; Dashevsky, Daniel; Dobson, James; Jackson, Timothy N. W.; Brust, Andreas; Xie, Bing; Koludarov, Ivan; Debono, Jordan; Hendrikx, Iwan; Hodgson, Wayne C.; Josh, Peter; Nouwens, Amanda; Baillie, Gregory J.; Bruxner, Timothy J. C.; Alewood, Paul F.; Lim, Kelvin Kok Peng; Frank, Nathaniel; Vetter, Irina; Fry, Bryan G.

    2016-01-01

    Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which exists in myriad points along an evolutionary continuum. Neofunctionalisation of toxins is facilitated by positive selection at functional hotspots on the ancestral protein and venom proteins have undergone dynamic diversification in helodermatid and varanid lizards as well as advanced snakes. A spectacular point on the venom system continuum is the long-glanded blue coral snake (Calliophis bivirgatus), a specialist feeder that preys on fast moving, venomous snakes which have both a high likelihood of prey escape but also represent significant danger to the predator itself. The maxillary venom glands of C. bivirgatus extend one quarter of the snake’s body length and nestle within the rib cavity. Despite the snake’s notoriety its venom has remained largely unstudied. Here we show that the venom uniquely produces spastic paralysis, in contrast to the flaccid paralysis typically produced by neurotoxic snake venoms. The toxin responsible, which we have called calliotoxin (δ-elapitoxin-Cb1a), is a three-finger toxin (3FTx). Calliotoxin shifts the voltage-dependence of NaV1.4 activation to more hyperpolarised potentials, inhibits inactivation, and produces large ramp currents, consistent with its profound effects on contractile force in an isolated skeletal muscle preparation. Voltage-gated sodium channels (NaV) are a particularly attractive pharmacological target as they are involved in almost all physiological processes including action potential generation and conduction. Accordingly, venom peptides that interfere with NaV function provide a key defensive and predatory advantage to a range of invertebrate

  8. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds.

    PubMed

    Sunagar, Kartik; Undheim, Eivind A B; Chan, Angelo H C; Koludarov, Ivan; Muñoz-Gómez, Sergio A; Antunes, Agostinho; Fry, Bryan G

    2013-12-13

    The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent's worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged

  9. Turkish scorpion Buthacus macrocentrus: general characterization of the venom and description of Bu1, a potent mammalian Na⁺-channel α-toxin.

    PubMed

    Caliskan, F; Quintero-Hernández, V; Restano-Cassulini, R; Batista, C V F; Zamudio, F Z; Coronas, F I; Possani, L D

    2012-03-01

    The venom of the scorpion Buthacus macrocentrus of Turkey was fractionated by high performance liquid chromatography (HPLC) and its mass finger print analysis was obtained by spectrometry. More than 70 different fractions were obtained, allowing the determination of the molecular masses of at least 60 peptides ranging between 648 and 44,336 Da. The venom is enriched with peptides containing molecular masses between 3200-4500 Da, and 6000-7500 Da. They very likely correspond to K⁺-channel and Na⁺-channel specific peptides, respectively, as expected from venoms of scorpions of the family Buthidae, already determined for other species. The major component obtained from HPLC was shown to be lethal to mice and was further purified and characterized. It contains 65 amino acid residues maintained closely packed by 4 disulfide bridges, and shows a molecular weight of 7263 Da. Additionally, a cDNA from the venomous glands of this scorpion was used in conjunction with sequence data from Edman degradation and mass spectrometry for cloning the gene that codes for Bu1 as we named this toxin. This gene codes for a 67 amino acid residues peptide, where the two last are eliminated post-translationally for production of an amidated C-terminal arginine. Its sequence is closely related to toxins from the species Leiurus quinquestriatus, as revealed by a phylogenetic tree analysis. Electrophysiological results conducted with Bu1 using patch-clamp techniques indicate that it modifies the Na⁺ currents, in a similar way as other well known α-scorpion toxins. These results support the conclusion that this species of scorpions is dangerous to humans, having an epidemiological interest for the country.

  10. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel.

    PubMed

    Corzo, Gerardo; Gilles, Nicolas; Satake, Honoo; Villegas, Elba; Dai, Li; Nakajima, Terumi; Haupt, Joachim

    2003-07-17

    Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.

  11. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    PubMed Central

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  12. Quo vadis venomics? A roadmap to neglected venomous invertebrates.

    PubMed

    von Reumont, Bjoern Marcus; Campbell, Lahcen I; Jenner, Ronald A

    2014-12-19

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  13. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae)

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-01-01

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite. PMID:27110765

  14. A novel cysteine-free venom peptide with strong antimicrobial activity against antibiotics-resistant pathogens from the scorpion Opistophthalmus glabrifrons.

    PubMed

    Bao, Aorigele; Zhong, Jie; Zeng, Xian-Chun; Nie, Yao; Zhang, Lei; Peng, Zhao Feng

    2015-10-01

    Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic-resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α-helical molecule. Protein sequence homology search revealed that Opisin shares 42.1-5.3% sequence identities to the 17/18-mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram-positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0-10.0 μM; in contrast, it possesses much lower activity against the tested Gram-negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin- and vancomycin-resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin-resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic-resistant bacterial infections.

