Sample records for peptide-based vaccine exacerbates

  1. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  2. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    PubMed Central

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa Maria; Pedraz, José Luis

    2011-01-01

    The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity. PMID:21773041

  3. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

  4. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination.

    PubMed

    Kanduc, Darja; Fasano, Candida; Capone, Giovanni; Pesce Delfino, Antonella; Calabrò, Michele; Polimeno, Lorenzo

    2015-01-01

    Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  5. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination

    PubMed Central

    Kanduc, Darja; Fasano, Candida; Capone, Giovanni; Pesce Delfino, Antonella; Calabrò, Michele; Polimeno, Lorenzo

    2015-01-01

    Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination. PMID:26568962

  6. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection.

    PubMed

    Ganda, Ingrid S; Zhong, Qian; Hali, Mirabela; Albuquerque, Ricardo L C; Padilha, Francine F; da Rocha, Sandro R P; Whittum-Hudson, Judith A

    2017-07-15

    Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance. Copyright © 2017 Elsevier B.V. All

  7. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  8. Asthma exacerbations among asthmatic children receiving live attenuated versus inactivated influenza vaccines.

    PubMed

    Ray, G Thomas; Lewis, Ned; Goddard, Kristin; Ross, Pat; Duffy, Jonathan; DeStefano, Frank; Baxter, Roger; Klein, Nicola P

    2017-05-09

    To investigate whether there is a difference in the risk of asthma exacerbations between children with pre-existing asthma who receive live attenuated influenza vaccine (LAIV) compared with inactivated influenza vaccine (IIV). We identified IIV and LAIV immunizations occurring between July 1, 2007 and March 31, 2014 among Kaiser Permanente Northern California members aged 2 to <18years with a history of asthma, and subsequent asthma exacerbations seen in the inpatient or Emergency Department (ED) setting. We calculated the ratio of the odds (OR) of an exacerbation being in the risk interval (1-14days) versus the comparison interval (29-42days) following immunization, separately for LAIV and IIV, and then examined whether the OR differed between children receiving LAIV and those receiving IIV ("difference-in-differences"). Among 387,633 immunizations, 85% were IIV and 15% were LAIV. Children getting LAIV vs. IIV were less likely to have "current or recent, persistent" asthma (25% vs. 47%), and more likely to have "remote history" of asthma (47% vs. 25%). Among IIV-vaccinated asthmatic children, the OR of an inpatient/ED asthma exacerbation was 0.97 (95% CI: 0.82-1.15). Among LAIV-vaccinated asthmatic children the OR was 0.38 (95% CI: 0.17-0.90). In the difference-in-differences analysis, the odds of asthma exacerbation following LAIV were less than IIV (Ratio of ORs: 0.40, CI: 0.17-0.95, p value: 0.04). Among children ≥2years old with asthma, we found no increased risk of asthma exacerbation following LAIV or IIV, and a decreased risk following LAIV compared to IIV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermal stability of self-assembled peptide vaccine materials.

    PubMed

    Sun, Tao; Han, Huifang; Hudalla, Gregory A; Wen, Yi; Pompano, Rebecca R; Collier, Joel H

    2016-01-01

    The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their

  10. Development of Peptide Vaccines in Dengue.

    PubMed

    Reginald, Kavita; Chan, Yanqi; Plebanski, Magdalena; Poh, Chit Laa

    2017-09-13

    Dengue is one of the most important arboviral infection worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Engineered hybrid spider silk particles as delivery system for peptide vaccines.

    PubMed

    Lucke, Matthias; Mottas, Inès; Herbst, Tina; Hotz, Christian; Römer, Lin; Schierling, Martina; Herold, Heike M; Slotta, Ute; Spinetti, Thibaud; Scheibel, Thomas; Winter, Gerhard; Bourquin, Carole; Engert, Julia

    2018-07-01

    The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. Here we have engineered spider silk particles as delivery system for a peptide-based vaccination that leads to effective priming of cytotoxic T-cells. The recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker. Particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated. Particles from hybrid proteins containing a cathepsin-cleavable linker induced a strong antigen-specific proliferation of cytotoxic T-cells in vivo, even in the absence of a vaccine adjuvant. We thus demonstrate the efficacy of a new vaccine strategy using a protein-based all-in-one vaccination system, where spider silk particles serve as carriers with an incorporated peptide antigen. Our study further suggests that engineered spider silk-based vaccines are extremely stable, easy to manufacture, and readily customizable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Vaccine to fibroblast growth factor 23 peptides increases eggshell strength.

    PubMed

    Ren, Z Z; Piepenburg, A J; Bütz, D E; Claus, J R; Cook, M E

    2018-03-01

    Strategies that would increase eggshell quality could be of considerable value to egg producers. This research demonstrated the effective use of fibroblast growth factor 23 (FGF-23) peptide vaccines to increase eggshell quality of Single Comb White Leghorn laying hens (from 69 to 72 wk of age). Hens, fed a standard diet (containing 900 IU/kg vitamin D3), were intramuscularly injected (and boosted) with either a control vaccine (n = 14 hens) or one of 2 FGF-23 peptide vaccines (peptides NP1, GMNPPPYS; and NP7, YTSTERNSFH; n = 15 hens for each peptide). During peak antibody titer, eggs were collected for shell and internal quality analysis, hens were artificially inseminated, and the hatchability of fertilized eggs was determined. Laying hens vaccinated with either FGF-23 peptide NP1 or NP7 had increased (P < 0.05) plasma phosphate level (mmol/L; NP1 = 1.74, NP7 = 1.76, control = 1.47), egg specific gravity (NP1 = 1.083, NP7 = 1.083, control = 1.079), and eggshell strength (g of force; NP1 = 4002, NP7 = 4157, control = 3102) when compared to control vaccinated hens. FGF-23 peptide NP1 vaccinated hens also had increased eggshell thickness (mm, P < 0.001), shell weight (g, P = 0.032), and shell index (% of whole egg, P = 0.023) when compared to control vaccinated hens. FGF-23 peptide NP7 vaccinated hens tended to have decreased eggshell weight (P = 0.064) when compared to control vaccinated hens. Hatchability of fertilized eggs was not affected in incubations 1 and 3, but tended to be decreased (P = 0.097) by FGF-23 peptide NP1 vaccination in incubation 2. In conclusion, vaccines to FGF-23 peptides increased eggshell quality of laying hens with minimal adverse effects on egg internal quality. The effect of FGF-23 peptide vaccination on hatchability remains to be clarified.

  13. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.

    PubMed

    Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N

    2015-07-01

    Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.

  14. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis▿

    PubMed Central

    Elliott, Suzanne L.; Suhrbier, Andreas; Miles, John J.; Lawrence, Greg; Pye, Stephanie J.; Le, Thuy T.; Rosenstengel, Andrew; Nguyen, Tam; Allworth, Anthony; Burrows, Scott R.; Cox, John; Pye, David; Moss, Denis J.; Bharadwaj, Mandvi

    2008-01-01

    A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vaccine recipients by gamma interferon enzyme-linked immunospot assay and/or limiting-dilution analysis. The same T-cell receptor Vβ CDR3 sequence that is found in FLRGRAYGL-specific T cells from most EBV-seropositive individuals could also be detected in the peripheral blood of vaccine recipients. The vaccine was well tolerated, with the main side effect being mild to moderate injection site reactions. After a 2- to 12-year follow-up, 1/2 placebo vaccinees who acquired EBV developed infectious mononucleosis, whereas 4/4 vaccinees who acquired EBV after completing peptide vaccination seroconverted asymptomatically. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly influence development of a normal repertoire of EBV-specific CD8+ T-cell responses following seroconversion. PMID:18032491

  15. A novel approach of virulome based reverse vaccinology for exploring and validating peptide-based vaccine candidates against the most troublesome nosocomial pathogen: Acinetobacter baumannii.

    PubMed

    Ahmad, Sajjad; Azam, Syed Sikander

    2018-05-05

    Acinetobacter baumannii is one of the major cause of nosocomial infections around the globe. The emergence of hyper-virulent strains of the pathogen greatly narrows down therapeutic options for patients infected with this red alert superbug. Development of a peptide-based vaccine can offers an alternative, attractive, and cost-effective remedy for multidrug-resistant A. baumannii associated complications. Herein, we introduced a novel virulome based Reverse Vaccinology for screening peptide based vaccine candidates against A. baumannii and its validation using a negative control. The pipeline screened "FYLNDQPVS" of polysaccharide export outer membrane protein (EpsA) and "LQNNTRRMK" of chaperone-usher pathway protein B (CsuB) as broad-spectrum peptides for induction of targeted immune responses. The 9-mer epitope of both proteins was rendered virulent, antigenic, non-allergen, and highly conserved among thirty-four completely annotated strains. Interactome examination unravels peptides protein direct and indirect interactions with biological significant pathways, essential for A. baumannii pathogenesis and survival. Protein-peptide docking aids in addition by unveiling deep binding of the epitopes in the active site of the most prevalent binding allele in the human population-the DRB1*0101. Both the proteins till to date are not characterized for immunoprotective efficacy and desirable to be deciphered experimentally. The designed series of in silico filters rejected few recently reported peptide and non-peptide vaccine targets and has delivered outcomes, which we believe will enrich the existing knowledge of vaccinology against this life-threatening human pathogen. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Rational Design of Peptide Vaccines Against Multiple Types of Human Papillomavirus

    PubMed Central

    Dey, Sumanta; De, Antara; Nandy, Ashesh

    2016-01-01

    Human papillomavirus (HPV) occurs in many types, some of which cause cervical, genital, and other cancers. While vaccination is available against the major cancer-causing HPV types, many others are not covered by these preventive measures. Herein, we present a bioinformatics study for the designing of multivalent peptide vaccines against multiple HPV types as an alternative strategy to the virus-like particle vaccines being used now. Our technique of rational design of peptide vaccines is expected to ensure stability of the vaccine against many cycles of mutational changes, elicit immune response, and negate autoimmune possibilities. Using the L1 capsid protein sequences, we identified several peptides for potential vaccine design for HPV 16, 18, 33, 35, 45, and 11 types. Although there are concerns about the epitope-binding affinities for the peptides identified in this process, the technique indicates possibilities of multivalent, adjuvanted, peptide vaccines against a wider range of HPV types, and tailor-made different combinations of the peptides to address frequency variations of types over different population groups as required for prophylaxis and at lower cost than are in use at the present time. PMID:27279731

  17. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    PubMed

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  18. Structure-based design of broadly protective group a streptococcal M protein-based vaccines.

    PubMed

    Dale, James B; Smeesters, Pierre R; Courtney, Harry S; Penfound, Thomas A; Hohn, Claudia M; Smith, Jeremy C; Baudry, Jerome Y

    2017-01-03

    A major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new "cluster-based" typing system of 175M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines. M protein sequences (AA 16-50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4GAS. The synthetic vaccine rabbit antisera reacted with all 17 E4M peptides and demonstrated bactericidal activity against 15/17 E4GAS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4M peptides. Comprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS. Copyright © 2016 Elsevier Ltd. All

  19. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    PubMed

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  20. Peptide vaccination of patients with metastatic melanoma: improved clinical outcome in patients demonstrating effective immunization.

    PubMed

    Markovic, Svetomir N; Suman, Vera J; Ingle, James N; Kaur, Judith S; Pitot, Henry C; Loprinzi, Charles L; Rao, Ravi D; Creagan, Edward T; Pittelkow, Mark R; Allred, Jakob B; Nevala, Wendy K; Celis, Esteban

    2006-08-01

    Therapeutic peptide vaccines for melanoma continue to only demonstrate anecdotal success. We set out to evaluate the impact of low-dose GM-CSF emulsified in Montanide ISA-51 on the immunogenicity of HLA-A2 restricted melanoma differentiation antigen peptide vaccines (MART-1, gp100 and tyrosinase) administered in separate subcutaneous injections. We conducted a randomized phase II clinical trial of HLA-A2+ patients with metastatic melanoma that were immunized every 3 weeks with one of the following vaccine preparations: (A) peptides + Montanide ISA-51; (B) peptides + Montanide ISA-51 + GM-CSF (10 microg); (C) peptides + Montanide ISA-51 + GM-CSF (50 microg). Immunization efficacy was determined by quantification of vaccine specific tetramer positive cytotoxic T cells in peripheral blood. Global assessment of immune competence was ascertained using DTH testing to common recall antigens as well as peripheral blood immunophenotyping. Twenty-five eligible patients were equally distributed across all 3 treatment groups. Only 9 patients demonstrated evidence of immunization. Most commonly, immune response was achieved to the gp100 peptide. The addition of low-dose GM-CSF did not impact immunization efficacy. DTH reactivity to Candida appeared predictive of successful immunization. Successful immunization with the peptide vaccines was associated with improved clinical outcomes. The addition of low dose GM-CSF to peptide vaccines did not enhance immunogenicity. Higher doses of GM-CSF may be needed to achieve this effect and this is a testable hypothesis. Likewise, better patient selection based on immunologic status (DTH reactivity) may be helpful to better understand the clinical impact of therapeutic cancer vaccines.

  1. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-03

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.

  2. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  3. Survival analysis of multiple peptide vaccination for the selection of correlated peptides in urological cancers.

    PubMed

    Noguchi, Masanori; Koga, Noriko; Moriya, Fukuko; Suekane, Shigetaka; Yutani, Shigeru; Yamada, Akira; Shichijo, Shigeki; Kakuma, Tatuyuki; Itoh, Kyogo

    2018-06-25

    Peptide-based cancer vaccines are able to induce strong immune responses, but their clinical results are unsatisfactory. To determine clinically correlated peptides, we analyzed survival data from urological cancer patients treated by personalized peptide vaccination (PPV), in which different multiple peptides were used for individual patients based on human leukocyte antigen (HLA) type and pre-existing immunity. Survival data were obtained from a database of 265 urological cancer patients treated in 5 clinical PPV trials comprising 154 patients with castration-resistant prostate cancer (CRPC) and 111 patients with advanced urothelial cancer (UC). The expression of tumor-associated antigens (TAAs) was evaluated in 10 prostate cancer tissues, 4 metastatic lymph nodes from prostate cancer and 10 UC tissues using immunohistochemical staining. The clinical efficacy of individual peptides for overall survival was evaluated by the Cox proportional hazards regression model. All TAAs coding candidate peptides used in PPV treatment were expressed in tumor cells from prostate cancer and UC samples except for p56Lck in both, and PSA, PAP and PSMA in the UC samples. Patients with the following peptides had a significantly longer survival than patients without the peptides (Hazard ratio < 1.0, 95% confidence intervals < 1.0 and P < 0.05): SART3-109, PTHrP-102, HNPRL-140, SART3-302 and Lck-90 in CRPC patients, and EGF-R-800, Lck-486, PSMA-624, CypB-129 and SART3-734 in advanced UC patients, respectively. Correlated peptides selected using both survival data and pre-existing immunity for PPV treatment may enhance the clinical benefits for urological cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer.

    PubMed

    Nishida, Sumiyuki; Koido, Shigeo; Takeda, Yutaka; Homma, Sadamu; Komita, Hideo; Takahara, Akitaka; Morita, Satoshi; Ito, Toshinori; Morimoto, Soyoko; Hara, Kazuma; Tsuboi, Akihiro; Oka, Yoshihiro; Yanagisawa, Satoru; Toyama, Yoichi; Ikegami, Masahiro; Kitagawa, Toru; Eguchi, Hidetoshi; Wada, Hiroshi; Nagano, Hiroaki; Nakata, Jun; Nakae, Yoshiki; Hosen, Naoki; Oji, Yusuke; Tanaka, Toshio; Kawase, Ichiro; Kumanogoh, Atsushi; Sakamoto, Junichi; Doki, Yuichiro; Mori, Masaki; Ohkusa, Toshifumi; Tajiri, Hisao; Sugiyama, Haruo

    2014-01-01

    Wilms tumor gene (WT1) protein is an attractive target for cancer immunotherapy. We aimed to investigate the feasibility of a combination therapy consisting of gemcitabine and WT1 peptide-based vaccine for patients with advanced pancreatic cancer and to make initial assessments of its clinical efficacy and immunologic response. Thirty-two HLA-A*24:02 patients with advanced pancreatic cancer were enrolled. Patients received HLA-A*24:02-restricted, modified 9-mer WT1 peptide (3 mg/body) emulsified with Montanide ISA51 adjuvant (WT1 vaccine) intradermally biweekly and gemcitabine (1000 mg/m) on days 1, 8, and 15 of a 28-day cycle. This combination therapy was well tolerated. The frequencies of grade 3-4 adverse events for this combination therapy were similar to those for gemcitabine alone. Objective response rate was 20.0% (6/30 evaluable patients). Median survival time and 1-year survival rate were 8.1 months and 29%, respectively. The association between longer survival and positive delayed-type hypersensitivity to WT1 peptide was statistically significant, and longer survivors featured a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes both before and after treatment. WT1 vaccine in combination with gemcitabine was well tolerated for patients with advanced pancreatic cancer. Delayed-type hypersensitivity-positivity to WT1 peptide and a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes could be useful prognostic markers for survival in the combination therapy with gemcitabine and WT1 vaccine. Further clinical investigation is warranted to determine the effectiveness of this combination therapy.

  5. Peptide cross-reactivity: the original sin of vaccines.

    PubMed

    Kanduc, Darja

    2012-06-01

    Recent numerous studies have demonstrated that an extensive peptide identity platform characterizes entities spanning the entire evolutionary arc from viruses to humans and establishes an immune cross-reactivity potential among viruses and bacteria, as well as between microbial organisms and humans. This peptide commonality presents obstacles to diagnostics, burdens therapeutic vaccinology with harmful collateral effects, and can result in autoimmune diseases. The present study 1) recapitulates the significance of cross-reactivity from the molecular mimicry hypothesis to the phenomenon of microbial immunoevasion; 2) analyzes the implications of cross-reactivity for the self-nonself discrimination issue; 3) highlights the negative role exerted by cross-reactions in translating immunology to effective vaccines; 4) outlines the vicious circle connecting peptide commonality, microbial immune escape, adjuvanted vaccines and autoimmune cross-reactions; and 5) conclusively indicates sequence uniqueness as a basic criterion for designing effective vaccines exempt from autoimmune cross-reactions.

  6. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy.

    PubMed

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-05-01

    Grass pollen is one of the most important sources of respiratory allergies worldwide. This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets

    PubMed Central

    Rosendahl Huber, S. K.; Camps, M. G. M.; Jacobi, R. H. J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J.

    2015-01-01

    Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks. PMID:26046664

  8. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    PubMed Central

    Haug, Markus; Brede, Gaute; Håkerud, Monika; Nedberg, Anne Grete; Gederaas, Odrun A.; Flo, Trude H.; Edwards, Victoria T.; Selbo, Pål K.; Høgset, Anders; Halaas, Øyvind

    2018-01-01

    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses. PMID:29670624

  9. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    PubMed Central

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies. PMID:26539559

  10. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs.

    PubMed

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  11. Interferon γ limits the effectiveness of melanoma peptide vaccines.

    PubMed

    Cho, Hyun-Il; Lee, Young-Ran; Celis, Esteban

    2011-01-06

    The development of effective therapeutic vaccines to generate tumor-reactive cytotoxic T lymphocytes (CTLs) continues to be a top research priority. However, in spite of some promising results, there are no clear examples of vaccines that eradicate established tumors. Most vaccines are ineffective because they generate low numbers of CTLs and because numerous immunosuppressive factors abound in tumor-bearing hosts. We designed a peptide vaccine that produces large numbers of tumor-reactive CTLs in a mouse model of melanoma. Surprisingly, CTL tumor recognition and antitumor effects decreased in the presence of interferon γ (IFNγ), a cytokine that can provide therapeutic benefit. Tumors exposed to IFNγ evade CTLs by inducing large amounts of noncognate major histocompatibility complex class I molecules, which limit T-cell activation and effector function. Our results demonstrate that peptide vaccines can eradicate large, established tumors in circumstances under which the inhibitory activities of IFNγ are curtailed.

  12. An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge.

    PubMed

    Ma, Ji-Hong; Yang, Fu-Ru; Yu, Hai; Zhou, Yan-Jun; Li, Guo-Xin; Huang, Meng; Wen, Feng; Tong, Guangzhi

    2013-07-09

    Vaccination is considered as the most effective preventive method to control influenza. The hallmark of influenza virus is the remarkable variability of its major surface glycoproteins, HA and NA, which allows the virus to evade existing anti-influenza immunity in the target population. So it is necessary to develop a novel vaccine to control animal influenza virus. Also we know that the ectodomain of influenza matrix protein 2 (M2e) is highly conserved in animal influenza A viruses, so a vaccine based on the M2e could avoid several drawbacks of the traditional vaccines. In this study we designed a novel tetra-branched multiple antigenic peptide (MAP) based vaccine, which was constructed by fusing four copies of M2e to one copy of foreign T helper (Th) cell epitope, and then investigated its immune responses. Our results show that the M2e-MAP induced strong M2e-specific IgG antibody,which responses following 2 doses immunization in the presence of Freunds' adjuvant. M2e-MAP vaccination limited viral replication substantially. Also it could attenuate histopathological damage in the lungs of challenged mice and counteracted weight loss. M2e-MAP-based vaccine protected immunized mice against the lethal challenge with PR8 virus. Based on these findings, M2e-MAP-based vaccine seemed to provide useful information for the research of M2e-based influenza vaccine. Also it show huge potential to study vaccines for other similarly viruses.

  13. Application of E75 peptide vaccine in breast cancer patients: a systematic review and meta-analysis.

    PubMed

    Chamani, Reyhane; Ranji, Peyman; Hadji, Maryam; Nahvijou, Azin; Esmati, Ebrahim; Alizadeh, Ali Mohammad

    2018-05-09

    The E75 peptide vaccine, derived from tumor-associated antigen HER2, is the most frequently studied anti-HER2 vaccination strategy for the treatment of breast cancer patients. It has been investigated in the several phases Ι/Π of the clinical trials and is currently being evaluated in a randomized multicenter phase III clinical trial. We conducted a systematic review and meta-analysis to clarify the outcomes of the E75 peptide vaccine including the therapeutic efficacy, the disease recurrence, the survival rate, and the side effects. Three peer-reviewed literature databases including the PubMed, Web of Science, and Scopus were sought. Of 29 trials assessed for eligibility, 16 were considered based on our inclusion criteria. Statistical analyses were performed by The Excel and STATA v.11.0. Meta-analysis of delayed-type hypersensitivity)DTH( reactions and CD8 + -T cell levels, as immune responses, displayed the significant differences in the vaccinated groups compared to their non-vaccinated counterparts. In addition, the recurrence, and the overall and the disease-free survival were significantly different in the vaccinated subjects versus the control. Evaluation of the local and systemic toxicity of the E75 peptide vaccine demonstrated the minimal side effects. It seems that the E75 peptide vaccine is safe and effective, and can be used for further randomized clinical trials. Copyright © 2018. Published by Elsevier B.V.

  14. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  15. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides.

    PubMed

    Zwaveling, Sander; Ferreira Mota, Sandra C; Nouta, Jan; Johnson, Mark; Lipford, Grayson B; Offringa, Rienk; van der Burg, Sjoerd H; Melief, Cornelis J M

    2002-07-01

    Peptide-based vaccines aimed at the induction of effective T cell responses against established cancers have so far only met with limited clinical success and clearly need to be improved. In a preclinical model of human papillomavirus (HPV)16-induced cervical cancer we show that prime-boost vaccinations with the HPV16-derived 35 amino-acid long peptide E7(43-77), containing both a CTL epitope and a Th epitope, resulted in the induction of far more robust E7-specific CD8(+) T cell responses than vaccinations with the minimal CTL epitope only. We demonstrate that two distinct mechanisms are responsible for this effect. First, vaccinations with the long peptide lead to the generation of E7-specific CD4(+) Th cells. The level of the induced E7-specific CD8(+) T cell response proved to be dependent on the interactions of these Th cells with professional APC. Second, we demonstrate that vaccination with the long peptide and dendritic cell-activating agents resulted in a superior induction of E7-specific CD8(+) T cells, even when T cell help was excluded. This suggests that, due to its size, the long peptide was preferably endocytosed, processed, and presented by professional APCs. Moreover, the efficacy of this superior HPV-specific T cell induction was demonstrated in therapeutic prime-boost vaccinations in which the long peptide admixed with the dendritic cell-activating adjuvant oligodeoxynucleotide-CpG resulted in the eradication of large, established HPV16-expressing tumors. Because the vaccine types used in this study are easy to prepare under good manufacturing practice conditions and are safe to administer to humans, these data provide important information for future clinical trials.

  16. Phase 1 clinical study of cyclophilin B peptide vaccine for patients with lung cancer.

    PubMed

    Gohara, Rumi; Imai, Nobue; Rikimaru, Toru; Yamada, Akira; Hida, Naoya; Ichiki, Masao; Kawamoto, Mayumi; Matsunaga, Kazuko; Ashihara, Junko; Yano, Sayoko; Tamura, Mayumi; Ohkouchi, Shinya; Yamana, Hideaki; Oizumi, Kotaro; Itoh, Kyogo

    2002-01-01

    Cyclophilin B (CypB) possesses two antigenic epitopes (CypB(84-92) and CypB(91-99) ) recognized by HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes (CTLs). To determine the safety of CypB-derived peptides and its ability to generate antitumor immune responses, patients with advanced lung cancer received subcutaneous vaccinations of these peptides or their modified peptides. All 16 patients were vaccinated with CypB(91-99) or its modified peptide, whereas only two patients were vaccinated with the modified CypB(84-92), as immediate-type hypersensitivity to CypB(84-92) or its modified peptide was observed in the remaining patients. No severe adverse events were associated with the vaccination. No significant increase in cellular responses to either peptides or tumor cells was observed in the postvaccination PBMCs by the conventional CTL assays in any patients tested. These results suggest that the vaccination of CypB(91-99) peptide was safe, but failed to induce objective immune responses at this regimen.

  17. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    PubMed Central

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127

  18. Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico.

    PubMed

    Huerta, M; de Aluja, A S; Fragoso, G; Toledo, A; Villalobos, N; Hernández, M; Gevorkian, G; Acero, G; Díaz, A; Alvarez, I; Avila, R; Beltrán, C; Garcia, G; Martinez, J J; Larralde, C; Sciutto, E

    2001-10-12

    Taenia solium cysticercosis seriously affects human health when localised in the central nervous system (CNS) and causes great economic loss in pig husbandry in rural areas of endemic countries. Increasing the resistance to the parasite in the obligatory host pig may help in curbing transmission. Three synthetic peptides based on protein sequences of the murine parasite Taenia crassiceps, which had previously been shown to induce protection in mice against homologous challenge, were tested as a vaccine against T. solium cysticercosis in pigs. Vaccinated and unvaccinated piglets (240 in all) were distributed in pairs among the peasants' households of two rural villages in Mexico in which 14% of the native pigs were cysticercotic. Ten to twelve months later, the effect of vaccination was evaluated at necropsy. Vaccination decreased the total number of T. solium cysticerci (98.7%) and reduced the prevalence (52.6%). The natural challenge conditions used in this field trial strengthen the likelihood of successful transmission control to both pig and human through a large-scale pig vaccination program. We believe this is a major contribution in anticysticercosis vaccine development as these rather simple yet protective peptides are potentially more cost-effective to produce and less variable in results than antigens that are more complex.

  19. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    PubMed

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Phase I dendritic cell p53 peptide vaccine for head and neck cancer.

    PubMed

    Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L

    2014-05-01

    p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.

  1. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    PubMed

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    PubMed Central

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  3. Immunologic hierarchy, class II MHC promiscuity, and epitope spreading of a melanoma helper peptide vaccine.

    PubMed

    Hu, Yinin; Petroni, Gina R; Olson, Walter C; Czarkowski, Andrea; Smolkin, Mark E; Grosh, William W; Chianese-Bullock, Kimberly A; Slingluff, Craig L

    2014-08-01

    Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4(+) T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8(+) T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund's adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4(+) and CD8(+) T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4(+) T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281-295 (49 %) and tyrosinase386-406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8(+) T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4(+) and CD8(+) T cell responses against melanoma antigens. CD4(+) T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8(+) T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.

  4. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge

    PubMed Central

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-01-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-γin vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV. PMID:20331473

  5. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge.

    PubMed

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-08-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.

  6. Feasibility and Immune Response of WT1 Peptide Vaccination in Combination with OK-432 for Paediatric Solid Tumors.

    PubMed

    Hirabayashi, Koichi; Yanagisawa, Ryu; Saito, Shoji; Higuchi, Yumiko; Koya, Terutsugu; Sano, Kenji; Koido, Shigeo; Okamoto, Masato; Sugiyama, Haruo; Nakazawa, Yozo; Shimodaira, Shigetaka

    2018-04-01

    Wilms' tumor 1 (WT1) peptide-based vaccination has been reported for its potential usefulness in targeting several cancers. The adjuvant drug OK-432 is known to have potent immunomodulation and therapeutic properties when applied in cancer treatment and may, thus, be important to trigger the appropriate immunological response in paediatric patients with a solid tumor that are vaccinated with a WT1 peptide. Paediatric patients with a solid tumor were vaccinated with a WT1 peptide and OK-432 once every 2 weeks, for a total of seven times. Of the 24 patients, 18 completed the scheduled vaccinations. Sixteen patients had local skin symptoms and/or fever. In 1 patient, anaphylactic symptoms emerged at the time of the final injection, but these quickly subsided after the treatment. WT1-specific immunological responses were observed in 4 patients (22.2%). WT1 and HLA class I expression were confirmed in 100% and 85% of primary tumors, respectively. WT1 peptide vaccine therapy combined with OK-432 appears to be relatively safe for children. However further studies in a larger number of patients are necessary to confirm its safety and efficacy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. A Novel M2e Based Flu Vaccine Formulation for Dogs

    PubMed Central

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  8. Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas

    PubMed Central

    Müller, Sören; Agnihotri, Sameer; Shoger, Karsen E.; Myers, Max I.; Chaparala, Srilakshmi; Villanueva, Clarence R.; Chattopadhyay, Ansuman; Butterfield, Lisa H.; Okada, Hideho; Pollack, Ian F.

    2018-01-01

    Low-grade gliomas (LGGs) are the most common brain tumor affecting children. We recently reported an early phase clinical trial of a peptide-based vaccine, which elicited consistent antigen-specific T cell responses in pediatric LGG patients. Additionally, we observed radiologic responses of stable disease (SD), partial response (PR), and near-complete/complete response (CR) following therapy. To identify biomarkers of clinical response in peripheral blood, we performed RNA sequencing on PBMC samples collected at multiple time points. Patients who showed CR demonstrated elevated levels of T cell activation markers, accompanied by a cytotoxic T cell response shortly after treatment initiation. At week 34, patients with CR demonstrated both IFN signaling and Poly-IC:LC adjuvant response patterns. Patients with PR demonstrated a unique, late monocyte response signature. Interestingly, HLA-V expression, before or during therapy, and an early monocytic hematopoietic response were strongly associated with SD. Finally, low IDO1 and PD-L1 expression before treatment and early elevated levels of T cell activation markers were associated with prolonged progression-free survival. Overall, our data support the presence of unique peripheral immune patterns in LGG patients associated with different radiographic responses to our peptide vaccine immunotherapy. Future clinical trials, including our ongoing phase II LGG vaccine immunotherapy, should monitor these response patterns. PMID:29618666

  9. A novel recombinant anti-epidermal growth factor receptor peptide vaccine capable of active immunization and reduction of tumor volume in a mouse model.

    PubMed

    Asadi-Ghalehni, Majid; Rasaee, Mohamad Javad; RajabiBazl, Masoumeh; Khosravani, Masood; Motaghinejad, Majid; Javanmardi, Masoud; Khalili, Saeed; Modjtahedi, Helmout; Sadroddiny, Esmaeil

    2017-12-01

    Over-expression of epidermal growth factor receptor (EGFR) has been reported in a number of human malignancies. Strong expression of this receptor has been associated with poor survival in many such patients. Active immunizations that elicit antibodies of the desired type could be an appealing alternative to conventional passive immunization. In this regard, a novel recombinant peptide vaccine capable of prophylactic and therapeutic effects was constructed. A novel fusion recombinant peptide base vaccine consisting of L2 domain of murine extra-cellular domain-EGFR and EGFR mimotope (EM-L2) was constructed and its prophylactic and therapeutic effects in a Lewis lung carcinoma mouse (C57/BL6) model evaluated. Constructed recombinant peptide vaccine is capable of reacting with anti-EGFR antibodies. Immunization of mice with EM-L2 peptide resulted in antibody production against EM-L2. The constructed recombinant peptide vaccine reduced tumor growth and increased the survival rate. Designing effective peptide vaccines could be an encouraging strategy in contemporary cancer immunotherapy. Investigating the efficacy of such cancer immunotherapy approaches may open exciting possibilities concerning hyperimmunization, leading to more promising effects on tumor regression and proliferation. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  10. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro.

    PubMed

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-12

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  11. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  12. [Development of Peptide Vaccines for Triple-Negative Breast Cancer Treatment].

    PubMed

    Toh, Uhi; Saku, Shuko; Okabe, Mina; Iwakuma, Nobutaka; Kimitsuki, Yuko; Akashi, Momoko; Ogo, Etsuyo; Yamada, Akira; Shichijo, Shigeki; Itoh, Kyogo; Akagi, Yoshito

    2016-10-01

    Our previous phase II clinical trial showed that therapeutically selected personalized peptide vaccines(PPVs)were effective at boosting anticancer immunity; the immune response after PPV was associated with a clinical outcome as a prognostic factor for metastatic breast cancer(mBC). We conducted an early phase II study to evaluate the safety and efficacy of a new regimen using multiple peptide vaccines(KRM-19)for patients with metastatictriple -negative breast cancer. KRM-19 consisted of 19 mixed peptides chosen from the previously reported 31 PPVs according to their anti-tumor immunologiceffec ts and safety profiles for patients with mBC. All patients had histologically confirmed measurable ER-PgR-HER2- mBC and their human leukocyte antigen(HLA) / -A molecules were A2, A3, A11, A24, A26, A31, or A33. KRM-19(19mg/mL)was administrated subcutaneously every week for a total of 6 doses. Concurrent conventional chemo- and/or endocrine therapy were not permitted during treatment. This was an open-label, early phase II study. The primary endpoint was safety and anti-tumor immunologic effect, while the secondary endpoints were clinical responses and progression-free survival(PFS). The estimated enrollment was 10-15 and 8 patients were enrolled(Clinical trial registry number: UMIN000014616). Measurement of peptide-specific cytotoxic T lymphocyte and IgG responses were conducted before and after vaccination. The correlation between PFS and the increased IgG response and/or CTL levels were investigated.

  13. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine.

    PubMed

    Anderson, Regan J; Li, Jasmine; Kedzierski, Lukasz; Compton, Benjamin J; Hayman, Colin M; Osmond, Taryn L; Tang, Ching-Wen; Farrand, Kathryn J; Koay, Hui-Fern; Almeida, Catarina Filipa Dos Santos Sa E; Holz, Lauren R; Williams, Geoffrey M; Brimble, Margaret A; Wang, Zhongfang; Koutsakos, Marios; Kedzierska, Katherine; Godfrey, Dale I; Hermans, Ian F; Turner, Stephen J; Painter, Gavin F

    2017-11-17

    The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.

  14. Synergy of SOCS-1 Inhibition and Microbial-Based Cancer Vaccines

    DTIC Science & Technology

    2014-11-01

    response without causing additional risk to the patient. The goal of our proposal is to modify a live- attenuated vaccine vector based on the food -borne...response after vaccination with a live-­‐‑attenuated L. monocytogenes. Aim 3: Test the hypothesis that secretion of a SOCS-­‐‑1 small peptide ...efficient internalization of pathogens and dying cells, processing of this material into peptide antigens that are presented in the context of major

  15. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus.

    PubMed

    Friedrich, Brian M; Beasley, David W C; Rudra, Jai S

    2016-11-04

    A crucial issue in vaccine development is to balance safety with immunogenicity. The low immunogenicity of most subunit antigens warrants a search for adjuvants able to stimulate both cell-mediated and humoral immunity. In recent years, successful applications of nanotechnology and bioengineering in the field of vaccine development have enabled the production of novel adjuvant technologies. In this work, we investigated totally synthetic and supramolecular peptide hydrogels as novel vaccine adjuvants in conjunction with the immunoprotective envelope protein domain III (EIII) of West Nile virus as an immunogen in a mouse model. Our results indicate that, compared to the clinically approved adjuvant alum, peptide hydrogel adjuvanted antigen elicited stronger antibody responses and conferred significant protection against mortality after virus challenge. The high chemical definition and biocompatibility of self-assembling peptide hydrogels makes them attractive as immune adjuvants for the production of subunit vaccines against viral and bacterial infections where antibody-mediated protection is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors.

    PubMed

    Heimberger, Amy B; Crotty, Laura E; Archer, Gary E; Hess, Kenneth R; Wikstrand, Carol J; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2003-09-15

    The epidermal growth factor receptor (EGFR) is often amplified and structurally rearranged in malignant gliomas and other tumors such as breast and lung, with the most common mutation being EGFRvIII. In the study described here, we tested in mouse models a vaccine consisting of a peptide encompassing the tumor-specific mutated segment of EGFRvIII (PEP-3) conjugated to keyhole limpet hemocyanin [KLH (PEP-3-KLH)]. C57BL/6J or C3H mice were vaccinated with PEP-3-KLH and subsequently challenged either s.c. or intracerebrally with a syngeneic melanoma cell line stably transfected with a murine homologue of EGFRvIII. Control mice were vaccinated with KLH. To test its effect on established tumors, C3H mice were also challenged intracerebrally and subsequently vaccinated with PEP-3-KLH. S.c. tumors developed in all of the C57BL/6J mice vaccinated with KLH in Freund's adjuvant, and there were no long-term survivors. Palpable tumors never developed in 70% of the PEP-3-KLH-vaccinated mice. In the C57BL/6J mice receiving the PEP-3-KLH vaccine, the tumors that did develop were significantly smaller than those in the control group (P < 0.05). PEP-3-KLH vaccination did not result in significant cytotoxic responses in standard cytotoxicity assays; however, antibody titers against PEP-3 were enhanced. The passive transfer of sera from the immunized mice to nonimmunized mice protected 31% of the mice from tumor development (P < 0.05). In vivo depletion studies showed that the effector cell population was natural killer and CD8+ T cells, and in vitro assays showed that macrophages could lyse target tumor cells with serum from the PEP-3-KLH-vaccinated mice. Peptide vaccination was also sufficiently potent to have marked efficacy against intracerebral tumors, resulting in a >173% increase in median survival time, with 80% of the C3H mice achieving long-term survival (P = 0.014). In addition, C3H mice with established intracerebral tumor that received a single treatment of PEP-3-KLH

  17. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  18. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity.

    PubMed

    Nedrud, John G; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.

  19. A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines.

    PubMed

    Toussaint, Nora C; Dönnes, Pierre; Kohlbacher, Oliver

    2008-12-01

    Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore, as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.

  20. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy

    PubMed Central

    Kaumaya, Pravin TP

    2015-01-01

    There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating “promiscuous” T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types. PMID:25874884

  1. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances themore » flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.« less

  2. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    PubMed Central

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  3. Subcomponent Vaccine Based on CTA1-DD Adjuvant with Incorporated UreB Class II Peptides Stimulates Protective Helicobacter pylori Immunity

    PubMed Central

    Nedrud, John G.; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y.

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform. PMID:24391754

  4. Designing Peptide-Based HIV Vaccine for Chinese

    PubMed Central

    Fan, Xiaojuan

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese. PMID:25136573

  5. Designing peptide-based HIV vaccine for Chinese.

    PubMed

    Shu, Jiayi; Fan, Xiaojuan; Ping, Jie; Jin, Xia; Hao, Pei

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese.

  6. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  7. Particle-based platforms for malaria vaccines.

    PubMed

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    PubMed

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  9. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    PubMed

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  10. Prediction of Brugia malayi antigenic peptides: candidates for synthetic vaccine design against lymphatic filariasis.

    PubMed

    Gomase, Virendra S; Chitlange, Nikhilkumar R; Changbhale, Smruti S; Kale, Karbhari V

    2013-08-01

    Brugia malayi is a threadlike nematode cause's swelling of lymphatic organs, condition well known as lymphatic filariasis; till date no invention made to effectively address lymphatic filariasis. In this analysis we a have predicted suitable antigenic peptides from Brugia malayi antigen protein for peptide vaccine design against lymphatic filariasis based on cross protection phenomenon as, an ample immune response can be generated with a single protein subunit. We found MHC class II binding peptides of Brugia malayi antigen protein are important determinant against the diseased condition. The analysis shows Brugia malayi antigen protein having 505 amino acids, which shows 497 nonamers. In this assay, we have predicted MHC-I binding peptides for 8mer_H2_Db (optimal score- 15.966), 9mer_H2_Db (optimal score- 15.595), 10mer_H2_Db (optimal score- 19.405), 11mer_H2_Dballeles (optimal score- 23.801). We also predicted the SVM based MHCII-IAb nonamers, 51-FQQIDPLDA, 442-FAAIACLVH, 206-YLNPFGHQF, 167-WYVIMAACY, 367-YAMIVIRLL, 434- LVITTAANF, 176-LDSYCLWKP, 435-VITTAANFA, 364-WPGYAMIVI (optimal score- 13.963); MHCII-IAd nonamers, 52-QQIDPLDAE, 171-MAACYLDSY, 239-QWRSVILCN, 168-YVIMAACYL, 3-QYLSVHSLS, 322-EILLHAKVV, 417- LGIIASFVS, 396-KAIFLAHFG, 167-WYVIMAACY, 269-LALHCINVI, 93-FINKAAPKQ, 259-NCIIVLKAF, 79- QGVLLIIPR, 22-TILQRSQAI, 63-RGFVYGNVS, 109-NISSLAFET,(optimal score- 16.748); and MHCII-IAg7 nonamers 171-MAACYLDSY, 73-KIVNGAQGV, 259-NCIIVLKAF, 209-PFGHQFSFE, 102-SCDTLLKNI, 25-QRSQAIRIV, 444- AIACLVHLF, 88-SLVNGFINK, 252-FPRHQLLNC, 471-RFVLANDNE, 52-QQIDPLDAE, 469-HRRFVLAND, 457- SNRHYFLAD, 362-KSWPGYAMI, 476-NDNEGEDFE, 370-IVIRLLQAL (optimal score- 19.847) which represents potential binders from Brugia malayi antigen protein. The method integrates prediction of MHC class I binding proteasomal C-terminal cleavage peptides and Eighteen potential antigenic peptides at average propensity 1.063 having highest local hydrophilicity. Thus a small antigen fragment can induce

  11. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities

    PubMed Central

    Calderón-Gonzalez, Ricardo; Terán-Navarro, Héctor; Frande-Cabanes, Elisabet; Ferrández-Fernández, Eva; Freire, Javier; Penadés, Soledad; Marradi, Marco; García, Isabel; Gomez-Román, Javier; Yañez-Díaz, Sonsoles; Álvarez-Domínguez, Carmen

    2016-01-01

    Listeriosis is a fatal infection for fetuses and newborns with two clinical main morbidities in the neonatal period, meningitis and diffused cutaneous lesions. In this study, we vaccinated pregnant females with two gold glyconanoparticles (GNP) loaded with two peptides, listeriolysin peptide 91–99 (LLO91–99) or glyceraldehyde-3-phosphate dehydrogenase 1–22 peptide (GAPDH1–22). Neonates born to vaccinated mothers were free of bacteria and healthy, while non-vaccinated mice presented clear brain affections and cutaneous diminishment of melanocytes. Therefore, these nanoparticle vaccines are effective measures to offer pregnant mothers at high risk of listeriosis interesting therapies that cross the placenta. PMID:28335280

  12. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    PubMed

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  13. Feasibility of Cancer Immunotherapy with WT1 Peptide Vaccination for Solid and Hematological Malignancies in Children.

    PubMed

    Sawada, Akihisa; Inoue, Masami; Kondo, Osamu; Yamada-Nakata, Kayo; Ishihara, Takashi; Kuwae, Yuko; Nishikawa, Masanori; Ammori, Yasuhiro; Tsuboi, Akihiro; Oji, Yusuke; Koyama-Sato, Maho; Oka, Yoshihiro; Yasui, Masahiro; Sugiyama, Haruo; Kawa, Keisei

    2016-02-01

    Advances in cancer immunotherapy in the pediatric field are needed in order to improve the prognosis of children with malignancies. We conducted a prospective phase I/II study of WT1 peptide vaccination for children with relapsed or refractory malignancies. The main eligibility criteria were affected tissues or leukemic cells expressing the WT1 gene, and patients (and donors for allogeneic hematopoietic stem cell transplantation) having HLA-A*24:02. Vaccination using the WT1 peptide (CYTWNQMNL), which was modified for higher affinity to this HLA-type molecule with the adjuvant Montanide ISA51, was performed weekly 12 times. Twenty-six patients were enrolled and 13 (50.0%) completed the vaccination 12 times. Evidence for the induction of WT1-specific cytotoxic T-lymphocyte (CTL) responses without severe systemic side effects was obtained. Two out of 12 patients with bulky disease exhibited a transient clinical effect (one mixed response and one stable disease), three out of six patients with minimal residual disease achieved transient molecular remission, and five out of eight patients without a detectable level of the molecular marker, but with a high risk of relapse, had the best outcome of long-term continuous complete remission. WT1 vaccination is a safe immunotherapy and induced WT1-specific CTL responses in children; however, as a single agent, vaccination only provided patients in remission, but with a high risk of relapse, with "long-term benefits" in the context of its use for relapse prevention. WT1 peptide-based treatments in combination with other modalities, such as anti-tumor drugs or immunomodulating agents, need to be planned. © 2015 Wiley Periodicals, Inc.

  14. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activitymore » against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.« less

  15. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    PubMed

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  16. Peptides in melanoma therapy.

    PubMed

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  17. Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates.

    PubMed

    Small, Christina M; Mwangi, Waithaka; Esteve-Gassent, Maria D

    2016-01-01

    Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

  18. Broad and Cross-Clade CD4+ T-Cell Responses Elicited by a DNA Vaccine Encoding Highly Conserved and Promiscuous HIV-1 M-Group Consensus Peptides

    PubMed Central

    Almeida, Rafael Ribeiro; Rosa, Daniela Santoro; Ribeiro, Susan Pereira; Santana, Vinicius Canato; Kallás, Esper Georges; Sidney, John; Sette, Alessandro; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS. PMID:23028895

  19. Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides.

    PubMed

    Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna

    2008-08-15

    Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.

  20. Epitope mapping: the first step in developing epitope-based vaccines.

    PubMed

    Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael

    2007-01-01

    Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For

  1. Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis.

    PubMed

    Valentini, Davide; Ferrara, Giovanni; Advani, Reza; Hallander, Hans O; Maeurer, Markus J

    2015-07-01

    Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n=10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n=3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p<0.05), DTPa2 and DT (p<0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in

  2. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer.

    PubMed

    Mehrotra, Shikhar; Britten, Carolyn D; Chin, Steve; Garrett-Mayer, Elizabeth; Cloud, Colleen A; Li, Mingli; Scurti, Gina; Salem, Mohamed L; Nelson, Michelle H; Thomas, Melanie B; Paulos, Chrystal M; Salazar, Andres M; Nishimura, Michael I; Rubinstein, Mark P; Li, Zihai; Cole, David J

    2017-04-07

    Dendritic cells (DCs) enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR)-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC). We generated autologous DCs from the peripheral blood of HLA-A2 + patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1) human telomerase reverse transcriptase (hTERT, TERT572Y), 2) carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin (SRV.A2). Patients received four intradermal injections of 1 × 10 7 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42). Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42), as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells. Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I -tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease. Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and induces a measurable tumor specific T cell population in

  3. Simulated digestion for testing the stability of edible vaccine based on Cucumber mosaic virus (CMV) chimeric particle display Hepatitis C virus (HCV) peptide.

    PubMed

    Vitti, Antonella; Nuzzaci, Maria; Condelli, Valentina; Piazzolla, Pasquale

    2014-01-01

    Edible vaccines must survive digestive process and preserve the specific structure of the antigenic peptide to elicit effective immune response. The stability of a protein to digestive process can be predicted by subjecting it to the in vitro assay with simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Here, we describe the protocol of producing and using chimeric Cucumber mosaic virus (CMV) displaying Hepatitis C virus (HCV) derived peptide (R9) in double copy as an oral vaccine. Its stability after treatment with SGF and SIF and the preservation of the antigenic properties were verified by SDS-PAGE and immuno western blot techniques.

  4. Cytotoxic T lymphocyte response to peptide vaccination predicts survival in stage III colorectal cancer.

    PubMed

    Kawamura, Junichiro; Sugiura, Fumiaki; Sukegawa, Yasushi; Yoshioka, Yasumasa; Hida, Jin-Ichi; Hazama, Shoichi; Okuno, Kiyotaka

    2018-02-23

    We previously reported a phase I clinical trial of a peptide vaccine ring finger protein 43 (RNF43) and 34-kDa translocase of the outer mitochondrial membrane (TOMM34) combined with uracil-tegafur (UFT)/LV for patients with metastatic colorectal cancer (CRC), and demonstrated the safety and immunological responsiveness of this combination therapy. In this study, we evaluated vaccination-induced immune responses to clarify the survival benefit of the combination therapy as adjuvant treatment. We enrolled 44 patients initially in an HLA-masked fashion. After the disclosure of HLA, 28 patients were in the HLA-A*2402-matched and 16 were in the unmatched group. In the HLA-matched group, 14 patients had positive CTL responses specific for the RNF43 and/or TOMM34 peptides after 2 cycles of treatment and 9 had negative responses; in the HLA-unmatched group, 10 CTL responses were positive and 2 negative. In the HLA-matched group, 3-year relapse-free survival (RFS) was significantly better in the positive CTL subgroup than in the negative-response subgroup. Patients with negative vaccination-induced CTL responses showed a significant trend towards shorter RFS than those with positive responses. Moreover, in the HLA-unmatched group, the positive CTL response subgroup showed an equally good 3-year RFS as in the HLA-matched group. In conclusion, vaccination-induced CTL response to peptide vaccination could predict survival in the adjuvant setting for stage III CRC. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    PubMed

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  6. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis

    PubMed Central

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation

  7. Artificial intelligence systems based on texture descriptors for vaccine development.

    PubMed

    Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra

    2011-02-01

    The aim of this work is to analyze and compare several feature extraction methods for peptide classification that are based on the calculation of texture descriptors starting from a matrix representation of the peptide. This texture-based representation of the peptide is then used to train a support vector machine classifier. In our experiments, the best results are obtained using local binary patterns variants and the discrete cosine transform with selected coefficients. These results are better than those previously reported that employed texture descriptors for peptide representation. In addition, we perform experiments that combine standard approaches based on amino acid sequence. The experimental section reports several tests performed on a vaccine dataset for the prediction of peptides that bind human leukocyte antigens and on a human immunodeficiency virus (HIV-1). Experimental results confirm the usefulness of our novel descriptors. The matlab implementation of our approaches is available at http://bias.csr.unibo.it/nanni/TexturePeptide.zip.

  8. Randomized Multicenter Trial of the Effects of Melanoma-Associated Helper Peptides and Cyclophosphamide on the Immunogenicity of a Multipeptide Melanoma Vaccine

    PubMed Central

    Slingluff, Craig L.; Petroni, Gina R.; Chianese-Bullock, Kimberly A.; Smolkin, Mark E.; Ross, Merrick I.; Haas, Naomi B.; von Mehren, Margaret; Grosh, William W.

    2011-01-01

    Purpose This multicenter randomized trial was designed to test whether melanoma-associated helper peptides augment CD8+ T-cell responses to a melanoma vaccine and whether cyclophosphamide (CY) pretreatment augments CD4+ or CD8+ T-cell responses to that vaccine. Patients and Methods In all, 167 eligible patients with resected stage IIB to IV melanoma were randomly assigned to four vaccination study arms. Patients were vaccinated with 12 class I major histocompatibility complex–restricted melanoma peptides (12MP) to stimulate CD8+ T cells and were randomly assigned to receive a tetanus helper peptide or a mixture of six melanoma-associated helper peptides (6MHP) to stimulate CD4+ T cells. Before vaccination, patients were also randomly assigned to receive CY pretreatment or not. T-cell responses were assessed by an ex vivo interferon gamma ELISpot assay. Clinical outcomes and toxicities were recorded. Results Vaccination with 12MP plus tetanus induced CD8+ T-cell responses in 78% of patients and CD4+ T-cell responses to tetanus peptide in 93% of patients. Vaccination with 12MP plus 6MHP induced CD8+ responses in 19% of patients and CD4+ responses to 6MHP in 48% of patients. CY had no significant effect on T-cell responses. Overall 3-year survival was 79% (95% CI, 71% to 86%), with no significant differences (at this point) by study arm. Conclusion Melanoma-associated helper peptides paradoxically decreased CD8+ T-cell responses to a melanoma vaccine (P < .001), and CY pretreatment had no immunologic or clinical effect. Prior work showed immunologic and clinical activity of 6MHP alone. Possible explanations for negative effects on CD8 responses include modulation of homing receptor expression or induction of antigen-specific regulatory T cells. PMID:21690475

  9. A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells.

    PubMed

    Weng, Desheng; Calderwood, Stuart K; Gong, Jianlin

    2018-01-01

    We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.

  10. Modular Design Features of a Peptide Amphiphile Micelle Vaccine Platform and Their Impact on an Immune Response

    NASA Astrophysics Data System (ADS)

    Barrett, John Christopher

    Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Modular platforms are attractive for their engineerability and broad potential applications. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors. Peptide amphiphiles (PAs) consist of a hydrophilic peptide antigen conjugated to a hydrophobic lipid tail. The PAs then self-assemble into micelles, with the micelle characteristics determined by the chemical composition of the PA and micelle preparation methods. PA micelles contain a large design space, so it is important to have a basic understanding of how each design feature can affect the platform's interaction with the immune system. In this dissertation, the structure, composition, and biodistribution properties of PA micelles are evaluated for their ability to impact an immune response against a Group A Streptococcus B cell antigen (J8). Through structural design and physical characterization, micelles are shown to self-assemble into either short rod-like or long cylindrical shapes. Analyzing these shape effects on the immune response showed that cylindrical micelles induced higher antibody titers than rod-like micelles, providing evidence that the cylindrical micelle shape is important to induce immune responses and a possible mechanism of action. Shape was also seen to impact the activation profile of dendritic cells, B cells and T cells. Assembly into cylindrical micelles also stabilizes the secondary structure of peptide antigens, which may impact the immune response raised. In composition, the hydrophobic

  11. Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: an immunoinformatic approach for designing peptide-based vaccine.

    PubMed

    Kamthania, Mohit; Sharma, D K

    2015-12-01

    Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.

  12. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice.

    PubMed

    Iwama, Tatsuaki; Uchida, Tetsuya; Sawada, Yu; Tsuchiya, Nobuhiro; Sugai, Shiori; Fujinami, Norihiro; Shimomura, Manami; Yoshikawa, Toshiaki; Zhang, Rong; Uemura, Yasushi; Nakatsura, Tetsuya

    2016-01-01

    Because therapeutic manipulation of immunity can induce tumor regression, anti-cancer immunotherapy is considered a promising treatment modality. We previously reported that glypican-3 (GPC3), an oncofetal antigen overexpressed in hepatocellular carcinoma (HCC), is a useful target for cytotoxic T lymphocyte (CTL)-mediated cancer immunotherapy, and we have performed clinical trials using the GPC3-derived peptide vaccine. Although vaccine-induced GPC3-peptide-specific CTLs were often tumor reactive in vitro and were correlated with overall survival, no complete response was observed. In the current study, we synthesized liposome-coupled GPC3-derived CTL epitope peptide (pGPC3-lipsome) and investigated its antitumor potential. Vaccination with pGPC3-liposome induced peptide-specific CTLs at a lower dose than conventional vaccine emulsified in incomplete Freund's adjuvant. Coupling of pGPC3 to liposomes was essential for effective priming of GPC3-specific CTLs. In addition, immunization with pGPC3-liposome inhibited GPC3-expressing tumor growth. Thus, vaccination with tumor-associated antigen-derived epitope peptides coupled to the surfaces of liposomes may be a novel therapeutic strategy for cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    PubMed

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  14. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination.

    PubMed

    Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki

    2018-06-01

    Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.

  15. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.

  16. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.

    PubMed

    Chong, Siow-Feng; Sexton, Amy; De Rose, Robert; Kent, Stephen J; Zelikin, Alexander N; Caruso, Frank

    2009-10-01

    We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.

  17. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets.

    PubMed

    Yasmin, T; Nabi, A H M Nurun

    2016-05-01

    Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  18. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides.

    PubMed

    Kavanagh, Brian; Ko, Andrew; Venook, Alan; Margolin, Kim; Zeh, Herbert; Lotze, Michael; Schillinger, Brian; Liu, Weihong; Lu, Ying; Mitsky, Peggie; Schilling, Marta; Bercovici, Nadege; Loudovaris, Maureen; Guillermo, Roy; Lee, Sun Min; Bender, James; Mills, Bonnie; Fong, Lawrence

    2007-10-01

    Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.

  19. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less

  20. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer.

    PubMed

    Feyerabend, Susan; Stevanovic, Stefan; Gouttefangeas, Cécile; Wernet, Dorothee; Hennenlotter, Jörg; Bedke, Jens; Dietz, Klaus; Pascolo, Steve; Kuczyk, Markus; Rammensee, Hans-Georg; Stenzl, Arnulf

    2009-06-15

    A phase I/II trial was conducted to assess feasibility and tolerability of tumor associated antigen peptide vaccination in hormone sensitive prostate carcinoma (PC) patients with biochemical recurrence after primary surgical treatment. Nineteen HLA-A2 positive patients with rising PSA without detectable metastatic disease or local recurrence received 11 HLA-A*0201-restricted and two HLA class II synthetic peptides derived from PC tumor antigens subcutaneously for 18 months or until PSA progression. The vaccine was emulgated in montanide ISA51 and combined with imiquimod, GM-CSF, mucin-1-mRNA/protamine complex, local hyperthermia or no adjuvant. PSA was assessed, geometric mean doubling times (DT) calculated and clinical performance monitored. PSA DT of 4 out of 19 patients (21%) increased from 4.9 to 25.8 months during vaccination. Out of these, two patients (11%) exhibited PSA stability for 28 and 31 months which were still continuing at data cut-off. One patient showed no change of PSA DT during vaccination but decline after the therapy. Three patients had an interim PSA decline or DT increase followed by DT decrease compared to baseline PSA DT. Three of the responding patients received imiquimod and one the mucin-1-mRNA/protamine complex as adjuvant; both are Toll-like receptor-7 agonists. Eleven (58%) patients had progressive PSA values. The vaccine was well tolerated, and no grade III or IV toxicity occurred. Multi-peptide vaccination stabilized or slowed down PSA progress in four of 19 cases. The vaccination approach is promising with moderate adverse events. Long-term stability delayed androgen deprivation up to 31 months. TLR-7 co-activation seems to be beneficial.

  1. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    PubMed

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  2. A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5)

    PubMed Central

    Phan, Shannon I.; Chen, Zhenhai; Xu, Pei; Li, Zhuo; Gao, Xiudan; Foster, Stephanie L.; Teng, Michael N.; Tripp, Ralph A.; Sakamoto, Kaori; He, Biao

    2014-01-01

    Human respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease and hospitalizations in infants and young children. It also causes significant morbidity and mortality in elderly and immune compromised individuals. No licensed vaccine currently exists. Parainfluenza virus 5 (PIV5) is a paramyxovirus that causes no known human illness and has been used as a platform for vector-based vaccine development. To evaluate the efficacy of PIV5 as a RSV vaccine vector, we generated two recombinant PIV5 viruses - one expressing the fusion (F) protein and the other expressing the attachment glycoprotein (G) of RSV strain A2 (RSV A2). The vaccine strains were used separately for single-dose vaccinations in BALB/c mice. The results showed that both vaccines induced RSV antigen-specific antibody responses, with IgG2a/IgG1 ratios similar to those seen in wild-type RSV A2 infection. After challenging the vaccinated mice with RSV A2, histopathology of lung sections showed that the vaccines did not exacerbate lung lesions relative to RSV A2-immunized mice. Importantly, both F and G vaccines induced protective immunity. Therefore, PIV5 presents an attractive platform for vector-based vaccines against RSV infection. PMID:24717150

  3. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    PubMed Central

    Xiang, Sue D.; Gao, Qian; Wilson, Kirsty L.; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  4. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus

    PubMed Central

    Li, Xiangdong; Galliher-Beckley, Amy; Huang, Hongzhou; Sun, Xiuzhi; Shi, Jishu

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses. PMID:23933333

  5. In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein

    PubMed Central

    Zheng, Juzeng; Lin, Xianfan; Wang, Xiuyan; Zheng, Liyu; Lan, Songsong; Jin, Sisi; Ou, Zhanfan; Wu, Jinming

    2017-01-01

    Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response. PMID:28509875

  6. Use of Phage Display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes.

    PubMed

    Toledo-Machado, Christina Monerat; Bueno, Lilian Lacerda; Menezes-Souza, Daniel; Machado-de-Avila, Ricardo Andrez; Nguyen, Christophe; Granier, Claude; Bartholomeu, Daniella Castanheira; Chávez-Olórtegui, Carlos; Fujiwara, Ricardo Toshio

    2015-02-28

    Leishmania parasites can cause visceral or cutaneous disease and are found in subtropical and tropical regions of the Old and New World. The pathology of the infection is determined by both host immune factors and species/strain differences of the parasite. Dogs represent the major reservoir of Leishmania infantum (syn. L. chagasi) and vaccines are considered the most cost-effective control tools for canine disease. Selection of immunodominant peptides was performed by Phage Display to identify sequences recognized by L. infantum naturally infected animals. Sera from Leishmania infected animals were used in the biopanning to selection of specific peptides. Serum samples from T. cruzi infected and healthy animals were used as control. After selection, synthetic peptides were produced in membrane (spot-synthesis) in soluble form and blotting and ELISA were performed for validation of serum reactivity. Selected peptide was formulated with aluminum hydroxide and liposomes and immunization was performed in BALB/c mice. Protection was determined by qPCR after challenge infection with virulent L. infantum. We reported the selection of Peptide 5 through Phage Display technique and demonstrate its ability to promote a state of immunity against L. infantum infection in murine model after immunization using liposomes as vaccine carrier. Our results demonstrate that immunization with Peptide 5 when formulated with aluminum hydroxide and liposomes is immunogenic and elicited significant protection associated with the induction of mixed Th1/Th2 immune response against L. infantum infection. Peptide 5 is a promising vaccine candidate and the findings obtained in the present study encourage canine trials to confirm the effectiveness of a vaccine against CVL.

  7. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

    PubMed Central

    Nagpal, Gandharva; Usmani, Salman Sadullah; Dhanda, Sandeep Kumar; Kaur, Harpreet; Singh, Sandeep; Sharma, Meenu; Raghava, Gajendra P. S.

    2017-01-01

    In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/). PMID:28211521

  8. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells.

    PubMed

    Carabali-Isajar, Mary Lilian; Ocampo, Marisol; Rodriguez, Deisy Carolina; Vanegas, Magnolia; Curtidor, Hernando; Patarroyo, Manuel Alfonso; Patarroyo, Manuel Elkin

    2018-05-15

    Mycobacterium tuberculosis is considered one of the most successful pathogens in the history of mankind, having caused 1.7 million deaths in 2016. The amount of resistant and extensively resistant strains has increased; BCG has been the only vaccine to be produced in more than 100 years though it is still unable to prevent the disease's most disseminated form in adults; pulmonary tuberculosis. The search is thus still on-going for candidate antigens for an antituberculosis vaccine. This paper reports the use of a logical and rational methodology for finding such antigens, this time as peptides derived from the Rv3587c membrane protein. Bioinformatics tools were used for predicting mycobacterial surface location and Rv3587c protein structure whilst circular dichroism was used for determining its peptides' secondary structure. Receptor-ligand assays identified 4 high activity binding peptides (HABPs) binding specifically to A549 alveolar epithelial cells and U937 monocyte-derived macrophages, covering the region between amino acids 116 and 193. Their capability for inhibiting Mtb H37Rv invasion was evaluated. The recognition of antibodies from individuals suffering active and latent tuberculosis and from healthy individuals was observed in HABPs capable of avoiding mycobacterial entry to host cells. The results showed that 8 HABPs inhibited such invasion, two of them being common for both cell lines: 39265 ( 155 VLAAYVYSLDNKRLWSNLDT 173 ) and 39266 ( 174 APSNETLVKTFSPGEQVTTY 192 ). Peptide 39265 was the least recognised by antibodies from the individuals' sera evaluated in each group. According to the model proposed by FIDIC regarding synthetic vaccine development, peptide 39265 has become a candidate antigen for an antituberculosis vaccine. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.

    PubMed

    Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K

    2017-06-22

    Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost

  10. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-11-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine.

  11. Phase II Study of HER-2/neu Intracellular Domain Peptide-Based Vaccine Administered to Stage IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab

    DTIC Science & Technology

    2007-05-01

    the combined approach as well as the immunogenicity of HER2 ICD peptide vaccination. If there is evidence to suggest that the true rate of Grade IV... approach will be evaluated as the ability of the vaccine to elicit HER2 ICD specific T cell immunity, to elicit epitope spreading, and to stimulate...July 2006. Unfortunately, by the time all needed source documents (i.e., imaging, clinical labs, cardiac function tests) were collected, this

  12. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients.

    PubMed

    Widenmeyer, Melanie; Griesemann, Heinrich; Stevanović, Stefan; Feyerabend, Susan; Klein, Reinhild; Attig, Sebastian; Hennenlotter, Jörg; Wernet, Dorothee; Kuprash, Dmitri V; Sazykin, Alexei Y; Pascolo, Steve; Stenzl, Arnulf; Gouttefangeas, Cécile; Rammensee, Hans-Georg

    2012-07-01

    CD4(+) T cells have been shown to be crucial for the induction and maintenance of cytotoxic T cell responses and to be also capable of mediating direct tumor rejection. Therefore, the anticancer therapeutic efficacy of peptide-based vaccines may be improved by addition of HLA class II epitopes to stimulate T helper cells. Survivin is an apoptosis inhibiting protein frequently overexpressed in tumors. Here we describe the first immunological evaluation of a survivin-derived CD4(+) T cell epitope in a multipeptide immunotherapy trial for prostate carcinoma patients. The survivin peptide is promiscuously presented by several human HLA-DRB1 molecules and, most importantly, is naturally processed by dendritic cells. In vaccinated patients, it was able to induce frequent, robust and multifunctional CD4(+) T cell responses, as monitored by IFN-γ ELISPOT and intracellular cytokine staining. Thus, this HLA-DR restricted epitope is broadly immunogenic and should be valuable for stimulating T helper cells in patients suffering from a wide range of tumors. Copyright © 2011 UICC.

  13. Design and characterization of plasmids encoding antigenic peptides of Aha1 from Aeromonas hydrophila as prospective fish vaccines.

    PubMed

    Rauta, Pradipta R; Nayak, Bismita; Monteiro, Gabriel A; Mateus, Marília

    2017-01-10

    The current investigation aimed at designing DNA vaccines against Aeromonas hydrophila infections. The DNA vaccine candidates were designed to express two antigenic outer membrane protein (Aha1) peptides and to be delivered by a nanoparticle-based delivery system. Gene sequences of conserved regions of antigenic Aha1 [aha1(211-381), aha1(211-381)opt, aha1(703-999) and aha1(703-999)opt] were cloned into pVAX-GFP expression vector. The selected DNA vaccine candidates were purified from E. coli DH5α and transfected into Chinese hamster ovary cells. The expression of the antigenic peptides was measured in cells along post-transfection time, through the fluorescence intensity of the reporter GFP. The lipofection efficiency of aha-pVAX-GFP was highest after 24h incubation. Formulated PLGA-chitosan nanoparticle/plasmid DNA complexes were characterized in terms of size, size distribution and zeta potential. Nanocomplexes with average diameters in the range of 150-170nm transfected in a similar fashion into CHO cells confirmed transfection efficiency comparable to that of lipofection. DNA entrapment and further DNase digestion assays demonstrated ability for pDNA protection by the nanoparticles against enzymatic digestion. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Engineering β-sheet peptide assemblies for biomedical applications.

    PubMed

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  15. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine.

    PubMed

    Tipu, Hamid Nawaz

    2016-02-01

    To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.

  16. A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome.

    PubMed

    Hazama, Shoichi; Nakamura, Yusuke; Takenouchi, Hiroko; Suzuki, Nobuaki; Tsunedomi, Ryouichi; Inoue, Yuka; Tokuhisa, Yoshihiro; Iizuka, Norio; Yoshino, Shigefumi; Takeda, Kazuyoshi; Shinozaki, Hirokazu; Kamiya, Akira; Furukawa, Hiroyuki; Oka, Masaaki

    2014-03-10

    To evaluate the safety of combination vaccine treatment of multiple peptides, phase I clinical trial was conducted for patients with advanced colorectal cancer using five novel HLA-A*2402-restricted peptides, three peptides derived from oncoantigens, ring finger protein 43 (RNF43), 34 kDa-translocase of the outer mitochondrial membrane (TOMM34), and insulin-like growth factor-II mRNA binding protein 3 (KOC1), and the remaining two from angiogenesis factors, vascular endothelial growth factor receptor 1 (VEGFR1) and VEGFR2. Eighteen HLA- A*2402-positive colorectal cancer patients who had failed to standard therapy were enrolled in this study. 0.5 mg, 1.0 mg or 3.0 mg each of the peptides was mixed with incomplete Freund's adjuvant and then subcutaneously injected at five separated sites once a week. We also examined possible effect of a single site injection of "the cocktail of 5 peptides" on the immunological responses. ELISPOT assay was performed before and after vaccinations in the schedule of every 4 weeks. The vaccine treatment using multiple peptides was well tolerated without any severe treatment-associated systemic adverse events. Dose-dependent induction of peptide-specific cytotoxic T lymphocytes was observed. The single injection of "peptides cocktail" did not diminish the immunological responses. Regarding the clinical outcome, one patient achieved complete response and 6 patients revealed stable disease for 4 to 7 months. The median overall survival time (MST) was 13.5 months. Patients, in which we detected induction of cytotoxic T lymphocytes specific to 3 or more peptides, revealed significantly better prognosis (MST; 27.8 months) than those with poorer immune responses (MST; 3.7 months) (p = 0.032). Our cancer vaccine treatment using multiple peptides is a promising approach for advanced colorectal cancer with the minimum risk of systemic adverse reactions. UMIN-CTR number UMIN000004948.

  17. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches

    PubMed Central

    Junaid, Muhammad; Kaushik, Aman Chandra; Ali, Arif; Ali, Syed Shujait; Mehmood, Aamir; Wei, Dong-Qing

    2018-01-01

    High-risk human papillomaviruses (hrHPVs) are the most prevalent viruses in human diseases including cervical cancers. Expression of E6 protein has already been reported in cervical cancer cases, excluding normal tissues. Continuous expression of E6 protein is making it ideal to develop therapeutic vaccines against hrHPVs infection and cervical cancer. Therefore, we carried out a meta-analysis of multiple hrHPVs to predict the most potential prophylactic peptide vaccines. In this study, immunoinformatics approach was employed to predict antigenic epitopes of hrHPVs E6 proteins restricted to 12 Human HLAs to aid the development of peptide vaccines against hrHPVs. Conformational B-cell and CTL epitopes were predicted for hrHPVs E6 proteins using ElliPro and NetCTL. The potential of the predicted peptides were tested and validated by using systems biology approach considering experimental concentration. We also investigated the binding interactions of the antigenic CTL epitopes by using docking. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlighted the regions from 46–62 and 65–76 that could be the first choice for the development of prophylactic peptide vaccines against hrHPVs. To overcome the worldwide distribution, the predicted epitopes restricted to different HLAs could cover most of the vaccination and would help to explore the possibility of these epitopes for adaptive immunotherapy against HPVs infections. PMID:29715318

  18. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    PubMed

    Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka

    2016-12-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.

  19. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  20. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed Central

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-01-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine. PMID:7474152

  1. Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease.

    PubMed

    Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A

    2004-12-01

    The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid

  2. Preclinical profiling of the immunogenicity of a two-component subunit malaria vaccine candidate based on virosome technology.

    PubMed

    Okitsu, Shinji L; Mueller, Markus S; Amacker, Mario; Vogel, Denise; Westerfeld, Nicole; Robinson, John A; Zurbriggen, Rinaldo; Pluschke, Gerd

    2008-01-01

    Presentation of synthetic peptides on immunopotentiating reconstituted influenza virosomes is a promising technology for subunit vaccine development. An optimized virosomally delivered peptide representing 5 NPNA repeats of P. falciparum circumsporozoite protein is highly immunogenic in mice. Antibodies against this peptide (UK-39) inhibit sporozoite invasion of human hepatocytes. A second peptide (AMA49-C1) based on domain III of apical membrane antigen 1, induces antibodies that inhibit blood-stage parasite growth in vitro. Here we show a detailed pre-clinical profiling of these virosomally formulated peptides alone and in combination in mice and rabbits. Two immunizations with virosomally formulated UK-39 or AMA49-C1 were enough to elicit high titers of parasite cross-reactive antibodies in both species. A low dose of 10 microg UK-39 was enough to induce maximal titers in rabbits. Higher doses of peptide did not increase antibody titers. In contrast, AMA49-C1 induced higher antibody titers with 25 and 50 microg peptide. Combination of UK-39 and AMA49- C1 on separate virosomes did not have any negative effect on anti-peptide antibody titers in mice or rabbits. No MHC restriction was observed in the development of humoral responses in outbred rabbits with different immunogenetic backgrounds. All vaccine formulations were safe in toxicity studies in rabbits and rats. Taken together, low amounts of synthetic peptides delivered on virosomes induced high antibody titers in mice and rabbits. Moreover, different peptides could be combined without interfering with individual anti-peptide responses, augmenting the value of this system for the development of a multivalent malaria vaccine.

  3. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    PubMed

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins.

    PubMed

    Usman Mirza, Muhammad; Rafique, Shazia; Ali, Amjad; Munir, Mobeen; Ikram, Nazia; Manan, Abdul; Salo-Ahen, Outi M H; Idrees, Muhammad

    2016-12-09

    The recent outbreak of Zika virus (ZIKV) infection in Brazil has developed to a global health concern due to its likely association with birth defects (primary microcephaly) and neurological complications. Consequently, there is an urgent need to develop a vaccine to prevent or a medicine to treat the infection. In this study, immunoinformatics approach was employed to predict antigenic epitopes of Zika viral proteins to aid in development of a peptide vaccine against ZIKV. Both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted for ZIKV Envelope (E), NS3 and NS5 proteins. We further investigated the binding interactions of altogether 15 antigenic CTL epitopes with three class I major histocompatibility complex (MHC I) proteins after docking the peptides to the binding groove of the MHC I proteins. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlight the limits of rigid-body docking methods. Some of the antigenic epitopes predicted and analyzed in this work might present a preliminary set of peptides for future vaccine development against ZIKV.

  5. Vaccination with a feline immunodeficiency virus multiepitopic peptide induces cell-mediated and humoral immune responses in cats, but does not confer protection.

    PubMed Central

    Flynn, J N; Cannon, C A; Neil, J C; Jarrett, O

    1997-01-01

    Cats were immunized with a 46-residue multiepitopic synthetic peptide of feline immunodeficiency virus (FIV) comprising immunodominant epitopes present in the third variable domain of the envelope glycoprotein, transmembrane glycoprotein (TM), and p24 Gag core protein, using Quil A as an adjuvant. All vaccinated cats developed a humoral response which recognized the synthetic peptide immunogen and the intact viral core and envelope proteins. A FIV Gag- and Env-specific effector cytotoxic T-lymphocyte response was also detected in the peripheral blood of vaccinated cats, which peaked at week 30. This response appeared to be major histocompatibility complex restricted. Epitope mapping studies revealed that both the cellular and humoral immune responses were directed principally to a peptide within the TM glycoprotein, CNQNQFFCK. However, vaccination did not confer protection when cats were challenged with the Petaluma isolate of FIV at week 35. PMID:9311839

  6. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses.

    PubMed

    Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam

    2017-06-01

    To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  7. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer.

    PubMed

    Shariat, Sheida; Badiee, Ali; Jalali, Seyed Amir; Mansourian, Mercedeh; Yazdani, Mona; Mortazavi, Seyed Alireza; Jaafari, Mahmoud Reza

    2014-12-01

    Vaccines containing synthetic peptides derived from tumor-associated antigens (TAA) can elicit potent cytotoxic T lymphocyte (CTL) response if they are formulated in an optimal vaccine delivery system. The aim of this study was to develop a simple and effective lipid-based vaccine delivery system using P5 HER2/neu-derived peptide conjugated to Maleimide-PEG2000-DSPE. The conjugated lipid was then incorporated into liposomes composed of DMPC:DMPG:Chol:DOPE containing Monophosphoryl lipid A (MPL) (Lip-DOPE-P5-MPL). Different liposome formulations were prepared and characterized for their physicochemical properties. To evaluate anti-tumoral efficacy, BALB/c mice were immunized subcutaneously 3 times in two-week intervals and the generated immune response was studied. The results demonstrated that Lip-DOPE-P5-MPL induced a significantly higher IFN-γ production by CD8+ T cells intracellularly which represents higher CTL response in comparison with other control formulations. CTL response induced by this formulation caused the lowest tumor size and the longest survival time in a mice model of TUBO tumor. The encouraging results achieved by Lip-DOPE-P5-MPL formulation could make it a promising candidate in developing effective vaccines against Her2 positive breast cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Is influenza vaccination in asthma helpful?

    PubMed

    Bueving, Herman J; Thomas, Siep; Wouden, Johannes C van der

    2005-02-01

    Influenza infections are frequently involved in asthma exacerbations. During influenza epidemics substantial excess morbidity due to respiratory tract complications is reported in all age categories as well as excess mortality among the elderly. Vaccines are available for protection against influenza. Worldwide, vaccination is advised and considered a quality point for asthma care. However, the protective effect of influenza vaccination in patients with asthma is still disputed. In order to establish the current state of affairs we reviewed the recent literature on the protective effect of influenza vaccination and its usefulness in patients with asthma. Several studies were found addressing influenza and the protective aspects of vaccination. They discussed the incidence, the adverse effects of vaccination, the coverage of influenza vaccination among patients with asthma and the effectiveness of the vaccine. Influenza vaccination can safely be used in patients with asthma. Allegations that vaccination could provoke asthma exacerbations are convincingly invalidated by previous and recent research. Although patients with asthma are one of the major target groups for immunization, vaccine coverage in all age categories remains low. So far, no unequivocal beneficial effect of influenza vaccination in patients with asthma was found in observational and experimental studies in the sense of reduction of asthma exacerbations and other complications. Recent studies confirm these negative findings. More long-term randomized, placebo-controlled studies, focusing on influenza- proven illness in patients with asthma, are needed to address the question of how helpful influenza vaccination is in these patients.

  9. A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma.

    PubMed

    Shibao, Shunsuke; Ueda, Ryo; Saito, Katsuya; Kikuchi, Ryogo; Nagashima, Hideaki; Kojima, Atsuhiro; Kagami, Hiroshi; Pareira, Eriel Sandika; Sasaki, Hikaru; Noji, Shinobu; Kawakami, Yutaka; Yoshida, Kazunari; Toda, Masahiro

    2018-04-20

    Early-phase clinical studies of glioma vaccines have shown feasibility and encouraging preliminary clinical activity. A vaccine that targets tumor angiogenesis factors in glioma microenvironment has not been reported. Therefore, we performed a pilot study to evaluate the safety and immunogenicity of a novel vaccination targeting tumor angiogenesis with synthetic peptides for vascular endothelial growth factor (VEGF) receptor epitopes in patients with recurrent/progressive high grade gliomas. Eight patients received intranodal vaccinations weekly at a dose of 2mg/kg bodyweight 8 times. T-lymphocyte responses against VEGF receptor (VEGFR) epitopes were assessed by enzyme linked immunosorbent spot assays. This treatment was well-tolerated in patients. The first four vaccines induced positive immune responses against at least one of the targeted VEGFR epitopes in the peripheral blood mononuclear cells in 87.5% of patients. The median overall survival time in all patients was 15.9 months. Two achieved progression-free status lasting at least 6 months. Two patients with recurrent GBM demonstrated stable disease. Plasma IL-8 level was negatively correlated with overall survival. These data demonstrate the safety and immunogenicity of VEGFR peptide vaccines targeting tumor vasculatures in high grade gliomas.

  10. A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma

    PubMed Central

    Shibao, Shunsuke; Ueda, Ryo; Saito, Katsuya; Kikuchi, Ryogo; Nagashima, Hideaki; Kojima, Atsuhiro; Kagami, Hiroshi; Pareira, Eriel Sandika; Sasaki, Hikaru; Noji, Shinobu; Kawakami, Yutaka; Yoshida, Kazunari; Toda, Masahiro

    2018-01-01

    Object Early-phase clinical studies of glioma vaccines have shown feasibility and encouraging preliminary clinical activity. A vaccine that targets tumor angiogenesis factors in glioma microenvironment has not been reported. Therefore, we performed a pilot study to evaluate the safety and immunogenicity of a novel vaccination targeting tumor angiogenesis with synthetic peptides for vascular endothelial growth factor (VEGF) receptor epitopes in patients with recurrent/progressive high grade gliomas. Methods Eight patients received intranodal vaccinations weekly at a dose of 2mg/kg bodyweight 8 times. T-lymphocyte responses against VEGF receptor (VEGFR) epitopes were assessed by enzyme linked immunosorbent spot assays. Results This treatment was well-tolerated in patients. The first four vaccines induced positive immune responses against at least one of the targeted VEGFR epitopes in the peripheral blood mononuclear cells in 87.5% of patients. The median overall survival time in all patients was 15.9 months. Two achieved progression-free status lasting at least 6 months. Two patients with recurrent GBM demonstrated stable disease. Plasma IL-8 level was negatively correlated with overall survival. Conclusion These data demonstrate the safety and immunogenicity of VEGFR peptide vaccines targeting tumor vasculatures in high grade gliomas. PMID:29765561

  11. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases.