  15. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.

  16. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).

    PubMed

    Pla, Davinia; Sanz, Libia; Sasa, Mahmood; Acevedo, Manuel E; Dwyer, Quetzal; Durban, Jordi; Pérez, Alicia; Rodriguez, Yania; Lomonte, Bruno; Calvete, Juan J

    2017-01-30

    Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP

  17. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.

    PubMed

    Laustsen, Andreas H; Gutiérrez, José María; Lohse, Brian; Rasmussen, Arne R; Fernández, Julián; Milbo, Christina; Lomonte, Bruno

    2015-06-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cytotoxins and 53.2% neurotoxins) and phospholipases A2 (13.5%). It also contains lower proportions of components belonging to nerve growth factor, ohanin/vespryn, cysteine-rich secretory protein, C-type lectin/lectin-like, nucleotidase, phosphodiesterase, metalloproteinase, l-amino acid oxidase, cobra venom factor, and cytidyltransferase protein families. Small amounts of three nucleosides were also evidenced: adenosine, guanosine, and inosine. The most relevant lethal components, categorized by means of a 'toxicity score', were α-neurotoxins, followed by cytotoxins/cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening.

  18. Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities.

    PubMed

    Valdez-Velazquéz, L L; Romero-Gutierrez, M T; Delgado-Enciso, I; Dobrovinskaya, O; Melnikov, V; Quintero-Hernández, V; Ceballos-Magaña, S G; Gaitan-Hinojosa, M A; Coronas, F I; Puebla-Perez, A M; Zamudio, F; De la Cruz-García, I; Vázquez-Vuelvas, O F; Soriano-Hernandez, A D; Possani, L D

    2016-08-01

    Centruroides tecomanus is a medically important scorpion of the state of Colima (Mexico). This communication reports the identification of venom components of this scorpion with biological activity over insects/crickets (Acheta domestica), crustaceans/fresh water shrimps (Cambarellus montezumae), and mammalians/mice (Mus musculus, strain CD1). It also describes the pharmacological effects on cell lines in culture (L5178Y cells, HeLa cells, HuTu cells and Jurkat E6-1 cells), as well as on several types of bacteria (see below). The soluble venom of this scorpion was fractionated by high-performance liquid chromatography (HPLC) and collected separately in twelve independent fractions collected over 60 min run (5 min time apart each other). The HPLC components of fraction VII were lethal to all three species used for assay. The IVth fraction had a toxic effect on freshwater shrimps. In this species, fractions VI, VII and VIII were all lethal. For crickets, fractions V and VI were toxic and fraction VII was lethal. In mouse, the lethal components were found in fraction VII, whereas fraction VIII was toxic, but not lethal, at the doses assayed. The molecular weight of peptides from the various group of fractions were identified by mass spectrometry determination. Components lethal to mice showed molecular weights from 7013 to 7487 Da. Two peptides were obtained in homogeneous form and shown to be lethal to the three species of animal used for assay. The soluble venom tested on L5178Y cell line survival was shown to be cytotoxic, at 10-100 μg/mL concentration, when compared to control murine splenocytes (p = 0.007). The soluble venom applied to Hela, Hutu and Jurkat cell lines did not show cytotoxic effects at these concentrations. On the contrary, it seems to have a proliferative effect. However the HPLC fractions I, III, VI and XII do have a cytotoxic effect on Jurkat E06-1 cells in culture at 200 μg/mL concentration. The antimicrobial activity of the venom

  19. Neutralization of Apis mellifera bee venom activities by suramin.

    PubMed

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom.

  20. Intraspecific variation in the venoms of the South American rattlesnake (Crotalus durissus terrificus).

    PubMed

    Francischetti, I M; Gombarovits, M E; Valenzuela, J G; Carlini, C R; Guimarães, J A

    2000-08-01

    The venom of eight individual Crotalus durissus terrificus snakes from the State of Minas Gerais, Brazil, in addition to pooled venom from Butantan Institute, were compared. Snakes were captured in distinct locations, some of them 600 km apart: Conselheiro Lafaiete, Entre Rios de Minas, Itauna, Itapecerica, Lavras, Patos de Minas, Paracatu, and Santo Antonio do Amparo. The crude venoms were tested for proteolytic, phospholipase A2, platelet aggregating, and hemagglutinating activities. The venoms were also analyzed by polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF). Chromatographic patterns of venom proteins on both gel-filtration and anion-exchange chromatographies were also performed. All venoms presented high phospholipase A2 and platelet-aggregating activities, but only minimal hemagglutinating or proteolytic activities were found. Gel-filtration chromatography showed a characteristic profile for most venoms where four main peaks were separated, including the typical ones where convulxin and crotoxin were identified; however, peaks with high amounts of lower molecular weight proteins were found in the venoms from the Santo Antonio do Amparo location and Butantan Institute, characterizing these venoms as crotamine positive. Anion-exchange chromatographies presented a similar protein distribution pattern, although the number of peaks (up to ten) distinguished some venom samples. Consistent with these results, polyacrylamide gels that were silver stained after venom separation by PAGE or IEF presented a similar qualitative band distribution, although a quantitative heterogeneity was detected among venoms. Our results suggest that the variability found in venom components of C. d. terrificus venoms captured in Minas Gerais State may be genetically inherited and/or environmentally induced.