    PubMed

    Baig, Mohammad Hassan; Ahmad, Khurshid; Saeed, Mohd; Alharbi, Ahmed M; Barreto, George E; Ashraf, Ghulam Md; Choi, Inho

    2018-04-17

    Bioactive peptides are actively involved in different biological functions and importantly contribute to human health, and the use of peptides as therapeutics has a long successful history in disease management. A number of peptides have wide-ranging therapeutic effects, such as antioxidant, antimicrobial, and antithrombotic effects. Neurodegenerative diseases are typically caused by abnormal aggregations of proteins or peptides, and the depositions of these aggregates in or on neurons, disrupt signaling and eventually kill neurons. During recent years, research on short peptides has advanced tremendously. This review offers a brief introduction to peptide based therapeutics and their application in disease management and provides an overview of peptide vaccines, and toxicity related issues. In addition, the importance of peptides in the management of different neurodegenerative diseases and their therapeutic applications is discussed. The present review provides an understanding of peptides and their applications for the management of different diseases, but with focus on neurodegenerative diseases. The role of peptides as anti-cancer, antimicrobial and antidiabetic agents has also been discussed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. No recent adaptive selection on the apyrase of Mediterranean Phlebotomus: implications for using salivary peptides to vaccinate against canine leishmaniasis.

    PubMed

    Mahamdallie, Shazia S; Ready, Paul D

    2012-04-01

    Vaccine development is informed by a knowledge of genetic variation among antigen alleles, especially the distribution of positive and balancing selection in populations and species. A combined approach using population genetic and phylogenetic methods to detect selective signatures can therefore be informative for identifying vaccine candidates. Parasitic Leishmania species cause the disease leishmaniasis in humans and mammalian reservoir hosts after inoculation by female phlebotomine sandflies. Like other arthropod vectors of disease agents, sandflies use salivary peptides to counteract host haemostatic and immunomodulatory responses during bloodfeeding, and these peptides are vaccine candidates because they can protect against Leishmania infection. We detected no contemporary adaptive selection on one salivary peptide, apyrase, in 20 populations of Phlebotomus ariasi, a European vector of Leishmania infantum. Maximum likelihood branch models on a gene phylogeny showed apyrase to be a single copy in P. ariasi but an ancient duplication event associated with temporary positive selection was observed in its sister group, which contains most Mediterranean vectors of L. infantum. The absence of contemporary adaptive selection on the apyrase of P. ariasi may result from this sandfly's opportunistic feeding behaviour. Our study illustrates how the molecular population genetics of arthropods can help investigate the potential of salivary peptides for disease control and for understanding geographical variation in vector competence.

  13. Impact and prevention of severe exacerbations of COPD: a review of the evidence

    PubMed Central

    Halpin, David MG; Miravitlles, Marc; Metzdorf, Norbert; Celli, Bartolomé

    2017-01-01

    Severe exacerbations of COPD, ie, those leading to hospitalization, have profound clinical implications for patients and significant economic consequences for society. The prevalence and burden of severe COPD exacerbations remain high, despite recognition of the importance of exacerbation prevention and the availability of new treatment options. Severe COPD exacerbations are associated with high mortality, have negative impact on quality of life, are linked to cardiovascular complications, and are a significant burden on the health-care system. This review identified risk factors that contribute to the development of severe exacerbations, treatment options (bronchodilators, antibiotics, corticosteroids [CSs], oxygen therapy, and ventilator support) to manage severe exacerbations, and strategies to prevent readmission to hospital. Risk factors that are amenable to change have been highlighted. A number of bronchodilators have demonstrated successful reduction in risk of severe exacerbations, including long-acting muscarinic antagonist or long-acting β2-agonist mono- or combination therapies, in addition to vaccination, mucolytic and antibiotic therapy, and nonpharmacological interventions, such as pulmonary rehabilitation. Recognition of the importance of severe exacerbations is an essential step in improving outcomes for patients with COPD. Evidence-based approaches to prevent and manage severe exacerbations should be implemented as part of targeted strategies for disease management. PMID:29062228

  14. Architectural Insight into Inovirus-Associated Vectors (IAVs) and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    PubMed Central

    Hassapis, Kyriakos A.; Stylianou, Dora C.; Kostrikis, Leondios G.

    2014-01-01

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1. PMID:25525909

  15. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.

    PubMed

    Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G

    2014-12-17

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  16. Pneumococcal vaccination and chronic respiratory diseases.

    PubMed

    Froes, Filipe; Roche, Nicolas; Blasi, Francesco

    2017-01-01

    Patients with COPD and other chronic respiratory diseases are especially vulnerable to viral and bacterial pulmonary infections, which are major causes of exacerbations, hospitalization, disease progression, and mortality in COPD patients. Effective vaccines could reduce the burden of respiratory infections and acute exacerbations in COPD patients, but what is the evidence for this? This article reviews and discusses the existing evidence for pneumococcal vaccination efficacy and its changing role in patients with chronic respiratory diseases, especially COPD. Specifically, the recent Community-Acquired Pneumonia Immunization Trial in Adults (CAPITA) showed the efficacy of pneumococcal conjugate vaccine in older adults, many of whom had additional risk factors for pneumococcal disease, including chronic lung diseases. Taken together, the evidence suggests that pneumococcal and influenza vaccinations can prevent community-acquired pneumonia and acute exacerbations in COPD patients, while pneumococcal vaccination early in the course of COPD could help maintain stable health status. Despite the need to prevent pulmonary infections in patients with chronic respiratory diseases and evidence for the efficacy of pneumococcal conjugate vaccine, pneumococcal vaccine coverage and awareness are low and need to be improved. Respiratory physicians need to communicate the benefits of vaccination more effectively to their patients who suffer from chronic respiratory diseases.

  17. T-Epitope Designer: A HLA-peptide binding prediction server.

    PubMed

    Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-05-15

    The current challenge in synthetic vaccine design is the development of a methodology to identify and test short antigen peptides as potential T-cell epitopes. Recently, we described a HLA-peptide binding model (using structural properties) capable of predicting peptides binding to any HLA allele. Consequently, we have developed a web server named T-EPITOPE DESIGNER to facilitate HLA-peptide binding prediction. The prediction server is based on a model that defines peptide binding pockets using information gleaned from X-ray crystal structures of HLA-peptide complexes, followed by the estimation of peptide binding to binding pockets. Thus, the prediction server enables the calculation of peptide binding to HLA alleles. This model is superior to many existing methods because of its potential application to any given HLA allele whose sequence is clearly defined. The web server finds potential application in T cell epitope vaccine design. http://www.bioinformation.net/ted/

  18. Claims-based risk model for first severe COPD exacerbation.

    PubMed

    Stanford, Richard H; Nag, Arpita; Mapel, Douglas W; Lee, Todd A; Rosiello, Richard; Schatz, Michael; Vekeman, Francis; Gauthier-Loiselle, Marjolaine; Merrigan, J F Philip; Duh, Mei Sheng

    2018-02-01

    To develop and validate a predictive model for first severe chronic obstructive pulmonary disease (COPD) exacerbation using health insurance claims data and to validate the risk measure of controller medication to total COPD treatment (controller and rescue) ratio (CTR). A predictive model was developed and validated in 2 managed care databases: Truven Health MarketScan database and Reliant Medical Group database. This secondary analysis assessed risk factors, including CTR, during the baseline period (Year 1) to predict risk of severe exacerbation in the at-risk period (Year 2). Patients with COPD who were 40 years or older and who had at least 1 COPD medication dispensed during the year following COPD diagnosis were included. Subjects with severe exacerbations in the baseline year were excluded. Risk factors in the baseline period were included as potential predictors in multivariate analysis. Performance was evaluated using C-statistics. The analysis included 223,824 patients. The greatest risk factors for first severe exacerbation were advanced age, chronic oxygen therapy usage, COPD diagnosis type, dispensing of 4 or more canisters of rescue medication, and having 2 or more moderate exacerbations. A CTR of 0.3 or greater was associated with a 14% lower risk of severe exacerbation. The model performed well with C-statistics, ranging from 0.711 to 0.714. This claims-based risk model can predict the likelihood of first severe COPD exacerbation. The CTR could also potentially be used to target populations at greatest risk for severe exacerbations. This could be relevant for providers and payers in approaches to prevent severe exacerbations and reduce costs.

  19. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.

    PubMed

    Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita

    2016-09-01

    Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).

  20. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides lacking allergen-specific T cell epitopes reduces Bet v 1-specific T cell responses via blocking antibodies in a murine model for birch pollen allergy.

    PubMed

    Linhart, B; Narayanan, M; Focke-Tejkl, M; Wrba, F; Vrtala, S; Valenta, R

    2014-02-01

    Vaccines consisting of allergen-derived peptides lacking IgE reactivity and allergen-specific T cell epitopes bound to allergen-unrelated carrier molecules have been suggested as candidates for allergen-specific immunotherapy. To study whether prophylactic and therapeutic vaccination with carrier-bound peptides from the major birch pollen allergen Bet v 1 lacking allergen-specific T cell epitopes has influence on Bet v 1-specific T cell responses. Three Bet v 1-derived peptides, devoid of Bet v 1-specific T cell epitopes, were coupled to KLH and adsorbed to aluminium hydroxide to obtain a Bet v 1-specific allergy vaccine. Groups of BALB/c mice were immunized with the peptide vaccine before or after sensitization to Bet v 1. Bet v 1- and peptide-specific antibody responses were analysed by ELISA. T cell and cytokine responses to Bet v 1, KLH, and the peptides were studied in proliferation assays. The effects of peptide-specific and allergen-specific antibodies on T cell responses and allergic lung inflammation were studied using specific antibodies. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides induced a Bet v 1-specific IgG antibody response without priming/boosting of Bet v 1-specific T cells. Prophylactic and therapeutic vaccination of mice with the peptide vaccine induced Bet v 1-specific antibodies which suppressed Bet v 1-specific T cell responses and allergic lung inflammation. Vaccination with carrier-bound allergen-derived peptides lacking allergen-specific T cell epitopes induces allergen-specific IgG antibodies which suppress allergen-specific T cell responses and allergic lung inflammation. © 2013 John Wiley & Sons Ltd.

  1. Vaccination with M2e-Based Multiple Antigenic Peptides: Characterization of the B Cell Response and Protection Efficacy in Inbred and Outbred Mice

    PubMed Central

    Wolf, Amaya I.; Mozdzanowska, Krystyna; Williams, Katie L.; Singer, David; Richter, Monique; Hoffmann, Ralf; Caton, Andrew J.; Otvos, Laszlo; Erikson, Jan

    2011-01-01

    Background The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains. Methodology/Principal Findings Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs. Conclusion/Significance Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population. PMID

  2. Vaccination with M2e-based multiple antigenic peptides: characterization of the B cell response and protection efficacy in inbred and outbred mice.

    PubMed

    Wolf, Amaya I; Mozdzanowska, Krystyna; Williams, Katie L; Singer, David; Richter, Monique; Hoffmann, Ralf; Caton, Andrew J; Otvos, Laszlo; Erikson, Jan

    2011-01-01

    The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains. Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs. Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population.

  3. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  4. Chitosan Microsphere Used as an Effective System to Deliver a Linked Antigenic Peptides Vaccine Protect Mice Against Acute and Chronic Toxoplasmosis.

    PubMed

    Guo, Jingjing; Sun, Xiahui; Yin, Huiquan; Wang, Ting; Li, Yan; Zhou, Chunxue; Zhou, Huaiyu; He, Shenyi; Cong, Hua

    2018-01-01

    Multiple antigenic peptide (MAP) vaccines have advantages over traditional Toxoplasma gondii vaccines, but are more susceptible to enzymatic degradation. As an effective delivery system, chitosan microspheres (CS) can overcome this obstacle and act as a natural adjuvant to promote T helper 1 (Th1) cellular immune responses. In this study, we use chitosan microparticles to deliver multiple antigenic epitopes from GRA10 (G10E), containing three dominant epitopes. When G10E was entrapped within chitosan microparticles (G10E-CS), adequate peptides for eliciting immune response were loaded in the microsphere core and this complex released G10E peptides stably. The efficiency of G10E-CS was detected both in vitro , via cell culture, and through in vivo mouse immunization. In vitro , G10E-CS activated Dendritic Cells (DC) and T lymphocytes by upregulating the secretion of costimulatory molecules (CD40 and CD86). In vivo , Th1 biased cellular and humoral immune responses were activated in mice vaccinated with G10E-CS, accompanied by significantly increased production of IFN-γ, IL-2, and IgG, and decreases in IL-4, IL-10, and IgG1. Immunization with G10E-CS conferred significant protection with prolonged survival in mice model of acute toxoplasmosis and statistically significant decreases in cyst burden in murine chronic toxoplasmosis. The results from this study indicate that chitosan microspheres used as an effective system to deliver a linked antigenic peptides is a promising strategy for the development of efficient vaccine against T. gondii .

  5. Development of a peptide ELISA to discriminate vaccine-induced immunity from natural infection of hepatitis A virus in a phase IV study.

    PubMed

    Ye, C; Luo, J; Wang, X; Xi, J; Pan, Y; Chen, J; Yang, X; Li, G; Sun, Q; Yang, J

    2017-11-01

    Hepatitis A virus (HAV) is a highly infectious agent that causes acute liver disease. The infection can trigger the production of antibodies against the structural and non-structural proteins of HAV. Nonetheless, vaccination with an HAV vaccine leads to the production of a primary antibody against the structural proteins. Because the non-structural proteins are only produced during active virus replication, there is no or very little antibody production against the non-structural proteins. However, the current commercial immunoassay cannot distinguish between antibodies produced during natural infection and those from vaccination against HAV. In our study, six immune-dominant epitopes from the non-structural proteins were designed, synthesized, linked together and cloned into pGEX-5X-1 plasmid. The recombinant protein was expressed in E. coli and purified by Ni 2+ -coated magnetic agarose beads. Then the purified recombinant protein was used as an ELISA antigen to detect antibodies for HAV non-structural proteins in serum samples. Seventy-seven attenuated and 89 inactivated vaccinated samples collected from our previous phase IV study of HAV vaccines were detected by peptide ELISA developed in this study. The mean OD 450 value for the vaccination samples and acute infection samples were 0.529 (0.486 for the attenuated group and 0.567 for the inactivated group) and 1.187, respectively. According to the receiver operating characteristic (ROC) curve, the sensitivity and specificity of the peptide ELISA were 93.80% and 91.00%, respectively. This peptide ELISA was confirmed to discriminate vaccine-induced immunity from natural infection of HAV in a phase IV study with high sensitivity and specificity.

  6. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  7. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells.

    PubMed

    Miller, Megan Jo; Foy, Kevin C; Overholser, Jay P; Nahta, Rita; Kaumaya, Pravin Tp

    2014-11-01

    The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.

  8. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study.

    PubMed

    Wiedermann, Ursula; Wiltschke, C; Jasinska, J; Kundi, M; Zurbriggen, R; Garner-Spitzer, E; Bartsch, R; Steger, G; Pehamberger, H; Scheiner, O; Zielinski, C C

    2010-02-01

    We have previously shown in mice that vaccination with three Her-2-peptides representing B-cell epitopes of the extracellular domain of Her-2/neu induces Her-2/neu-specific IgG antibodies with strong anti-tumor activity in vitro and in vivo. We have now finalized a phase I clinical trial with an anti-Her-2/neu vaccine-construct of immunopotentiating reconstituted influenza virosomes with the three peptides in patients with metastatic breast cancer (MBC). Ten MBC patients with low protein overexpression of Her-2/neu of MBC (+ or ++ upon immunohistochemistry, FISH negative) and positive hormone receptor status were enrolled in a single center phase I study. The virosomal formulated vaccine, consisting of 10 microg/peptide, was intramuscularly applied three times on days 1, 28, and 56. The primary endpoint of the study, which lasted 12 weeks, was safety, the secondary endpoint immunogenicity. Local erythema at the injection site was the only vaccine-related side effect occurring in four patients. In 8 of 10 patients an increase in peptide-specific antibody titer measured by ELISA was found. Importantly, the induced antibodies were also directed against the native Her-2/neu protein. Cellular immune responses, as measured by in vitro production of IL-2, IFN-c, and TNF-a of PBMCs showed a marked increase after vaccination in the majority of vaccinees. Notably, the number of CD4+CD25+Foxp3+T regulatory cells, which were significantly increased compared to healthy controls prior to vaccination, was markedly reduced following vaccination. In all, the immunological responses after vaccination indicated that the patients in stage IV of disease were immunocompetent and susceptible to vaccination. The Her-2/neu multipeptide vaccine was safe, well tolerated and effective in overcoming immunological tolerance to Her-2/neu. The induction of anti-Her-2-specific antibodies could result in clinical benefit comparable to passive anti-Her-2 antibody therapy.

  9. The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Redeker, Anke; van Duikeren, Suzanne; Franken, Kees LMC; Drijfhout, Jan Wouter; van der Burg, Sjoerd H.

    2016-01-01

    There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV), which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP) vaccination as a platform modality to protect against mouse CMV (MCMV) infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo), which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease. PMID:27637068

  10. Birth control vaccine targeting leukemia inhibitory factor.

    PubMed

    Lemons, Angela R; Naz, Rajesh K

    2012-02-01

    The population explosion and unintended pregnancies resulting in elective abortions continue to impose major public health issues. This calls for a better method of contraception. Immunocontraception has been proposed as a valuable alternative that can fulfill most, if not all, of the properties of an ideal contraceptive. There are several targets that are being explored for contraceptive vaccine development. Leukemia inhibitory factor (LIF), a member of interleukin-6 family, is required for embryo development and successful blastocyst implantation in several mammalian species. The present study was conducted to examine if LIF can be a target for the development of a birth control vaccine. Three sequences from LIF and two sequences from LIF-receptor (LIF-R) that span the regions involved in ligand-receptor binding were delineated, and peptides were synthesized based upon these sequences. Antibodies raised against these five peptides reduced LIF bioactivity in an in vitro culture assay using BA/F3 mLIF-R-mpg130 cells. Vaccines were prepared by conjugating these peptides to various carrier proteins. Immunization of female mice with these peptide vaccines induced a long-lasting, circulating as well as local antibody response in various parts of the genital tract, and resulted in a significant (P ≤ 0.05) inhibition in fertility in all the three trials; the LIF-R peptide vaccines proved to be a better vaccine target. The data indicate that LIF/LIF-R is an excellent target for the development of a birth control vaccine. This is the first study, to our knowledge, that examined LIF/LIF-R as a target for immunocontraception. The findings of this study can be easily translated to humans since LIF/LIF-R is also important for implantation and pregnancy in women. Copyright © 2011 Wiley Periodicals, Inc.

  11. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Kakimi, Kazuhiro; Isobe, Midori; Uenaka, Akiko; Wada, Hisashi; Sato, Eiichi; Doki, Yuichiro; Nakajima, Jun; Seto, Yasuyuki; Yamatsuji, Tomoki; Naomoto, Yoshio; Shiraishi, Kenshiro; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Oka, Mikio; Pan, Linda; Hoffman, Eric W; Old, Lloyd J; Nakayama, Eiichi

    2011-12-15

    We conducted a phase I clinical trial of a cancer vaccine using a 20-mer NY-ESO-1f peptide (NY-ESO-1 91-110) that includes multiple epitopes recognized by antibodies, and CD4 and CD8 T cells. Ten patients were immunized with 600 μg of NY-ESO-1f peptide mixed with 0.2 KE Picibanil OK-432 and 1.25 ml Montanide ISA-51. Primary end points of the study were safety and immune response. Subcutaneous injection of the NY-ESO-1f peptide vaccine was well tolerated. Vaccine-related adverse events observed were fever (Grade 1), injection-site reaction (Grade 1 or 2) and induration (Grade 2). Vaccination with the NY-ESO-1f peptide resulted in an increase or induction of NY-ESO-1 antibody responses in nine of ten patients. The sera reacted with recombinant NY-ESO-1 whole protein as well as the NY-ESO-1f peptide. An increase in CD4 and CD8 T cell responses was observed in nine of ten patients. Vaccine-induced CD4 and CD8 T cells responded to NY-ESO-1 91-108 in all patients with various HLA types with a less frequent response to neighboring peptides. The findings indicate that the 20-mer NY-ESO-1f peptide includes multiple epitopes recognized by CD4 and CD8 T cells with distinct specificity. Of ten patients, two with lung cancer and one with esophageal cancer showed stable disease. Our study shows that the NY-ESO-1f peptide vaccine was well tolerated and elicited humoral, CD4 and CD8 T cell responses in immunized patients. Copyright © 2011 UICC.

  12. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors.

    PubMed

    Rahma, Osama E; Hamilton, J Michael; Wojtowicz, Malgorzata; Dakheel, Omar; Bernstein, Sarah; Liewehr, David J; Steinberg, Seth M; Khleif, Samir N

    2014-02-24

    Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. 5000 μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m²/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100 μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher's exact test). The reported data showed that IL-2 might have a negative effect on the specific immune response induced by the relevant mutant

  14. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations.

    PubMed

    Singanayagam, Aran; Glanville, Nicholas; Girkin, Jason L; Ching, Yee Man; Marcellini, Andrea; Porter, James D; Toussaint, Marie; Walton, Ross P; Finney, Lydia J; Aniscenko, Julia; Zhu, Jie; Trujillo-Torralbo, Maria-Belen; Calderazzo, Maria Adelaide; Grainge, Chris; Loo, Su-Ling; Veerati, Punnam Chander; Pathinayake, Prabuddha S; Nichol, Kristy S; Reid, Andrew T; James, Phillip L; Solari, Roberto; Wark, Peter A B; Knight, Darryl A; Moffatt, Miriam F; Cookson, William O; Edwards, Michael R; Mallia, Patrick; Bartlett, Nathan W; Johnston, Sebastian L

    2018-06-08

    Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-β reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/β receptor (IFNAR1 -/- ) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-β therapy may protect.

  15. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.

    PubMed

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.

  16. Extending antigen release from particulate vaccines results in enhanced antitumor immune response.

    PubMed

    Kapadia, Chintan H; Tian, Shaomin; Perry, Jillian L; Sailer, David; Christopher Luft, J; DeSimone, Joseph M

    2018-01-10

    Tumor-specific CD8 + cytotoxic T lymphocytes (CTLs) play a critical role in an anti-tumor immune response. However, vaccination intended to elicit a potent CD8 + T cell responses employing tumor-associated peptide antigens, are typically ineffective due to poor immunogenicity. Previously, we engineered a polyethylene glycol (PEG) hydrogel-based subunit vaccine for the delivery of an antigenic peptide and CpG (adjuvant) to elicit potent CTLs. In this study, we further examined the effect of antigen release kinetics on their induced immune responses. A CD8 + T cell epitope peptide from OVA (CSIINFEKL) and CpG were co-conjugated to nanoparticles utilizing either a disulfide or a thioether linkage. Subsequent studies comparing peptide release rates as a function of linker, determined that the thioether linkage provided sustained release of peptide over 72h. Ability to control the release of peptide resulted in both higher and prolonged antigen presentation when compared to disulfide-linked peptide. Both NP vaccine formulations resulted in activation and maturation of bone marrow derived dendritic cells (BMDCs) and induced potent CD8 + T cell responses when compared to soluble antigen and soluble CpG. Immunization with either disulfide or thioether linked vaccine constructs effectively inhibited EG7-OVA tumor growth in mice, however only treatment with the thioether linked vaccine construct resulted in enhanced survival. Copyright © 2017. Published by Elsevier B.V.

  17. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus.

    PubMed

    Marasini, Nirmal; Giddam, Ashwini K; Ghaffar, Khairunnisa A; Batzloff, Michael R; Good, Michael F; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-01

    To develop an oral nanovaccine delivery system for lipopeptide-based vaccine candidate against group A Streptococcus. Lipid-core peptide-1-loaded nanoliposomes were prepared as a template and coated with opposite-charged polyelectrolytes to produce particles with size <200 nm. Efficacy of this oral nanovaccine delivery system was evaluated in mice model. Polymer-coated liposomes produced significantly higher antigen-specific mucosal IgA and systemic IgG titers in comparison to vaccine formulated with a strong mucosal adjuvant upon oral immunization in mice. Moreover, high levels of systemic antibody titers were retained even at day 185 postprimary immunization. Efficient oral delivery platform for lipopeptide-based vaccines has been developed.

  18. Incidence of pulmonary embolism during COPD exacerbation*, **

    PubMed Central

    Akpinar, Evrim Eylem; Hoşgün, Derya; Akpýnar, Serdar; Ataç, Gökçe Kaan; Doğanay, Beyza; Gülhan, Meral

    2014-01-01

    OBJECTIVE: Because pulmonary embolism (PE) and COPD exacerbation have similar presentations and symptoms, PE can be overlooked in COPD patients. Our objective was to determine the prevalence of PE during COPD exacerbation and to describe the clinical aspects in COPD patients diagnosed with PE. METHODS: This was a prospective study conducted at a university hospital in the city of Ankara, Turkey. We included all COPD patients who were hospitalized due to acute exacerbation of COPD between May of 2011 and May of 2013. All patients underwent clinical risk assessment, arterial blood gas analysis, chest CT angiography, and Doppler ultrasonography of the lower extremities. In addition, we measured D-dimer levels and N-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels. RESULTS: We included 172 patients with COPD. The prevalence of PE was 29.1%. The patients with pleuritic chest pain, lower limb asymmetry, and high NT-pro-BNP levels were more likely to develop PE, as were those who were obese or immobile. Obesity and lower limb asymmetry were independent predictors of PE during COPD exacerbation (OR = 4.97; 95% CI, 1.775-13.931 and OR = 2.329; 95% CI, 1.127-7.105, respectively). CONCLUSIONS: The prevalence of PE in patients with COPD exacerbation was higher than expected. The association between PE and COPD exacerbation should be considered, especially in patients who are immobile or obese. PMID:24626268

  19. Long-Peptide Cross-Presentation by Human Dendritic Cells Occurs in Vacuoles by Peptide Exchange on Nascent MHC Class I Molecules.

    PubMed

    Ma, Wenbin; Zhang, Yi; Vigneron, Nathalie; Stroobant, Vincent; Thielemans, Kris; van der Bruggen, Pierre; Van den Eynde, Benoît J

    2016-02-15

    Cross-presentation enables dendritic cells to present on their MHC class I molecules antigenic peptides derived from exogenous material, through a mechanism that remains partly unclear. It is particularly efficient with long peptides, which are used in cancer vaccines. We studied the mechanism of long-peptide cross-presentation using human dendritic cells and specific CTL clones against melanoma Ags gp100 and Melan-A/MART1. We found that cross-presentation of those long peptides does not depend on the proteasome or the transporter associated with Ag processing, and therefore follows a vacuolar pathway. We also observed that it makes use of newly synthesized MHC class I molecules, through peptide exchange in vesicles distinct from the endoplasmic reticulum and classical secretory pathway, in an SEC22b- and CD74-independent manner. Our results indicate a nonclassical secretion pathway followed by nascent HLA-I molecules that are used for cross-presentation of those long melanoma peptides in the vacuolar pathway. Our results may have implications for the development of vaccines based on long peptides. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    PubMed Central

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  1. Improvement of Peptide-Based Tumor Immunotherapy Using pH-Sensitive Fusogenic Polymer-Modified Liposomes.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Komatsu, Toshihiro; Udaka, Keiko; Harada, Atsushi; Kono, Kenji

    2016-09-26

    To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAP β A), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.

  2. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin

    PubMed Central

    Kovaleva, Anna A.; Potapchuk, Marina V.; Korotkov, Alexandr V.; Sergeeva, Mariia V.; Kasianenko, Marina A.; Kuprianov, Victor V.; Ravin, Nikolai V.; Tsybalova, Liudmila M.; Skryabin, Konstantin G.; Kiselev, Oleg I.

    2015-01-01

    Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins. PMID:25799221

  3. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  4. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  5. Novel transgenic rice-based vaccines.

    PubMed

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  6. Peptide vaccines and peptidomimetics targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy

    PubMed Central

    Kaumaya, Pravin TP; Foy, Kevin Chu

    2013-01-01

    The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress. The combination of dif ferent peptide vaccines and peptidomimetics targeting specific molecular pathways that are dysregulated in tumors may potentiate anticancer immune responses, bypass immune tolerance and circumvent resistance mechanisms. The focus of this review is to discuss efforts in our laboratory spanning two decades of rationally developing peptide vaccines and therapeutics for breast cancer. This review highlights the prospective benefit of a new, untapped category of therapies biologically targeted to EGF receptor (HER-1), HER-2 and VEGF with potential peptide ‘blockbusters‘ that could lay the foundation of a new paradigm in cancer immunotherapy by creating clinical breakthroughs for safe and efficacious cancer cures. PMID:22894670

  7. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine.

    PubMed

    Wigren, M; Kolbus, D; Dunér, P; Ljungcrantz, I; Söderberg, I; Björkbacka, H; Fredrikson, G N; Nilsson, J

    2011-05-01

    Autoimmune responses against oxidized low-density lipoprotein are considered to play an important pro-inflammatory role in atherosclerosis and to promote disease progression. T-regulatory cells (Tregs) are immunosuppressive cells that have an important part in maintaining self-tolerance and protection against autoimmunity. We investigated whether aBp210, a prototype atherosclerosis vaccine based on a peptide sequence derived from apolipoprotein B, inhibits atherosclerosis through the activation of Tregs. Six-week-old Apoe(-/-) mice were immunized with aBp210 and received booster immunizations 3 and 5 weeks later, as well as 1 week before being killed at 25 weeks of age. At 12 weeks, immunized mice had increased expression of the Treg marker CD25 on circulating CD4 cells, and concanavalin A (Con A)-induced interferon-γ, interleukin (IL)-4, and IL-10 release from splenocytes was markedly depressed. At 25 weeks, there was a fivefold expansion of splenic CD4+ CD25+ Foxp3 Tregs, a 65% decrease in Con A-induced splenic T-cell proliferation and a 37% reduction in the development of atherosclerosis in immunized mice. Administration of blocking antibodies against CD25 neutralized aBp210-induced Treg activation as well as the reduction of atherosclerosis. The present findings demonstrate that immunization of Apoe(-/-) mice with the apolipoprotein B peptide vaccine aBp210 is associated with activation of Tregs. Administration of antibodies against CD25 results in depletion of Tregs and blocking of the atheroprotective effect of the vaccine. Modulation in atherosclerosis-related autoimmunity by antigen-specific activation of Tregs represents a novel approach for treatment of atherosclerosis. © 2010 The Association for the Publication of the Journal of Internal Medicine.

  8. A facile approach to enhance antigen response for personalized cancer vaccination

    NASA Astrophysics Data System (ADS)

    Li, Aileen Weiwei; Sobral, Miguel C.; Badrinath, Soumya; Choi, Youngjin; Graveline, Amanda; Stafford, Alexander G.; Weaver, James C.; Dellacherie, Maxence O.; Shih, Ting-Yu; Ali, Omar A.; Kim, Jaeyun; Wucherpfennig, Kai W.; Mooney, David J.

    2018-06-01

    Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.

  9. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Wada, Hisashi; Isobe, Midori; Kakimi, Kazuhiro; Mizote, Yu; Eikawa, Shingo; Sato, Eiichi; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Yamasaki, Makoto; Miyata, Hiroshi; Matsushita, Hirokazu; Udono, Heiichiro; Seto, Yasuyuki; Yamada, Kazuhiro; Nishikawa, Hiroyoshi; Pan, Linda; Venhaus, Ralph; Oka, Mikio; Doki, Yuichiro; Nakayama, Eiichi

    2014-01-01

    We conducted a clinical trial of an NY-ESO-1 cancer vaccine using 4 synthetic overlapping long peptides (OLP; peptides #1, 79-108; #2, 100-129; #3, 121-150; and #4, 142-173) that include a highly immunogenic region of the NY-ESO-1 molecule. Nine patients were immunized with 0.25 mg each of three 30-mer and a 32-mer long NY-ESO-1 OLP mixed with 0.2 KE Picibanil OK-432 and 1.25 mL Montanide ISA-51. The primary endpoints of this study were safety and NY-ESO-1 immune responses. Five to 18 injections of the NY-ESO-1 OLP vaccine were well tolerated. Vaccine-related adverse events observed were fever and injection site reaction (grade 1 and 2). Two patients showed stable disease after vaccination. An NY-ESO-1-specific humoral immune response was observed in all patients and an antibody against peptide #3 (121-150) was detected firstly and strongly after vaccination. NY-ESO-1 CD4 and CD8 T-cell responses were elicited in these patients and their epitopes were identified. Using a multifunctional cytokine assay, the number of single or double cytokine-producing cells was increased in NY-ESO-1-specific CD4 and CD8 T cells after vaccination. Multiple cytokine-producing cells were observed in PD-1 (-) and PD-1 (+) CD4 T cells. In conclusion, our study indicated that the NY-ESO-1 OLP vaccine mixed with Picibanil OK-432 and Montanide ISA-51 was well tolerated and elicited NY-ESO-1-specific humoral and CD4 and CD8 T-cell responses in immunized patients.

  10. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    PubMed

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  11. Improving Analytical Characterization of Glycoconjugate Vaccines through Combined High-Resolution MS and NMR: Application to Neisseria meningitidis Serogroup B Oligosaccharide-Peptide Glycoconjugates.

    PubMed

    Yu, Huifeng; An, Yanming; Battistel, Marcos D; Cipollo, John F; Freedberg, Darón I

    2018-04-17

    Conjugate vaccines are highly heterogeneous in terms of glycosylation sites and linked oligosaccharide length. Therefore, the characterization of conjugate vaccines' glycosylation state is challenging. However, improved product characterization can lead to enhancements in product control and product quality. Here, we present a synergistic combination of high-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) for the analysis of glycoconjugates. We use the power of this strategy to characterize model polysaccharide conjugates and to demonstrate a detailed level of glycoproteomic analysis. These are first steps on model compounds that will help untangle the details of complex product characterization in conjugate vaccines. Ultimately, this strategy can be applied to enhance the characterization of polysaccharide conjugate vaccines. In this study, we lay the groundwork for the analysis of conjugate vaccines. To begin this effort, oligosaccharide-peptide conjugates were synthesized by periodate oxidation of an oligosaccharide of a defined length, α,2-8 sialic acid trimer, followed by a reductive amination, and linking the trimer to an immunogenic peptide from tetanus toxoid. Combined mass spectrometry and nuclear magnetic resonance were used to monitor each reaction and conjugation products. Complete NMR peak assignment and detailed MS information on oxidized oligosialic acid and conjugates are reported. These studies provide a deeper understanding of the conjugation chemistry process and products, which can lead to a better controlled production process.

  12. Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene.

    PubMed

    Caoili, Salvador Eugenio

    2018-03-01

    The contemporary Anthropocene is characterized by rapidly evolving complex global challenges to planetary health vis-a-vis sustainable development, yet innovation is constrained under the prevailing precautionary regime that regulates technological change. Small-molecule xenobiotic drugs are amenable to efficient large-scale industrial synthesis; but their pharmacokinetics, pharmacodynamics, interactions and ultimate ecological impact are difficult to predict, raising concerns over initial testing and environmental contamination. Antibodies and similar agents can serve as antidotes and drug buffers or vehicles to address patient safety and decrease dosing requirements. More generally, peptidic agents including synthetic peptide-based constructs exemplified by vaccines can be used together with or instead of nonpeptidic xenobiotics, thus enabling advances in planetary health based on principles of green chemistry from manufacturing through final disposition.

  13. Identification of BALB/c Immune Markers Correlated with a Partial Protection to Leishmania infantum after Vaccination with a Rationally Designed Multi-epitope Cysteine Protease A Peptide-Based Nanovaccine

    PubMed Central

    Agallou, Maria; Margaroni, Maritsa; Athanasiou, Evita; Toubanaki, Dimitra K.; Kontonikola, Katerina; Karidi, Konstantina; Kammona, Olga; Kiparissides, Costas

    2017-01-01

    Background Through their increased potential to be engaged and processed by dendritic cells (DCs), nanovaccines consisting of Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with both antigenic moieties and adjuvants are attractive candidates for triggering specific defense mechanisms against intracellular pathogens. The aim of the present study was to evaluate the immunogenicity and prophylactic potential of a rationally designed multi-epitope peptide of Leishmania Cysteine Protease A (CPA160-189) co-encapsulated with Monophosphoryl lipid A (MPLA) in PLGA NPs against L. infantum in BALB/c mice and identify immune markers correlated with protective responses. Methodology/Principal Findings The DCs phenotypic and functional features exposed to soluble (CPA160-189, CPA160-189+MPLA) or encapsulated in PLGA NPs forms of peptide and adjuvant (PLGA-MPLA, PLGA-CPA160-189, PLGA-CPA160-189+MPLA) was firstly determined using BALB/c bone marrow-derived DCs. The most potent signatures of DCs maturation were obtained with the PLGA-CPA160-189+MPLA NPs. Subcutaneous administration of PLGA-CPA160-189+MPLA NPs in BALB/c mice induced specific anti-CPA160-189 cellular and humoral immune responses characterized by T cells producing high amounts of IL-2, IFN-γ and TNFα and IgG1/IgG2a antibodies. When these mice were challenged with 2x107 stationary phase L. infantum promastigotes, they displayed significant reduced hepatic (48%) and splenic (90%) parasite load at 1 month post-challenge. This protective phenotype was accompanied by a strong spleen lymphoproliferative response and high levels of IL-2, IFN-γ and TNFα versus low IL-4 and IL-10 secretion. Although, at 4 months post-challenge, the reduced parasite load was preserved in the liver (61%), an increase was detected in the spleen (30%), indicating a partial vaccine-induced protection. Conclusions/Significance This study provide a basis for the development of peptide-based nanovaccines against leishmaniasis

  14. Broadening CD4+ and CD8+ T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    PubMed Central

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.; Christensen, Jan P.; Thomsen, Allan R.; Andersen, Peter; Agger, Else Marie

    2017-01-01

    ABSTRACT Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity. IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many

  15. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Cornea and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Vahed, Hawa; Roy, Soumyabrata; Walia, Sager S; Kim, Grace J; Fouladi, Mona A; Yamada, Taikun; Ly, Vincent T; Lam, Cynthia; Lou, Anthony; Nguyen, Vivianna; Boldbaatar, Undariya; Geertsema, Roger; Fraser, Nigel W; BenMohamed, Lbachir

    2018-06-13

    Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in Human Leukocyte Antigen- (HLA-) transgenic rabbit model of ocular herpes (HLA Tg rabbit). Three asymptomatic (ASYMP) peptide epitopes were selected from the HSV-1 membrane glycoprotein C (UL44 400-408 ), the DNA replication binding helicase (UL9 196-204 ), and the tegument protein (UL25 572-580 ), all preferentially recognized by CD8 + T cells from "naturally protected" HSV-1-seropositive healthy ASYMP individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8 + T cell peptide epitopes (UL44 400-408 , UL9 196-204 and UL25 572-580 ), delivered subcutaneously with CpG 2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic AAV8 vector, expressing the T cell-attracting CXCL10 chemokine (pull). The frequency, function of HSV-specific CD8 + T cells induced by the prime/pull vaccine were assessed in peripheral blood, cornea, and trigeminal ganglia (TG). Compared to peptides alone, the peptides/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ + ) CD107 + CD8 + T cells that infiltrated both the cornea and TG. CD8 + T cells mobilization into cornea and TG of prime/pull- vaccinated rabbits was associated with a significant reduction in corneal herpes infection and disease following an ocular HSV-1 challenge (McKrae). These findings draw attention to the novel prime/pull vaccine strategy to mobilize anti-viral CD8 + T cells into tissues protecting them against herpes infection and disease. IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA

  16. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities.

    PubMed

    Roohvand, Farzin; Kossari, Niloufar

    2012-04-01

    Developing a vaccine against HCV is an important medical and global priority. Unavailability and potential dangers associated with using attenuated HCV viral particles for vaccine preparation have resulted in the use of HCV genes and proteins formulated in novel vaccine modalities. In part one of this review, advances in basic knowledge for HCV vaccine design were provided. Herein, a detailed and correlated patents (searched by Espacenet) and literatures (searched by Pubmed) review on HCV vaccine formulations and modalities is provided, including: subunit, DNA, epitopic-peptide/polytopic, live vector- and whole yeast-based vaccines. Less-touched areas in vaccine studies such as mucosal, plant-based, and chimeric HBV/HCV vaccines are also discussed. Furthermore, results of preclinical/clinical studies on selected HCV vaccines as well as pros and cons of different strategies are reviewed. Finally, potential strategies for creation and/or improvement of HCV vaccine formulations are discussed. Promising outcomes of a few HCV vaccine modalities in phase I/II clinical trials predict the accessibility of at least partially effective vaccines to inhibit or treat the chronic state of HCV infection (specially in combination with standard antiviral therapy). ChronVac-C (plasmid DNA), TG4040 (MVA-based), and GI-5005 (whole yeast-based) might be the most obvious HCV vaccine candidates to be approved in the near future.

  17. Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies.

    PubMed

    Licari, Amelia; Castagnoli, Riccardo; De Sando, Elisabetta; Marseglia, Gian Luigi

    2017-04-01

    Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.

  18. [Construction and immunogenicity of recombinant bacteriophage T7 vaccine expressing M2e peptides of avian influenza virus].

    PubMed

    Xu, Hai; Wang, Yi-Wei; Tang, Ying-Hua; Zheng, Qi-Sheng; Hou, Ji-Bo

    2013-06-01

    To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.

  19. Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis

    PubMed Central

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    Background The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Methodology/Main Findings Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. Conclusions/Significance This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This

  20. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    PubMed

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as

  1. Novel immunotherapy vaccine development.

    PubMed

    Jutel, Marek; Akdis, Cezmi A

    2014-12-01

    Allergen-specific immunotherapy is the only curative treatment for allergic diseases. In spite of the great progress in both vaccine development and the methods of allergen immunotherapy (AIT) in recent years, several key problems related to limited efficacy, side-effects, low patient adherence and the relatively high costs due to the long duration (3-5 years) remain to be solved. The current approaches aiming at optimization of AIT are reviewed, including both conceptual studies in experimental models and proof-of-concept - as well as large, multicenter clinical studies. The most promising approaches to improve efficacy and safety of vaccine-based AIT include bypassing IgE binding and targeting allergen-specific T cells using hypoallergenic recombinant allergen derivatives and immunogenic peptides, the use of new adjuvants and stimulators of the innate immune response, the fusion of allergens to immune modifiers and peptide carrier proteins and new routes of vaccine administration. The cloning of allergen proteins and genetic engineering enabled the production of vaccines that have well defined molecular, immunologic and biologic characteristics as well as modified molecular structure. These new compounds along with new immunization protocols can bring us closer to the ultimate goal of AIT, that is, complete cure of a large number of allergic patients.