  1. Venomic analyses of Scolopendra viridicornis nigra and Scolopendra angulata (Centipede, Scolopendromorpha): shedding light on venoms from a neglected group.

    PubMed

    Rates, Breno; Bemquerer, Marcelo P; Richardson, Michael; Borges, Márcia H; Morales, Rodrigo A V; De Lima, Maria Elena; Pimenta, Adriano M C

    2007-05-01

    Centipedes are venomous arthropods responsible for a significant number of non-lethal human envenomations. Despite this, information about the composition and function of their venom contents is scarce. In this study, we have used a 'structure to function' proteomic approach combining two-dimensional chromatography (2D-LC), electrospray ionization quadrupole/time-of-flight mass spectrometry (ESI-Q-TOF/MS), N-terminal sequencing and similarity searching to better understand the complexities of the venoms from two Brazilian centipede species: Scolopendra viridicornis nigra and Scolopendra angulata. Comparisons between the LC profiles and the mass compositions of the venoms of the two species are provided. The observed molecular masses ranged from 3019.62 to 20996.94Da in S. viridicornis nigra (total: 62 molecular masses) and from 1304.73 to 22639.15Da in S. angulata (total: 65 molecular masses). Also, the N-termini of representatives of 10 protein/peptide families were successfully sequenced where nine of them showed no significant similarity to other protein sequences deposited in the Swiss-Prot database. A screening for insecto-toxic activities in fractions from S. viridicornis venom has also been performed. Six out of the 12 tested fractions were responsible for clear toxic effects in house flies. This work demonstrates that centipede venoms might be a neglected but important source of new bioactive compounds.

  2. Characterization of the mechanisms underlying the inflammatory response to Polistes lanio lanio (paper wasp) venom in mouse dorsal skin.

    PubMed

    Yshii, Lídia M; Souza, Gustavo H M F; Camargo, Enilton A; Eberlin, Marcos N; Ribela, Maria Teresa C P; Muscará, Marcelo N; Hyslop, Stephen; Costa, Soraia K P

    2009-01-01

    Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigriventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P. l. lanio venom (1nmol of histamine/7mug of venom) that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated.

  3. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.

    PubMed

    Alape-Girón, Alberto; Sanz, Libia; Escolano, José; Flores-Díaz, Marietta; Madrigal, Marvin; Sasa, Mahmood; Calvete, Juan J

    2008-08-01

    We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in

  4. Ancient Venom Systems: A Review on Cnidaria Toxins.

    PubMed

    Jouiaei, Mahdokht; Yanagihara, Angel A; Madio, Bruno; Nevalainen, Timo J; Alewood, Paul F; Fry, Bryan G

    2015-06-18

    Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.

  5. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity.

    PubMed

    Lee, Hyunkyoung; Jung, Eun-sun; Kang, Changkeun; Yoon, Won Duk; Kim, Jong-Shu; Kim, Euikyung

    2011-09-01

    The present study, for the first time, comparatively investigated the enzymatic activities (proteases and hyaluronidases) in the venoms of four Scyphozoan jellyfish species, including Nemopilema nomurai, Rhopilema esculenta, Cyanea nozakii, and Aurelia aurita. For this, various zymographic analyses were performed using assay specific substrates. Interestingly, all the four jellyfish venoms showed gelatinolytic, caseinolytic, and fibrinolytic activities, each of which contains a multitude of enzyme components with molecular weights between 17 and 130 kDa. These four jellyfish venoms demonstrated a huge variation in their proteolytic activities in quantitative and qualitative manner depending on the species. Most of these enzymatic activities were disappeared by the treatment of 1,10-phenanthroline, suggesting they might be belonged to metalloproteinases. Toxicological significance of these venom proteases was examined by comparing their proteolytic activity and the cytotoxicity in NIH 3T3 cells. The relative cytotoxic potency was C. nozakii > N. nomurai > A. aurita > R. esculenta. The cytotoxicity of jellyfish venom shows a positive correlation with its overall proteolytic activity. The metalloproteinases appear to play an important role in the induction of jellyfish venom toxicities. In conclusion, the present report proposes a novel finding of Scyphozoan jellyfish venom metalloproteinases and their potential role in the cytotoxicity.

  6. Role of the inflammasome in defense against venoms

    PubMed Central

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  7. A limited role for gene duplications in the evolution of platypus venom.

    PubMed

    Wong, Emily S W; Papenfuss, Anthony T; Whittington, Camilla M; Warren, Wesley C; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.

  8. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum.

    PubMed

    Wu, Ma-li; Ye, Gong-yin; Zhu, Jia-ying; Chen, Xue-xin; Hu, Cui

    2008-10-01

    In hymenopteran parasitoids devoid of symbiotic viruses, venom proteins appear to play a major role in host immune suppression and host regulation. Not much is known about the active components of venom proteins in these parasitoids, especially those that have the functions involved in the suppression of host cellular immunity. Here, we report the isolation and characterization of a venom protein Vn.11 with 24.1 kDa in size from Pteromalus puparum, a pupa-specific endoparasitoid of Pieris rapae. The Vn.11 venom protein is isolated with the combination of ammonium sulfate precipitation and anion exchange chromatography, and its purity is verified using SDS-PAGE analysis. Like crude venom, the Vn.11 venom protein significantly inhibits the spreading behavior and encapsulation ability of host hemocytes in vitro. It is suggested that this protein is an actual component of P. puparum crude venom as host cellular-immune suppressive factor.

  9. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins.

  10. Venom-Related Transcripts from Bothrops jararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom

    PubMed Central

    Junqueira-de-Azevedo, Inácio L.M.; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R.

    2015-01-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  11. Venomic study on cone snails (Conus spp.) from South Africa.

    PubMed

    Kauferstein, Silke; Porth, Christine; Kendel, Yvonne; Wunder, Cora; Nicke, Annette; Kordis, Dusan; Favreau, Philippe; Koua, Dominique; Stöcklin, Reto; Mebs, Dietrich

    2011-01-01

    From six Conus species (Conus coronatus, Conus lividus, Conus mozambicus f. lautus, Conus pictus, Conus sazanka, Conus tinianus) collected off the eastern coast of South Africa the venoms were analyzed using MALDI-TOF mass spectrometry. Between 56 and 151 molecular masses most in a range of 1000 to 2500 Da, were identified. Among the six venoms, between 0 and 27% (C. coronatus versus C. sazanka) of the peptide masses were found to be similar. In a study on venoms from 6 Conus species collected in the Philippines, the percentage of identical masses was between none and 9% only. The venoms from the South African Conus species antagonized the rat neuronal nicotinic acetylcholine receptors (nAChRs) α3β2, α4β2, and α7, except for C. coronatus venom that blocked the α4β2 and α7 nAChRs only. HPLC-fractionation of C. tinianus venom led to the isolation of a peptide that is active on all three receptor subtypes. It consists of 16 amino acid residues cross-linked by two disulfide bridges as revealed by de novo sequencing using tandem mass spectrometry: GGCCSHPACQNNPDYC. Posttranslational modifications include C-terminal amidation and tyrosine sulfation. The new peptide is a member of the α-conotoxin family that are competitive antagonists of nAChRs. Phylogenetic analysis of the 16S RNA from numerous Conus species has clarified the evolutionary position of endemic South African Conus species and provided the first evidence for their close genetic relationships.

  12. Beta2-amino acids-syntheses, occurrence in natural products, and components of beta-peptides1,2.

    PubMed

    Lelais, Gérald; Seebach, Dieter

    2004-01-01

    Although they are less abundant than their alpha-analogues, beta-amino acids occur in nature both in free form and bound to peptides. Oligomers composed exclusively of beta-amino acids (so-called beta-peptides) might be the most thoroughly investigated peptidomimetics. Beside the facts that they are stable to metabolism, exhibit slow microbial degradation, and are inherently stable to proteases and peptidases, they fold into well-ordered secondary structures consisting of helices, turns, and sheets. In this respect, the most intriguing effects have been observed when beta2-amino acids are present in the beta-peptide backbone. This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta2-amino acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids. In addition, a compilation of the syntheses of both achiral and chiral beta2-amino acids is presented. While there are numerous routes to achiral beta2-amino acids, their EPC synthesis is currently the subject of many investigations. These include the diastereoselective alkylation and Mannich-type reactions of cyclic- or acyclic beta-homoglycine derivatives containing chiral auxiliaries, the Curtius degradation, the employment of transition-metal catalyzed reactions such as enantioselective hydrogenations, reductions, C-H insertions, and Michael-type additions, and the resolution of rac. beta2-amino acids, as well as several miscellaneous methods. In the last part of the review, the importance of beta2-amino acids in the formation of beta-peptide secondary structures is discussed.

  13. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    PubMed Central

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  14. Venom down under: dynamic evolution of Australian elapid snake toxins.