  2. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development.

    PubMed

    Samoylova, Tatiana I; Braden, Timothy D; Spencer, Jennifer A; Bartol, Frank F

    2017-11-20

    Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to address this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Filamentous bacteriophages can be used as platforms for development of such vaccines. In this review authors highlight structural and immunogenic properties of filamentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in animals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those administering the vaccines. Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be produced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development

    PubMed Central

    Samoylova, Tatiana I.; Braden, Timothy D.; Spencer, Jennifer A.; Bartol, Frank F.

    2017-01-01

    Background: Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to ad-dress this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Fil-amentous bacteriophages can be used as platforms for development of such vaccines. Objective: In this review authors highlight structural and immunogenic properties of fila-mentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. Results: Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in ani-mals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those ad-ministering the vaccines. Conclusion: Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be pro-duced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents. PMID:28901276

  4. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  5. Effects of written action plan adherence on COPD exacerbation recovery.

    PubMed

    Bischoff, Erik W M A; Hamd, Dina H; Sedeno, Maria; Benedetti, Andrea; Schermer, Tjard R J; Bernard, Sarah; Maltais, François; Bourbeau, Jean

    2011-01-01

    The effects of written action plans on recovery from exacerbations of chronic obstructive pulmonary disease (COPD) have not been well studied. The aims of this study were to assess the effects of adherence to a written action plan on exacerbation recovery time and unscheduled healthcare utilisation and to explore factors associated with action plan adherence. This was a 1-year prospective cohort study embedded in a randomised controlled trial. Exacerbation data were recorded for 252 patients with COPD who received a written action plan for prompt treatment of exacerbations with the instructions to initiate standing prescriptions for both antibiotics and prednisone within 3 days of exacerbation onset. Following the instructions was defined as adherence to the action plan. From the 288 exacerbations reported by 143 patients, start dates of antibiotics or prednisone were provided in 217 exacerbations reported by 119 patients (53.8% male, mean age 65.4 years, post-bronchodilator forced expiratory volume in 1 s (FEV(1)) 43.9% predicted). In 40.1% of exacerbations, patients adhered to their written action plan. Adherence reduced exacerbation recovery time with statistical (p=0.0001) and clinical (-5.8 days) significance, but did not affect unscheduled healthcare utilisation (OR 0.94, 95% CI 0.49 to 1.83). Factors associated with an increased likelihood of adherence were influenza vaccination, cardiac comorbidity, younger age and lower FEV(1) as percentage predicted. This study shows that adherence to a written action plan is associated with a reduction in exacerbation recovery time by prompt treatment. Knowing the factors that are associated with proper and prompt utilisation of an action plan permits healthcare professionals to better focus their self-management support on appropriate patients.

  6. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    PubMed

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL. © 2015 John Wiley & Sons Ltd.

  7. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  8. Smallpox vaccine: problems and prospects.

    PubMed

    Poland, Gregory A; Neff, John M

    2003-11-01

    Smallpox justifiably is feared because of its morbidity and mortality. Wide-spread population-level susceptibility to smallpox exists, and the only effective tool against the virus is a live, attenuated vaccine that is highly reactogenic and controversial. A significant minority of the population has contraindications that prevent preexposure use of this vaccine. Newer, safer, and equally immunogenic vaccines must be developed and licensed. Several live, attenuated vaccines are in clinical trials. Although these vaccines may prove to be less reactogenic, they still may not be administered safely to a significant portion of the population because they contain live, attenuated viruses. Newer vaccines will be needed if routine preexposure vaccination is to be instituted universally. The idea of a subunit or peptide-based vaccine is appealing, because it obviates potential safety concerns. It may be possible to use a more-attenuated, live vaccine strain for a large segment of the population on a preexposure basis and accept the morbidity and mortality that would result from its use on a postexposure basis, if necessary. The need for widespread population-level protection against variola infection is apparent. The use of the new biology tools to predict or define who might experience serious reactions to the smallpox vaccine and why these reactions occur is an area ripe for additional research. The reason why an individual develops postvaccinal encephalitis remains unknown, and the development is unpredictable and untreatable. In the future, if the mechanism behind such adverse events is defined, it may be possible to screen persons who are likely to experience such events. Although the authors remain proponents for use of the vaccine in alignment with the CDC vaccination program and recommendations, the previous concerns indicate that new knowledge must be gained and shared. Further research on attenuated vaccines and nonliving or peptide vaccines with equal efficacy

  9. TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines.

    PubMed

    Jordan, Kimberly R; Buhrman, Jonathan D; Sprague, Jonathan; Moore, Brandon L; Gao, Dexiang; Kappler, John W; Slansky, Jill E

    2012-10-01

    A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.

  10. A novel chimeric peptide with antimicrobial activity.

    PubMed

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  11. High Throughput T Epitope Mapping and Vaccine Development

    PubMed Central

    Li Pira, Giuseppina; Ivaldi, Federico; Moretti, Paolo; Manca, Fabrizio

    2010-01-01

    Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost. PMID:20617148

  12. Results of a Phase 1/2 Study in Metastatic Renal Cell Carcinoma Patients Treated with a Patient-specific Adjuvant Multi-peptide Vaccine after Resection of Metastases.

    PubMed

    Rausch, Steffen; Gouttefangeas, Cécile; Hennenlotter, Jörg; Laske, Karoline; Walter, Kerstin; Feyerabend, Susan; Chandran, Premachandran Anoop; Kruck, Stephan; Singh-Jasuja, Harpreet; Frick, Annemarie; Kröger, Nils; Stevanović, Stefan; Stenzl, Arnulf; Rammensee, Hans-Georg; Bedke, Jens

    2017-10-04

    Treatment of metastatic renal cell carcinoma comprises metastasectomy±systemic medical treatment. Specific immunotherapy after metastasectomy could be a complementary option. In this phase 1/2 study, safety and tolerability of an adjuvant multi-peptide vaccine (UroRCC) after metastasectomy was evaluated together with immune response and efficacy, compared with a contemporary cohort of patients (n=44) treated with metastasectomy only. Nineteen metastatic renal cell carcinoma patients received UroRCC via intradermal or subcutaneous application randomized to immunoadjuvants (granulocyte-macrophage colony-stimulating factor or Montanide). Adverse events of UroRCC were mainly grade I and II; frequency of immune response was higher for major histocompatibility complex class II peptides (17/19, 89.5%) than for major histocompatibility complex class I peptides (8/19, 42.1%). Median overall survival was not reached in the UroRCC group (mean: 112.6 mo, 95% confidence interval [CI]: 92.1-133.1) and 58.0 mo (95% CI: 32.7-83.2) in the control cohort (p=0.015). UroRCC was an independent prognosticator of overall survival (hazard ratio=0.19, 95% CI: 0.05-0.69, p=0.012). Adjuvant UroRCC multi-peptide vaccine after metastasectomy was well tolerated, immunogenic, and indicates potential clinical benefit when compared with a contemporary control cohort (NCT02429440). The application of a patient-specific peptide vaccine after complete resection of metastases in metastatic renal cell carcinoma patients resulted in favorable tolerability and outcome. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  13. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  14. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric plant virus construct.

    PubMed

    Nicholas, B L; Brennan, F R; Hamilton, W D O; Wakelin, D

    2003-06-02

    Expression of a 17-mer peptide sequence from canine parvovirus expressed on cowpea mosaic virus (CPMV) to form chimaeric virus particles (CVPs) creates vaccine antigens that elicit strong anti-peptide immune responses in mice. Systemic (subcutaneous, s.c.) immunisation and boosting with such CVP constructs produces IgG(2a) serum antibody responses, while mucosal (intranasal, i.n.) immunisation and boosting elicits intestinal IgA responses. Combinations of systemic and mucosal routes for priming and boosting immunisations were used to examine their influence on the level, type and location of immune response generated to one of these constructs (CVP-1). In all cases, s.c. administration, whether for immunisation or boosting, generated a Th1-biased response, reflected in a predominantly IgG(2a) serum antibody isotype and secretion of IFN-gamma from in vitro-stimulated lymphocytes. Serum antibody responses were greatest in animals primed and boosted subcutaneously, and least in mucosally vaccinated mice. The i.n. exposure also led to IFN-gamma release from in vitro-stimulated cells, but serum IgG(2a) was significantly elevated only in mice primed intranasally and boosted subcutaneously. Peptide- and wild-type CPMV-specific IgA responses in gut lavage fluid were greatest in animals exposed mucosally and least in those primed and boosted subcutaneously or primed subcutaneously and boosted orally. Lymphocytes from immunised mice proliferated in response to in vitro stimulation with CPMV but not with peptide. The predominant secretion of IFN-gamma from all immunising/boosting combinations indicates that the route of vaccination and challenge does not alter the Th1 bias of the response to CVP constructs. However, optimal serum and intestinal antibody responses were achieved by combining s.c. and i.n. administration.

  15. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  16. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    PubMed

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Current trends in the clinical development of peptide therapeutics.

    PubMed

    Saladin, Pauline M; Zhang, Bodi D; Reichert, Janice M

    2009-12-01

    The development of peptides as drugs is attracting increasing attention from the pharmaceutical industry. This interest is at least partially a consequence of the widespread acceptance of therapeutic proteins by physicians and patients, and because of improvements to problems such as a short half-life and delivery issues. The markets for peptide-based compounds can be substantial, with six peptide drugs attaining global sales of more than US $750 million in 2008. To track trends in the clinical development and marketing approval of peptides, Tufts Center for the Study of Drug Development and Ferring Research Institute compiled publically available data for peptides that entered clinical trials sponsored by commercial firms, with a focus on peptide therapeutics, but also including peptide vaccines and diagnostics. The results provide an historical overview of the development of peptide therapeutics, and may inform strategic planning in this area.

  18. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    ERIC Educational Resources Information Center

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  19. Active immunization with the peptide epitope vaccine Aβ3-10-KLH induces a Th2-polarized anti-Aβ antibody response and decreases amyloid plaques in APP/PS1 transgenic mice.

    PubMed

    Ding, Li; Meng, Yuan; Zhang, Hui-Yi; Yin, Wen-Chao; Yan, Yi; Cao, Yun-Peng

    2016-11-10

    Active amyloid-β (Aβ) immunotherapy is effective in preventing Aβ deposition, facilitating plaque clearance, and improving cognitive functions in mouse models of Alzheimer's disease (AD). Developing a safe and effective AD vaccine requires a delicate balance between inducing adequate humoral immune responses and avoiding T cell-mediated autoimmune responses. In this study, we designed 2 peptide epitope vaccines, Aβ3-10-KLH and 5Aβ3-10, prepared respectively by coupling Aβ3-10 to the immunogenic carrier protein keyhole limpet hemocyanin (KLH) or by joining 5 Aβ3-10 epitopes linearly in tandem. Young APP/PS1 mice were immunized subcutaneously with Aβ3-10-KLH or 5Aβ3-10 mixed with Freund's adjuvant, and the immunopotencies of these Aβ3-10 peptide vaccines were tested. Aβ3-10-KLH elicited a robust Th2-polarized anti-Aβ antibody response and inhibited Aβ deposition in APP/PS1 mice. However, 5Aβ3-10 did not induce an effective humoral immune response. These results indicated that Aβ3-10-KLH may be a safe and efficient vaccine for AD and that conjugating the antigen to a carrier protein may be more effective than linking multiple peptide antigens in tandem in applications for antibody production and vaccine preparation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Development of a New DNA Vaccine for Alzheimer Disease Targeting a Wide Range of Aβ Species and Amyloidogenic Peptides

    PubMed Central

    Matsumoto, Yoh; Niimi, Naoko; Kohyama, Kuniko

    2013-01-01

    It has recently been determined that not only Aβ oligomers, but also other Aβ species and amyloidogenic peptides are neurotoxic in Alzheimer disease (AD) and play a pivotal role in AD pathogenesis. In the present study, we attempted to develop new DNA vaccines targeting a wide range of Aβ species. For this purpose, we first performed in vitro assays with newly developed vaccines to evaluate Aβ production and Aβ secretion abilities and then chose an IgL-Aβx4-Fc-IL-4 vaccine (designated YM3711) for further studies. YM3711 was vaccinated to mice, rabbits and monkeys to evaluate anti-Aβ species antibody-producing ability and Aβ reduction effects. It was found that YM3711 vaccination induced significantly higher levels of antibodies not only to Aβ1-42 but also to AD-related molecules including AβpE3-42, Aβ oligomers and Aβ fibrils. Importantly, YM3711 significantly reduced these Aβ species in the brain of model mice. Binding and competition assays using translated YM3711 protein products clearly demonstrated that a large part of antibodies induced by YM3711 vaccination are directed at conformational epitopes of the Aβ complex and oligomers. Taken together, we demonstrate that YM3711 is a powerful DNA vaccine targeting a wide range of AD-related molecules and is worth examining in preclinical and clinical trials. PMID:24086465

  1. Advances & challenges in leptospiral vaccine development.

    PubMed

    Bashiru, Garba; Bahaman, Abdul Rani

    2018-01-01

    Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.

  2. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice.

    PubMed

    Ohno, Satoshi; Kohyama, Shunsuke; Taneichi, Maiko; Moriya, Osamu; Hayashi, Hidenori; Oda, Hiroshi; Mori, Masahito; Kobayashi, Akiharu; Akatsuka, Toshitaka; Uchida, Tetsuya; Matsui, Masanori

    2009-06-12

    We investigated whether the surface-linked liposomal peptide was applicable to a vaccine based on cytotoxic T lymphocytes (CTLs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV). We first identified four HLA-A*0201-restricted CTL epitopes derived from SARS-CoV using HLA-A*0201 transgenic mice and recombinant adenovirus expressing predicted epitopes. These peptides were coupled to the surface of liposomes, and inoculated into mice. Two of the liposomal peptides were effective for peptide-specific CTL induction, and one of them was efficient for the clearance of vaccinia virus expressing epitopes of SARS-CoV, suggesting that the surface-linked liposomal peptide might offer an effective CTL-based vaccine against SARS.

  3. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  4. Vaccination for Disease

    NASA Astrophysics Data System (ADS)

    Oehen, Stephan; Hengartner, Hans; Zinkernagel, Rolf M.

    1991-01-01

    Recombinant virus vaccines that express a limited number of epitopes are currently being developed to prevent disease by changing the relative balance between viral spread and the immune response. Some circumstances, however, were found in infections with a noncytopathic virus in which vaccination caused disease; sensitive parameters included the genetic background of the host, the time or dose of infection, and the constituents of the vaccine. Thus, immunopathologic damage by T cells may be an unwanted consequence of vaccination with the new types of peptide or recombinant vaccines that are being investigated for the human immunodeficiency viruses and other pathogens.

  5. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: a phase I, single-arm trial.

    PubMed

    Ji, Nan; Zhang, Yang; Liu, Yunpeng; Xie, Jian; Wang, Yi; Hao, Shuyu; Gao, Zhixian

    2018-05-17

    Heat shock protein peptide complex-96 (HSPPC-96) triggers adaptive and innate antitumor immune responses. The safety and efficacy of HSPPC-96 vaccination was examined in patients with newly diagnosed glioblastoma multiforme (GBM). In this open-label, single-arm, phase I study, adult patients were vaccinated with HSPPC-96 in combination with the standard treatment for newly diagnosed GBM after surgical resection. Primary endpoints were frequency of adverse events and progression-free survival (PFS) at 6 months. Secondary endpoints included overall survival (OS), PFS, and tumor-specific immune response (TSIR). A total of 20 patients with newly diagnosed GBM were enrolled from September 2013 to February 2015. No grade 3 or 4 vaccine-related adverse events were noted. After a median follow-up of 42.3 months, PFS was 89.5% (95% CI, 66.9%-98.7%) at 6 months, median PFS was 11.0 months (95% CI, 8.2-13.8), and median OS was 31.4 months (95% CI, 14.9-47.9). TSIR was significantly increased by 2.3-fold (95% CI, 1.7-3.2) after vaccination. Median OS for patients with high TSIR after vaccination was >40.5 months (95% CI, incalculable) as compared with 14.6 months (95% CI, 7.0-22.2) for patients with low TSIR after vaccination (hazard ratio, 0.25; 95% CI, 0.071-0.90; P = 0.034). A multivariate Cox regression model revealed TSIR after vaccination as a primary independent predicator for survival. The HSPPC-96 vaccination, combined with the standard therapy, is a safe and effective strategy for treatment of newly diagnosed GBM patients. TSIR after vaccination would be a good indicator predicting the vaccine efficacy. ClinicalTrials.gov NCT02122822. National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAI04B01, 2014BAI04B02), Beijing Natural Science Foundation (7164253), Beijing Talents Fund (2014000021469G257), and Shenzhen Science and Technology Innovation Committee (JSGG20170413151359491).

  6. Peptides as Therapeutic Agents for Dengue Virus

    PubMed Central

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients. PMID:29200948

  7. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    PubMed Central

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  8. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8+ TEM and TRM Cell Responses against Herpesvirus Infection and Disease.

    PubMed

    Lopes, Patricia P; Todorov, George; Pham, Thanh T; Nesburn, Anthony B; Bahraoui, Elmostafa; BenMohamed, Lbachir

    2018-04-15

    There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8 + T cell epitope (HSV-gB 498-505 ) covalently linked with the promiscuous glycoprotein D CD4 + T helper cell epitope (HSV-gD 49-89 ). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8 + T cells (T EM cells) and tissue-resident CD8 + T cells (T RM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections. IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser

  9. Can a school-based hand hygiene program reduce asthma exacerbations among elementary school children?

    PubMed Central

    Gerald, Joe K.; Zhang, Bin; McClure, Leslie A.; Bailey, William C.; Harrington, Kathy F.

    2012-01-01

    Background Viral upper respiratory infections have been implicated as a major cause of asthma exacerbations among school age children. Regular hand washing is the most effective method to prevent the spread of viral respiratory infections but, effective hand washing practices are difficult to establish in schools. Objectives This randomized controlled trial evaluated whether a standardized regimen of hand washing plus alcohol-based hand sanitizer could reduce asthma exacerbations more than schools’ usual hand hygiene practices. Methods This was a two year, community-based, randomized controlled crossover trial. Schools were randomized to usual care then intervention (Sequence 1) or intervention then usual care (Sequence 2). Intervention schools were provided with alcohol-based hand sanitizer, hand soap, and hand hygiene education. The primary outcome was the proportion of students experiencing an asthma exacerbation each month. Generalized estimating equations were used to model the difference in the marginal rate of exacerbations between sequences while controlling for individual demographic factors and the correlation within each student and between students within each school. Results 527 students with asthma were enrolled among 31 schools. The hand hygiene intervention did not reduce the number of asthma exacerbations as compared to the schools’ usual hand hygiene practices (p=0.132). There was a strong temporal trend as both sequences experienced fewer exacerbations during Year 2 as compared to Year 1 (p<0.001). Conclusions While the intervention was not found to be effective, the results were confounded by the H1N1 influenza pandemic that resulted in substantially increased hand hygiene behaviors and resources in usual care schools. Therefore, these results should be viewed cautiously. PMID:23069487

  10. Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine

    NASA Astrophysics Data System (ADS)

    Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.

    1992-05-01

    We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.

  11. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T-cell help

    PubMed Central

    Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R

    2013-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589

  12. Developing an effective breast cancer vaccine.

    PubMed

    Soliman, Hatem

    2010-07-01

    Harnessing the immune response in treating breast cancer would potentially offer a less toxic, more targeted approach to eradicating residual disease. Breast cancer vaccines are being developed to effectively train cytotoxic T cells to recognize and kill transformed cells while sparing normal ones. However, achieving this goal has been problematic due to the ability of established cancers to suppress and evade the immune response. A review of the literature on vaccines and breast cancer treatment was conducted, specifically addressing strategies currently available, as well as appropriate settings, paradigms for vaccine development and response monitoring, and challenges with immunosuppression. Multiple issues need to be addressed in order to optimize the benefits offered by breast cancer vaccines. Primary issues include the following: (1) cancer vaccines will likely work better in a minimal residual disease state, (2) clinical trial design for immunotherapy should incorporate recommendations from expert groups such as the Cancer Vaccine Working Group and use standardized immune response measurements, (3) the presently available cancer vaccine approaches, including dendritic cell-based, tumor-associated antigen peptide-based, and whole cell-based, have various pros and cons, (4) to date, no one approach has been shown to be superior to another, and (5) vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immunosuppression. Combining a properly optimized cancer vaccine with novel immunomodulating agents that overcome tumor-related immunosuppression in a well-designed clinical trial offers the best hope for developing an effective breast cancer vaccine strategy.

  13. Peptides and peptidomimetics in medicine, surgery and biotechnology.

    PubMed

    Gentilucci, Luca; Tolomelli, Alessandra; Squassabia, Federico

    2006-01-01

    Despite the fact that they have been used for a century to treat several kinds of diseases, peptides and short proteins are now considered the new generation of biologically active tools. Indeed, recent findings suggest a wide range of novel applications in medicine, biotechnology, and surgery. The efficacy of native peptides has been greatly enhanced by introducing structural modifications in the original sequences, giving rise to the class of peptidomimetics. This review gives an overview of both classical applications and promising new categories of biologically active peptides and analogs. Besides the new entries in well known peptide families, such as antibiotic macrocyclic peptides, integrin inhibitors, as well as immunoactive, anticancer, neuromodulator, opioid, and hormone peptides, a number of novel applications have been recently reported. Outstanding examples include peptide-derived semi-synthetic vaccines, drug delivery systems, radiolabeled peptides, self-assembling peptides, which can serve as biomaterials in tissue engineering for creating cartilage, blood vessels, and other tissues, or as substrates for neurite outgrowth and synapse formation, immobilized peptides, and proteins. Finally, peptide-based biomaterials can find applications in bio-nanotechnology for bio-microchips, peptide nanorods and nanotubes, bio-sensors, bio-electronic devices, and peptide-metal wires.

  14. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial.

    PubMed

    van Poelgeest, Mariette I E; Welters, Marij J P; van Esch, Edith M G; Stynenbosch, Linda F M; Kerpershoek, Gijs; van Persijn van Meerten, Els L; van den Hende, Muriel; Löwik, Margriet J G; Berends-van der Meer, Dorien M A; Fathers, Lorraine M; Valentijn, A Rob P M; Oostendorp, Jaap; Fleuren, Gert Jan; Melief, Cornelis J M; Kenter, Gemma G; van der Burg, Sjoerd H

    2013-04-04

    Human papilloma virus type 16 (HPV16)-induced gynecological cancers, in particular cervical cancers, are found in many women worldwide. The HPV16 encoded oncoproteins E6 and E7 are tumor-specific targets for the adaptive immune system permitting the development of an HPV16-synthetic long peptide (SLP) vaccine with an excellent treatment profile in animal models. Here, we determined the toxicity, safety, immunogenicity and efficacy of the HPV16 SLP vaccine in patients with advanced or recurrent HPV16-induced gynecological carcinoma. Patients with HPV16-positive advanced or recurrent gynecological carcinoma (n = 20) were subcutaneously vaccinated with an HPV16-SLP vaccine consisting of a mix of 13 HPV16 E6 and HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant. The primary endpoints were safety, toxicity and tumor regression as determined by RECIST. In addition, the vaccine-induced T-cell response was assessed by proliferation and associated cytokine production as well as IFNγ-ELISPOT. No systemic toxicity beyond CTCAE grade II was observed. In a few patients transient flu-like symptoms were observed. In 9 out of 16 tested patients vaccine-induced HPV16-specific proliferative responses were detected which were associated with the production of IFNγ, TNFα, IL-5 and/or IL-10. ELISPOT analysis revealed a vaccine-induced immune response in 11 of the 13 tested patients. The capacity to respond to the vaccine was positively correlated to the patient's immune status as reflected by their response to common recall antigens at the start of the trial. Median survival was 12.6 ± 9.1 months. No regression of tumors was observed among the 12 evaluable patients. Nineteen patients died of progressive disease. The HPV16-SLP vaccine was well tolerated and induced a broad IFNγ-associated T-cell response in patients with advanced or recurrent HPV16-induced gynecological carcinoma but neither induced tumor regression nor prevented progressive disease. We, therefore

  15. High salt intake does not exacerbate murine autoimmune thyroiditis

    PubMed Central

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  16. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    PubMed

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  17. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient

    PubMed Central

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  18. Methods and Protocols for Developing Prion Vaccines.

    PubMed

    Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott

    2016-01-01

    Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.

  19. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Immunization with tumor neoantigens displayed on T7 phage nanoparticles elicits plasma antibody and vaccine-draining lymph node B cell responses.

    PubMed

    Shukla, Girja S; Sun, Yu-Jing; Pero, Stephanie C; Sholler, Giselle S; Krag, David N

    2018-06-12

    The aim of this preclinical study was to evaluate T7 bacteriophage as a nanoparticle platform for expression of neoantigens that could allow rapid generation of vaccines for potential studies in human cancer patients. We have generated recombinant T7 phage vaccines carrying neoepitopes derived from mutated proteins of B16-F10 melanoma tumor cells. With the single mutated amino acid (AA) centered, peptides were expressed on the outer coat of T7 phage. All peptides with 11 and 34 AAs were successfully expressed. Trimers of the 11-AA peptides were successfully expressed in only 3 of 8 peptides. The 11-AA peptide was better in stimulating antibodies selective for the mutated region than the longer 34-AA peptide. We observed a dose response for vaccines which provides an initial framework of the minimum phage required for vaccination. A single injection with phage-peptide vaccines in both monomer and trimer formats produced significant immune responses in mice on day 21, as assessed by lymph node cell counts, next generation sequencing (NGS), and plasma titers against T7 phage and vaccine peptides. A trimer provided no additional serum response to the monomer format. Immunization of mice with a mixture of 8 different peptide vaccines resulted in antibodies to most of the peptides. It was encouraging that induced antibodies had higher binding to the mutated peptides compared to the corresponding normal peptides. The NGS of lymph node cells demonstrated a low B cell receptor diversity and clonal hyperpolarization in vaccine-draining lymph nodes in comparison to those in unvaccinated mice nodes. The NGS data also revealed phenomenal increase in IgG and other class-switched antibodies following vaccination. These results agree with the higher plasma titers of IgG antibodies against T7 phage and vaccine peptides. Antibodies bound whole B16-F10 cells, lysates and multiple bands on Western blot. This indicates that these vaccine peptides successfully induced antibodies that

  1. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors

  2. Designer vaccine nanodiscs for personalized cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Kuai, Rui; Ochyl, Lukasz J.; Bahjat, Keith S.; Schwendeman, Anna; Moon, James J.

    2017-04-01

    Despite the tremendous potential of peptide-based cancer vaccines, their efficacy has been limited in humans. Recent innovations in tumour exome sequencing have signalled the new era of personalized immunotherapy with patient-specific neoantigens, but a general methodology for stimulating strong CD8α+ cytotoxic T-lymphocyte (CTL) responses remains lacking. Here we demonstrate that high-density lipoprotein-mimicking nanodiscs coupled with antigen (Ag) peptides and adjuvants can markedly improve Ag/adjuvant co-delivery to lymphoid organs and sustain Ag presentation on dendritic cells. Strikingly, nanodiscs elicited up to 47-fold greater frequencies of neoantigen-specific CTLs than soluble vaccines and even 31-fold greater than perhaps the strongest adjuvant in clinical trials (that is, CpG in Montanide). Moreover, multi-epitope vaccination generated broad-spectrum T-cell responses that potently inhibited tumour growth. Nanodiscs eliminated established MC-38 and B16F10 tumours when combined with anti-PD-1 and anti-CTLA-4 therapy. These findings represent a new powerful approach for cancer immunotherapy and suggest a general strategy for personalized nanomedicine.

  3. [Study on the DNA vaccine against foot-and-mouth disease virus using the heavy chain constant region of swine IgG as the carrier for peptide epitopes].

    PubMed

    Li, G J; Yan, W Y; Xu, Q X; Sheng, Z T; Zheng, Z X

    2001-05-01

    The peptide of amino acids 141-160 of VP1 protein of foot-and-mouth disease virus (FMDV) is a major B cell epitope and the peptide of amino acids 21-40 is an important T cell epitope. In this study, the DNA fragments of 141-160 and 21-40 peptide epitopes of a strain of type O FMDV was chemically synthesized and arranged into a tandem repeat 141-160 (20AA)-21-40 (20AA)-141-160 (20AA). This tandem sequence was fused to the 3' end of the heavy chain constant region gene of swine immunoglobulin G and was then cloned into mammalian expression vector pCDM8 to form a recombinant plasmid pCDM8FZ3. After pCDM8FZ3 was inoculated intramuscularly into guinea pigs, it elicited a neutralizing antibody response and a specific spleen T cell proliferative response, and 66% of the vaccinated animals were protected from viral challenge. Our study indicated that the heavy chain constant region of swine IgG can act as the carrier protein for FMDV peptide epitopes, and pC-DM8FZ3 is a potential DNA vaccine candidate to prevent FMDV infection.

  4. Characterization and Epitope Mapping of the Polyclonal Antibody Repertoire Elicited by Ricin Holotoxin-Based Vaccination

    PubMed Central

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch

    2014-01-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. PMID:25209559

  5. Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination.

    PubMed

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch; Mazor, Ohad

    2014-11-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  7. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Robinson, H.; Wang, R.

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  8. Application of optical coherence tomography for assessment of transcutaneous vaccine delivery

    NASA Astrophysics Data System (ADS)

    Kamali, T.; Rattanapak, T.; Hook, S.; Meglinski, I.

    2012-03-01

    Immunization is one of the most efficient and cost-effective means for the prevention of diseases, but most vaccines have to be administered invasively. A novel strategy of inducing an immune response is topical application of vaccines to intact skin. Apart from being a non-invasive route of drug delivery, skin delivery also offers an advantageous mode of immunization due to the ability of skin immune cells to present antigens to the immune system. Topical vaccine penetration through the outermost layers of skin is based on the percutaneous diffusion of lipid-based nano-particles. In the current study we investigate the applicability of Optical Coherence Tomography for monitoring transcutaneous delivery of a peptide vaccine into the skin in vivo.

  9. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  10. Cancer vaccines inducing antibody production: more pros than cons.

    PubMed

    Jensen-Jarolim, Erika; Singer, Josef

    2011-09-01

    To date, passive immunotherapy with monoclonal antibodies is a well-established option in clinical oncology. By contrast, anticancer vaccines are less advanced, with the exception of successfully applied prophylactic vaccines against oncogenic virus infections. The creation of therapeutic vaccines is still a great challenge mostly due to the self-nature of tumor antigens. Therapeutic vaccines may be based on patient-specific material including pulsed effector cells, or tumor-associated antigens and derivatives thereof, such as peptides, mimotopes and nucleic acids. The latter represents a more universal approach, which would set an ideal economic framework resulting in broad patient access. In this article we focus on cancer vaccines for antibody production, in particular mimotope vaccines. The collected evidence suggests that they will open up new treatment options in minimal residual disease and early stage disease.

  11. Evaluation of tetravalent and conserved synthetic peptides vaccines derived from Dengue virus Envelope domain I and II.

    PubMed

    Rocha, Raissa Prado; Livonesi, Márcia Cristina; Fumagalli, Marcilio Jorge; Rodrigues, Naiara Ferreira; da Costa, Lauro César Felipe; Dos Santos, Michelle Cristina Silva Gomes; de Oliveira Rocha, Eliseu Soares; Kroon, Erna Geessien; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2014-08-08

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing a secondary infection with a different serotype progress to the severe form of the disease, called dengue hemorrhagic fever. In this study, the vaccine potential of three tetravalent and conserved synthetic peptides derived from DENV envelope domain I (named Pep01) and II (named Pep02 and Pep03) was evaluated. Human dengue IgM/IgG positive serum (n=16) showed reactivity against Pep01, Pep02 and Pep03 in different degrees. Mice immunization experiments showed that these peptides were able to induce a humoral response characterized by antibodies with low neutralizing activity. The spleen cells derived from mice immunized with the peptides showed a significant cytotoxic activity (only for Pep02 and Pep03), a high expression of IL-10 (P<0.01) and a reduced expression of TNF-α and IFN-gamma (P<0.001) compared to DENV-1 infected splenocytes. Thus these peptides, and specially the Pep03, can induce a humoral response characterized by antibodies with low neutralizing activities and probably a T cell response that could be beneficial to induce an effective immune response against all DENV serotypes and do not contributed to the immunopathogenesis. However, further studies in peptide sequence will be required to induce the production of neutralizing antibodies against all four DENV serotypes and also to improve immunogenicity of these peptides. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  13. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Cease, Kemp B

    2010-09-15

    The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.

  14. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens.

    PubMed

    Mokhtar, Helen; Biffar, Lucia; Somavarapu, Satyanarayana; Frossard, Jean-Pierre; McGowan, Sarah; Pedrera, Miriam; Strong, Rebecca; Edwards, Jane C; Garcia-Durán, Margarita; Rodriguez, Maria Jose; Stewart, Graham R; Steinbach, Falko; Graham, Simon P

    2017-09-01

    PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly

  16. TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with Stage D0 prostate cancer.

    PubMed

    Wood, Lauren V; Fojo, Antonio; Roberson, Brenda D; Hughes, Meghan S B; Dahut, William; Gulley, James L; Madan, Ravi A; Arlen, Philip M; Sabatino, Marianna; Stroncek, David F; Castiello, Luciano; Trepel, Jane B; Lee, Min-Jung; Parnes, Howard L; Steinberg, Seth M; Terabe, Masaki; Wilkerson, Julia; Pastan, Ira; Berzofsky, Jay A

    2016-08-01

    T-cell receptor alternate reading frame protein (TARP) is a 58-residue protein over-expressed in prostate and breast cancer. We investigated TARP peptide vaccination's impact on the rise in PSA (expressed as Slope Log(PSA) or PSA Doubling Time (PSADT)), validated tumor growth measures, and tumor growth rate in men with Stage D0 prostate cancer. HLA-A*0201 positive men were randomized to receive epitope-enhanced (29-37-9V) and wild-type (27-35) TARP peptides administered as a Montanide/GM-CSF peptide emulsion or as an autologous peptide-pulsed dendritic cell vaccine every 3 weeks for a total of five vaccinations with an optional 6th dose of vaccine at 36 weeks based on immune response or PSADT criteria with a booster dose of vaccine for all patients at 48 and 96 weeks. 41 patients enrolled with median on-study duration of 75 weeks at the time of this analysis. Seventy-two percent of patients reaching 24 weeks and 74% reaching 48 weeks had a decreased Slope Log(PSA) compared to their pre-vaccination baseline (p = 0.0012 and p = 0.0004 for comparison of overall changes in Slope Log(PSA), respectively). TARP vaccination also resulted in a 50% decrease in median tumor growth rate (g): pre-vaccine g = 0.0042/day, post-vaccine g = 0.0021/day (p = 0.003). 80% of subjects exhibited new vaccine-induced TARP-specific IFNγ ELISPOT responses but they did not correlate with decreases in Slope Log(PSA). Thus, vaccination with TARP peptides resulted in significant slowing in PSA velocity and reduction in tumor growth rate in a majority of patients with PSA biochemical recurrence.

  17. Prediction and analysis of promiscuous T cell-epitopes derived from the vaccine candidate antigens of Leishmania donovani binding to MHC class-II alleles using in silico approach.

    PubMed

    Kashyap, Manju; Jaiswal, Varun; Farooq, Umar

    2017-09-01

    Visceral leishmaniasis is a dreadful infectious disease and caused by the intracellular protozoan parasites, Leishmania donovani and Leishmania infantum. Despite extensive efforts for developing effective prophylactic vaccine, still no vaccine is available against leishmaniasis. However, advancement in immunoinformatics methods generated new dimension in peptide based vaccine development. The present study was aimed to identify T-cell epitopes from the vaccine candidate antigens like Lipophosphogylcan-3(LPG-3) and Nucleoside hydrolase (NH) from the L. donovani using in silico methods. Available best tools were used for the identification of promiscuous peptides for MHC class-II alleles. A total of 34 promiscuous peptides from LPG-3, 3 from NH were identified on the basis of their 100% binding affinity towards all six HLA alleles, taken in this study. These peptides were further checked computationally to know their IFN-γ and IL4 inducing potential and nine peptides were identified. Peptide binding interactions with predominant HLA alleles were done by docking. Out of nine docked promiscuous peptides, only two peptides (QESRILRVIKKKLVR, RILRVIKKKLVRKTL), from LPG-3 and one peptide (FDKFWCLVIDALKRI) from NH showed lowest binding energy with all six alleles. These promiscuous T-cell epitopes were predicted on the basis of their antigenicity, hydrophobicity, potential immune response and docking scores. The immunogenicity of predicted promiscuous peptides might be used for subunit vaccine development with immune-modulating adjuvants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Honda; R Wang; W Kong

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  19. Safety of engineered allergen-specific immunotherapy vaccines

    PubMed Central

    Focke-Tejkl, Margarete; Valenta, Rudolf

    2015-01-01

    Purpose of review The purpose of the review is to summarize and comment on recent developments regarding the safety of engineered immunotherapy vaccines. Recent findings In the last 2 years, several studies were published in which allergy vaccines were developed on the basis of chemical modification of natural allergen extracts, the engineering of allergen molecules by recombinant DNA technology and synthetic peptide chemistry, allergen genes, new application routes and conjugation with immune modulatory molecules. Several studies exemplified the general applicability of hypoallergenic vaccines on the basis of recombinant fusion proteins consisting of nonallergenic allergen-derived peptides fused to allergen-unrelated carrier molecules. These vaccines are engineered to reduce both, immunoglobulin E (IgE) as well as allergen-specific T cell epitopes in the vaccines, and thus should provoke less IgE and T-cell-mediated side-effects. They are made to induce allergen-specific IgG antibodies against the IgE-binding sites of allergens with the T-cell help of the carrier molecule. Summary Several interesting examples of allergy vaccines with potentially increased safety profiles have been published. The concept of fusion proteins consisting of allergen-derived hypoallergenic peptides fused to allergen-unrelated proteins that seems to be broadly applicable for a variety of allergens appears to be of particular interest because it promises not only to reduce side-effects but also to increase efficacy and convenience of allergy vaccines. PMID:22885888

  20. The efficacy of chimeric vaccines constructed with PEP-1 and Ii-Key linking to a hybrid epitope from heterologous viruses.

    PubMed

    Liu, Xue-lan; Shan, Wen-jie; Xu, Shan-shan; Zhang, Jin-jing; Xu, Fa-zhi; Xia, Sheng-lin; Dai, Yin

    2015-09-01

    The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Protein and peptide-based therapeutics in periodontal regeneration.

    PubMed

    Reynolds, Mark A; Aichelmann-Reidy, Mary E

    2012-09-01

    Protein and peptide-based therapeutics provide a unique strategy for controlling highly specific and complex biologic actions that cannot be accomplished by simple devices or chemical compounds. This article reviews some of the key characteristics and summarizes the clinical effectiveness of protein and peptide-based therapeutics targeting periodontal regeneration. A literature search was conducted of randomized clinical trials and systematic reviews evaluating protein and peptide-based therapeutics for the regeneration of periodontal tissues of at least 6 months duration. Data sources included PubMed and Embase electronic databases, hand-searched journals, and the ClinicalTrials.gov registry. Commercially marketed protein and peptide-based therapeutics for periodontal regeneration provide gains in clinical attachment level and bone formation that are comparable or superior to other regenerative approaches. Results from several clinical trials indicate that protein and peptide-based therapies can accelerate repair and regeneration when compared with other treatments and that improvements in clinical parameters continue beyond 12 months. Protein and peptide-based therapies also exhibit the capacity to increase the predictability of treatment outcomes. Clinical and histologic studies support the effectiveness of protein- and peptide-based therapeutics for periodontal regeneration. Emerging evidence suggests that the delivery devices/scaffolds play a critical role in determining the effectiveness of this class of therapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    NASA Astrophysics Data System (ADS)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  3. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    PubMed

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  4. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  5. A nano particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and recombinant Mycobacterium avium subsp paratuberculosis peptides stimulate a pro-immune profile in bovine macrophages.

    PubMed

    Souza, Cleverson D; Bannantine, John P; Brown, Wendy C; Norton, M Grant; Davis, William C; Hwang, Julianne K; Ziaei, Parissa; Abdellrazeq, Gaber S; Eren, Meaghan V; Deringer, James R; Laws, Elizabeth; Cardieri, Maria Clara D

    2017-05-14

    We evaluated the potential of a nanoparticle (NP) delivery system to improve methods of delivery of candidate peptide-based vaccines for Paratuberculosis in cattle. Peptides derived from Mycobacterium avium subsp. paratuberculosis (Map), and the pro-inflammatory monophosphoryl lipid A (MPLA) were incorporated in polymeric NPs based on poly (d,l-lactide-co-glycolide) (PLGA). The PLGA/MPLA NPs carriers were incubated with macrophages to examine their effects on survival and function. PLGA/MPLA NPs, with and without Map antigens, are efficiently phagocytized by macrophages with no evidence of toxicity. PLGA/MPLA NP formulations did not alter the level of expression of MHC I or II molecules. Expression of TNFα and IL12p40 was increased in Map-loaded NPs. T-cell proliferation studies using a model peptide from Anaplasma marginale demonstrated that a CD4 T-cell recall response could be elicited with macrophages pulsed with the peptide encapsulated in the PLGA/MPLA NP. These findings indicate PLGA/MPLA NPs can be used as a vehicle for delivery and testing of candidate peptide-based vaccines. These results will assist on more in depth studies on PLGA NP delivery systems that may lead to the development of a peptide-based vaccine for cattle. © 2017 The Society for Applied Microbiology.

  6. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles.

    PubMed

    Doucet, Marika; El-Turabi, Aadil; Zabel, Franziska; Hunn, Benjamin H M; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.

  7. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles

    PubMed Central

    Zabel, Franziska; Hunn, Benjamin H.M.; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M.; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F.

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model. PMID:28797124

  8. Vaccinating high-risk children with the intranasal live-attenuated influenza vaccine: the Quebec experience.

    PubMed

    Quach, Caroline

    2014-12-01

    Given the burden of illness associated with influenza, vaccination is recommended for individuals at high risk of complications. The live-attenuated influenza vaccine (LAIV) is administered by intranasal spray, thus directly stimulating mucosal immunity. In this review, we aimed to provide evidence for its efficacy and safety in different paediatric populations. We also share the Quebec experience of LAIV use through a publicly funded vaccination program for children with chronic, high-risk conditions. from randomized controlled trials in healthy children and in asthmatics have demonstrated superior efficacy of LAIV over the injectable vaccine (IIV). LAIV is well tolerated: its administration is associated with runny nose and nasal congestion, but not with asthma exacerbations and is well tolerated in children with cystic fibrosis, when compared to IIV. The vaccine is well accepted by children and parents and can easily be part of vaccination clinics in paediatric tertiary care centres targeting children with chronic, high-risk conditions, not leading to immunosuppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    PubMed Central

    Thundimadathil, Jyothi

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341

  10. Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial.

    PubMed

    Beeh, Kai M; Glaab, Thomas; Stowasser, Susanne; Schmidt, Hendrik; Fabbri, Leonardo M; Rabe, Klaus F; Vogelmeier, Claus F

    2013-10-29

    Data examining the characteristics of patients with frequent exacerbations of chronic obstructive pulmonary disease (COPD) and associated hospitalisations and mortality are scarce. Post-hoc analysis of the Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) trial, targeting exacerbations as the primary endpoint. Patients were classified as non-, infrequent, and frequent exacerbators (0, 1, or ≥ 2 exacerbations during study treatment), irrespective of study treatment. A multivariate Cox regression model assessed the effect of covariates on time to first exacerbation. In total, 7376 patients were included in the analysis: 63.5% non-exacerbators, 22.9% infrequent, 13.6% frequent exacerbators. Factors significantly associated with exacerbation risk were age, sex, body mass index, COPD duration and severity, smoking history, baseline inhaled corticosteroid use, and preceding antibiotic or systemic corticosteroid courses. Frequent exacerbators had greater severity and duration of COPD, received more pulmonary medication, and ≥ 2 systemic corticosteroid or antibiotic courses in the preceding year, and were more likely to be female and ex-smokers. The small proportion of frequent exacerbators (13.6%) accounted for 56.6% of exacerbation-related hospitalisations, which, overall, were associated with a three-fold increase in mortality. The frequent exacerbator phenotype was closely associated with exacerbation-related hospitalisations, and exacerbation-related hospitalisations were associated with poorer survival. NCT00563381; Study identifier: BI 205.389.

  11. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection

    PubMed Central

    Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei

    2013-01-01

    Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790

  12. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils.

    PubMed

    Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei

    2017-01-01

    Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate

  13. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils

    PubMed Central

    Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei

    2017-01-01

    Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a

  14. Antibody to fibroblast growth factor 23-peptide reduces excreta phosphorus of laying hens.

    PubMed

    Ren, Zhouzheng; Ebrahimi, Marziyeh; Bütz, Daniel E; Sand, Jordan M; Zhang, Keying; Cook, Mark E

    2017-01-01

    Novel strategies to minimize the excretion of phosphorus in swine and poultry are critical in minimizing environmental degradation. We have developed a synthetic peptide vaccine to produce autoantibodies to fibroblast growth factor 23 (FGF-23), a bone-derived hormone that blocks kidney phosphate resorption and indirectly reduces intestinal phosphate absorption. Single Comb White Leghorn laying hens, fed a standard diet (inorganic phosphorus, Pi = 0.4%), were immunized over the course of 4 weeks with either a FGF-23 peptide vaccine or adjuvant control (without FGF-23 peptide). At peak antibody titer to the peptide (week 5), 24-h excreta were collected and hens were blood sampled (represents 0.4% Pi treatment). Hens were then fed a 0.8% Pi diet and blood was sampled at 24 and 72 h and 24-h excreta were collected at 12 to 36 and 60 to 84 h (represents 0.8% Pi treatment). Increasing Pi from 0.4 to 0.8% increased (P < 0.05) percent excreta phosphorus, total 24-h phosphorus excretion, and plasma levels of FGF-23 and phosphate in either control or FGF-23 peptide vaccinated hens as early as the first sampling period. FGF-23 peptide vaccinated hens fed 0.4% Pi had reduced (P < 0.05) percent excreta phosphorus, total 24 h phosphorus excretion, and plasma levels of FGF-23 and iPTH, and increased (P < 0.05) plasma levels of phosphate and 1,25(OH) 2 D 3 when compared to control vaccinated hens fed 0.4% Pi. In the first collection period post 0.8% Pi feeding, FGF-23 peptide vaccinated hens had reduced (P < 0.05) plasma levels of FGF-23 and iPTH, and increased (P < 0.05) plasma levels of phosphate and 1,25(OH) 2 D 3 , and tended to have reduced percent excreta phosphorus (P = 0.085) and total 24 h phosphorus excretion (P = 0.078) when compared to control vaccinated hens. Results during the second collection period post 0.8% Pi feeding were similar to that at the first collection period. These results are the first to show that the inhibition of FGF-23 action by

  15. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    PubMed

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  16. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library.

    PubMed

    Hu, Hongbo; Li, Li; Kao, Richard Y; Kou, Binbin; Wang, Zhanguo; Zhang, Liang; Zhang, Huiyuan; Hao, Zhiyong; Tsui, Wayne H; Ni, Anping; Cui, Lianxian; Fan, Baoxing; Guo, Feng; Rao, Shuan; Jiang, Chengyu; Li, Qian; Sun, Manji; He, Wei; Liu, Gang

    2005-01-01

    A 10-mer overlapping peptide library has been synthesized for screening and identification of linear B-cell epitopes of severe acute respiratory syndrome associated coronavirus (SARS-CoV), which spanned the major structural proteins of SARS-CoV. One hundred and eleven candidate peptides were positive according to the result of PEPscan, which were assembled into 22 longer peptides. Five of these peptides showed high cross-immunoreactivities (approximately 66.7 to 90.5%) to SARS convalescent patients' sera from the severest epidemic regions of the China mainland. Most interestingly, S(471-503), a peptide located at the receptor binding domain (RBD) of SARS-CoV, could specifically block the binding between the RBD and angiotensin-converting enzyme 2, resulting in the inhibition of SARS-CoV entrance into host cells in vitro. The study demonstrated that S(471-503) peptide was a potential immunoantigen for the development of peptide-based vaccine or a candidate for further drug evaluation against the SARS-CoV virus-cell fusion.

  17. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network.

    PubMed

    Hur, Junguk; Xiang, Zuoshuang; Feldman, Eva L; He, Yongqun

    2011-08-26

    Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were identified. The asserted

  18. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    PubMed Central

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  19. VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever

    PubMed Central

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models. PMID:25483693

  20. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    PubMed

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  1. The European Regulatory Environment of RNA-Based Vaccines.

    PubMed

    Hinz, Thomas; Kallen, Kajo; Britten, Cedrik M; Flamion, Bruno; Granzer, Ulrich; Hoos, Axel; Huber, Christoph; Khleif, Samir; Kreiter, Sebastian; Rammensee, Hans-Georg; Sahin, Ugur; Singh-Jasuja, Harpreet; Türeci, Özlem; Kalinke, Ulrich

    2017-01-01

    A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.

  2. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  3. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    PubMed

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.

  4. Knowledge-based grouping of modeled HLA peptide complexes.

    PubMed

    Kangueane, P; Sakharkar, M K; Lim, K S; Hao, H; Lin, K; Chee, R E; Kolatkar, P R

    2000-05-01

    Human leukocyte antigens are the most polymorphic of human genes and multiple sequence alignment shows that such polymorphisms are clustered in the functional peptide binding domains. Because of such polymorphism among the peptide binding residues, the prediction of peptides that bind to specific HLA molecules is very difficult. In recent years two different types of computer based prediction methods have been developed and both the methods have their own advantages and disadvantages. The nonavailability of allele specific binding data restricts the use of knowledge-based prediction methods for a wide range of HLA alleles. Alternatively, the modeling scheme appears to be a promising predictive tool for the selection of peptides that bind to specific HLA molecules. The scoring of the modeled HLA-peptide complexes is a major concern. The use of knowledge based rules (van der Waals clashes and solvent exposed hydrophobic residues) to distinguish binders from nonbinders is applied in the present study. The rules based on (1) number of observed atomic clashes between the modeled peptide and the HLA structure, and (2) number of solvent exposed hydrophobic residues on the modeled peptide effectively discriminate experimentally known binders from poor/nonbinders. Solved crystal complexes show no vdW Clash (vdWC) in 95% cases and no solvent exposed hydrophobic peptide residues (SEHPR) were seen in 86% cases. In our attempt to compare experimental binding data with the predicted scores by this scoring scheme, 77% of the peptides are correctly grouped as good binders with a sensitivity of 71%.

  5. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Self-assembling peptide-based building blocks in medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less

  7. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-a-specific, tumor-reactive CTL in melanoma patients.

    PubMed

    Palermo, Belinda; Del Bello, Duilia; Sottini, Alessandra; Serana, Federico; Ghidini, Claudia; Gualtieri, Novella; Ferraresi, Virginia; Catricalà, Caterina; Belardelli, Filippo; Proietti, Enrico; Natali, Pier Giorgio; Imberti, Luisa; Nisticò, Paola

    2010-09-15

    Combination of chemotherapy and immunotherapy to increase the effectiveness of an antitumor immune response is currently regarded as an attractive antitumor strategy. In a pilot clinical trial, we have recently documented an increase of melanoma antigen A (Melan-A)-specific, tumor-reactive, long-lasting effector-memory CD8(+) T cells after the administration of dacarbazine (DTIC) 1 day before peptide vaccination in melanoma patients. Global transcriptional analysis revealed a DTIC-induced activation of genes involved in the immune response and leukocyte activation. To identify the possible mechanisms underlying this improved immune response, we have compared the endogenous and the treatment-induced anti-Melan-A response at the clonal level in patients treated with the vaccine alone or with DTIC plus vaccine. We report a progressive widening of T-cell receptor (TCR) repertoire diversity, accompanied by high avidity and tumor reactivity, only in Melan-A-specific T-cell clones of patients treated with chemoimmunotherapy, with a trend toward longer survival. Differently, patients treated with vaccine alone showed a tendency to narrowing the TCR repertoire diversity, accompanied by a decrease of tumor lytic activity in one patient. Collectively, our findings indicate that DTIC plus vaccination shapes the TCR repertoire in terms of diversity and antitumor response, suggesting that this combined therapy could be effective in preventing melanoma relapse. ©2010 AACR.

  8. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles.

    PubMed

    Derman, Serap; Mustafaeva, Zeynep Akdeste; Abamor, Emrah Sefik; Bagirova, Melahat; Allahverdiyev, Adil

    2015-10-20

    Canine parvovirus 2 (CPV-2) remains a significant worldwide canine pathogen and the most common cause of viral enteritis in dogs. The 1 L15 and 7 L15 peptides overlap each other with QPDGGQPAV residues (7-15 of VP2 capsid protein of CPV) is shown to produce high immune response. PLGA nanoparticles were demonstrated to have special properties such as; controlled antigen release, protection from degradation, elimination of booster-dose and enhancing the cellular uptake by antigen presenting cells. Nevertheless, there is no study available in literature, about developing vaccine based on PLGA nanoparticles with adjuvant properties against CPV. Thus, the aim of the present study was to synthesize and characterize high immunogenic W-1 L19 peptide (from the VP2 capsid protein of CPV) loaded PLGA nanoparticle and to evaluate their in vitro immunogenic activity. PLGA nanoparticles were produced with 5.26 ± 0.05 % loading capacity and high encapsulation efficiency with 81.2 ± 3.1 %. Additionally, it was evaluated that free NPs and W-1 L19 peptide encapsulated PLGA nanoparticles have Z-ave of 183.9 ± 12.1 nm, 221.7 ± 15.8 nm and polydispersity index of 0.107 ± 0.08, 0.135 ± 0.12 respectively. It was determined that peptide loaded PLGA nanoparticles were successfully phagocytized by macrophage cells and increased NO production at 2-folds (*P < 0.05) in contrast to free peptide, and 3-folds (*P < 0.01) in contrast to control. In conclusion, for the first time, W-1 L19 peptide loaded PLGA nanoparticles were successfully synthesized and immunogenic properties evaluated. Obtained results showed that PLGA nanoparticles enhanced the capacity of W-1 L19 peptide to induce nitric oxide production in vitro due to its adjuvant properties. Depend on the obtained results, these nanoparticles can be accepted as potential vaccine candidate against Canine Parvovirus. Studies targeting PLGA nanoparticles based delivery system must be maintained in near

  9. Novel Platforms for the Development of a Universal Influenza Vaccine

    PubMed Central

    Kumar, Arun; Meldgaard, Trine Sundebo; Bertholet, Sylvie

    2018-01-01

    Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines. PMID:29628926

  10. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  11. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion.

    PubMed

    Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2012-12-01

    Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Use of Prior Vaccinations for the Development of New Vaccines

    NASA Astrophysics Data System (ADS)

    Etlinger, H. M.; Gillessen, D.; Lahm, H.-W.; Matile, H.; Schonfeld, H.-J.; Trzeciak, A.

    1990-07-01

    There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.

  13. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Induction of Protective Immune Responses Against Schistosomiasis haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    PubMed Central

    Tallima, Hatem; Dalton, John P.; El Ridi, Rashika

    2015-01-01

    One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P < 0.005) reduction of >50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8–10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1- and type 2-related cytokines and antibody responses. PMID:25852696

  15. Association Between Acute Medical Exacerbations and Consuming or Producing Web-Based Health Information: Analysis From Pew Survey Data.

    PubMed

    Gidwani, Risha; Zulman, Donna

    2015-06-23

    The Internet is an increasingly important resource for individuals who seek information from both health professionals and peers. While the demographic and health characteristics of persons who use health information technology has been well described, less is known about the relationship between these health characteristics and level of engagement with health information technology. Even less is known about whether persons who produce Web-based health information differ in health status from persons who consume such content. We explored the health characteristics of persons who engage with the Internet for the purposes of consuming or producing Web-based health information, and specifically, whether healthier versus sicker persons engage with health information technology in different ways. We analyzed data from the 2012 Pew Health survey, a landline and cell phone survey of 3104 adults in the United States. Using multiple logistic regression with sampling weights, we examined the association between sociodemographic and health characteristics and the consumption or production of Web-based health information. Sociodemographic variables included age, sex, race, and education. Health characteristics included self-reported health status, presence of chronic condition(s), and having an acute medical exacerbation. Acute medical exacerbations were defined as an emergency department visit, hospitalization, or other serious medical emergency in the last 12 months. The majority of the sample reported good or excellent health (79.7%), although 50.3% reported having at least one chronic condition. About a fifth (20.2%) of the sample experienced an acute medical exacerbation in the past year. Education was the sociodemographic characteristic most strongly associated with consuming Web-based health information. The strongest health-related predictors of consuming Web-based health information were an acute medical exacerbation (OR 2.39, P<.001) and having a chronic condition

  16. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).

    PubMed

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil; Kirnbauer, Reinhard

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV

  17. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV)

    PubMed Central

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17–36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous

  18. A Novel Multi-Epitope Vaccine Based on Urate Transporter 1 Alleviates Streptozotocin-Induced Diabetes by Producing Anti-URAT1 Antibody and an Immunomodulatory Effect in C57BL/6J Mice.

    PubMed

    Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming

    2017-10-16

    Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.

  19. Advances in our understanding of immunization and vaccines for patients with systemic lupus erythematosus.

    PubMed

    Bragazzi, Nicola Luigi; Watad, Abdulla; Sharif, Kassem; Adawi, Mohammad; Aljadeff, Gali; Amital, Howard; Shoenfeld, Yehuda

    2017-10-01

    Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. In SLE, immune system dysfunction is postulated to result by virtue of the disease itself as well as by the impact of treatment modalities employed. A myriad of immune dysregulations occur including complement system dysfunction among others. Infectious agents are known to complicate the disease course in close to 25-45% of SLE patients. Areas covered: In this review a discussion of the immunogenicity and safety of viral and bacterial vaccinations in SLE was performed. The search included ISI Web of Science (WoS), Scopus, MEDLINE/PubMed, Google-Scholar, DOAJ, EbscoHOST, Scirus, Science Direct, Cochrane Library and ProQuest. Proper string made up of a key-words including 'SLE', 'vaccination', 'safety' and 'efficacy' was used. Expert commentary: Vaccination of SLE patients is proven to be immunogenic. Concerns regarding vaccine safety are postulated, yet no direct relationship between vaccination and disease exacerbation were established. While live virus vaccines are generally contraindicated in immunosuppressive states, generally live attenuated vaccinations are recommended in SLE patients on a case-to-case basis. In SLE patients, clinical parameters such as vaccination during disease exacerbations have not been intensively studied and therefore while apparently safe, vaccination is generally recommended while disease is quiescent.

  20. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases

    PubMed Central

    Skeate, Joseph G.; Woodham, Andrew W.; Einstein, Mark H.; Da Silva, Diane M.; Kast, W. Martin

    2016-01-01

    ABSTRACT Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed. PMID:26835746

  1. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases.

    PubMed

    Skeate, Joseph G; Woodham, Andrew W; Einstein, Mark H; Da Silva, Diane M; Kast, W Martin

    2016-06-02

    Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.

  2. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures).more » In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays RGD receptor with higher

  3. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  4. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity

    PubMed Central

    Liu, Geng; Li, Dongli; Li, Zhang; Qiu, Si; Li, Wenhui; Chao, Cheng-chi; Yang, Naibo; Li, Handong; Cheng, Zhen; Song, Xin; Cheng, Le; Zhang, Xiuqing; Wang, Jian; Yang, Huanming

    2017-01-01

    Abstract Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a

  5. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3

    PubMed Central

    Coulie, Pierre G.; Karanikas, Vaios; Colau, Didier; Lurquin, Christophe; Landry, Claire; Marchand, Marie; Dorval, Thierry; Brichard, Vincent; Boon, Thierry

    2001-01-01

    Vaccination of melanoma patients with tumor-specific antigens recognized by cytolytic T lymphocytes (CTL) produces significant tumor regressions in a minority of patients. These regressions appear to occur in the absence of massive CTL responses. To detect low-level responses, we resorted to antigenic stimulation of blood lymphocyte cultures in limiting dilution conditions, followed by tetramer analysis, cloning of the tetramer-positive cells, and T-cell receptor (TCR) sequence analysis of the CTL clones that showed strict specificity for the tumor antigen. A monoclonal CTL response against a MAGE-3 antigen was observed in a melanoma patient, who showed partial rejection of a large metastasis after treatment with a vaccine containing only the tumor-specific antigenic peptide. Tetramer analysis after in vitro restimulation indicated that about 1/40,000 postimmunization CD8+ blood lymphocytes were directed against the antigen. The same TCR was present in all of the positive microcultures. TCR evaluation carried out directly on blood lymphocytes by PCR amplification led to a similar frequency estimate after immunization, whereas the TCR was not found among 2.5 × 106 CD8+ lymphocytes collected before immunization. Our results prove unambiguously that vaccines containing only a tumor-specific antigenic peptide can elicit a CTL response. Even though they provide no information about the effector mechanisms responsible for the observed reduction in tumor mass in this patient, they would suggest that low-level CTL responses can initiate tumor rejection. PMID:11517302

  6. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  7. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines.

    PubMed

    Ojeda, Rafael; de Paz, Jose Luis; Barrientos, Africa G; Martín-Lomas, Manuel; Penadés, Soledad

    2007-02-26

    A novel platform for anticancer vaccines has been prepared using glyconanotechnology recently developed in our laboratory. Ten different multifunctional gold glyconanoparticles incorporating sialylTn and Lewis(y) antigens, T-cell helper peptides (TT) and glucose in well defined average proportions and with differing density have been synthesised in one step and characterised using NMR and TEM. Size and nature of the linker were crucial to control kinetics of S-Au bond formation and to achieve the desired ligand ratio on the gold clusters. The technology presented here opens the way for tailoring polyvalent anticancer vaccines candidates and drug delivery carriers with defined average chemical composition.

  8. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis.

    PubMed

    de Almeida, José Roberto Fogaça; Jannuzzi, Grasielle Pereira; Kaihami, Gilberto Hideo; Breda, Leandro Carvalho Dantas; Ferreira, Karen Spadari; de Almeida, Sandro Rogério

    2018-03-08

    Sporothrix brasiliensis is the most virulent fungus of the Sporothrix complex and is the main species recovered in the sporotrichosis zoonotic hyperendemic area in Rio de Janeiro. A vaccine against S. brasiliensis could improve the current sporotrichosis situation. Here, we show 3 peptides from S. brasiliensis immunogenic proteins that have a higher likelihood for engaging MHC-class II molecules. We investigated the efficiency of the peptides as vaccines for preventing subcutaneous sporotrichosis. In this study, we observed a decrease in lesion diameters in peptide-immunized mice, showing that the peptides could induce a protective immune response against subcutaneous sporotrichosis. ZR8 peptide is from the GP70 protein, the main antigen of the Sporothrix complex, and was the best potential vaccine candidate by increasing CD4 + T cells and higher levels of IFN-γ, IL-17A and IL-1β characterizing a strong cellular immune response. This immune environment induced a higher number of neutrophils in lesions that are associated with fungus clearance. These results indicated that the ZR8 peptide induces a protective immune response against subcutaneous sporotrichosis and is a vaccine candidate against S. brasiliensis infection.

  9. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-02

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

  10. Therapeutic cancer vaccines

    PubMed Central

    Melief, Cornelis J.M.; van Hall, Thorbald; Arens, Ramon; Ossendorp, Ferry; van der Burg, Sjoerd H.

    2015-01-01

    The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies. PMID:26214521

  11. Advances in macrocyclic peptide-based antibiotics.

    PubMed

    Luther, Anatol; Bisang, Christian; Obrecht, Daniel

    2018-06-01

    Macrocyclic peptide-based natural products have provided powerful new antibiotic drugs, drug candidates, and scaffolds for medicinal chemists as a source of inspiration to design novel antibiotics. While most of those natural products are active mainly against Gram-positive pathogens, novel macrocyclic peptide-based compounds have recently been described, which exhibit potent and specific activity against some of the most problematic Gram-negative ESKAPE pathogens. This mini-review gives an up-date on recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A clinically applicable adjuvant for an atherosclerosis vaccine in mice.

    PubMed

    Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica; Winkels, Holger; Pei, Hong; Kimura, Takayuki; Miller, Jacqueline; Wolf, Dennis; Ley, Klaus

    2018-06-22

    Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene oil similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Decrease in Formalin-Inactivated Respiratory Syncytial Virus (FI-RSV) Enhanced Disease with RSV G Glycoprotein Peptide Immunization in BALB/c Mice

    PubMed Central

    Rey, Gertrud U.; Miao, Congrong; Caidi, Hayat; Trivedi, Suvang U.; Harcourt, Jennifer L.; Tripp, Ralph A.; Anderson, Larry J.; Haynes, Lia M.

    2013-01-01

    Respiratory syncytial virus (RSV) is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV) vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study. PMID:24376637

  14. Re-designing the Mozambique vaccine supply chain to improve access to vaccines.

    PubMed

    Lee, Bruce Y; Haidari, Leila A; Prosser, Wendy; Connor, Diana L; Bechtel, Ruth; Dipuve, Amelia; Kassim, Hidayat; Khanlawia, Balbina; Brown, Shawn T

    2016-09-22

    Populations and routine childhood vaccine regimens have changed substantially since supply chains were designed in the 1980s, and introducing new vaccines during the "Decade of Vaccine" may exacerbate existing bottlenecks, further inhibiting the flow of all vaccines. Working with the Mozambique Ministry of Health, our team implemented a new process that integrated HERMES computational simulation modeling and on-the-ground implementers to evaluate and improve the Mozambique vaccine supply chain using a system-re-design that integrated new supply chain structures, information technology, equipment, personnel, and policies. The alternative system design raised vaccine availability (from 66% to 93% in Gaza; from 76% to 84% in Cabo Delgado) and reduced the logistics cost per dose administered (from $0.53 to $0.32 in Gaza; from $0.38 to $0.24 in Cabo Delgado) as compared to the multi-tiered system under the current EPI. The alternative system also produced higher availability at lower costs after new vaccine introductions. Since reviewing scenarios modeling deliveries every two months in the north of Gaza, the provincial directorate has decided to pilot this approach diverging from decades of policies dictating monthly deliveries. Re-design improved not only supply chain efficacy but also efficiency, important since resources to deliver vaccines are limited. The Mozambique experience and process can serve as a model for other countries during the Decade of Vaccines. For the Decade of Vaccines, getting vaccines at affordable prices to the market is not enough. Vaccines must reach the population to be successful. Copyright © 2016. Published by Elsevier Ltd.

  15. Self-reported influenza vaccination and protective serum antibody titers in a cohort of COPD patients.

    PubMed

    Eagan, T M; Hardie, J A; Jul-Larsen, Å; Grydeland, T B; Bakke, P S; Cox, R J

    2016-06-01

    COPD patients are advised vaccination against seasonal influenza, yet few studies have evaluated the protective antibody titers obtained in this patient group. 1) To describe protective titers in COPD patients who self-reported influenza vaccination compared with vaccinated subjects without COPD and unvaccinated COPD patients, 2) analyze whether clinical parameters predicted influenza-specific antibody titers, and 3) whether antibody titers to influenza A at baseline could predict exacerbation risk or 5 years all-cause mortality. Influenza A (H1N1 and H3N2) titers were measured by haemagglutination inhibition assay in serum from 432 COPD patients and 77 controls in the Bergen COPD Cohort Study, at yearly visits between 2006/09. Titers of 40 or above were considered protective. We examined the variables sex, age, body composition, smoking, GOLD stage, yearly exacerbations, inhaled steroids, and Charlson score as predictive of titers, both univariately and in a multivariable model estimated by generalized estimating equations. The exacerbation incidence rate ratios and mortality hazard ratios were assessed by negative binominal and cox regression models respectively. At baseline, 59% of COPD patients reported influenza vaccination during the last season. Levels of predictive titers varied considerably each season, but trended lower in COPD patients compared with controls. Neither sex, age, body composition, smoking, comorbidities, GOLD stage nor use of inhaled steroids consistently predicted titers. Having high titers at baseline did not impact later risk for exacerbations, but seemed to be associated with higher all-cause mortality, even after adjustment for COPD disease characteristics. Vaccination coverage for influenza is imperfect for COPD patients in Norway, and there is a concern that immunization is suboptimal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  17. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  18. Evaluation of the Immunogenicity of a Potyvirus-Like Particle as an Adjuvant of a Synthetic Peptide.

    PubMed

    Cárdenas-Vargas, Albertina; Elizondo-Quiroga, Darwin; Gutierrez-Ortega, Abel; Charles-Niño, Claudia; Pedroza-Roldán, César

    2016-12-01

    Improvement of current vaccines is highly necessary to increase immunogenicity levels and protection against several pathogens. Virus-like particles (VLPs) are promising approaches for vaccines because they emulate infectious virus structure, but lack any genetic material needed for replication. Plant viruses have emerged as a potential framework for VLP design, mainly because there is no preexisting immunity in mammals. In this study, we evaluated the scaffold of the papaya ringspot virus (PRSV) as a VLP adjuvant for a short synthetic peptide derived from the Hemagglutinin protein of AH1 N1 influenza virus-hemagglutinin (VLP-HA). Our results demonstrated that the adjuvant property of this VLP is highly similar to the trivalent influenza vaccine, showing comparable levels of IgG- and IgA-specific antibodies to HA-derived peptide in serum and feces of vaccinated mice, respectively. Furthermore, VLP-HA-immunized mice showed Th1-biased immune response as suggested by measuring IgG subclasses in comparison with the predominance of Th2-biased immune response in trivalent influenza vaccine dose-vaccinated mice. VLP-HA administration in mice induced comparable levels of activated CD4 + - and CD8 + -specific T lymphocytes for the HA-derived peptide. These results suggest the potential adjuvant capacity of the PRSV-VLP as a carrier for short synthetic peptides.

  19. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis.

    PubMed

    Margaroni, Maritsa; Agallou, Maria; Athanasiou, Evita; Kammona, Olga; Kiparissides, Costas; Gaitanaki, Catherine; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4 + and CD8 + T cells. Importantly, the activation of CD8 + T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated-infected mice revealed that protection was accompanied by significant increase of IFN

  20. Randomized Phase II Trial of Adjuvant WT-1 Analog Peptide Vaccine in Patients with Malignant Pleural Mesothelioma after Completion of Multimodality Therapy

    DTIC Science & Technology

    2017-11-01

    journal of cancer research : Gann 1999; 90(2): 194-204. 6. Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia...and myelodysplastic syndrome : therapeutic potential of WT1 targeted therapies. Leukemia 2003; 17(7): 1301-12. 7. Cheever MA, Allison JP, Ferris AS...Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid

  1. Introduction of a PCT-based algorithm to guide antibiotic prescription in COPD exacerbation.

    PubMed

    Picart, J; Moiton, M P; Gaüzère, B-A; Gazaille, V; Combes, X; DiBernardo, S

    2016-12-01

    Prescribing antibiotics for COPD exacerbations is not easy. Procalcitonin (PCT) is a useful biomarker that helps reduce the rate of antibiotic therapies. However, its proper cut-off levels are often unknown. We aimed to assess the impact of a PCT-based algorithm to guide antibiotic therapy prescription in COPD exacerbations. We conducted an observational, retrospective, and before/after study. We reviewed physician practices regarding PCT test and antibiotic therapy prescription to all patients hospitalized for COPD exacerbation. We then analyzed the rate of antibiotic prescriptions and the number of PCT tests prescribed before and after the introduction of a protocol validated by previous high-power studies. The primary endpoint was the rate of antibiotic prescriptions. A total of 124 patients before protocol and 121 patients after protocol were included. Antibiotic prescriptions decreased by 41% after protocol introduction (59% vs. 35%, P<0.001), with no increase in morbidity and mortality at Day 30. Compliance with protocol was complete in 60% of cases and partial (no PCT guidance to discontinue antibiotics) in 8% of cases. Both antibiotic duration (8.3 days vs. 8.7 days) and length of hospital stay (8.5 days vs. 8.3 days, P=0.78) did not change. Hospital physicians are already using PCT-based algorithm to guide antibiotic prescription in COPD exacerbations. Disseminating information on the appropriate PCT cut-off level to use to decide whether or not to initiate antibiotics is effective. Its proper use should be clarified to reduce antibiotic prescriptions to these overexposed patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt

    PubMed Central

    Ogilvie, Gina; Anderson, Maureen; Marra, Fawziah; McNeil, Shelly; Pielak, Karen; Dawar, Meena; McIvor, Marilyn; Ehlen, Thomas; Dobson, Simon; Money, Deborah; Patrick, David M.; Naus, Monika

    2010-01-01

    Background Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. Methods and Findings All parents of girls enrolled in grade 6 during the academic year of September 2008–June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s) against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1–67.1) of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1–89.7) consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1–87.9) consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%), advice from a physician (8.7%), and concerns about daughter's health (8.4%). The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%), preference to wait until the daughter is older (15.6%), and not enough information to make an informed decision (12.6%). In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having a

  3. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    PubMed

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  5. Particle-based vaccines for HIV-1 infection.

    PubMed

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  6. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings

    PubMed Central

    Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655

  7. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings.

    PubMed

    Ayres, Cory M; Corcelli, Steven A; Baker, Brian M

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.

  8. Re-designing the Mozambique vaccine supply chain to improve access to vaccines

    PubMed Central

    Lee, Bruce Y.; Haidari, Leila A.; Prosser, Wendy; Connor, Diana L.; Bechtel, Ruth; Dipuve, Amelia; Kassim, Hidayat; Khanlawia, Balbina; Brown, Shawn T.

    2017-01-01

    Introduction Populations and routine childhood vaccine regimens have changed substantially since supply chains were designed in the 1980s, and introducing new vaccines during the “Decade of Vaccine” may exacerbate existing bottlenecks, further inhibiting the flow of all vaccines. Methods Working with the Mozambique Ministry of Health, our team implemented a new process that integrated HERMES computational simulation modeling and on-the-ground implementers to evaluate and improve the Mozambique vaccine supply chain using a system-re-design that integrated new supply chain structures, information technology, equipment, personnel, and policies. Results The alternative system design raised vaccine availability (from 66% to 93% in Gaza; from 76% to 84% in Cabo Delgado) and reduced the logistics cost per dose administered (from $0.53 to $0.32 in Gaza; from $0.38 to $0.24 in Cabo Delgado) as compared to the multi-tiered system under the current EPI. The alternative system also produced higher availability at lower costs after new vaccine introductions. Since reviewing scenarios modeling deliveries every two months in the north of Gaza, the provincial directorate has decided to pilot this approach diverging from decades of policies dictating monthly deliveries. Discussion Re-design improved not only supply chain efficacy but also efficiency, important since resources to deliver vaccines are limited. The Mozambique experience and process can serve as a model for other countries during the Decade of Vaccines. For the Decade of Vaccines, getting vaccines at affordable prices to the market is not enough. Vaccines must reach the population to be successful. PMID:27576077

  9. Home-based child vaccination records--a reflection on form.

    PubMed

    Brown, David W; Gacic-Dobo, Marta; Young, Stacy L

    2014-04-01

    Home-based child vaccination records play an important role in documenting immunization services received by children. We report some of the results of a review of home-based vaccination records from 55 countries. In doing so, we categorize records into three groups (vaccination only cards, vaccination plus cards, child health books) and describe differences in characteristics related to the quality of data recorded on immunization. Moreover, we highlight areas of potential concern and areas in need of further research and investigation to improve our understanding of the home-based vaccination record form related to improved data quality from immunization service delivery. Copyright © 2014. Published by Elsevier Ltd.

  10. [Childhood vaccines and autism--much ado about nothing?].

    PubMed

    Solt, Ido; Bornstein, Jacob

    2010-04-01

    The increased diagnoses of autism and developmental disorders in recent decades, together with the childhood vaccination program, has led to the hypothesis that vaccination in general, and the measles, mumps, and rubella virus live vaccine, and vaccines that contain mercury, in particular, cause autism. It has been hypothesized that intestinal infection caused by live virus vaccines change the permeability of the intestinal wall, and subsequently, the passage of peptides through the intestinal wall to the blood, and from there to the brain. It has been suggested that the accumulation of these peptides in the central nervous system causes autism. Studies that investigated this theory did not find an association between vaccine administration and between digestive system symptoms and autism. According to a second hypothesis, an organomercury compound (Thimerosal), used as a preservative in vaccines that do not include live viruses, is a cause of autism. Like the former, this hypothesis has been well researched, and refuted. Some studies have in fact found an increase in autism diagnosis among children who were vaccinated after Thimerosal was removed from the vaccine preparation. Recent studies have refuted the theory that the consecutive administration of vaccines weakens the young immune system in children, and leads to an autoimmune process that causes autism. The etiology of autism is still unknown, with research continuing from different directions. The extensive research conducted so far indicates that childhood vaccination is not a cause of the sharp increase in autism diagnoses in recent decades.

  11. Barriers to and facilitators of child influenza vaccine - perspectives from parents, teens, marketing and healthcare professionals.

    PubMed

    Bhat-Schelbert, Kavitha; Lin, Chyongchiou Jeng; Matambanadzo, Annamore; Hannibal, Kristin; Nowalk, Mary Patricia; Zimmerman, Richard K

    2012-03-23

    The CDC recommends annual influenza vaccination for all children age 6 months and older, yet vaccination rates remain modest. Effective strategies to improve influenza vaccination for children are needed. Eight focus groups with 91 parents, teens, pediatric healthcare staff and providers, and immunization and marketing experts were conducted, audiotaped, transcribed verbatim, and coded based on grounded theory. Three themes emerged: barriers, facilitators, and strategies. Barriers included fear, misinformation, and mistrust, with exacerbation of these barriers attributed to media messages. Many considered influenza vaccination unnecessary and inconvenient, but would accept vaccination if recipients or other family members were considered high risk, if recommended by their doctor or another trusted person, or if offered or mandated by the school. Access to better information regarding influenza disease burden and vaccine safety and efficacy were notable facilitators, as were prevention of the inconvenience of missing work or important events, and if the child requests to receive the vaccine. Marketing strategies included incentives, jingles, videos, wearable items, strategically-located information sheets or posters, and promotion by informed counselors. Practice-based strategies included staff buy-in, standing orders protocols, vaccination clinics, and educational videos. Teen-specific strategies included message delivery through schools, texting, internet, and social networking sites. To improve influenza vaccination rates for children using practice-based interventions, participants suggested campaigns that provide better information regarding the vaccine, the disease and its implications, and convenient access to vaccination. Strategies targeting adolescents should use web-based social marketing technologies and campaigns based in schools. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors

    PubMed Central

    Anderson, Annaliesa S.; Miller, Alita A.; Donald, Robert G.K.; Scully, Ingrid L.; Nanra, Jasdeep S.; Cooper, David; Jansen, Kathrin U.

    2012-01-01

    Staphylococcus aureus is a major cause of healthcare-associated infections and is responsible for a substantial burden of disease in hospitalized patients. Despite increasingly rigorous infection control guidelines, the prevalence and corresponding negative impact of S. aureus infections remain considerable. Difficulties in controlling S. aureus infections as well as the associated treatment costs are exacerbated by increasing rates of resistance to available antibiotics. Despite ongoing efforts over the past 20 years, no licensed S. aureus vaccine is currently available. However, learnings from past clinical failures of vaccine candidates and a better understanding of the immunopathology of S. aureus colonization and infection have aided in the design of new vaccine candidates based on multiple important bacterial pathogenesis mechanisms. This review outlines important considerations in designing a vaccine for the prevention of S. aureus disease in healthcare settings. PMID:22922765

  13. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC) and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC).

    PubMed

    Overholser, Jay; Ambegaokar, Kristen Henkins; Eze, Siobhan M; Sanabria-Figueroa, Eduardo; Nahta, Rita; Bekaii-Saab, Tanios; Kaumaya, Pravin T P

    2015-07-06

    Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.

  14. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  15. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine.

    PubMed

    Carignan, Damien; Thérien, Ariane; Rioux, Gervais; Paquet, Geneviève; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Savard, Pierre; Leclerc, Denis

    2015-12-16

    The emergence of highly virulent influenza strains and the risks of pandemics as well as the limited efficiency of the current seasonal vaccines are important public health concerns. There is a major need for new influenza vaccines that would be broadly cross-protective. The ectodomain of matrix protein 2 (M2e) is highly conserved amongst different influenza strains and could be used as a broad spectrum antigen. To overcome its low immunogenicity we have fused a short peptide epitope derived from the human consensus sequence of M2e (amino acids 6-14, EVETPIRNE) to the N-terminus of papaya mosaic virus coat protein. The fusion harboring coat proteins were assembled around a single stranded RNA into virus-like particles (PapMV-sM2e). The resulting PapMV-sM2e rod-shaped particle was stable and indistinguishable from regular PapMV particles. A single intramuscular immunization with PapMV-sM2e was sufficient to mount appreciable levels of CD4 dependent M2e specific total IgG and IgG2a antibody in mice sera. PapMV-sM2e proved to be self-adjuvanting since the addition of PapMV as an exogenous adjuvant did not result in significantly improved antibody titers. In addition, we confirmed the adjuvant property of PapMV-sM2e using the trivalent inactivated flu vaccine as antigen and demonstrated that the newly engineered nanoparticles areas efficacious as an adjuvant than the original PapMV nanoparticles. Upon infection with a sub-lethal dose of influenza, PapMV-sM2e vaccinated animals were completely protected from virus induced morbidity and mortality. Mice immunized with decreasing amounts of PapMV-sM2e and challenged with a more stringent dose of influenza virus displayed dose-dependent levels of protection. Seventy percent of the mice immunized once with the highest dose of PapMV-sM2e survived the challenged. The survival of the mice correlated mainly with the levels of anti-M2e IgG2a antibodies obtained before the infection. These results demonstrate that PapMV-sM2e can

  16. Hypothesis driven development of new adjuvants: short peptides as immunomodulators.

    PubMed

    Dong, Jessica C; Kobinger, Gary P

    2013-04-01

    To date, vaccinations have been one of the key strategies in the prevention and protection against infectious pathogens. Traditional vaccines have well-known limitations such as safety and efficacy issues, which consequently deems it inappropriate for particular populations and may not be an effective strategy against all pathogens. This evidence highlights the need to develop more efficacious vaccination regiments. Higher levels of protection can be achieved by the addition of immunostimulating adjuvants. Many adjuvants elicit strong, undefined inflammation, which produces increased immunogenicity but may also lead to undesirable effects. Hypothesis driven development of adjuvants is needed to achieve a more specific and directed immune response required for optimal and safe vaccine-induced immune protection. An example of such hypothesis driven development includes the use of short immunomodulating peptides as adjuvants. These peptides have the ability to influence the immune response and can be extrapolated for adjuvant use, but requires further investigation.