    PubMed

    Jackson, Timothy N W; Sunagar, Kartik; Undheim, Eivind A B; Koludarov, Ivan; Chan, Angelo H C; Sanders, Kate; Ali, Syed A; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G

    2013-12-18

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) 'taipoxin/paradoxin' subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and

  15. The in vivo cardiovascular effects of an Australasian box jellyfish (Chiropsalmus sp.) venom in rats.

    PubMed

    Ramasamy, Sharmaine; Isbister, Geoffrey K; Seymour, Jamie E; Hodgson, Wayne C

    2005-03-01

    Using a new technique to extract venom from the nematocysts of jellyfish, the in vivo cardiovascular effects of Chiropsalmus sp. venom were investigated in anaesthetized rats. Chiropsalmus sp. venom (150 microg/kg, i.v.) produced a transient hypertensive response (44+/-4 mmHg; n=6) followed by hypotension and cardiovascular collapse. Concurrent artificial respiration or pretreatment with Chironex fleckeri antivenom (AV, 3000 U/kg, i.v.) did not have any effect on the venom-induced hypertensive response nor the subsequent cardiovascular collapse. The cardiovascular response of animals receiving venom after the infusion of MgSO4 (50-70 mM @ 0.25 ml/min, i.v.; n=5) alone, or in combination with AV (n=5), was not significantly different from rats receiving venom alone. Prior administration of prazosin (50 microg/kg, i.v.; n=4) or ketanserin (1 mg/kg, i.v.; n=4) did not significantly attenuate the hypertensive response nor prevent the cardiovascular collapse induced by venom (50 microg/kg, i.v.). In contrast to previous work examining C. fleckeri venom, administration of AV alone, or in combination with MgSO4, was not effective in preventing cardiovascular collapse following the administration of Chiropsalmus sp. venom. This indicates that the venom of the two related box jellyfish contain different lethal components and highlights the importance of species identification prior to initiating treatment regimes following jellyfish envenoming.

  16. ISOB: A Database of Indigenous Snake Species of Bangladesh with respective known venom composition

    PubMed Central

    Roly, Zahida Yesmin; Hakim, Md Abdul; Zahan, ASM Shahriar; Hossain, M Monzur; Reza, Md Abu

    2015-01-01

    At present there is no well structured database available for the venomous snakes and venom composition of snakes in the world although venom has immense importance in biomedical research. Searching for a specific venom component from NCBI, PDB or public databases is troublesome, because they contain huge amount of data entries. Therefore, we created a database named “ISOB” which is a web accessible unique secondary database that represents the first online available bioinformatics resource showing venom composition of snakes. This database provides a comprehensive overview of seventy-eight indigenous snake species covering description of snakes supplemented with structural information of the relevant individual available venom proteins. We strongly believe that this database will contribute significantly in the field of bioinformatics, environmental research, proteomics, drug development and rationale drug designing. Availability The database is freely available at http://www.snakebd.com/ PMID:25848172

  17. [Plasminogen activator from Agkistrodon halys halys venom].

    PubMed

    Karbovs'kyĭ, V L; Levkiv, M Iu; Savchuk, O M; Hornyts'ka, O V; Volkov, H L; Bukhan, Ts

    2006-01-01

    Plasminogen activator "Ahh-32" from Agkistrodon halys halys venom has been isolated and purified using affinity and ion-exchange chromatography. The purified enzyme consists of the single peptide-chain with molecular weigth of 32 kDa. It can convert free plasminogen into active form--plasmin. "Ahh-32" was inhibited by DFP and benzamidine. Besides, the enzyme influences significantly the activation of plasminogen by streptokinase without having effect on analogical process in case of usage of tissue tipe plasminogen activator. The obtained protein can be used as an instrument under investigation of protein-protein interactions in haemostasis system.

  18. Proteomic view of the venom from the fire ant Solenopsis invicta Buren.

    PubMed

    dos Santos Pinto, José R A; Fox, Eduardo G P; Saidemberg, Daniel M; Santos, Lucilene D; da Silva Menegasso, Anally R; Costa-Manso, Eliúde; Machado, Ednildo A; Bueno, Odair C; Palma, Mario S

    2012-09-07

    Fire ants are well-known by their aggressive stinging behavior, causing many stinging incidents of medical importance. The limited availability of fire ant venom for scientific and clinical uses has restricted, up to now, the knowledge about the biochemistry, immunology, and pharmacology of these venoms. For this study, S. invicta venom was obtained commercially and used for proteomic characterization. For this purpose, the combination of gel-based and gel-free proteomic strategies was used to assign the proteomic profile of the venom from the fire ant S. invicta. This experimental approach permitted the identification of 46 proteins, which were organized into four different groups according to their potential role in fire ant venom: true venom components, housekeeping proteins, body muscle proteins, and proteins involved in chemical communication. The active venom components that may not present toxic roles were classified into three subgroups according to their potential functions: self-venom protection, colony asepsis, and chemical communication. Meanwhile, the proteins classified as true toxins, based on their functions after being injected into the victims' bodies by the fire ants, were classified in five other subgroups: proteins influencing the homeostasis of the victims, neurotoxins, proteins that promote venom diffusion, proteins that cause tissue damage/inflammation, and allergens.

  19. Expression patterns of platypus defensin and related venom genes across a range of tissue types reveal the possibility of broader functions for OvDLPs than previously suspected.