  17. Phage display as a promising approach for vaccine development.

    PubMed

    Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar

    2016-09-29

    Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.

  18. Predicting Acute Exacerbations in Chronic Obstructive Pulmonary Disease.

    PubMed

    Samp, Jennifer C; Joo, Min J; Schumock, Glen T; Calip, Gregory S; Pickard, A Simon; Lee, Todd A

    2018-03-01

    With increasing health care costs that have outpaced those of other industries, payers of health care are moving from a fee-for-service payment model to one in which reimbursement is tied to outcomes. Chronic obstructive pulmonary disease (COPD) is a disease where this payment model has been implemented by some payers, and COPD exacerbations are a quality metric that is used. Under an outcomes-based payment model, it is important for health systems to be able to identify patients at risk for poor outcomes so that they can target interventions to improve outcomes. To develop and evaluate predictive models that could be used to identify patients at high risk for COPD exacerbations. This study was retrospective and observational and included COPD patients treated with a bronchodilator-based combination therapy. We used health insurance claims data to obtain demographics, enrollment information, comorbidities, medication use, and health care resource utilization for each patient over a 6-month baseline period. Exacerbations were examined over a 6-month outcome period and included inpatient (primary discharge diagnosis for COPD), outpatient, and emergency department (outpatient/emergency department visits with a COPD diagnosis plus an acute prescription for an antibiotic or corticosteroid within 5 days) exacerbations. The cohort was split into training (75%) and validation (25%) sets. Within the training cohort, stepwise logistic regression models were created to evaluate risk of exacerbations based on factors measured during the baseline period. Models were evaluated using sensitivity, specificity, and positive and negative predictive values. The base model included all confounding or effect modifier covariates. Several other models were explored using different sets of observations and variables to determine the best predictive model. There were 478,772 patients included in the analytic sample, of which 40.5% had exacerbations during the outcome period. Patients with

  19. Exploring the role of peptides in polymer-based gene delivery.

    PubMed

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes

    PubMed Central

    Ruwona, Tinashe B; Mcbride, Ryan; Chappel, Rebecca; Head, Steven R; Ordoukhanian, Phillip; Burton, Dennis R.; Law, Mansun

    2014-01-01

    Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology, improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays were confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research. PMID:24269751

  1. A history of adolescent school based vaccination in Australia.

    PubMed

    Ward, Kirsten; Quinn, Helen; Menzies, Robert; McIntyre, Peter

    2013-06-30

    As adolescents have become an increasingly prominent target group for vaccination, school-based vaccination has emerged as an efficient and effective method of delivering nationally recommended vaccines to this often hard to reach group. School-based delivery of vaccines has occurred in Australia for over 80 years and has demonstrated advantages over primary care delivery for this part of the population. In the last decade school-based vaccination programs have become routine practice across all Australian states and territories. Using existing records and the recollection of experts we have compiled a history of school-based vaccination in Australia, primarily focusing on adolescents. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General's Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.

  2. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    PubMed Central

    Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.

    2013-01-01

    Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814

  3. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    PubMed Central

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  4. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  5. Virus vaccines: principles and prospects.

    PubMed Central

    Melnick, J. L.

    1989-01-01

    The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217

  6. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.

    PubMed

    Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo

    2015-09-11

    We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines

    PubMed Central

    Ye, Ling; Wen, Zhiyuan; Dong, Ke; Wang, Xi; Bu, Zhigao; Zhang, Huizhong; Compans, Richard W.; Yang, Chinglai

    2011-01-01

    Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy. PMID:21625584

  8. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes

    PubMed Central

    Volcovich, Romina; Altcheh, Jaime; Bracamonte, Estefanía; Marco, Jorge D.; Nielsen, Morten; Buscaglia, Carlos A.

    2017-01-01

    Chagas Disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available. Accurate diagnosis is essential for the early identification and follow up of vector-borne cases and to prevent transmission of the disease by way of blood transfusions and organ transplantation. Diagnosis is routinely performed using serological methods, some of which require the production of parasite lysates, parasite antigenic fractions or purified recombinant antigens. Although available serological tests give satisfactory results, the production of reliable reagents remains laborious and expensive. Short peptides spanning linear B-cell epitopes have proven ideal serodiagnostic reagents in a wide range of diseases. Recently, we have conducted a large-scale screening of T. cruzi linear B-cell epitopes using high-density peptide chips, leading to the identification of several hundred novel sequence signatures associated to chronic Chagas Disease. Here, we performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic method. A combination of 7 of these peptides were finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from Leishmaniasis-positive subjects). The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96.3% and a specificity of 99.15%. Therefore, the use of synthetic peptides as diagnostic tools are an attractive alternative in Chagas’ disease diagnosis. PMID:28991925

  9. Immunoinformatics Approach in Designing Epitope-based Vaccine Against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b).

    PubMed

    Zahroh, Hilyatuz; Ma'rup, Ahmad; Tambunan, Usman Sumo Friend; Parikesit, Arli Aditya

    2016-01-01

    Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have potential advantages over conventional vaccines in that they are safer to use and well responded to the antibody. In this study, we developed epitope-based vaccine candidates against various meningitis-inducing bacteria, including Streptococcus pneumoniae , Neisseria meningitidis , and Haemophilus influenzae type b. The epitopes were selected from their protein of polysaccharide capsule. B-cell epitopes were predicted by using BCPred, while T-cell epitope for major histocompatibility complex (MHC) class I was predicted using PAProC, TAPPred, and Immune Epitope Database. Immune Epitope Database was also used to predict T-cell epitope for MHC class II. Population coverage and molecular docking simulation were predicted against previously generated epitope vaccine candidates. The best candidates for MHC class I- and class II-restricted T-cell epitopes were MQYGDKTTF, MKEQNTLEI, ECTEGEPDY, DLSIVVPIY, YPMAMMWRNASNRAI, TLQMTLLGIVPNLNK, ETSLHHIPGISNYFI, and SLLYILEKNAEMEFD, which showed 80% population coverage. The complexes of class I T-cell epitopes-HLA-C*03:03 and class II T-cell epitopes-HLA-DRB1*11:01 showed better affinity than standards as evaluated from their Δ G binding value and the binding interaction between epitopes and HLA molecules. These peptide constructs may further be undergone in vitro and in vivo testings for the development of targeted vaccine against meningitis infection.

  10. A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype.

    PubMed

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R; Valenta, Rudolf

    2013-04-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients' IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS-induced IgG inhibited Bet v 1-induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier-based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation.

  11. A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype

    PubMed Central

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H.; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R.; Valenta, Rudolf

    2014-01-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients’ IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS–induced IgG inhibited Bet v 1–induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier–based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation. PMID:23440415

  12. New Kids on the Block: RNA-Based Influenza Virus Vaccines.

    PubMed

    Scorza, Francesco Berlanda; Pardi, Norbert

    2018-04-01

    RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.

  13. Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology

    PubMed Central

    Honda-Okubo, Yoshikazu; Barnard, Dale; Ong, Chun Hao; Peng, Bi-Hung; Tseng, Chien-Te Kent

    2014-01-01

    ABSTRACT Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified

  14. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    PubMed

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  15. Vaccines for pandemic influenza. The history of our current vaccines, their limitations and the requirements to deal with a pandemic threat.

    PubMed

    Hampson, Alan W

    2008-06-01

    Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our current vaccines, their shortcomings, and concerns regarding global vaccine supply in a pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egg-grown virus and have only modest improvements compared with those first introduced over 60 years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have been found poorly immunogenic and present other challenges for vaccine producers which further exacerbate an already limited global production capacity. There have been some recent improvements in vaccine production methods and improvements to immunogenicity by the development of new adjuvants, however, these still fall short of providing timely supplies of vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil the demands of a pandemic situation are under evaluation, however, these remain some distance from clinical reality and face significant regulatory hurdles.

  16. In Vitro and In Vivo Studies for Assessing the Immune Response and Protection-Inducing Ability Conferred by Fasciola hepatica-Derived Synthetic Peptides Containing B- and T-Cell Epitopes

    PubMed Central

    Rojas-Caraballo, Jose; López-Abán, Julio; Pérez del Villar, Luis; Vizcaíno, Carolina; Vicente, Belén; Fernández-Soto, Pedro; del Olmo, Esther; Patarroyo, Manuel Alfonso; Muro, Antonio

    2014-01-01

    Fasciolosis is considered the most widespread trematode disease affecting grazing animals around the world; it is currently recognised by the World Health Organisation as an emergent human pathogen. Triclabendazole is still the most effective drug against this disease; however, resistant strains have appeared and developing an effective vaccine against this disease has increasingly become a priority. Several bioinformatics tools were here used for predicting B- and T-cell epitopes according to the available data for Fasciola hepatica protein amino acid sequences. BALB/c mice were immunised with the synthetic peptides by using the ADAD vaccination system and several immune response parameters were measured (antibody titres, cytokine levels, T-cell populations) to evaluate their ability to elicit an immune response. Based on the immunogenicity results so obtained, seven peptides were selected to assess their protection-inducing ability against experimental infection with F. hepatica metacercariae. Twenty-four B- or T-epitope-containing peptides were predicted and chemically synthesised. Immunisation of mice with peptides so-called B1, B2, B5, B6, T14, T15 and T16 induced high levels of total IgG, IgG1 and IgG2a (p<0.05) and a mixed Th1/Th2/Th17/Treg immune response, according to IFN-γ, IL-4, IL-17 and IL-10 levels, accompanied by increased CD62L+ T-cell populations. A high level of protection was obtained in mice vaccinated with peptides B2, B5, B6 and T15 formulated in the ADAD vaccination system with the AA0029 immunomodulator. The bioinformatics approach used in the present study led to the identification of seven peptides as vaccine candidates against the infection caused by Fasciola hepatica (a liver-fluke trematode). However, vaccine efficacy must be evaluated in other host species, including those having veterinary importance. PMID:25122166

  17. Adverse events of vaccines and the consequences of non-vaccination: a critical review

    PubMed Central

    Aps, Luana Raposo de Melo Moraes; Piantola, Marco Aurélio Floriano; Pereira, Sara Araujo; de Castro, Julia Tavares; Santos, Fernanda Ayane de Oliveira; Ferreira, Luís Carlos de Souza

    2018-01-01

    ABSTRACT OBJECTIVE: To analyze the risks related to vaccines and the impacts of non-vaccination on the world population. METHODS: This is a narrative review that has considered information present in the bibliographic databases NCBI-PubMed, Medline, Lilacs, and Scientific Electronic Library Online (SciELO), between November 2015 and November 2016. For the analysis of outbreaks caused by non-vaccination, we considered the work published between 2010 and 2016. RESULTS: We have described the main components of the vaccines offered by the Brazilian public health system and the adverse events associated with these elements. Except for local inflammatory reactions and rare events, such as exacerbation of autoimmune diseases and allergies, no causal relationship has been demonstrated between the administration of vaccines and autism, Alzheimer's disease, or narcolepsy. On the other hand, the lack of information and the dissemination of non-scientific information have contributed to the reemergence of infectious diseases in several countries in the world and they jeopardize global plans for the eradication of these diseases. CONCLUSIONS: The population should be well informed about the benefits of vaccination and health professionals should assume the role of disseminating truthful information with scientific support on the subject, as an ethical and professional commitment to society. PMID:29668817

  18. Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses.

    PubMed

    Nicholas, Benjamin L; Brennan, F R; Martinez-Torrecuadrada, J L; Casal, J I; Hamilton, W D; Wakelin, D

    2002-06-21

    NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.

  19. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T cell activation in vitro, elicit anti-tumor T cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo

    PubMed Central

    Romano, Emanuela; Rossi, Marco; Ratzinger, Gudrun; de Cos, Maria-Angeles; Chung, David J.; Panageas, Katherine S.; Wolchok, Jedd D.; Houghton, Alan N.; Chapman, Paul B.; Heller, Glenn; Yuan, Jianda; Young, James W.

    2013-01-01

    Purpose We compared the efficacy of human Langerhans cells (LCs) as tumor immunogens in vivo with monocyte-derived DCs (moDCs) and investigated how IL15 supports optimal DC-stimulated antitumor immunity. Experimental Design AJCC stage III/IV melanoma patients participated in this first clinical trial comparing melanoma peptide-pulsed LC with moDC vaccines (NCT00700167,www.ClinicalTrials.gov). Correlative studies evaluated mechanisms mediating IL15 support of DC-stimulated antitumor immunity. Results Both DC vaccines were safe and immunogenic for melanoma antigens. LC-based vaccines stimulated significantly greater tyrosinase-HLA-A*0201 tetramer reactivity than did moDC-based vaccines. The two DC subtypes were otherwise statistically comparable, in contrast to extensive prior data in vitro demonstrating LC superiority. LCs synthesize much more IL15 than moDCs and stimulate significantly more antigen-specific lymphocytes with a cytolytic IFN-gamma profile even without exogenous IL15. When supplemented by low dose IL15, instead of IL2, moDCs stimulate 5-6 logs more tumor antigen-specific effector memory T-cells (TEMRA) over 3-4 weeks in vitro. IL2 and IL15 can be synergistic in moDC stimulation of cytolytic T-cells. IL15 promotes T-cell expression of the antiapoptotic bcl-2 and inhibits candidate regulatory T-cell (Treg) expansion after DC stimulation, countering two effects of IL2 that do not foster tumor immunity. Conclusions MoDC-based vaccines will require exogenous IL15 to achieve clinical efficacy. Alternatively, LCs can couple the endogenous production of IL15 with potent T-cell stimulatory activity. Optimization of full length tumor antigen expression for processing into multiple immunogenic peptides for presentation by both class I and II MHC therefore merits emphasis to support more effective antitumor immunity stimulated by LCs. PMID:21355077

  20. Latest development on RNA-based drugs and vaccines.

    PubMed

    Lundstrom, Kenneth

    2018-06-01

    Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods.

  1. Production of EV71 vaccine candidates

    PubMed Central

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-01-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the

  2. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most

  3. Could mycobacterial Hsp70-containing fusion protein lead the way to an affordable therapeutic cancer vaccine?

    PubMed

    Brauns, Timothy; Leblanc, Pierre; Gelfand, Jeffrey A; Poznanski, Mark

    2015-03-01

    Cancer vaccine development efforts have recently gained momentum, but most vaccines showing clinical impact in human trials tend to be based on technology approaches that are very costly and difficult to produce at scale. With the projected doubling of the incidence of cancer and its related cost of care in the U.S. over the next two decades, the widespread clinical use of such vaccines will prove difficult to justify. Heat shock protein-based vaccines have shown the potential to elicit clinically meaningful immunologic responses in cancer, but the predominant development approach - heat shock protein-peptide complexes derived from a patient's own tumor - face similar challenges of cost and scalability. New innovative modalities for deploying heat shock proteins in cancer vaccines may open the door to vaccines that can generate potent cytotoxic responses against multiple tumor targets and can be made in a cost-effective and scalable manner.

  4. Scrutinizing MHC-I binding peptides and their limits of variation.

    PubMed

    Koch, Christian P; Perna, Anna M; Pillong, Max; Todoroff, Nickolay K; Wrede, Paul; Folkers, Gerd; Hiss, Jan A; Schneider, Gisbert

    2013-01-01

    Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).

  5. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.

    PubMed

    Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A

    2004-12-01

    No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.

  6. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  7. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8 + T cells and protects against herpes simplex virus type 2 challenge

    PubMed Central

    Dasgupta, G; Nesburn, AB; Wu, M; Zhu, X; Carpenter, D; Wechsler, SL; You, S; BenMohamed, L

    2015-01-01

    The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2 −/−) or myeloid differentiation factor 88 deficient (MyD88 −/−) mice with a herpes simplex virus type 2 (HSV-2) CD8 + T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8 + cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2 −/− and MyD88 −/− mice developed significantly less HSV-specific CD8 + T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features. PMID:19129756

  8. Expansion of Vaccination Services and Strengthening Vaccine-Preventable Diseases Surveillance in Haiti, 2010–2016

    PubMed Central

    Tohme, Rania A.; Francois, Jeannot; Cavallaro, Kathleen F.; Paluku, Gilson; Yalcouye, Idrissa; Jackson, Ernsley; Wright, Tracie; Adrien, Paul; Katz, Mark A.; Hyde, Terri B.; Faye, Pape; Kimanuka, Francine; Dietz, Vance; Vertefeuille, John; Lowrance, David; Dahl, Benjamin; Patel, Roopal

    2017-01-01

    Abstract. Following the 2010 earthquake, Haiti was at heightened risk for vaccine-preventable diseases (VPDs) outbreaks due to the exacerbation of long-standing gaps in the vaccination program and subsequent risk of VPD importation from other countries. Therefore, partners supported the Haitian Ministry of Health and Population to improve vaccination services and VPD surveillance. During 2010–2016, three polio, measles, and rubella vaccination campaigns were implemented, achieving a coverage > 90% among children and maintaining Haiti free of those VPDs. Furthermore, Haiti is on course to eliminate maternal and neonatal tetanus, with 70% of communes achieving tetanus vaccine two-dose coverage > 80% among women of childbearing age. In addition, the vaccine cold chain storage capacity increased by 91% at the central level and 285% at the department level, enabling the introduction of three new vaccines (pentavalent, rotavirus, and pneumococcal conjugate vaccines) that could prevent an estimated 5,227 deaths annually. Haiti moved from the fourth worst performing country in the Americas in 2012 to the sixth best performing country in 2015 for adequate investigation of suspected measles/rubella cases. Sentinel surveillance sites for rotavirus diarrhea and meningococcal meningitis were established to estimate baseline rates of those diseases prior to vaccine introduction and to evaluate the impact of vaccination in the future. In conclusion, Haiti significantly improved vaccination services and VPD surveillance. However, high dependence on external funding and competing vaccination program priorities are potential threats to sustaining the improvements achieved thus far. Political commitment and favorable economic and legal environments are needed to maintain these gains. PMID:29064356

  9. Novel formulations for antimicrobial peptides.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2014-10-09

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  10. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  11. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    PubMed

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  12. The case test-negative design for studies of the effectiveness of influenza vaccine in inpatient settings.

    PubMed

    Foppa, Ivo M; Ferdinands, Jill M; Chaves, Sandra S; Haber, Michael J; Reynolds, Sue B; Flannery, Brendan; Fry, Alicia M

    2016-12-01

    The test-negative design (TND) to evaluate influenza vaccine effectiveness is based on patients seeking care for acute respiratory infection, with those who test positive for influenza as cases and the test-negatives serving as controls. This design has not been validated for the inpatient setting where selection bias might be different from an outpatient setting. We derived mathematical expressions for vaccine effectiveness (VE) against laboratory-confirmed influenza hospitalizations and used numerical simulations to verify theoretical results exploring expected biases under various scenarios. We explored meaningful interpretations of VE estimates from inpatient TND studies. VE estimates from inpatient TND studies capture the vaccine-mediated protection of the source population against laboratory-confirmed influenza hospitalizations. If vaccination does not modify disease severity, these estimates are equivalent to VE against influenza virus infection. If chronic cardiopulmonary individuals are enrolled because of non-infectious exacerbation, biased VE estimates (too high) will result. If chronic cardiopulmonary disease status is adjusted for accurately, the VE estimates will be unbiased. If chronic cardiopulmonary illness cannot be adequately be characterized, excluding these individuals may provide unbiased VE estimates. The inpatient TND offers logistic advantages and can provide valid estimates of influenza VE. If highly vaccinated patients with respiratory exacerbation of chronic cardiopulmonary conditions are eligible for study inclusion, biased VE estimates will result unless this group is well characterized and the analysis can adequately adjust for it. Otherwise, such groups of subjects should be excluded from the analysis. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  13. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  14. Vaccine and Monoclonal Antibody That Enhance Mouse Resistance to Candidiasis ▿

    PubMed Central

    Xin, Hong; Cutler, Jim E.

    2011-01-01

    Previously we showed that antibodies specific for the glycan β-1,2-mannotriose [β-(Man)3] on the cell surface of Candida albicans protect mice against disseminated candidiasis (H. Xin, S. Dziadek, D. R. Bundle, and J. E. Cutler, Proc. Natl. Acad. Sci. U. S. A. 105:13526–13531, 2008). Furthermore, six 14-mer peptides that are within the N-terminal portion of C. albicans wall proteins were conjugated to the glycan in an attempt to create immunogenic glycopeptide conjugates. By a dendritic cell (DC)-based immunization approach, all were immunogenic and three of the six conjugates induced a high degree of protection in mice. Interestingly, whereas all six peptides induced antibody responses when used alone to pulse DCs for subsequent immunizations, three peptides induced protection, and one in particular, peptide Fba (derived from fructose-bisphosphate aldolase), induced robust protective responses and is the focus of the current work. Fba peptide is not restricted by the major histocompatibility complex class II (MHC-II), as it induced anti-Fba antibodies in mice of different H-2 haplotypes and in rabbits. Furthermore, the peptide induced protection against disease caused by different C. albicans strains. Partial protection was achieved when alum was used in place of DCs for Fba immunizations. The passive transfer of immune sera from Fba-vaccinated mice, but not immune serum preabsorbed with fungal cells, conferred protection in naïve mice. This result, along with our finding that a monoclonal antibody specific for the peptide, E2-9 (IgM), protected mice against candidiasis, provide strong evidence that antibodies contribute to protection. Our work demonstrates the utility of cell wall peptides alone or as glycopeptides in vaccines designed for the induction of immunity against candidiasis and monoclonal antibodies as a rapid immunoprotective approach against the disease. PMID:21832099

  15. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis

    PubMed Central

    Margaroni, Maritsa; Agallou, Maria; Athanasiou, Evita; Kammona, Olga; Kiparissides, Costas; Gaitanaki, Catherine; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4+ and CD8+ T cells. Importantly, the activation of CD8+ T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated–infected mice revealed that protection was accompanied by significant increase of IFNγ and

  16. Nanoengineering of vaccines using natural polysaccharides.

    PubMed

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Predictors of Hospitalized Exacerbations and Mortality in Chronic Obstructive Pulmonary Disease.

    PubMed

    Santibáñez, Miguel; Garrastazu, Roberto; Ruiz-Nuñez, Mario; Helguera, Jose Manuel; Arenal, Sandra; Bonnardeux, Cristina; León, Carlos; García-Rivero, Juan Luis

    2016-01-01

    Exacerbations of chronic obstructive pulmonary disease (COPD) carry significant consequences for patients and are responsible for considerable health-care costs-particularly if hospitalization is required. Despite the importance of hospitalized exacerbations, relatively little is known about their determinants. This study aimed to analyze predictors of hospitalized exacerbations and mortality in COPD patients. This was a retrospective population-based cohort study. We selected 900 patients with confirmed COPD aged ≥35 years by simple random sampling among all COPD patients in Cantabria (northern Spain) on December 31, 2011. We defined moderate exacerbations as events that led a care provider to prescribe antibiotics or corticosteroids and severe exacerbations as exacerbations requiring hospital admission. We observed exacerbation frequency over the previous year (2011) and following year (2012). We categorized patients according to COPD severity based on forced expiratory volume in 1 second (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 1-4). We estimated the odds ratios (ORs) by logistic regression, adjusting for age, sex, smoking status, COPD severity, and frequent exacerbator phenotype the previous year. Of the patients, 16.4% had ≥1 severe exacerbations, varying from 9.3% in mild GOLD grade 1 to 44% in very severe COPD patients. A history of at least two prior severe exacerbations was positively associated with new severe exacerbations (adjusted OR, 6.73; 95% confidence interval [CI], 3.53-12.83) and mortality (adjusted OR, 7.63; 95%CI, 3.41-17.05). Older age and several comorbidities, such as heart failure and diabetes, were similarly associated. Hospitalized exacerbations occurred with all grades of airflow limitation. A history of severe exacerbations was associated with new hospitalized exacerbations and mortality.

  18. Are cases of mumps in vaccinated patients attributable to mismatches in both vaccine T-cell and B-cell epitopes?

    PubMed Central

    Homan, E Jane; Bremel, Robert D

    2014-01-01

    Resurgent mumps outbreaks have raised questions about the current efficacy of mumps vaccines. We have applied immunoinformatics techniques based on principal component analysis to evaluate patterns in predicted B-cell linear epitopes, MHC binding affinity and cathepsin cleavage in the hemagglutinin neuraminidase protein of vaccine strains and wild-type mumps isolates. We have mapped predicted MHC-peptide binding for 37 MHC-I and 28 MHC-II alleles and predicted cleavage by cathepsin B, L and S. By all measures we applied Jeryl-Lynn JL5 major strain is an outlier with immunomic features arising from a small number of amino acid changes that distinguish it from other virus strains. Individuals vaccinated with Jeryl-Lynn who are not exposed to wild-type virus until their protective antibody titer has waned may be unable to recall a protective immune response when exposed to wild-type virus. Dependence on serology to evaluate mumps vaccines may have overemphasized the conservation of one neutralizing antibody epitope, at the expense of monitoring other related changes in the HN protein that could affect recall responses. PMID:24275080

  19. Vaccinating Patients With Inflammatory Bowel Disease

    PubMed Central

    Reich, Jason; Wasan, Sharmeel

    2016-01-01

    Patients with inflammatory bowel disease (IBD) are not vaccinated at the same rate as general medical patients. IBD places patients at increased risk for developing vaccine-preventable illnesses, and this risk is further exacerbated by immunosuppressive therapy. Therefore, gastroenterologists should familiarize themselves with health maintenance measures pertaining to patients with IBD. This article highlights the vaccinations required for patients with IBD, especially those who are immunosuppressed: influenza; pneumococcal pneumonia; hepatitis A and B viruses; human papilloma virus; meningococcal disease; tetanus, diphtheria, and pertussis; measles, mumps, and rubella; varicella zoster; and herpes zoster. This article also discusses issues regarding patients with IBD who travel outside of the United States, as well as highlights and provides suggestions for areas of quality improvement that are needed in the field. PMID:27917091

  20. C-reactive protein and N-terminal prohormone brain natriuretic peptide as biomarkers in acute exacerbations of COPD leading to hospitalizations.

    PubMed

    Chen, Yu-Wei Roy; Chen, Virginia; Hollander, Zsuzsanna; Leipsic, Jonathon A; Hague, Cameron J; DeMarco, Mari L; FitzGerald, J Mark; McManus, Bruce M; Ng, Raymond T; Sin, Don D

    2017-01-01

    There are currently no accepted and validated blood tests available for diagnosing acute exacerbations of chronic obstructive pulmonary disease (AECOPD). In this study, we sought to determine the discriminatory power of blood C-reactive protein (CRP) and N-terminal prohormone brain natriuretic peptide (NT-proBNP) in the diagnosis of AECOPD requiring hospitalizations. The study cohort consisted of 468 patients recruited in the COPD Rapid Transition Program who were hospitalized with a primary diagnosis of AECOPD, and 110 stable COPD patients who served as controls. Logistic regression was used to build a classification model to separate AECOPD from convalescent or stable COPD patients. Performance was assessed using an independent validation set of patients who were not included in the discovery set. Serum CRP and whole blood NT-proBNP concentrations were highest at the time of hospitalization and progressively decreased over time. Of the 3 classification models, the one with both CRP and NT-proBNP had the highest AUC in discriminating AECOPD (cross-validated AUC of 0.80). These data were replicated in a validation cohort with an AUC of 0.88. A combination of CRP and NT-proBNP can reasonably discriminate AECOPD requiring hospitalization versus clinical stability and can be used to rapidly diagnose patients requiring hospitalization for AECOPD.

  1. Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease

    PubMed Central

    Small, Christina M.; Ajithdoss, Dharani K.; Rodrigues Hoffmann, Aline; Mwangi, Waithaka; Esteve-Gassent, Maria D.

    2014-01-01

    Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease. PMID:24505447

  2. [Legal Bases Of Vaccination In Ukraine].

    PubMed

    Terzi, Olena O

    2018-01-01

    Introduction: Despite the extraordinary progress made in the field of vaccination, a large number of children in the last decade, 24 million children, or nearly 20% of children born every year, do not receive a full plan for vaccination during their first year of life. The aim: The purpose of the article is to analyze the legal framework of vaccination in Ukraine, comparing the approach of the domestic legislator to the vaccination with foreign experience. Materials and methods: Methods of research are selected based on the goal of the study. In order to establish the objectivity and validity of scientific statements and conclusions, during the conducted research a complex of general scientific and special scientific methods was used, in particular such as: the formal legal method; comparative legal method; the method of forecasting and modeling; historical-legal method. Review: In countries with epidemics, a state of emergency can be established and quarantine measures and vaccination to exercise the right to collective health, which may limit the right to individual health by limiting the right to consent to vaccination. Conclusions: It is concluded that in world practice there is no single approach to the recognition of the right to vaccination, as a human right, or as a duty to preserve the epidemiological security of the state. It has been proved that infectious diseases evolve, change their form, the only effective means of preventing pandemics, which may question the existence of man as a biological species, is the vaccination system.

  3. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  4. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  5. M2e-Based Universal Influenza A Vaccines

    PubMed Central

    Deng, Lei; Cho, Ki Joon; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future. PMID:26344949

  6. A thermostable messenger RNA based vaccine against rabies.

    PubMed

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  7. Strengthening vaccination policies in Latin America: an evidence-based approach.

    PubMed

    Tapia-Conyer, Roberto; Betancourt-Cravioto, Miguel; Saucedo-Martínez, Rodrigo; Motta-Murguía, Lourdes; Gallardo-Rincón, Héctor

    2013-08-20

    Despite many successes in the region, Latin American vaccination policies have significant shortcomings, and further work is needed to maintain progress and prepare for the introduction of newly available vaccines. In order to address the challenges facing Latin America, the Commission for the Future of Vaccines in Latin America (COFVAL) has made recommendations for strengthening evidence-based policy-making and reducing regional inequalities in immunisation. We have conducted a comprehensive literature review to assess the feasibility of these recommendations. Standardisation of performance indicators for disease burden, vaccine coverage, epidemiological surveillance and national health resourcing can ensure comparability of the data used to assess vaccination programmes, allowing deeper analysis of how best to provide services. Regional vaccination reference schemes, as used in Europe, can be used to develop best practice models for vaccine introduction and scheduling. Successful models exist for the continuous training of vaccination providers and decision-makers, with a new Latin American diploma aiming to contribute to the successful implementation of vaccination programmes. Permanent, independent vaccine advisory committees, based on the US Advisory Committee on Immunization Practices (ACIP), could facilitate the uptake of new vaccines and support evidence-based decision-making in the administration of national immunisation programmes. Innovative financing mechanisms for the purchase of new vaccines, such as advance market commitments and cost front-loading, have shown potential for improving vaccine coverage. A common regulatory framework for vaccine approval is needed to accelerate delivery and pool human, technological and scientific resources in the region. Finally, public-private partnerships between industry, government, academia and non-profit sectors could provide new investment to stimulate vaccine development in the region, reducing prices in the

  8. Mucosal Vaccine Development Based on Liposome Technology

    PubMed Central

    Norling, Karin; Bally, Marta; Höök, Fredrik

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines. PMID:28127567

  9. Prevention of Acute Exacerbations of COPD

    PubMed Central

    Bourbeau, Jean; Diekemper, Rebecca L.; Ouellette, Daniel R.; Goodridge, Donna; Hernandez, Paul; Curren, Kristen; Balter, Meyer S.; Bhutani, Mohit; Camp, Pat G.; Celli, Bartolome R.; Dechman, Gail; Dransfield, Mark T.; Fiel, Stanley B.; Foreman, Marilyn G.; Hanania, Nicola A.; Ireland, Belinda K.; Marchetti, Nathaniel; Marciniuk, Darcy D.; Mularski, Richard A.; Ornelas, Joseph; Stickland, Michael K.

    2015-01-01

    BACKGROUND: COPD is a major cause of morbidity and mortality in the United States as well as throughout the rest of the world. An exacerbation of COPD (periodic escalations of symptoms of cough, dyspnea, and sputum production) is a major contributor to worsening lung function, impairment in quality of life, need for urgent care or hospitalization, and cost of care in COPD. Research conducted over the past decade has contributed much to our current understanding of the pathogenesis and treatment of COPD. Additionally, an evolving literature has accumulated about the prevention of acute exacerbations. METHODS: In recognition of the importance of preventing exacerbations in patients with COPD, the American College of Chest Physicians (CHEST) and Canadian Thoracic Society (CTS) joint evidence-based guideline (AECOPD Guideline) was developed to provide a practical, clinically useful document to describe the current state of knowledge regarding the prevention of acute exacerbations according to major categories of prevention therapies. Three key clinical questions developed using the PICO (population, intervention, comparator, and outcome) format addressed the prevention of acute exacerbations of COPD: nonpharmacologic therapies, inhaled therapies, and oral therapies. We used recognized document evaluation tools to assess and choose the most appropriate studies and to extract meaningful data and grade the level of evidence to support the recommendations in each PICO question in a balanced and unbiased fashion. RESULTS: The AECOPD Guideline is unique not only for its topic, the prevention of acute exacerbations of COPD, but also for the first-in-kind partnership between two of the largest thoracic societies in North America. The CHEST Guidelines Oversight Committee in partnership with the CTS COPD Clinical Assembly launched this project with the objective that a systematic review and critical evaluation of the published literature by clinical experts and researchers in

  10. Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).

    PubMed

    Yang, Shi-gui; Wo, Jian-er; Li, Min-wei; Mi, Fen-fang; Yu, Cheng-bo; Lv, Guo-liang; Cao, Hong-Cui; Lu, Hai-feng; Wang, Bao-hong; Zhu, Hanping; Li, Lan-Juan

    2009-12-09

    Several approaches are being taken worldwide to develop vaccines against H5N1 viruses; most of them, however, pose both practical and immunological challenges. One potential strategy for improving the immunogenicity of vaccines involves the use of alphavirus replicons and VP22, a herpes simplex type 1 (HSV-1) protein. In this study, we analysed the antigenic peptides and homogeneity of the HA sequences (human isolates of the H5N1 subtype, from 1997 to 2003) and explored a novel alphavirus replicon system of VP22 fused with HA, to assess whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented via fusion with VP22. Further, replicon particles expressing VP22, and enhanced green fluorescent protein (EGFP) were individually used as controls. Cellular immune responses in mice immunised with replicons were evaluated by identifying specific intracellular cytokine production with flow cytometry (FCM). Animal-based experimentation indicated that both the IL-4 expression of CD4(+) T cells and the IFN-gamma expression of CD8(+) T cells were significantly increased in mice immunised with VPR-HA and VPR-VP22/HA. A dose titration effect vis-à-vis both IL-4 expression and IFN-gamma expression were observed in VPR-HA- and VPR-VP22/HA-vaccinated mice. Our results revealed that both VPR-VP22/HA and VPR-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could enhance the immunogenicity of the HA antigens to which it is fused.

  11. VACCINATION--COLLECTIVE RESPONSIBILITY OR VIOLATION OF RIGHTS?

    PubMed

    Florescu, Laura; Rugina, Aurica; Temneanu, Oana Raluca; Paduraru, Dana Teodora Anton; Matei, Mioara Calipsoana; Safta, Cosmin; Mindru, Dana Elena

    2015-01-01

    Vaccination is considered to be the most effective and the cheapest medical intervention through which individual and collective immunisation is achieved. Statistics show that, at present, immunisation annually saves 400 million lives and protects approximately 750,000 children against disabilities of varying degrees. Approximately 80% of worldwide children are vaccinated against diphtheria, tetanus, pertussis, polio, measles, etc.; these diseases used to be considered incurable in the past. Vaccines help the body to produce antibodies; they help the immune system to detect germs and inactivate their cells. The immunological protection is installed after a variable period of time following the inoculation and is long lasting. Immunisations can be achieved in several ways: through national immunisation campaigns with general recommendation--they may be compulsory, optional or prophylactic (for the diseases for which a vaccine is available); vaccinations not included in the compulsory immunisation programmes; they may also be targeted to the contagious infectious outbreaks or to groups of population in certain situations. There is no guarantee that a vaccine will provide 100% protection. However, it will significantly reduce the risk of getting an infection. Vaccines have side effects which can be divided into reactions triggered by the vaccine or reactions exacerbated by it, without a causal relationship to the vaccine.

  12. Venom-based peptide therapy: insights into anti-cancer mechanism

    PubMed Central

    Ma, Rui; Mahadevappa, Ravikiran; Kwok, Hang Fai

    2017-01-01

    The 5-year relative survival rate of all types of cancer has increased significantly over the past three decades partly due to the targeted therapy. However, still there are many targeted therapy drugs could play a role only in a portion of cancer patients with specific molecular alternation. It is necessary to continue to develop new biological agents which could be used alone and/or in combination with current FDA approved drugs to treat complex cancer diseases. Venom-based drugs have been used for hundreds of years in human history. Nevertheless, the venom-origin of the anti-cancer drug do rarely appear in the pharmaceutical market; and this is due to the fact that the mechanism of action for a large number of the venom drug such as venom-based peptide is not clearly understood. In this review, we focus on discussing some identified venom-based peptides and their anti-cancer mechanisms including the blockade of cancer cell proliferation, invasion, angiogenesis, and metastasis (hallmarks of cancer) to fulfill the gap which is hindering their use in cancer therapy. Furthermore, it also highlights the importance of immunotherapy based on venom peptide. Overall, this review provides readers for further understanding the mechanism of venom peptide and elaborates on the need to explore peptide-based therapeutic strategies. PMID:29246030

  13. Vaccination and Health Maintenance Issues to Consider in Patients With Inflammatory Bowel Disease

    PubMed Central

    Wasan, Sharmeel K.; Farraye, Francis A.

    2017-01-01

    Patients with inflammatory bowel disease (IBD) do not receive routine preventive care at the same rate as the general population. IBD places patients at increased risk for developing vaccine-preventable illnesses. This risk is further exacerbated by immunosuppressive therapy. This article highlights the necessary vaccinations for IBD patients and the timing of vaccination for immunosuppressed patients, and discusses the health maintenance needs and preventive care issues related to heart disease, smoking, osteoporosis, mental health, cervical cancer, and skin cancer. PMID:29339947

  14. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  15. Efficacy of a Gal-lectin subunit vaccine against experimental Entamoeba histolytica infection and colitis in baboons (Papio sp.).

    PubMed

    Abd Alla, Mohamed D; Wolf, Roman; White, Gary L; Kosanke, Stanley D; Cary, David; Verweij, Jaco J; Zhang, Mie-Jie; Ravdin, Jonathan I

    2012-04-26

    To determine the efficacy of a Gal-lectin based intranasal synthetic peptide vaccine, we developed a new experimental primate model of Entamoeba histolytica intestinal infection. Release of xenic E. histolytica trophozoites (5×10(6)) into the small bowel of baboons (Papio sp.) resulted in a rapid intestinal anti-amebic antibody response and a brief infection; however, release of trophozoites directly into the cecum (5 baboons) elicited a sustained E. histolytica infection, as determined by quantitative fecal PCR, and an ulcerative, inflammatory colitis observed on colonoscopy and histopathology. In three controlled experiments, baboons received four immunizations at seven day intervals of 1600 μg of the vaccine/nostril, with Cholera toxin, 20 μg/nostril as adjuvant; vaccinated (n=6) and control baboons (n=6) baboons were then challenged via colonoscopy with xenic trophozoites (5×10(6)). During 90 days of follow up, 250 of 415 (60.24%) fecal samples in control baboons had a (+) PCR for E. histolytica, compared to only 36 of 423 (8.51%) samples from vaccinated baboons (P<0.001). All 6 vaccinated baboons were free of infection by the 51st day after challenge, 5 of 6 controls positive had (+) fecal PCRs for up to 126 days post-challenge (P=0.019). Inflammatory colitis developed in 4 of 6 control baboons post-challenge, with invasive E. histolytica trophozoites present in 2 of the 4 on histopathology. There was no evidence of inflammatory colitis or parasite invasion in any of the vaccinated baboons; there was a strong inverse correlation between positive ELISA OD value indicating the presence of intestinal anti-peptide IgA antibodies and baboons having a positive fecal PCR CT value, P<0.001. In conclusion, we developed a novel primate model of E. histolytica intestinal infection and demonstrated that a Gal-lectin-based intranasal synthetic peptide vaccine was highly efficacious in preventing experimental E. histolytica infection and colitis in baboons. Copyright

  16. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    PubMed

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of a rehabilitation-based chronic disease management program targeting severe COPD exacerbations on readmission patterns.

    PubMed

    Lalmolda, C; Coll-Fernández, R; Martínez, N; Baré, M; Teixidó Colet, M; Epelde, F; Monsó, E

    2017-01-01

    Pulmonary rehabilitation (PR) is recommended after a severe COPD exacerbation, but its short- and long-term effects on health care utilization have not been fully established. The aims of this study were to evaluate patient compliance with a chronic disease management (CDM) program incorporating home-based exercise training as the main component after a severe COPD exacerbation and to determine its effects on health care utilization in the following year. COPD patients with a severe exacerbation were included in a case-cohort study at admission. An intervention group participated in a nurse-supervised CDM program during the 2 months after discharge, comprising of home-based PR with exercise components directly supervised by a physiotherapist, while the remaining patients followed usual care. Nineteen of the twenty-one participants (90.5%) were compliant with the CDM program and were compared with 29 usual-care patients. Compliance with the program was associated with statistically significant reductions in admissions due to respiratory disease in the following year (median [interquartile range]: 0 [0-1] vs 1 [0-2.5]; P =0.022) and in days of admission (0 [0-7] vs 7 [0-12]; P =0.034), and multiple linear regression analysis confirmed the protective effect of the CDM program (β coefficient -0.785, P =0.014, and R 2 =0.219). A CDM program incorporating exercise training for COPD patients without limiting comorbidities after a severe exacerbation achieves high compliance and reduces admissions in the year following after the intervention.