    PubMed

    Whittington, Camilla M; Papenfuss, Anthony T; Kuchel, Philip W; Belov, Katherine

    2008-09-15

    The platypus, as an egg-laying mammal, displays an unusual mixture of reptilian and mammalian characteristics. It is also venomous, and further investigations into its little-studied venom may lead to the development of novel pharmaceuticals and drug targets and provide insights into the origins of mammalian venom. Here we investigate the expression patterns of antimicrobial genes called defensins, and also the venom peptides called defensin-like peptides (OvDLPs). We show, in the first expression study on any platypus venom gene, that the OvDLPs are expressed in a greater range of tissues than would be expected for genes with specific venom function, and thus that they may have a wider role than previously suspected.

  20. Functional analysis of Cobra Venom Factor/human C3 chimeras transiently expressed in mammalian cells.

    PubMed

    Kölln, Johanna; Matzas, Mark; Jänner, Nathalie; Mix, Thorsten; Klensang, Katrin; Bredehorst, Reinhard; Spillner, Edzard

    2004-05-01

    The complement activating venom component Cobra Venom Factor (CVF), a functional and structural homologue of the human complement component C3, forms a stable CVF-dependent C3 convertase complex, which, in contrast to C3-dependent convertase effects continuous activation of the complement and, thereby, decomplementation. In order to elucidate the mechanism underlying the enhanced activity of CVF compared to human C3, we generated two CVF/C3 chimeras and established different affinity-based assay systems for functional analysis of these constructs. To allow for convenient expression and subsequent functional characterisation, the CVF/C3 chimeras as well as CVF and C3 were transiently expressed in mammalian cells. Problems due to the low concentration of the recombinant proteins in the supernatants of transient expressions were circumvented by fusion to peptide tags enabling their efficient immobilisation onto suitable surfaces and subsequent characterisation. In an alternative approach monoclonal antibody fragments generated from a semisynthetic phage display scFv library were employed for concentrating the recombinant proteins by immunoprecipitation. Utilising both approaches all transiently expressed proteins could be characterised for their complement consumption activity. The data obtained with the CVF/C3 chimeras demonstrate that the increased stability of the CVFBb complex is independent of the domains in CVF corresponding to binding sites of factor B and H and the cleavage sites of factor I in the human C3 molecule.

  1. A Transcriptomic View of the Proteome Variability of Newborn and Adult Bothrops jararaca Snake Venoms

    PubMed Central

    Zelanis, André; Andrade-Silva, Débora; Rocha, Marisa M.; Furtado, Maria F.; Serrano, Solange M. T.; Junqueira-de-Azevedo, Inácio L. M.; Ho, Paulo Lee

    2012-01-01

    Background Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some gender-related differences. Conclusions/Significance We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the

  2. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses.

    PubMed

    Zhang, Fan; Liu, Changjun; Tan, Huaxin; Wang, Hengyun; Jiang, Yinjie; Liang, Songping; Zhang, Fuping; Liu, Zhonghua

    2015-12-01

    Lycosa vittata, mainly distributed in the southwest of China, is a medium-sized and venomous spider, whose venom remains unexplored so far. This study aims to present an overview of the venom. It mainly consisted of diverse peptides and exhibited inhibitory effects on voltage-gated ion channels in rat dorsal root ganglia neurons, with a strongest inhibition on tetrodotoxin-sensitive and tetrodotoxin-resistant voltage-gated Na(+) channels. Interestingly, it exerted cytotoxicity to cancer cells, with approximately 10-fold selectivity on PC-3 over others, implying the existence of selective anti-PC-3 agents in the venom. Moreover, 51 toxin-like peptides were deduced from the venom gland transcriptome. Bioinformatic analyses suggested their structures might have some distinguished properties and their predicted functions were consistent with the venom activities. This study suggests that the venom is an attractive source of neurotoxins with therapeutic significance, and provides references for the structure and function investigation of specific toxins in the future.

  3. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes.

    PubMed

    Ching, Ana T C; Paes Leme, Adriana F; Zelanis, André; Rocha, Marisa M T; Furtado, Maria de Fátima D; Silva, Débora Andrade; Trugilho, Monique R O; da Rocha, Surza L G; Perales, Jonas; Ho, Paulo L; Serrano, Solange M T; Junqueira-de-Azevedo, Inácio L M

    2012-02-03

    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.

  4. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

    PubMed

    Fry, Bryan G; Roelants, Kim; Champagne, Donald E; Scheib, Holger; Tyndall, Joel D A; King, Glenn F; Nevalainen, Timo J; Norman, Janette A; Lewis, Richard J; Norton, Raymond S; Renjifo, Camila; de la Vega, Ricardo C Rodríguez

    2009-01-01

    Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.

  5. Bioinformatics-Aided Venomics

    PubMed Central

    Kaas, Quentin; Craik, David J.

    2015-01-01

    Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future. PMID:26110505

  6. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).

    PubMed

    Rokyta, Darin R; Wray, Kenneth P; McGivern, James J; Margres, Mark J

    2015-05-01

    The genetics underlying adaptive trait evolution describes the intersection between the probability that particular types of mutation are beneficial and the rates they arise. Snake venoms can vary in a directly meaningful manner through coding mutations and regulatory mutations. The amounts of different components determine venom efficacy, but point mutations in coding sequences can also change efficacy and function. The Timber Rattlesnake (Crotalus horridus) has populations that have evolved neurotoxic venom from the typical hemorrhagic rattlesnake venom present throughout most of its range. We identified only a handful of nonsynonymous differences in just five loci between animals with each venom type, and these differences affected lower-abundance toxins. Expression of at least 18 loci encoding hemorrhagic toxins was severely reduced in the production of neurotoxic venom. The entire phospholipase A2 toxin family was completely replaced in the neurotoxic venom, possibly through intergeneric hybridization. Venom paedomorphosis could, at best, explain only some of the loss of expression of hemorrhagic toxins. The number of potential mechanisms for altering venom composition and the patterns observed for C. horridus suggest that rapid venom evolution should occur primarily through changes in venom composition, rather than point mutations affecting coding sequences.

  7. Preclinical testing of Peruvian anti-bothropic anti-venom against Bothrops andianus snake venom.

    PubMed

    Schneider, Francisco S; Starling, Maria C; Duarte, Clara G; Machado de Avila, Ricardo; Kalapothakis, Evanguedes; Silva Suarez, Walter; Tintaya, Benigno; Flores Garrido, Karin; Seraylan Ormachea, Silvia; Yarleque, Armando; Bonilla, César; Chávez-Olórtegui, Carlos

    2012-11-01

    Bothrops andianus is a venomous snake found in the area of Machu Picchu (Peru). Its venom is not included in the antigenic pool used for production of the Peruvian anti-bothropic anti-venom. B. andianus venom can elicit many biological effects such as hemorrhage, hemolysis, proteolytic activity and lethality. The Peruvian anti-bothropic anti-venom displays consistent cross-reactivity with B. andianus venom, by ELISA and Western Blotting and is also effective in neutralizing the venom's toxic activities.

  8. Ancient Venom Systems: A Review on Cnidaria Toxins

    PubMed Central

    Jouiaei, Mahdokht; Yanagihara, Angel A.; Madio, Bruno; Nevalainen, Timo J.; Alewood, Paul F.; Fry, Bryan G.

    2015-01-01

    Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or “venom” that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design. PMID:26094698

  9. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    PubMed

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama-Jr, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-03-06

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats.

  10. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  11. UT841 purified from sea urchin (Toxopneustes pileolus) venom inhibits time-dependent (45)Ca(2+) uptake in crude synaptosome fraction from chick brain.

    PubMed

    Zhang, Y; Abe, J; Siddiq, A; Nakagawa, H; Honda, S; Wada, T; Ichida, S

    2001-08-01

    To clarify the mechanism by which the toxic abstract from Toxopneustes pileolus inhibits time-dependent (Time-dep.) Ca(2+) uptake in crude synaptosome fraction, the effective component from pedicellarial venom of the sea urchin was purified. The crude extracts were purified by a series of steps including ion exchange (DEAE-sephadex-A25 gel), gel filtration (with Superdex-2000 and Superdex-peptide columns) and reversed-phase chromatography (Sephasil-C18 column). The effective component that inhibited Time-dep. 45Ca(2+) uptake was purified and named UT841. Its IC(50) was determined to be lower than 35ng/ml. UT841 is an acidic protein with an apparent molecular weight of about 18,000. The N-terminal sequence (40 amino acids) was almost identical to that of Contractin A (a protein purified from the same kind of venom which induces smooth muscle contraction). Even though it is unclear whether or not UT841 is Contractin A, Ca(2+) mobilization in nerve cells was shown to be influenced by UT841. This investigation also revealed that a donor of nitric oxide, arachidonic acid and an inhibitor of phospholipase C selectively inhibit Time-dep. (45)Ca(2+) uptake. These results suggest that UT841 purified from sea urchin venom may affect Time-dep. (45)Ca(2+) uptake through the metabolism of some lipids and nitric oxide.

  12. Multi-Component Ion Modifiers and Arcing Suppressants to Enhance Differential Mobility Spectrometry for Separation of Peptides and Drug Molecules

    NASA Astrophysics Data System (ADS)

    Blagojevic, Voislav; Koyanagi, Gregory K.; Bohme, Diethard K.

    2014-03-01

    The optimization of ion/molecule chemistry in a differential mobility spectrometer (DMS) is shown to result in improved peak capacity, separation, and sensitivity. We have experimented with a modifier composed of multiple components, where each component accomplishes a specific task on mixtures of peptides and small drug molecules. Use of a higher proton affinity modifier (hexanol) provides increased peak capacity and separation. Analyte ion/modifier proton transfer is suppressed by adding a large excess of low proton affinity modifier (water or methanol), significantly increasing signal intensity and sensitivity for low proton affinity analytes. Finally, addition of an electrical arcing suppressant (chloroform) allows the device to operate reliably at higher separation fields, improving peak capacity and separation. We demonstrate a 20 % increase in the device peak capacity without any loss of sensitivity and estimate that further optimization of the modifier composition can increase this to 50 %. Use of 3-, 4-, or even 5-component modifiers offers the opportunity for the user to fine-tune the modifier performance to maximize the device performance, something not possible with a single component modifier.