  18. Immunogenicity and safety of different injection routes and schedules of IC41, a Hepatitis C virus (HCV) peptide vaccine.

    PubMed

    Firbas, Christa; Boehm, Thomas; Buerger, Vera; Schuller, Elisabeth; Sabarth, Nicolas; Jilma, Bernd; Klade, Christoph S

    2010-03-11

    An effective vaccine would be a significant progress in the management of chronic HCV infections. This study was designed to examine whether different application schedules and injection routes may enhance the immunogenicity of the HCV peptide vaccine IC41. In this randomized trial 54 healthy subjects received either subcutaneous (s.c.) or intradermal (i.d.) vaccinations weekly (16 injections) or every other week (8 injections). One group additionally received imiquimod, an activator of the toll-like receptor (TLR) 7. The T cell epitope-specific immune response to IC41 was assessed using [(3)H]-thymidine CD4+ T cell proliferation, interferon-gamma (IFN-gamma) CD8+ and CD4+ ELIspot and HLA-A*0201 fluorescence-activated cell sorting (FACS) tetramer-binding assays. More than 60% of vaccinees responded in the CD4+ T cell proliferation assay in all groups. An HLA-A*0201 FACS tetramer-binding assay and IFN-gamma CD8+ ELIspot class I response of more than 70% was induced in four and three groups, respectively. IC41 induced significant immunological responses in all groups with responder rates of up to 100%. Interestingly, topical imiquimod was not able to enhance immunogenicity but was associated with a lower immune response. Local injection site reactions were mostly transient. Intradermal injections caused more pronounced reactions compared to s.c., especially erythema and edema. Compared to a previous study intensified dosing and/or i.d. injections enhanced the response rates to the vaccine IC41 in three assays measuring T cell function. Immunization with IC41 was generally safe in this study. These results justify testing IC41 in further clinical trials with HCV-infected individuals.

  19. Web-Based Study of Risk Factors for Pain Exacerbation in Osteoarthritis of the Knee (SPARK-Web): Design and Rationale

    PubMed Central

    Metcalf, Ben; Zhang, Yuqing; Bennell, Kim; March, Lyn; Hunter, David J

    2015-01-01

    Background Knee osteoarthritis (OA) is the most frequent cause of limited mobility and diminished quality of life. Pain is the main symptom that drives individuals with knee OA to seek medical care and a recognized antecedent to disability and eventually joint replacement. Many persons with symptomatic knee OA experience recurrent pain exacerbations. Knowledge and clarification of risk factors for pain exacerbation may allow those affected to minimize reoccurrence of these episodes. Objective The aim of this study is to use a Web-based case-crossover design to identify risk factors for knee pain exacerbations in persons with symptomatic knee OA. Methods Web-based case-crossover design is used to study persons with symptomatic knee OA. Participants with knee pain and radiographic knee OA will be recruited and followed for 90 days. Participants will complete an online questionnaire at the baseline and every 10 days thereafter (totaling up to 10 control-period questionnaires); participants will also be asked to report online when they experience an episode of increased knee pain. Pain exacerbation will be defined as an increase in knee pain severity of two points from baseline on a numeric rating scale (NRS 0-10). Physical activity, footwear, knee injury, medication use, climate, psychological factors, and their possible interactions will be assessed as potential triggers for pain exacerbation using conditional logistic regression models. Results This project has been funded by the National Health and Medical Research Council (NHMRC). The enrollment for the study has started. So far, 343 participants have been enrolled. The study is expected to be finished in October 2015. Conclusions This study will identify risk factors for pain exacerbations in knee OA. The identification and possible modification/elimination of such risk factors will help to prevent the reoccurrence of pain exacerbation episodes and therefore improve knee OA management. PMID:26156210

  20. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.

    PubMed

    Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo

    2015-10-01

    Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.

  1. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.

  2. Exacerbation frequency and course of COPD.

    PubMed

    Halpin, David M G; Decramer, Marc; Celli, Bartolome; Kesten, Steven; Liu, Dacheng; Tashkin, Donald P

    2012-01-01

    Exacerbations affect morbidity in chronic obstructive pulmonary disease (COPD). We sought to evaluate the association between exacerbation frequency and spirometric and health status changes over time using data from a large, long-term trial. This retrospective analysis of data from the 4-year UPLIFT (Understanding Potential Long-term Impacts on Function with Tiotropium) trial compared tiotropium with placebo. Annualized rates of decline and estimated mean differences at each time point were analyzed using a mixed-effects model according to subgroups based on exacerbation frequency (events per patient-year: 0, >0-1, >1-2, and >2). Spirometry and the St George's Respiratory Questionnaire (SGRQ) were performed at baseline and every 6 months (also at one month for spirometry). In total, 5992 patients (mean age 65 years, 75% male) were randomized. Higher exacerbation frequency was associated with lower baseline postbronchodilator forced expiratory volume in one second (FEV(1)) (1.40, 1.36, 1.26, and 1.14 L) and worsening SGRQ scores (43.7, 44.1, 47.8, and 52.4 units). Corresponding rates of decline in postbronchodilator FEV(1) (mL/year) were 40, 41, 43, and 48 (control), and 34, 38, 48, and 49 (tiotropium). Values for postbronchodilator forced vital capacity decline (mL/year) were 45, 56, 74, and 83 (control), and 43, 57, 83, and 95 (tiotropium). The rates of worsening in total SGRQ score (units/year) were 0.72, 1.16, 1.44, and 1.99 (control), and 0.38, 1.29, 1.68, and 2.86 (tiotropium). The proportion of patients who died (intention-to-treat analysis until four years [1440 days]) for the entire cohort increased with increasing frequency of hospitalized exacerbations. Increasing frequency of exacerbations worsens the rate of decline in lung function and health-related quality of life in patients with COPD. Increasing rates of hospitalized exacerbations are associated with increasing risk of death.

  3. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants.

    PubMed

    Lebel, Marie-Ève; Chartrand, Karine; Leclerc, Denis; Lamarre, Alain

    2015-08-05

    Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  4. [Real-time monitoring of anti-influenza vaccination in the 65 and over population in France based on vaccine sales].

    PubMed

    Pivette, M; Auvigne, V; Guérin, P; Mueller, J E

    2017-04-01

    The aim of this study was to describe a tool based on vaccine sales to estimate vaccination coverage against seasonal influenza in near real-time in the French population aged 65 and over. Vaccine sales data available on sale-day +1 came from a stratified sample of 3004 pharmacies in metropolitan France. Vaccination coverage rates were estimated between 2009 and 2014 and compared with those obtained based on vaccination refund data from the general health insurance scheme. The seasonal vaccination coverage estimates were highly correlated with those obtained from refund data. They were also slightly higher, which can be explained by the inclusion of non-reimbursed vaccines and the consideration of all individuals aged 65 and over. We have developed an online tool that provides estimates of daily vaccination coverage during each vaccination campaign. The developed tool provides a reliable and near real-time estimation of vaccination coverage among people aged 65 and over. It can be used to evaluate and adjust public health messages. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes

    PubMed Central

    Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.

    2014-01-01

    Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960

  6. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  7. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    PubMed

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  8. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer.

    PubMed

    Noguchi, Masanori; Kakuma, Tatsuyuki; Uemura, Hirotsugu; Nasu, Yasutomo; Kumon, Hiromi; Hirao, Yasuhiko; Moriya, Fukuko; Suekane, Shigetaka; Matsuoka, Kei; Komatsu, Nobukazu; Shichijo, Shigeki; Yamada, Akira; Itoh, Kyogo

    2010-07-01

    Personalized peptide vaccination (PPV) combined with chemotherapy could be a novel approach for many cancer patients. In this randomized study, we evaluated the anti-tumor effect and safety of PPV plus low-dose estramustine phosphate (EMP) as compared to standard-dose EMP for HLA-A2- or -A24-positive patients with castration resistant prostate cancer. Patients were randomized into groups receiving either PPV plus low-dose EMP (280 mg/day) or standard-dose EMP (560 mg/day). After disease progression, patients were switched to the opposite regime. The primary end point was progression-free survival (PFS). We randomly assigned 28 patients to receive PPV plus low-dose EMP and 29 patients to receive standard-dose EMP. Nineteen events in the PPV group and 20 events in the EMP group occurred during the first treatment. Median PFS for the first treatment was 8.5 months in the PPV group and 2.8 months in the EMP group with a hazard ratio (HR) of 0.28 (95% CI, 0.14-0.61; log-rank P = 0.0012), while there was no difference for median PFS for the second treatment. The HR for overall survival was 0.3 (95% CI, 0.1-0.91) in favor of the PPV plus low-dose EMP group (log-rank, P = 0.0328). The PPV plus low-dose EMP was well tolerated without major adverse effects and with increased levels of IgG and cytotoxic-T cell responses to the vaccinated peptides. PPV plus low-dose EMP was associated with an improvement in PSA-based PFS as compared to the standard-dose EMP alone.

  9. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis.

    PubMed

    Li, Yong; Sun, Sujuan; Fan, Lin; Hu, Shanfang; Huang, Yan; Zhang, Ke; Nie, Zhou; Yao, Shouzhou

    2017-11-20

    A novel and versatile peptide-based bio-logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide-based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND-INHIBIT), and a complex sequential logic circuit (multi-input keypad lock). Moreover, a proof-of-concept peptide regulatory circuit was developed to analyze the expression profile of cell-secreted protein biomarkers and trigger cancer-cell-specific apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  11. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [The effect of fenspiride on the number of exacerbations and the time of first exacerbation in patients with chronic bronchitis].

    PubMed

    Pirozyński, Michał; Skucha, Wojciech; Słomiński, Marek; Chyczewska, Elzbieta; Malinowski, Janusz; Nowak, Dariusz; Bartmińiski, Wojciech; Pachocki, Robert

    2005-08-01

    The aim of the work was evaluation of efficacy of fenspiride b.i.d. on the number of exacerbations and the time to the first exacerbation in patients with chronic bronchitis. Randomized, multicentre study controlled versus placebo was carried out in 12 centers in Poland. All patients, 89 females and 68 males aged between 20 and 74, were treated with fenspiride at the dose of 160 mg/day for a period of 6 months. The following symptoms were recorded every month in order to evaluate the therapeutic efficacy: sputum quality and quantity, cough intensity, dyspnea and bronchospasm. Based on these symptoms diagnosis of exacerbation was performed according to American Thoracic Society criteria. Quality and quantity of sputum and cough significantly improved in the fenspiride group (comparing to the placebo group p= 0.027 and p = 0.049 adequately for sputum and cough). A significant difference between groups was observed in the number of exacerbation episodes and their duration. In the fenspiride group there were 0.53 episodes of exacerbation compared with 1.12 episodes in the placebo group (p = 0.038). Mean duration of exacerbation was 3.3 days in the fenspiride group and 7.3 days in the placebo treated patients (p = 0.034). Time to the first exacerbation differed between groups, but this difference was not statistically significant. Number of side effects observed did not differ between groups. Fenspiride treatment was assessed as relatively effective in terms of influence on exacerbations, and well tolerated during six month therapy.

  13. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  14. Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma.

    PubMed

    Calderon-Gonzalez, R; Terán-Navarro, H; García, I; Marradi, M; Salcines-Cuevas, D; Yañez-Diaz, S; Solis-Angulo, A; Frande-Cabanes, E; Fariñas, M C; Garcia-Castaño, A; Gomez-Roman, J; Penades, S; Rivera, F; Freire, J; Álvarez-Domínguez, C

    2017-08-03

    Dendritic cell-based (DC-based) vaccines are promising immunotherapies for cancer. However, several factors, such as the lack of efficient targeted delivery and the sources and types of DCs, have limited the efficacy of DCs and their clinical potential. We propose an alternative nanotechnology-based vaccine platform with antibacterial prophylactic abilities that uses gold glyconanoparticles coupled to listeriolysin O 91-99 peptide (GNP-LLO 91-99 ), which acts as a novel adjuvant for cancer therapy. GNP-LLO 91-99 , when used to vaccinate mice, exhibited dual antitumour activities, namely, the inhibition of tumour migration and growth and adjuvant activity for recruiting and activating DCs, including those from melanoma patients. GNP-LLO 91-99 nanoparticles caused tumour apoptosis and induced antigen- and melanoma-specific cytotoxic Th1 responses (P ≤ 0.5). We propose this adjuvant nanotherapy for preventing the progression of the first stages of melanoma.

  15. In vitro Peptide Immunization ofTargetTax Protein HumanT-Cell Leukemia Virus Type 1 – Specific CD4+ Helper T Lymphocytes

    PubMed Central

    Kobayashi, Hiroya; Ngato, Toshihiro; Sato, Keisuke; Aoki, Naoko; Kimura, Shoji; Tanaka, Yuetsu; Aizawa, Hitoshi; Tateno, Masatoshi; Celis, Esteban

    2006-01-01

    Purpose Adult T-cell leukemia/lymphoma induced by human T-cell leukemia virus type 1 (HTLV-1) is usually a fatal lymphoproliferative malignant disease. HTLV-1 Tax protein plays a critical role in HTLV-1-associated leukemogenesis and is an attractive target for vaccine development. Although HTLV-1Tax is the most dominant antigen for HTLV-1-specific CD8+ CTLs in HTLV-1-infected individuals, few epitopes recognized by CD4+ helper T lymphocytes in HTLV-1Tax protein have been described.The aim of the present study was to study T-helper-cell responses to HTLV-1 Tax and to identify naturally processed MHC class II – restricted epitopes that could be used for vaccine development. Experimental Design An MHC class II binding peptide algorithm was used to predict potential T-helper cell epitope peptides from HTLV-1 Tax. We assessed the ability of the corresponding peptides to elicit helper T-cell responses by in vitro vaccination of purified CD4+ T lymphocytes. Results Peptides Tax191–205 and Tax305–319 were effective in inducingT-helper-cell responses. Although Tax191–205 was restricted by the HLA-DR1 and DR9 alleles, responses to Tax305–319 were restricted by either DR15 or DQ9. Both these epitopes were found to be naturally processed by HTLV-1+ T-cell lymphoma cells and by autologous antigen-presenting cells that were pulsed with HTLV-1Tax+ tumor lysates. Notably, the two newly identified helper T-cell epitopes are found to lie proximal to known CTL epitopes, which will facilitate the development of prophylactic peptidebased vaccine capable of inducing simultaneous CTL andT-helper responses. Conclusion Our data suggest that HTLV-1 Tax protein could serve as tumor-associated antigen for CD4+ helper T cells and that the present epitopes might be used for T-cell-based immunotherapy against tumors expressing HTLV-1. PMID:16778109

  16. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Unusual antigen presentation offers new insight into HIV vaccine design.

    PubMed

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    PubMed Central

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a

  19. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.

    PubMed

    Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D

    2002-11-15

    Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.

  20. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  1. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Intervention With an Erythropoietin-Derived Peptide Protects Against Neuroglial and Vascular Degeneration During Diabetic Retinopathy

    PubMed Central

    McVicar, Carmel M.; Hamilton, Ross; Colhoun, Liza M.; Gardiner, Tom A.; Brines, Michael; Cerami, Anthony; Stitt, Alan W.

    2011-01-01

    OBJECTIVE Erythropoietin (EPO) may be protective for early stage diabetic retinopathy, although there are concerns that it could exacerbate retinal angiogenesis and thrombosis. A peptide based on the EPO helix-B domain (helix B-surface peptide [pHBSP]) is nonerythrogenic but retains tissue-protective properties, and this study evaluates its therapeutic potential in diabetic retinopathy. RESEARCH DESIGN AND METHODS After 6 months of streptozotocin-induced diabetes, rats (n = 12) and age-matched nondiabetic controls (n = 12) were evenly split into pHBSP and scrambled peptide groups and injected daily (10 μg/kg per day) for 1 month. The retina was investigated for glial dysfunction, microglial activation, and neuronal DNA damage. The vasculature was dual stained with isolectin and collagen IV. Retinal cytokine expression was quantified using real-time RT-PCR. In parallel, oxygen-induced retinopathy (OIR) was used to evaluate the effects of pHBSP on retinal ischemia and neovascularization (1–30 μg/kg pHBSP or control peptide). RESULTS pHBSP or scrambled peptide treatment did not alter hematocrit. In the diabetic retina, Müller glial expression of glial fibrillary acidic protein was increased when compared with nondiabetic controls, but pHBSP significantly reduced this stress-related response (P < 0.001). CD11b+ microglia and proinflammatory cytokines were elevated in diabetic retina responses, and some of these responses were attenuated by pHBSP (P < 0.01–0.001). pHBSP significantly reduced diabetes-linked DNA damage as determined by 8-hydroxydeoxyguanosine and transferase-mediated dUTP nick-end labeling positivity and also prevented acellular capillary formation (P < 0.05). In OIR, pHBSP had no effect on preretinal neovascularization at any dose. CONCLUSIONS Treatment with an EPO-derived peptide after diabetes is fully established can significantly protect against neuroglial and vascular degenerative pathology without altering hematocrit or exacerbating

  3. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.

    PubMed

    Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2007-07-31

    To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.

  4. Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses

    PubMed Central

    Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.

    2016-01-01

    molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904

  5. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants

    PubMed Central

    Shen, Chen; Li, Jun; Zhang, Yi; Li, Yuce; Shen, Guanxin; Zhu, Jintao; Tao, Juan

    2017-01-01

    Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses. PMID:28814862

  6. Microneedle-based vaccines

    PubMed Central

    Prausnitz, Mark R.; Mikszta, John A.; Cormier, Michel; Andrianov, Alexander K.

    2010-01-01

    The threat of pandemic influenza and other public health needs motivates development of better vaccine delivery systems. To address this need, microneedles have been developed as micron-scale needles fabricated using low-cost manufacturing methods that administer vaccine into the skin using a simple device that may be suitable for self-administration. Delivery using solid or hollow microneedles can be accomplished by (i) piercing the skin and then applying a vaccine formulation or patch onto the permeabilized skin, (ii) coating or encapsulating vaccine onto or within microneedles for rapid, or delayed, dissolution and release in the skin and (iii) injection into the skin using a modified syringe or pump. Extensive clinical experience with smallpox, TB and other vaccines has shown that vaccine delivery into the skin using conventional intradermal injection is generally safe and effective and often elicits the same immune responses at lower doses compared to intramuscular injection. Animal experiments using microneedles have shown similar benefits. Microneedles have been used to deliver whole, inactivated virus; trivalent split antigen vaccines; and DNA plasmid encoding the influenza hemagglutinin to rodents and found strong antibody responses. In addition, ChimeriVax™-JE against yellow fever was administered to non-human primates and generated protective levels of neutralizing antibodies more than seven times greater than subcutaneous delivery; DNA plasmid encoding hepatitis B surface antigen was administered to mice and generated antibody and T cell responses at least as strong as hypodermic injections; recombinant Protective Antigen of Baccilus anthracis was administered to rabbits and provided complete protection from lethal aerosol anthrax spore challenge at a lower dose than intramuscular injection; and DNA plasmid encoding four vaccinia virus genes administered to mice in combination with electroporation generated neutralizing antibodies that apparently

  7. [Health economic evaluation of a 23 value pneumococcal polysaccharide vaccination pilot programme among elderly chronic obstructive pulmonary disease patients in China].

    PubMed

    Qiu, Y P; Zhao, K; Li, X; Shi, L W; Guo, W D; Qi, X R; Sui, B Y; Zhou, R M

    2016-12-06

    Objective: From the perspective of health economics, to evaluate 23 pneumococcal polysaccharide vaccination programme among chronic obstructive pulmonary disease (COPD) patient. Methods: In the pilot counties of the project of integrated care pathway for COPD patient (Hanbin district of Hanzhong city in Shanxi Province, Qianjian district of Qingqing city, Huandao district of Qindao city in Shangdong Province, Wen county of Jiaozuo city in Henan Province), information of insurance participants of New Rural Cooperative Medical System (NRCS) was collected by local NRCM information system, which included general information as well as records of medical care and medical fee. Nonprobability sampling method was applied to select a total of 860 objects, who were over 60 years old with local household registration, hospitalized within one recent year due to COPD acute exacerbation, and without vaccination of 23 voluntary pneumococcal polysaccharide vaccine within 3 years. A quasi-experimental design without control group was adopted. Objects were vaccinated with 23-valent pneumococcal polysaccharide vaccine from January to December in 2013, then were followed up from January in 2014 for one year. Data of effectiveness and medical cost was collected by self-designed questionnaire and (Chinese version). Paired rank sum test applied to test the difference of quality of life, number and direct medical cost of treatment (including outpatient treatment and hospitalization) due to COPD acute exacerbation, one year before and after intervention. The incremental cost-effectiveness ratio (ICER) and cost-benefit ratio (CBR) of the programme were calculated. Results: By January 2014, eight hundred sixty objects were vaccinated. By January 2015, seven hundred eighty eight objects were followed up, with 72 cases withdrawed (8.4%). On average, COPD patients reduced 1.12±2.51 treatments due to acute exacerbation, including 0.28±2.09 outpatient

  8. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines.

    PubMed

    Mandler, Markus; Santic, Radmila; Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study.

  9. Tailoring the Antibody Response to Aggregated Aß Using Novel Alzheimer-Vaccines

    PubMed Central

    Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study. PMID:25611858

  10. Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid.

    PubMed

    Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R

    2015-02-11

    Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization

    PubMed Central

    Platt, Rebecca J.; Khodai, Tansi; Townend, Tim J.; Bright, Helen H.; Cockle, Paul; Perez-Tosar, Luis; Webster, Rob; Champion, Brian; Hickling, Timothy P.; Mirza, Fareed

    2013-01-01

    CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. PMID:24709642

  12. The current state of therapeutic and T cell-based vaccines against human papillomaviruses

    PubMed Central

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C.; Hung, Chien-Fu

    2016-01-01

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines. PMID:27932207

  13. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease.

    PubMed

    Lambracht-Washington, Doris; Qu, Bao-xi; Fu, Min; Anderson, Larry D; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N

    2013-01-15

    Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications

    PubMed Central

    Testa, James S; Philip, Ramila

    2013-01-01

    Prophylactic and therapeutic vaccines against viral infections have advanced in recent years from attenuated live vaccines to subunit-based vaccines. An ideal prophylactic vaccine should mimic the natural immunity induced by an infection, in that it should generate long-lasting adaptive immunity. To complement subunit vaccines, which primarily target an antibody response, different methodologies are being investigated to develop vaccines capable of driving cellular immunity. T-cell epitope discovery is central to this concept. In this review, the significance of T-cell epitope-based vaccines for prophylactic and therapeutic applications is discussed. Additionally, methodologies for the discovery of T-cell epitopes, as well as recent developments in the clinical testing of these vaccines for various viral infections, are explained. PMID:23630544

  15. [Use of resources and associated costs of chronic obstructive pulmonary disease exacerbations: A population based retrospective study].

    PubMed

    Sicras, A; Huerta, A; Navarro, R; Ibañez, J

    2014-01-01

    Exacerbations are a clinical characteristic of chronic obstructive pulmonary disease (COPD). The objective of the study was to estimate the resource use and costs associated with COPD exacerbations Observational study performed by retrospective review of patient clinical charts of a Hospital and 6 associated Primary Care Centers. COPD patients >40years old who were followed-up during 2010-2011, and who fulfilled inclusion/exclusion criteria were included in the study. Healthcare resource use and costs associated to COPD exacerbations (moderate/severe) were estimated. Healthcare resource use, loss of productivity and costs associated to the follow-up of COPD patients (with/without exacerbations) were also estimated. regression model and ANCOVA, P<.05. A total of 1,210patients were included in the study, of whom 51.2% experienced an exacerbation, and with an average of 4exacerbations/patient. Presence of exacerbations was associated with age, COPD severity, presence of comorbidities, and time from diagnosis. The average healthcare cost of an exacerbation was €481 (moderate: €375; severe: €863). Patients who experienced an exacerbation had a higher resource use and costs (P<.001). Thus, the follow-up cost of patients without exacerbations was €1,392 versus €3,175 for patients with exacerbations. The presence of exacerbations in COPD patients was associated with an increase in resource use and associated costs. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  16. Predicting asthma exacerbations in children.

    PubMed

    Forno, Erick; Celedón, Juan C

    2012-01-01

    This review critically assesses recently published literature on predicting asthma exacerbations in children, while also providing general recommendations for future research in this field. Current evidence suggests that every effort should be made to provide optimal treatment to achieve adequate asthma control, as this will significantly reduce the risk of severe disease exacerbations. Children who have had at least one asthma exacerbation in the previous year are at highest risk for subsequent exacerbations, regardless of disease severity and/or control. Although several tools and biomarkers to predict asthma exacerbations have been recently developed, these approaches need further validation and/or have only had partial success in identifying children at risk. Although considerable progress has been made, much remains to be done. Future studies should clearly differentiate severe asthma exacerbations due to inadequate asthma control from those occurring in children whose asthma is well controlled, utilize standardized definitions of asthma exacerbations, and use a systematic approach to identify the best predictors after accounting for the multiple dimensions of the problem. Our ability to correctly predict the development of severe asthma exacerbations in an individual child should improve in parallel with increased knowledge and/or understanding of the complex interactions among genetic, environmental (e.g. viral infections) and lifestyle (e.g. adherence to treatment) factors underlying these events.

  17. Propensity of a single-walled carbon nanotube-peptide to mimic a KK10 peptide in an HLA-TCR complex

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Bell, David R.; Zhou, Ruhong

    2017-12-01

    The application of nanotechnology to improve disease diagnosis, treatment, monitoring, and prevention is the goal of nanomedicine. We report here a theoretical study of a functionalized single-walled carbon nanotube (CNT) mimic binding to a human leukocyte antigen-T cell receptor (HLA-TCR) immune complex as a first attempt of a potential nanomedicine for human immunodeficiency virus (HIV) vaccine development. The carbon nanotube was coated with three arginine residues to imitate the HIV type 1 immunodominant viral peptide KK10 (gag 263-272: KRWIILGLNK), named CNT-peptide hereafter. Through molecular dynamics simulations, we explore the CNT-peptide and KK10 binding to an important HLA-TCR complex. Our results suggest that the CNT-peptide and KK10 bind comparably to the HLA-TCR complex, but the CNT-peptide forms stronger interactions with the TCR. Desorption simulations highlight the innate flexibility of KK10 over the CNT-peptide, resulting in a slightly higher desorption energy required for KK10 over the CNT-peptide. Our findings indicate that the designed CNT-peptide mimic has favorable propensity to activate TCR pathways and should be further explored to understand therapeutic potential.

  18. Humoral and cellular responses to a non-adjuvanted monovalent H1N1 pandemic influenza vaccine in hospital employees

    PubMed Central

    2013-01-01

    Background The efficacy of the H1N1 influenza vaccine relies on the induction of both humoral and cellular responses. This study evaluated the humoral and cellular responses to a monovalent non-adjuvanted pandemic influenza A/H1N1 vaccine in occupationally exposed subjects who were previously vaccinated with a seasonal vaccine. Methods Sixty healthy workers from a respiratory disease hospital were recruited. Sera and peripheral blood mononuclear cells (PBMCs) were obtained prior to and 1 month after vaccination with a non-adjuvanted monovalent 2009 H1N1 vaccine (Influenza A (H1N1) 2009 Monovalent Vaccine Panenza, Sanofi Pasteur). Antibody titers against the pandemic A/H1N1 influenza virus were measured via hemagglutination inhibition (HI) and microneutralization assays. Antibodies against the seasonal HA1 were assessed by ELISA. The frequency of IFN-γ-producing cells as well as CD4+ and CD8+ T cell proliferation specific to the pandemic virus A/H1N peptides, seasonal H1N1 peptides and seasonal H3N2 peptides were assessed using ELISPOT and flow cytometry. Results At baseline, 6.7% of the subjects had seroprotective antibody titers. The seroconversion rate was 48.3%, and the seroprotection rate was 66.7%. The geometric mean titers (GMTs) were significantly increased (from 6.8 to 64.9, p < 0.05). Forty-nine percent of the subjects had basal levels of specific IFN-γ-producing T cells to the pandemic A/H1N1 peptides that were unchanged post-vaccination. CD4+ T cell proliferation in response to specific pandemic A/H1N1 virus peptides was also unchanged; in contrast, the antigen-specific proliferation of CD8+ T cells significantly increased post-vaccination. Conclusion Our results indicate that a cellular immune response that is cross-reactive to pandemic influenza antigens may be present in populations exposed to the circulating seasonal influenza virus prior to pandemic or seasonal vaccination. Additionally, we found that the pandemic vaccine induced a

  19. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    PubMed

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  20. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Fischer, William; Wallstrom, Timothy

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highlymore » conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.« less

  1. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    PubMed

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  2. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    PubMed

    Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W

    2013-01-01

    Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed

  3. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  4. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).

    PubMed

    McDowell, Mary Ann

    2015-08-01

    More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Current algorithmic solutions for peptide-based proteomics data generation and identification.

    PubMed

    Hoopmann, Michael R; Moritz, Robert L

    2013-02-01

    Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. From non school-based, co-payment to school-based, free Human Papillomavirus vaccination in Flanders (Belgium): a retrospective cohort study describing vaccination coverage, age-specific coverage and socio-economic inequalities.

    PubMed

    Lefevere, Eva; Theeten, Heidi; Hens, Niel; De Smet, Frank; Top, Geert; Van Damme, Pierre

    2015-09-22

    School-based, free HPV vaccination for girls in the first year of secondary school was introduced in Flanders (Belgium) in 2010. Before that, non school-based, co-payment vaccination for girls aged 12-18 was in place. We compared vaccination coverage, age-specific coverage and socio-economic inequalities in coverage - 3 important parameters contributing to the effectiveness of the vaccination programs - under both vaccination systems. We used retrospective administrative data from different sources. Our sample consisted of all female members of the National Alliance of Christian Mutualities born in 1995, 1996, 1998 or 1999 (N=66,664). For each vaccination system we described the cumulative proportion HPV vaccination initiation and completion over time. We used life table analysis to calculate age-specific rates of HPV vaccination initiation and completion. Analyses were done separately for higher income and low income groups. Under non school-based, co-payment vaccination the proportions HPV vaccination initiation and completion slowly rose over time. By age 17, the proportion HPV vaccination initiation/completion was 0.75 (95% CI 0.74-076)/0.66 (95% CI 0.65-0.67). The median age at vaccination initiation/completion was 14.4 years (95% CI 14.4-14.5)/15.4 years (95% CI 15.3-15.4). Socio-economic inequalities in coverage widened over time and with age. Under school-based, free vaccination rates of HPV vaccination initiation were substantially higher. By age 14,the proportion HPV vaccination initiation/completion was 0.90 (95% CI 0.90-0.90)/0.87 (95% CI 0.87-0.88). The median age at vaccination initiation/completion was 12.7 years (95% CI 12.7-12.7)/13.3 years (95% CI 13.3-13.3). Socio-economic inequalities in coverage and in age-specific coverage were substantially smaller. Copyright © 2015. Published by Elsevier Ltd.

  7. The current state of therapeutic and T cell-based vaccines against human papillomaviruses.

    PubMed

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C; Hung, Chien-Fu

    2017-03-02

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report.

    PubMed

    Sonntag, Katja; Hashimoto, Hisayoshi; Eyrich, Matthias; Menzel, Moritz; Schubach, Max; Döcker, Dennis; Battke, Florian; Courage, Carolina; Lambertz, Helmut; Handgretinger, Rupert; Biskup, Saskia; Schilbach, Karin

    2018-02-06

    Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ + T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and T H 1 polarization. A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.

  9. Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.

    PubMed

    Mukherjee, Sumanta; Warwicker, Jim; Chandra, Nagasuma

    2015-07-01

    T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

  10. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.

    PubMed

    Schadendorf, D; Ugurel, S; Schuler-Thurner, B; Nestle, F O; Enk, A; Bröcker, E-B; Grabbe, S; Rittgen, W; Edler, L; Sucker, A; Zimpfer-Rechner, C; Berger, T; Kamarashev, J; Burg, G; Jonuleit, H; Tüttenberg, A; Becker, J C; Keikavoussi, P; Kämpgen, E; Schuler, G

    2006-04-01

    This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44- haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccines.

  11. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  12. Phase I clinical study of personalized peptide vaccination combined with radiotherapy for advanced hepatocellular carcinoma

    PubMed Central

    Shen, Jie; Wang, Li-Feng; Zou, Zheng-Yun; Kong, Wei-Wei; Yan, Jing; Meng, Fan-Yan; Chen, Fang-Jun; Du, Juan; Shao, Jie; Xu, Qiu-Ping; Ren, Hao-Zhen; Li, Ru-Tian; Wei, Jia; Qian, Xiao-Ping; Liu, Bao-Rui

    2017-01-01

    AIM To assess the efficacy and safety of a new treatment modality, cellular immune therapy based on personalized peptide vaccination (PPV-DC-CTL) combined with radiotherapy, for treating advanced hepatocellular carcinoma (HCC). METHODS A total of nine patients with advanced HCC were enrolled. Multidisciplinary consultation confirmed that all the patients definitely had no opportunity of surgery, because four patients had multiple liver metastases (the number of liver lesions > 3), one patient had liver metastases and portal vein tumor thrombosis, one patient had lung and bone metastases, two patients had liver and lung metastases and one patient had liver metastasis and peritoneal metastasis. Patients with metastasis were treated with precise radiotherapy combined with PPV-DC-CTL. RESULTS Following radiotherapy and one to three cycles of PPV-DC-CTL treatment, AFP levels were significantly decreased in six patients and imaging assessment of the lesions showed a partial response (PR) in three patients and stable disease in the other three patients. The response rate was 33% and disease control rate was 66%. This regimen was found to be safe and well tolerated. None of the patients developed liver or kidney side effects. Only one patient developed grade II bone marrow suppression and the remaining patients had no significant hematological side effects. CONCLUSION Radiotherapy combined with PPV-DC-CTL provides a new therapeutic strategy for patients with advanced HCC, which is well tolerated, safe, feasible and effective. PMID:28839440

  13. Virus-like particle (VLP)-based vaccines for pandemic influenza

    PubMed Central

    López-Macías, Constantino

    2012-01-01

    The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their safety and immunogenic characteristics. VLP vaccines against pandemic influenza have been developed in tobacco plant cells and in Sf9 insect cells infected with baculovirus that expresses protein genes from pandemic influenza strains. These technologies allow rapid and large-scale production of vaccines (3–12 weeks). The 2009 influenza outbreak provided an opportunity for clinical testing of a pandemic influenza VLP vaccine in the midst of the outbreak at its epicenter in Mexico. An influenza A(H1N1)2009 VLP pandemic vaccine (produced in insect cells) was tested in a phase II clinical trial involving 4,563 healthy adults. Results showed that the vaccine is safe and immunogenic despite high preexisting anti-A(H1N1)2009 antibody titers present in the population. The safety and immunogenicity profile presented by this pandemic VLP vaccine during the outbreak in Mexico suggests that VLP technology is a suitable alternative to current influenza vaccine technologies for producing pandemic and seasonal vaccines. PMID:22330956

  14. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.

    PubMed

    Cho, S; Dong, S; Parent, K N; Chen, M

    2016-01-01

    Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.

  15. Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

    PubMed Central

    Nagarkar, Radhika P.; Schneider, Joel P.

    2009-01-01

    Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061

  16. Vaccination against yellow fever in French Guiana: The impact of educational level, negative beliefs and attitude towards vaccination.

    PubMed

    Koïvogui, Akoï; Carbunar, Aurel; Imounga, Laure-Manuella; Laruade, Christelle; Laube, Sylvaine

    Analyze the impact of educational level, negative beliefs and negative attitudes on the yellow fever vaccination coverage (YFVC). This analytical study involved a sample of 2763 people from 866 households. Educational status was described in six levels: No level (Respondent had never attended school), level-1 (respondent left before intermediate school), level-2 (Respondent attended intermediate school), level-3 (respondent attended high school), level-4 (Respondent attended university), Other level (When the level could not be determined). The Attitude towards vaccination was described in terms of person's availability to recommend vaccination to third. The relationships were analyzed by multivariate mixed logistic regression. Among the 2763 peoples, 2039 (73.8%) were vaccinated against yellow fever. People who left high school with or without the French baccalaureate were more likely to be vaccinated against YF than people without any diploma (OR = 1.4; p < 0.05). The probability of being vaccinated among people with negative attitudes was reduced by 40% (OR = 0.6; p < 0.05). Low level of education, negative beliefs and negative attitudes have significant impacts on YFVC. Negatives beliefs and attitudes result often from a major lack of information about the benefits of vaccination. This deficit is exacerbated in persons with low educational level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    PubMed

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao

    2017-07-01

    The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.

  19. Influenza vaccination and risk of respiratory failure in patients with chronic obstructive pulmonary disease: A nationwide population-based case-cohort study.

    PubMed

    Huang, Hsin-Hui; Chen, Su-Jung; Chao, Tze-Fan; Liu, Chia-Jen; Chen, Tzeng-Ji; Chou, Pesus; Wang, Fu-Der

    2017-09-06

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease which causes a considerable disease burden. Patients with COPD are at a higher risk for influenza infection and influenza vaccination are recommended at this high risk patient group. In the current study, we aimed to evaluate the association between influenza vaccination and the risk of respiratory failure (RF) in COPD patients. From 2001 to 2005, patients with newly diagnosed COPD were identified from the NHIRD, and were followed until 2010. We explored the influenza vaccination rate among this COPD cohort. Furthermore, patients who experienced RF were defined as case group, whereas the others were defined as control group. Baseline characteristic were compared and association between influenza vaccination and RF were evaluated. The rate of influenza vaccination was significantly higher in patients age ≥65 years than those age <65 years (54.8% vs. 4%, p < 0.001). The vaccine cohort had more comorbidities, more health care utilization and more frequent acute exacerbations as compared with nonvaccine cohort. In multivariable logistic regression, influenza vaccination was associated with a reduced risk of respiratory failure (adjusted odds ratio [aOR] 0.87, 95% confidence interval [CI] 0.79-0.96). In subgroup analysis, we found that the association was insignificant in patients age <65 years, patients with relatively unstable disease status and patient did not receive influenza vaccination annually. Influenza vaccination was associated with a decreased risk of RF in patients with COPD. Recommendation of annual influenza vaccination should be made when managing this high-risk patient group. Copyright © 2017. Published by Elsevier B.V.

  20. The safety and immunogenicity of influenza vaccine in children with asthma in Mexico.

    PubMed

    Pedroza, Alvaro; Huerta, José G; Garcia, Maria de la Luz; Rojas, Arsheli; López-Martínez, Irma; Penagos, Martín; Franco-Paredes, Carlos; Deroche, Christele; Mascareñas, Cesar

    2009-07-01

    The morbidity and mortality associated with influenza is substantial in children with asthma. There are no available data on the safety and immunogenicity of influenza vaccine in children with asthma in Latin America. Furthermore, it is unclear if influenza vaccination may cause asthma exacerbations. We conducted a placebo-controlled trial to investigate the safety and immunogenicity of an inactivated trivalent split virus influenza vaccine in children with asthma in Mexico. We also measured the impact of influenza vaccination on pulmonary function tests in this population. The inactivated influenza vaccine was immunogenic and safe in terms of local and systemic side effects compared to placebo. We observed no significant impact on pulmonary function tests among vaccine recipients. Given the significant morbidity associated with influenza in children, strategies to promote increased influenza vaccination coverage in this high-risk group in Latin America and elsewhere are urgently needed.

  1. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  2. Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections

    PubMed Central

    Feldmann, Heinz

    2011-01-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections. PMID:21987744

  3. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice.

    PubMed

    Pihlgren, Maria; Silva, Alberto B; Madani, Rime; Giriens, Valérie; Waeckerle-Men, Ying; Fettelschoss, Antonia; Hickman, David T; López-Deber, María Pilar; Ndao, Dorin Mlaki; Vukicevic, Marija; Buccarello, Anna Lucia; Gafner, Valérie; Chuard, Nathalie; Reis, Pedro; Piorkowska, Kasia; Pfeifer, Andrea; Kündig, Thomas M; Muhs, Andreas; Johansen, Pål

    2013-01-03

    Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28. The IgG titers were high, long-lived, and comparable with titers obtained in wild-type animals, and the antibody response was associated with germinal center formation, expression of activation-induced cytidine deaminase, and affinity maturation. The T cell-independent (TI) IgG response was strictly dependent on ligation of TLR4 receptors on B cells, and concomitant TLR4 and cognate B-cell receptor stimulation was required on a single-cell level. Surprisingly, the IgG class switch was mediated by TIR-domain-containing adapter inducing interferon-β (TRIF), but not by MyD88. This study demonstrates that peptides can induce TI isotype switching when antigen and TLR ligand are assembled and appropriately presented directly to B lymphocytes. A TI vaccine could enable efficient prophylactic and therapeutic vaccination of patients with T-cell deficiencies and find application in diseases where induction of T-cell responses contraindicates vaccination, for example, in Alzheimer disease.