  13. Scorpion venoms in gastric cancer

    PubMed Central

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-01-01

    Venom secretions from snakes, scorpions, spiders and bees, have been widely applied in traditional medicine and current biopharmaceutical research. Possession of anticancer potential is another novel discovery for animal venoms and toxins. An increasing number of studies have shown the anticancer effects of venoms and toxins of snakes, and scorpions in vitro and in vivo, which were achieved mainly through the inhibition of cancer growth, arrest of cell cycle, induction of apoptosis and suppression of cancer metastasis. However, more evidence is needed to support this concept and the mechanisms of anticancer actions are not clearly understood. The present review is focused on the recant updates on anticancer venom research. PMID:27900054

  14. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword

    PubMed Central

    Chen, Jun; Lariviere, William R.

    2010-01-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. PMID:20558236

  15. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions.

    PubMed

    Asgari, Sassan; Rivers, David B

    2011-01-01

    Endoparasitoids introduce a variety of factors into their host during oviposition to ensure successful parasitism. These include ovarian and venom fluids that may be accompanied by viruses and virus-like particles. An overwhelming number of venom components are enzymes with similarities to insect metabolic enzymes, suggesting their recruitment for expression in venom glands with modified functions. Other components include protease inhibitors, paralytic factors, and constituents that facilitate/enhance entry and expression of genes from symbiotic viruses or virus-like particles. In addition, the venom gland may itself support replication/production of some viruses or virus-like entities. Overlapping functions and structural similarities of some venom, ovarian, and virus-encoded proteins suggest coevolution of molecules recruited by endoparasitoids to maintain their fitness relative to their host.

  16. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    PubMed Central

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-01-01

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease. PMID:26580653

  17. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening.

    PubMed

    Wang, Shuai; Luo, Xuenong; Zhang, Shaohua; Yin, Cai; Dou, Yongxi; Cai, Xuepeng

    2014-02-01

    No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.

  18. Venomics analyses of the skin secretion of Dermatonotus muelleri: Preliminary proteomic and metabolomic profiling.

    PubMed

    Cavalcante, Ingrid Duarte; Antoniazzi, Marta Maria; Jared, Carlos; Pires, Osmindo R; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho

    2017-05-01

    Dermatonotus muelleri is the sole species of the Dermatonotus genus and inhabits Argentina, Bolivia, Brazil and Paraguay. This animal exhibits an explosive reproductive behavior during the Southern spring months, which lasts only for five days. Moreover, this animal displays specific adaptations to the habitat resulting in the energy conservation needed during either the intense reproduction period or times of estivation. During dry seasons and/or food shortages D. muelleri can survive because its food specialization and ability to dig an underground chamber for protection. Few literature is available on this amphibian and no biochemical characterization has ever been performed on the animal's skin secretion. This work, on the other hand, presents for the first time a venomic analysis of the major components present in the skin secretion of this microhylid. The crude skin secretion was obtained my mechanical stimulation and was analyzed according to one major criterion: >10 kDa or <10 kDa. The high molecular mass fraction was subjected to typical gel-based proteomic processing whereas the low molecular mass fraction was analyzed by liquid chromatography, mass spectrometry and nuclear magnetic resonance (NMR), yielding an overall 'venomics' approach. No classical/evident toxin was detected, but peptidases (metallo and serino) and structural proteins could be identified. In the low molecular mass fraction no peptides were detected, as well as no typical alkaloid or steroid. On the other hand, the amino acid tryptophan could be identified and a typical sugar spectrum was obtained in the NMR analyses. Altogether these findings point out to the fact that D. muelleri skin secretion is unique and the molecular arsenal present herein is yet to be explored; therefore, this venomics study is only the beginning.

  19. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    PubMed

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  20. Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools

    PubMed Central

    Danneels, Ellen L.; Formesyn, Ellen M.; de Graaf, Dirk C.

    2015-01-01

    The venom from the ectoparasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae) contains at least 80 different proteins and possibly even more peptides or other small chemical compounds, demonstrating its appealing therapeutic application. To better understand the dynamics of the venom in mammalian cells, two high-throughput screening tools were performed. The venom induced pathways related to an early stress response and activated reporters that suggest the involvement of steroids. Whether these steroids reside from the venom itself or show an induced release/production caused by the venom, still remains unsolved. The proinflammatory cytokine IL-1β was found to be down-regulated after venom and LPS co-treatment, confirming the anti-inflammatory action of N. vitripennis venom. When analyzing the expression levels of the NF-κB target genes, potentially not only the canonical but also the alternative NF-κB pathway can be affected, possibly explaining some counterintuitive results. It is proposed that next to an NF-κB binding site, the promoter of the genes tested by the PCR array may also contain binding sites for other transcription factors, resulting in a