  4. Influencing Antibody-Mediated Attenuation of Methamphetamine CNS Distribution through Vaccine Linker Design.

    PubMed

    Gooyit, Major; Miranda, Pedro O; Wenthur, Cody J; Ducime, Alex; Janda, Kim D

    2017-03-15

    Active vaccination examining a single hapten engendered with a series of peptidic linkers has resulted in the production of antimethamphetamine antibodies. Given the limited chemical complexity of methamphetamine, the structure of the linker species embedded within the hapten could have a substantial effect on the ultimate efficacy of the resulting vaccines. Herein, we investigate linker effects by generating a series of methamphetamine haptens that harbor a linker with varying amino acid identity, peptide length, and associated carrier protein. Independent changes in each of these parameters were found to result in alterations in both the quantity and quality of the antibodies induced by vaccination. Although it was found that the consequence of the linker design was also dependent on the identity of the carrier protein, we demonstrate overall that the inclusion of a short, structurally simple, amino acid linker benefits the efficacy of a methamphetamine vaccine in limiting brain penetration of the free drug.

  5. Influenza vaccines based on virus-like particles

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Quan, Fu-Shi; Compans, Richard W.

    2009-01-01

    The simultaneous expression of structural proteins of virus can produce virus-like particles (VLPs) by a self-assembly process in a viral life cycle even in the absence of genomic material. Taking an advantage of structural and morphological similarities of VLPs to native virions, VLPs have been suggested as a promising platform for new viral vaccines. In the light of a pandemic threat, influenza VLPs have been recently developed as a new generation of non-egg based cell culture-derived vaccine candidates against influenza infection. Animals vaccinated with VLPs containing hemagglutinin (HA) or HA and neuraminidase (NA) were protected from morbidity and mortality resulting from lethal influenza infections. Influenza VLPs serve as an excellent model system of an enveloped virus for understanding the properties of VLPs in inducing protective immunity. In this review, we briefly describe the characteristics of influenza VLPs assembled with a lipid bilayer containing glycoproteins, and summarize the current progress on influenza VLPs as an alternative vaccine candidate against seasonal as well as pandemic influenza viruses. In addition, the protective immune correlates induced by vaccination with influenza VLPs are discussed. PMID:19374929

  6. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    PubMed

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  7. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies

    PubMed Central

    Vici, P; Pizzuti, L; Mariani, L; Zampa, G; Santini, D; Di Lauro, L; Gamucci, T; Natoli, C; Marchetti, P; Barba, M; Maugeri-Saccà, M; Sergi, D; Tomao, F; Vizza, E; Di Filippo, S; Paolini, F; Curzio, G; Corrado, G; Michelotti, A; Sanguineti, G; Giordano, A; De Maria, R; Venuti, A

    2016-01-01

    ABSTRACT Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease. PMID:27063030

  8. Synthetic MUC1 Antitumor Vaccine with Incorporated 2,3-Sialyl-T Carbohydrate Antigen Inducing Strong Immune Responses with Isotype Specificity.

    PubMed

    Straßburger, David; Glaffig, Markus; Stergiou, Natascha; Bialas, Sabrina; Besenius, Pol; Schmitt, Edgar; Kunz, Horst

    2018-04-06

    The endothelial glycoprotein MUC1 is known to underlie alterations in cancer by means of aberrant glycosylation accompanied by changes in morphology. The heavily shortened glycans induce a collapse of the peptide backbone and enable accessibility of the latter to immune cells, rendering it a tumor-associated antigen. Synthetic vaccines based on MUC1 tandem repeat motifs, comprising tumor-associated 2,3-sialyl-T antigen, conjugated to the immunostimulating tetanus toxoid, are reported herein. Immunization with these vaccines in a simple water/oil emulsion produced a strong immune response in mice to which stimulation with complete Freund's adjuvant (CFA) was not superior. In both cases, high levels of IgG1 and IgG2a/b were induced in C57BL/6 mice. Additional glycosylation in the immunodominant PDTRP domain led to improved binding of the induced antisera to MCF-7 breast tumor cells, compared with that of the monoglycosylated peptide vaccine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genomics of immune response to typhoid and cholera vaccines

    PubMed Central

    Majumder, Partha P.

    2015-01-01

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways. PMID:25964454

  10. Leptin-based adjuvants: an innovative approach to improve vaccine response.

    PubMed

    White, Sarah J; Taylor, Matthew J; Hurt, Ryan T; Jensen, Michael D; Poland, Gregory A

    2013-03-25

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥30 kg/m(2)) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin's role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Leptin-based Adjuvants: An Innovative Approach to Improve Vaccine Response

    PubMed Central

    White, Sarah J.; Taylor, Matthew J.; Hurt, Ryan; Jensen, Michael D.; Poland, Gregory A.

    2013-01-01

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥ 30 kg/m2) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin’s role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. PMID:23370154

  12. Linear Epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As Vaccine Candidates

    PubMed Central

    Travassos, Luiz R.; Taborda, Carlos P.

    2017-01-01

    Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition. PMID:28344577

  13. A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients

    PubMed Central

    Ciocca, Daniel R.; Frayssinet, Patrick; Cuello-Carrión, F. Darío

    2007-01-01

    We describe an approach to produce an autologous therapeutic antitumor vaccine using hydroxyapatite (HA) for vaccinating cancer patients. The novel approach involved (1) the purification of part of the self-tumor antigens/ adjuvants using column chromatography with HA, (2) the employ of HA as a medium to attract antigen-presenting cells (APCs) to the vaccination site, and (3) the use of HA as a vector to present in vivo the tumor antigens and adjuvants to the patient's APCs. The vaccine was prepared using and combining HA particles, with at least 3 heat shock proteins (gp96 was one of them possibly with chaperoned proteins/peptides as shown in the slot blots) and with proteins from the cell membrane system (including Hsp70, Hsp27, and membrane proteins). The timing of HA degradation was tested in rats; the HA particles administered under the skin attracted macrophages and were degraded into smaller particles, and they were totally phagocytized within 1 week. In patients (n = 20), the vaccine was then administered weekly and showed very low toxicity, causing minor and tolerable local inflammation (erythema, papule, or local pain); only 1 patient who received a larger dose presented hot flashes, and there were no systemic manifestations of toxicity or autoimmune diseases attributed to the vaccine. Our study suggests that this therapeutic vaccine has shown some efficacy producing a positive response in certain patients. Stable disease was noted in 25% of the patients (renal carcinoma, breast carcinoma, and astrocytoma), and a partial response was noted in 15% of the patients (breast carcinoma and astrocytoma). The most encouraging results were seen in patients with recurrent disease; 4 patients in these conditions (20%) are disease free following the vaccine administration. However, we do not want to overstate the clinical efficacy in this small number of patients. The therapeutic vaccine tested in our study is working by activating the T-cell response as was shown in

  14. Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines.

    PubMed

    Kang, C Yong; Gao, Yong

    2017-09-12

    The development of an efficient prophylactic HIV vaccine has been one of the major challenges in infectious disease research during the last three decades. Here, we present a mini review on strategies employed for the development of HIV vaccines with an emphasis on a well-established vaccine technology, the killed whole-virus vaccine approach. Recently, we reported an evaluation of the safety and the immunogenicity of a genetically modified and killed whole-HIV-1 vaccine designated as SAV001 [1]. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence of the Env signal peptide with that of honeybee melittin to produce an avirulent and replication efficient HIV-1. This genetically modified virus (gmHIV-1 NL4-3 ) was propagated in a human T cell line followed by virus purification and inactivation by aldrithiol-2 and γ-irradiation. We found that SAV001 was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific polymerase chain reaction showed no evidence of vaccine virus replication in participants receiving SAV001 and in human T cells infected in vitro. Furthermore, SAV001 with an adjuvant significantly increased the antibody response to HIV-1 structural proteins. Moreover, antibodies in the plasma from these vaccinations neutralized tier I and tier II of HIV-1 B, A, and D subtypes. These results indicated that the killed whole-HIV vaccine is safe and may trigger appropriate immune responses to prevent HIV infection. Utilization of this killed whole-HIV vaccine strategy may pave the way to develop an effective HIV vaccine.

  15. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    PubMed

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  16. Degradation of milk-based bioactive peptides by yogurt fermentation bacteria.

    PubMed

    Paul, M; Somkuti, G A

    2009-09-01

    To analyse the effect of cell-associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk-protein-based antimicrobial and hypotensive peptides in order to determine their survival in yogurt-type dairy foods. The 11mer antimicrobial and 12mer hypotensive milk-protein-derived peptides were incubated with mid-log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4.5 and 7.0, and samples removed at various time points were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC). The peptides remained mostly intact at pH 4.5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7.0. The 11mer and 12mer bioactive peptides may be added at the end of the yogurt-making process when the pH level has dropped to 4.5, limiting the overall extent of proteolysis. The results show the feasibility of using milk-protein-based antimicrobial and hypotensive peptides as food supplements to improve the health-promoting qualities of liquid and semi-solid dairy foods prepared by the yogurt fermentation process.

  17. [The Chinese experts' consensus on the evaluation and management of asthma exacerbation].

    PubMed

    2018-01-01

    Asthma exacerbations can do a lot of harm to the patients and consume large amounts of medical resources. This consensus is based on the domestic and foreign guidelines and literatures to standardize the evaluation and management of asthma exacerbations in China. Asthma exacerbations are characterized by a progressive increase in symptoms of shortness of breath, cough, wheezing or chest tightness and progressive decrease in lung function, and usually require modification of treatment. Recognizing risk factors and triggering factors of asthma exacerbations is helpful for the prevention and long-term management. Evaluation of asthma exacerbations is based on symptoms, lung function, and arterial blood gas. Management is stratified according to the severity of disease. Different regimens to treat asthma exacerbations are discussed in this consensus. Glucocorticoids should be used properly. Overuse of antibiotics should be avoided. Management of life-threatening asthma is discussed separately. Special attention should be paid in some special respects, such as asthma during peri-operation period, gestation period, and childhood. Diagnosis and management of complications are also of great significance and are discussed in details.

  18. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma

    PubMed Central

    Voskens, Caroline J.; Sewell, Duane; Hertzano, Ronna; DeSanto, Jennifer; Rollins, Sandra; Lee, Myounghee; Taylor, Rodney; Wolf, Jeffrey; Suntharalingam, Mohan; Gastman, Brian; Papadimitriou, John C.; Lu, Changwan; Tan, Ming; Morales, Robert; Cullen, Kevin; Celis, Esteban; Mann, Dean; Strome, Scott E.

    2013-01-01

    Background We performed a pilot study using Trojan vaccines in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). These vaccines are composed of HLA-I and HLA-II restricted melanoma antigen E (MAGE)-A3 or human papillomavirus (HPV)-16 derived peptides, joined by furin-cleavable linkers, and linked to a “penetrin” peptide sequence derived from HIV-TAT. Thirty-one patients with SCCHN were screened for the trial and 5 were enrolled. Methods Enrolled patients were treated with 300 lg of Trojan peptide supplemented with Montanide and granulocyte-macrophage colony-stimulating factor (GM-CSF) at 4-week intervals for up to 4 injections. Results Following vaccination, peripheral blood mononuclear cells (PBMCs) from 4 of 5 patients recognized both the full Trojan constructs and constituent HLA-II peptides, whereas responses to HLA-I restricted peptides were less pronounced. Conclusion This treatment regimen seems to have acceptable toxicity and elicits measurable systemic immune responses against HLA-II restricted epitopes in a subset of patients with advanced SCCHN. PMID:22287423

  19. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma.

    PubMed

    Voskens, Caroline J; Sewell, Duane; Hertzano, Ronna; DeSanto, Jennifer; Rollins, Sandra; Lee, Myounghee; Taylor, Rodney; Wolf, Jeffrey; Suntharalingam, Mohan; Gastman, Brian; Papadimitriou, John C; Lu, Changwan; Tan, Ming; Morales, Robert; Cullen, Kevin; Celis, Esteban; Mann, Dean; Strome, Scott E

    2012-12-01

    We performed a pilot study using Trojan vaccines in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). These vaccines are composed of HLA-I and HLA-II restricted melanoma antigen E (MAGE)-A3 or human papillomavirus (HPV)-16 derived peptides, joined by furin-cleavable linkers, and linked to a "penetrin" peptide sequence derived from HIV-TAT. Thirty-one patients with SCCHN were screened for the trial and 5 were enrolled. Enrolled patients were treated with 300 μg of Trojan peptide supplemented with Montanide and granulocyte-macrophage colony-stimulating factor (GM-CSF) at 4-week intervals for up to 4 injections. Following vaccination, peripheral blood mononuclear cells (PBMCs) from 4 of 5 patients recognized both the full Trojan constructs and constituent HLA-II peptides, whereas responses to HLA-I restricted peptides were less pronounced. This treatment regimen seems to have acceptable toxicity and elicits measurable systemic immune responses against HLA-II restricted epitopes in a subset of patients with advanced SCCHN. Copyright © 2012 Wiley Periodicals, Inc.

  20. Epitope-focused peptide immunogens in human use adjuvants protect rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Feldman, Daniel; Yu, Fen; Cease, Kemp B

    2015-01-09

    Anthrax represents a formidable bioterrorism threat for which new, optimized vaccines are required. We previously demonstrated that epitope-focused multiple antigenic peptides or a recombinant protein in Freund's adjuvant can elicit Ab against the loop neutralizing determinant (LND), a cryptic linear neutralizing epitope in the 2ß2-2ß3 loop of protective antigen from Bacillus anthracis, which mediated protection of rabbits from inhalation challenge with B. anthracis Ames strain. However, demonstration of efficacy using human-use adjuvants is required before proceeding with further development of an LND vaccine for testing in non-human primates and humans. To optimize the LND immunogen, we first evaluated the protective efficacy and immune correlates associated with immunization of rabbits with mixtures containing two molecular variants of multiple antigenic peptides in Freunds adjuvant, termed BT-LND(2) and TB-LND(2). TB-LND(2) was then further evaluated for protective efficacy in rabbits employing human-use adjuvants. Immunization of rabbits with TB-LND(2) in human-use adjuvants elicited protection from Ames strain spore challenge which was statistically indistinguishable from that elicited through immunization with protective antigen. All TB-LND(2) rabbits with any detectable serum neutralization prior to challenge were protected from aerosolized spore exposure. Remarkably, rabbits immunized with TB-LND(2) in Alhydrogel/CpG had significant anamnestic increases in post-challenge LND-specific Ab and neutralization titers despite little evidence of spore germination in these rabbits. An LND-specific epitope-focused vaccine may complement PA-based vaccines and may represent a complementary stand-alone vaccine for anthrax. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease

    PubMed Central

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  2. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. The Likelihood of Preventing Respiratory Exacerbations in Children and Adolescents with either Chronic Suppurative Lung Disease or Bronchiectasis

    PubMed Central

    O’Grady, Kerry-Ann F; Grimwood, Keith

    2017-01-01

    Chronic suppurative lung disease (CSLD) and bronchiectasis in children and adolescents are important causes of respiratory morbidity and reduced quality of life (QoL), also leading to subsequent premature death during adulthood. Acute respiratory exacerbations in pediatric CSLD and bronchiectasis are important markers of disease control clinically, given that they impact upon QoL and increase health-care-associated costs and can adversely affect future lung functioning. Preventing exacerbations in this population is, therefore, likely to have significant individual, familial, societal, and health-sector benefits. In this review, we focus on therapeutic interventions, such as drugs (antibiotics, mucolytics, hyperosmolar agents, bronchodilators, corticosteroids, non-steroidal anti-inflammatory agents), vaccines and physiotherapy, and care-planning, such as post-hospitalization management and health promotion strategies, including exercise, diet, and reducing exposure to environmental toxicants. The review identified a conspicuous lack of moderate or high-quality evidence for preventing respiratory exacerbations in children and adolescents with CSLD or bronchiectasis. Given the short- and long-term impact of exacerbations upon individuals, their families, and society as a whole, large studies addressing interventions at the primary and tertiary prevention phases are required. This research must include children and adolescents in both developing and developed countries and address long-term health outcomes. PMID:28393062

  4. Synthetic vaccines.

    PubMed

    Lerner, R A

    1983-02-01

    Synthetic vaccines are designed with the help of computer-graphics programs. These displays generated by Arthur J. Olson of the Research Institute of Scripps Clinic show a method whereby parts of a viral protein that are on the surface of a virus, and therefore accessible to antibodies, can be identified. The backbone of the surface domain of the protein on the outer shell of the tomato bushy-stunt virus is displayed (1) on the basis of coordinates determined by Stephen C. Harrison of Harvard University and his colleagues. A single peptide of the protein is picked out in yellow, with the side chains of its component amino acids indicated in atomic detail (2). The peptide is enlarged and a sphere representing a water molecule is displayed (3). The sphere is rolled around the peptide to generate a map of the surface accessible to water (4); it does so, following an algorithm developed by Michael L. Connolly, by placing a dot at each point of its closest contact with the peptide, taking account of the sphere's own van der Waals radius (zone of influence, in effect) and that of each atom of the peptide and the rest of the protein. A similar-dot-surface map is generated to show what parts of the peptide are still accessible to water when three copies of the protein are associated in an array on the surface of the virus (5) and when four such arrays (out of 60) are in position on the outer surface of the virus (6).

  5. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    PubMed

    Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang

    2016-01-01

    To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  6. Detection of Peptide-based nanoparticles in blood plasma by ELISA.

    PubMed

    Bode, Gerard H; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J G; Schmitz, Christoph; Sinner, Frank M; Losen, Mario; Steinbusch, Harry W M; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions.

  7. Mapping Antigenic Sites of an Immunodominant Surface Lipoprotein of Mycoplasma agalactiae, AvgC, with the Use of Synthetic Peptides

    PubMed Central

    Santona, Antonella; Carta, Franco; Fraghí, Peppinetta; Turrini, Franco

    2002-01-01

    As a first step toward the design of an epitope vaccine to prevent contagious agalactia, the strongly immunogenic 55-kDa protein of Mycoplasma agalactiae was studied and found to correspond to the AvgC protein encoded by the avgC gene. The avg genes of M. agalactiae, which encode four variable surface lipoproteins, display a significant homology to the vsp (variable membrane surface lipoproteins) genes of the bovine pathogen Mycoplasma bovis at their promoter region as well as their N-terminus-encoding regions. Some members of the Vsp family are known to be involved in cytoadhesion to host cells. In order to localize immunogenic peptides in the AvgC antigen, the protein sequence was submitted to epitope prediction analysis, and five sets of overlapping peptides, corresponding to five selected regions, were synthesized by Spot synthesis. Reactive peptides were selected by immunobinding assay with sera from infected sheep. The three most immunogenic epitopes were shown to be surface exposed by immunoprecipitation assays, and one of these was specifically recognized by all tested sera. Our study indicates that selected epitopes of the AvgC lipoprotein may be used to develop a peptide-based vaccine which is effective against M. agalactiae infection. PMID:11748179

  8. Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides.

    PubMed

    Kessler, Jan H; Mommaas, Bregje; Mutis, Tuna; Huijbers, Ivo; Vissers, Debby; Benckhuijsen, Willemien E; Schreuder, Geziena M Th; Offringa, Rienk; Goulmy, Els; Melief, Cornelis J M; van der Burg, Sjoerd H; Drijfhout, Jan W

    2003-02-01

    We report the development, validation, and application of competition-based peptide binding assays for 13 prevalent human leukocyte antigen (HLA) class I alleles. The assays are based on peptide binding to HLA molecules on living cells carrying the particular allele. Competition for binding between the test peptide of interest and a fluorescein-labeled HLA class I binding peptide is used as read out. The use of cell membrane-bound HLA class I molecules circumvents the need for laborious biochemical purification of these molecules in soluble form. Previously, we have applied this principle for HLA-A2 and HLA-A3. We now describe the assays for HLA-A1, HLA-A11, HLA-A24, HLA-A68, HLA-B7, HLA-B8, HLA-B14, HLA-B35, HLA-B60, HLA-B61, and HLA-B62. Together with HLA-A2 and HLA-A3, these alleles cover more than 95% of the Caucasian population. Several allele-specific parameters were determined for each assay. Using these assays, we identified novel HLA class I high-affinity binding peptides from HIVpol, p53, PRAME, and minor histocompatibility antigen HA-1. Thus these convenient and accurate peptide-binding assays will be useful for the identification of putative cytotoxic T lymphocyte epitopes presented on a diverse array of HLA class I molecules.

  9. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease.

    PubMed

    Lin, Xiaoyang; Bai, Ge; Lin, Linda; Wu, Hengyi; Cai, Jianfeng; Ugen, Kenneth E; Cao, Chuanhai

    2014-01-01

    Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD

  10. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma.

    PubMed

    Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.

  11. Comparative cost effectiveness of varicella, hepatitis A, and pneumococcal conjugate vaccines.

    PubMed

    Jacobs, R J; Meyerhoff, A S

    2001-12-01

    Several state and local U.S. governments are considering making varicella, hepatitis A, and/or pneumococcal conjugate vaccination conditions of day care or school entry. These requirements will likely be issued sequentially, because simultaneous mandates exacerbate budget constraints and complicate communication with parents and providers. Cost-effectiveness assessments should aid the establishment of vaccination priorities, but comparing results of published studies is confounded by their dissimilar methods. We reviewed U.S. cost-effectiveness studies of childhood varicella, hepatitis A, and pneumococcal conjugate vaccines and identified four providing data required to standardize methods. Vaccination, disease treatment, and work-loss costs were estimated from original study results and current prices. Estimated life-years saved were derived from original study results, epidemiological evidence, and alternative procedures for discounting to present values. Hepatitis A vaccine would have the lowest health system costs per life-year saved. Varicella vaccine would provide the greatest reduction in societal costs, mainly through reduced parent work loss. Pneumococcal conjugate vaccine would cost twice the amount of varicella and hepatitis A vaccines combined and be less cost effective than the other vaccines. Hepatitis A and varicella vaccines, but not pneumococcal conjugate vaccine, meet or exceed conventional standards of cost effectiveness. Copyright 2001 American Health Foundation and Elsevier Science.

  12. The adsorption of preferential binding peptides to apatite-based materials

    PubMed Central

    Segvich, Sharon J.; Smith, Hayes C.; Kohn, David H.

    2009-01-01

    The objective of this work was to identify peptide sequences with high affinity to bone-like mineral (BLM) to provide alternative design methods for functional bone regeneration peptides. Adsorption of preferential binding peptide sequences on four apatite-based substrates [BLM and three sintered apatite disks pressed from powders containing 0% CO32− (HA), 5.6% CO32− (CA5), 10.5% CO32− (CA10)] with varied compositions and morphologies was investigated. A combination of phage display, ELISA, and computational modeling was used to elucidate three 12-mer peptide sequences APWHLSSQYSRT (A), STLPI-PHEFSRE (S), and VTKHLNQISQSY (V), from 243 candidates with preferential adsorption on BLM and HA. Overall, peptides S and V have a significantly higher adsorption to the apatite-based materials in comparison to peptide A (for S vs. A, BLM p = 0.001, CA5 p < 0.001, CA10 p < 0.001, HA p = 0.038; for V vs. A, BLM p = 0.006, CA5 p = 0.033, CA10 p = 0.029). FT-IR analysis displayed carbonate levels in CA5 and CA10 dropped to approximately 1.1–2.2% after sintering, whereas SEM imaging displayed CA5 and CA10 possess distinct morphologies. Adsorption results normalized to surface area indicate that small changes in carbonate percentage at a similar morphological scale did not provide enough carbonate incorporation to show statistical differences in peptide adsorption. Because the identified peptides (S and V) have preferential binding to apatite, their use can now be investigated in bone and dentin tissue engineering, tendon and ligament repair, and enamel formation. PMID:19095299

  13. New insights into the bioactivity of peptides from probiotics.

    PubMed

    Mandal, Santi M; Pati, Bikas R; Chakraborty, Ranadhir; Franco, Octavio L

    2016-06-01

    Probiotics are unique bacteria that offer several therapeutic benefits to human beings when administered in optimum amounts. Probiotics are able to produce antimicrobial substances, which stimulate the body's immune responses. Here, we review in detail the anti-infective peptides derived from probiotics and their potential immunomodulatory and anti-inflammatory activities, including a major role in cross-talk between probiotics and gut microbiota under adverse conditions. Insights from the engineered cell surface of probiotics may provide novel anti-infective therapy by heterologous expression of receptor peptides of bacterial toxins. It may be possible to use antigenic peptides from viral pathogens as live vaccines. Another possibility is to generate antiviral peptides that bind directly to virus particles, while some peptides exert anti-inflammatory and anticancer effects. Some extracellular polymeric substances might serve as anti-infective peptides. These avenues of treatment have remained largely unexplored to date, despite their potential in generating powerful anti-inflammatory and anti-infective products.

  14. The reliability and validity of patient-reported chronic obstructive pulmonary disease exacerbations.

    PubMed

    Mohan, Arjun; Sethi, Sanjay

    2014-03-01

    Despite the increasing awareness of their pathogenesis and clinical consequences, research on and clinical management of acute exacerbations of chronic obstructive lung disease (AECOPDs) have been hindered by the lack of a consistent and reliable definition. Symptom-based definitions of exacerbations are sensitive to events and account for unreported exacerbations. Event (healthcare utilization)-based definitions are somewhat more definitive but miss unreported events. Objective quantification of symptoms in AECOPD is now possible with the development of the Exacerbations of Chronic Obstructive Pulmonary Disease Tool (EXACT-PRO), a patient-reported outcome (PRO) measure. Several studies have revealed that unreported AECOPDs are more frequent than reported events and are associated with long-term adverse consequences. New antibiotic development for AECOPD has been hampered by the lack of validated measures for resolution of exacerbations. As a result of these observations, a unique collaborative effort between academia, industry and regulatory agencies resulted in the development of the EXACT-PRO. It consists of 14 questions that generate a score between 0 and 100, and it has been shown to have excellent reliability and validity. In the absence of a reliable biomarker, the definition and measurement of exacerbations has been subjective and imprecise. PRO measures such as EXACT can provide much needed objectivity in assessing symptom-defined exacerbations, which may translate into a uniform outcome measure in clinical trials. With further development and validation, it may have a role in clinical practice in the earlier detection of exacerbations, stratification of an exacerbation severity and the assessment of clinical response to treatment.

  15. Parvovirus-like particles as vaccine vectors.

    PubMed

    Casal, J I; Rueda, P; Hurtado, A

    1999-09-01

    A wide array of systems have been developed to improve "classic" vaccines. The use of small polypeptides able to elicit potent antibody and cytotoxic responses seems to have enormous potential in the design of safer vaccines. While peptide coupling to large soluble proteins such as keyhole limpet hemocyanin is the current method of choice for eliciting antibody responses and insertion in live viruses for cytotoxic T-lymphocyte responses, alternative cheaper and/or safer methods will clearly be required in the future. Virus-like particles constitute very immunogenic molecules that allow for covalent coupling of the epitopes of interest in a simple way. In this article, we detail the methodology employed for the preparation of efficient virus vectors as delivery systems. We used parvovirus as the model for the design of new vaccine vectors. Recently parvovirus-like particles have been engineered to express foreign polypeptides in certain positions, resulting in the production of large quantities of highly immunogenic peptides, and to induce strong antibody, helper-T-cell, and cytotoxic T-lymphocyte responses. We discuss the different alternatives and the necessary steps to carry out this process, placing special emphasis on the flow of decisions that need to be made during the project. Copyright 1999 Academic Press.

  16. Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation

    PubMed Central

    Davis, Reema B.; Kechele, Daniel O.; Blakeney, Elizabeth S.; Pawlak, John B.

    2017-01-01

    Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor–like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation. PMID:28352669

  17. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus.

    PubMed

    Paquin-Proulx, Dominic; Leal, Fabio E; Terrassani Silveira, Cassia G; Maestri, Alvino; Brockmeyer, Claudia; Kitchen, Shannon M; Cabido, Vinicius D; Kallas, Esper G; Nixon, Douglas F

    2017-01-01

    The outbreak of Zika virus (ZIKV) infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV), or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE), suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNγ ELISPOT. Three peptides induced IFNγ production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  18. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD65-induced immune response.

    PubMed

    Tavira, Beatriz; Cheramy, Mikael; Axelsson, Stina; Åkerman, Linda; Ludvigsson, Johnny; Casas, Rosaura

    2017-07-01

    A European Phase III trial of GAD formulated with aluminium hydroxide (GAD-alum) failed to reach its primary endpoint (preservation of stimulated C-peptide secretion from baseline to 15 months in type 1 diabetes patients), but subgroup analysis showed a clinical effect when participants from Nordic countries were excluded, raising concern as to whether the mass vaccination of the Swedish and Finnish populations with the Pandemrix influenza vaccine could have influenced the study outcomes. In the current study, we aimed to assess whether Pandemrix vaccination affects the specific immune responses induced by GAD-alum and the C-peptide response. In this secondary analysis, we analysed data acquired from the Swedish participants in the Phase III GAD-alum trial who received subcutaneous GAD-alum vaccination (two doses, n = 43; four doses, n = 46) or placebo (n = 48). GAD autoantibodies (GADA) and H1N1 autoantibodies, GAD 65 -induced cytokine secretion and change in fasting and stimulated C-peptide levels from baseline to 15 months were analysed with respect to the relative time between H1N1 vaccination and the first injection of GAD-alum. GADA levels at 15 months were associated with the relative time between GAD-alum and Pandemrix administration in participants who received two doses of the GAD-alum vaccine (p = 0.015, r = 0.4). Both in participants treated with two doses and four doses of GAD-alum, GADA levels were higher when the relative time between vaccines was ≥210 days (p < 0.05). In the group that received two doses of GAD-alum, levels of several GAD 65 -induced cytokines were higher in participants who received the H1N1 vaccination and the first GAD-alum injection at least 150 days apart, and the change in fasting and stimulated C-peptide at 15 months was associated with the relative time between vaccines. Neither of these effects were observed in individuals who received four doses of GAD-alum. In individuals who received two doses of GAD

  19. Plant-based vaccines against diarrheal diseases.

    PubMed

    Tacket, Carol O

    2007-01-01

    Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation-the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus.

  20. Cancer immunotherapy by a recombinant phage vaccine displaying EGFR mimotope: an in vivo study.

    PubMed

    Asadi-Ghalehni, Majid; Ghaemmaghami, Mohamad; Klimka, Alexander; Javanmardi, Masoud; Navari, Mohsen; Rasaee, Mohammad Javad

    2015-06-01

    To date, several small molecule inhibitors and monoclonal-antibodies (like ICR-62) have been used to treat tumors over-expressing epidermal growth factor receptor (EGFR). However, the limitations associated with these conventional applications accentuate the necessity of alternative approaches. Mimotopes as compelling molecular tools could rationally be employed to circumvent these drawbacks. In the present study, an M13 phage displaying ICR-62 binding peptide mimotope is exploited as a vaccine candidate. It exhibited high affinity towards ICR62 and polyclonal anti-P-BSA antibodies. Following the mice immunization, phage-based mimotope vaccine induced humoral immunity. Elicited anti-EGFR mimotope antibodies were detected using ELISA method. Moreover, the phage vaccine was tested on the Lewis lung carcinoma mice model to investigate the prophylactic and therapeutic effects. The tumor volume was measured and recorded in different animal groups to evaluate the anti-tumor effects of the vaccine. Our data indicate that the reported phage-based mimotope could potentially elicit specific antibodies resulting in low titers of EGFR-specific antibodies and reduced tumor growth. However, in vivo experiments of prophylactic or therapeutic vaccination showed no specific advantage. Furthermore, phage-mimotope vaccine might be a promising approach in the field of cancer immunotherapy.

  1. [Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].

    PubMed

    Mora-García, María Lourdes; Monroy-García, Alberto

    2015-01-01

    High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.

  2. Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA

    PubMed Central

    Bode, Gerard H.; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J. G.; Schmitz, Christoph; Sinner, Frank M.; Losen, Mario; Steinbusch, Harry W. M.; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. PMID:25996618

  3. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  4. Plant-Based Vaccines Against Diarrheal Diseases

    PubMed Central

    Tacket, Carol O.

    2007-01-01

    Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation—the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus. PMID:18528491

  5. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model

    PubMed Central

    Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang

    2016-01-01

    To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible—exposed—infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009–2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics. PMID:27233015

  6. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine.

    PubMed

    Hashemi, Hamidreza; Bamdad, Taravat; Jamali, Abbas; Pouyanfard, Somayeh; Mohammadi, Masoumeh Gorgian

    2010-02-01

    Phage display is based on expressing peptides as a fusion to one of the phage coat proteins. To date, many vaccine researches have been conducted to display immunogenic peptides or mimotopes of various pathogens and tumors on the surface of filamentous bacteriophages. In recent years as a new approach to application of phages, recombinant bacteriophage lambda particles were used as DNA delivery vehicles to mammalian cells. In this study, recombinant filamentous phage whole particles were used for vaccination of mice. BALB/c mice were inoculated with filamentous phage particles containing expression cassette of Herpes simplex virus 1 (HSV-1) glycoprotein D that has essential roles in the virus attachment and entry. Both humoral and cellular immune responses were measured in the immunized mice and compared to conventional DNA vaccination. A dose-response relationship was observed in both arms of immune responses induced by recombinant filamentous phage inoculation. The results were similar to those from DNA vaccination. Filamentous phages can be considered as suitable alternative candidate vaccines because of easier and more cost-effective production and purification over plasmid DNA or bacteriophage lambda particles. 2009 Elsevier B.V. All rights reserved.

  7. Immunomodulators as adjuvants for vaccines and antimicrobial therapy.

    PubMed

    Nicholls, Erin F; Madera, Laurence; Hancock, Robert E W

    2010-12-01

    A highly effective strategy for combating infectious diseases is to enhance host defenses using immunomodulators, either preventatively, through vaccination, or therapeutically. The effectiveness of many vaccines currently in use is due in part to adjuvants, molecules that have little immunogenicity by themselves but which help enhance and appropriately skew the immune response to an antigen. The development of new vaccines necessitates the development of new types of adjuvants to ensure an appropriate immune response. Herein, we review commonly used vaccine adjuvants and discuss promising adjuvant candidates. We also discuss various other immunomodulators (namely cytokines, Toll-like receptor agonists, and host defense peptides) that are, or have potential to be, useful for antimicrobial therapies that exert their effects by boosting host immune responses rather than targeting pathogens directly.

  8. The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity.

    PubMed

    Laubreton, Daphné; Bay, Sylvie; Sedlik, Christine; Artaud, Cécile; Ganneau, Christelle; Dériaud, Edith; Viel, Sophie; Puaux, Anne-Laure; Amigorena, Sebastian; Gérard, Catherine; Lo-Man, Richard; Leclerc, Claude

    2016-03-01

    Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.

  9. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  10. T cell priming versus T cell tolerance induced by synthetic peptides

    PubMed Central

    1995-01-01

    It is well known that synthetic peptides are able to both induce and tolerize T cells. We have examined the parameters leading either to priming or tolerance of CD8+ cytotoxic T lymphocytes (CTL) in vivo with a major histocompatibility complex class I (H-2 Db) binding peptide derived from the glycoprotein (GP aa33-41) of lymphocytic choriomeningitis virus (LCMV). By varying dose, route, and frequency of LCMV GP peptide application, we found that a single local subcutaneous injection of 50-500 micrograms peptide emulsified in incomplete Freund's adjuvant protected mice against LCMV infection, whereas repetitive and systemic intraperitoneal application of the same dose caused tolerance of LCMV-specific CTL. The peptide-induced tolerance was transient in euthymic mice but permanent in thymectomized mice. These findings are relevant for a selective use of peptides as a therapeutic approach: peptide-induced priming of T cells for vaccination and peptide-mediated T cell tolerance for intervention in immunopathologies and autoimmune diseases. PMID:7540654

  11. Recombinant proteins and peptides as diagnostic and therapeutic reagents for arthropod allergies.

    PubMed

    Ramos, John Donnie A; Valmonte, Gardette R; de Guia, Roldan M

    2007-01-01

    Domestic arthropods are chief sources of potent allergens that trigger sensitization and stimulate IgE-mediated allergies. Diagnosis and immunotherapy of arthropod allergies rely on the use of natural allergen extracts which are associated with low specificity and efficacy, the risk of anaphylactic reactions, and the extended period of treatment. Most of the problems associated with natural allergen extracts for allergy diagnosis and immunotherapy can be circumvented with the use of recombinant allergens and peptides. Recombinant allergens are recently developed for microarray-based multi-allergen tests which provide component-resolved diagnosis (CRD) of the patient's sensitization profile. Moreover, recombinant protein technology and peptide chemistry have been used to construct isoallergens, allergen mutants, allergoids, T and B cell peptides, hypoallergens, and mimotopes with reduced allergenicity but enhanced immunogenicity for allergen-specific immunotherapy (SIT) and vaccination. The basics of recombinant arthropod allergen technology are in place providing a lucid future for the advancement of diagnosis and immunotherapy of arthropod allergies.

  12. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

    PubMed

    Moghram, Basem Ameen; Nabil, Emad; Badr, Amr

    2018-01-01

    T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95

  14. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  16. Microsurgeon Hirudo medicinalis as a Natural Bioshuttle for Spontaneous Mass Vaccination against Influenza A Virus

    PubMed Central

    Samadi-Shams, Sara; Atashpaz, Sina; Khani, Sajjad

    2011-01-01

    Introduction Recent report on existence of a stem region of hemagglutinin has arisen new hopes for vaccination of influenza A as it consist of a conserve fusion peptide shared across several influenza subtypes and can be targeted by human immune system. Methods Given that traditional vaccination based on live attenuated viruses often fails to surpass such viral infection, a great deal of attention has been devoted to develop a safe yet efficient system for vaccination influenza A. We believe that a natural bioshuttle can be recruited for spontaneous mass vaccination. Results Thus, here, we hypothesize that a bioengineered transgenic Hirudo medicinalis can be considered as an alive bioshuttle for in-situ vaccination against influenza A virus. By introducing the designated gene(s) encoding the target fragment (i.e., stem region of hemagglutinin), this microsurgeon can act as a rapid microproducer of viral proteins for in-house mass vaccination through imparting the necessary proteins such as those, naturally presented in leech's saliva. Conclusion This peculiar bioshuttle can be easily exploited as a medical modality choice at home resulting in greater patient compliance. PMID:23678426

  17. Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: a literature review.

    PubMed

    Zheng, Xue-Yan; Xu, Yan-Jun; Guan, Wei-Jie; Lin, Li-Feng

    2018-04-01

    Despite increased understanding of how viral infection is involved in asthma exacerbations, it is less clear which viruses are involved and to what extent they contribute to asthma exacerbations. Here, we sought to determine the prevalence of different respiratory viruses during asthma exacerbations. Systematic computerized searches of the literature up to June 2017 without language limitation were performed. The primary focus was on the prevalence of respiratory viruses, including AdV (adenovirus), BoV (bocavirus), CoV (coronavirus), CMV (cytomegalovirus), EnV (enterovirus), HSV (herpes simplex virus), IfV (influenza virus), MpV (metapneumovirus), PiV (parainfluenzavirus), RV (rhinovirus) and RSV (respiratory syncytial virus) during asthma exacerbations. We also examined the prevalence of viral infection stratified by age, geographic region, type of respiratory secretion, and detection method. Sixty articles were included in the final analysis. During asthma exacerbations, the mean prevalence of AdV, BoV, CoV, CMV, EnV, HSV, IfV, MpV, PiV, RV and RSV was 3.8%, 6.9%, 8.4%, 7.2%, 10.1%, 12.3%, 10.0%, 5.3%, 5.6%, 42.1% and 13.6%, respectively. EnV, MPV, RV and RSV were more prevalent in children, whereas AdV, BoV, CoV, IfV and PiV were more frequently present in adults. RV was the major virus detected globally, except in Africa. RV could be detected in both the upper and lower airway. Polymerase chain reaction was the most sensitive method for detecting viral infection. Our findings indicate the need to develop prophylactic polyvalent or polyvirus (including RV, EnV, IfV and RSV) vaccines that produce herd immunity and reduce the healthcare burden associated with virus-induced asthma exacerbations.

  18. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    PubMed

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  19. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    PubMed

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  20. Lactobacillus buchneri S-layer as carrier for an Ara h 2-derived peptide for peanut allergen-specific immunotherapy.

    PubMed

    Anzengruber, Julia; Bublin, Merima; Bönisch, Eva; Janesch, Bettina; Tscheppe, Angelika; Braun, Matthias L; Varga, Eva-Maria; Hafner, Christine; Breiteneder, Heimo; Schäffer, Christina

    2017-05-01

    Peanut allergy is an IgE-mediated severe hypersensitivity disorder. The lack of a treatment of this potentially fatal allergy has led to intensive research on vaccine development. Here, we describe the design and initial characterization of a carrier-bound peptide derived from the most potent peanut allergen, Ara h 2, as a candidate vaccine. Based on the adjuvant capability of bacterial surface (S-) layers, a fusion protein of the S-layer protein SlpB from Lactobacillus buchneri CD034 and the Ara h 2-derived peptide AH3a42 was produced. This peptide comprised immunodominant B-cell epitopes as well as one T cell epitope. The fusion protein SlpB-AH3a42 was expressed in E. coli, purified, and tested for its IgE binding capacity as well as for its ability to activate sensitized rat basophil leukemia (RBL) cells. The capacity of Ara h 2-specific IgG rabbit-antibodies raised against SlpB-AH3a42 or Ara h 2 to inhibit IgE-binding was determined by ELISA inhibition assays using sera of peanut allergic patients sensitized to Ara h 2. IgE specific to the SlpB-AH3a42 fusion protein was detected in 69% (25 of 36) of the sera. Despite the recognition by IgE, the SlpB-AH3a42 fusion protein was unable to induce β-hexosaminidase release from sensitized RBL cells at concentrations up to 100ng per ml. The inhibition of IgE-binding to the natural allergen observed after pre-incubation of the 20 sera with rabbit anti-SlpB-AH3a42 IgG was more than 30% for four sera, more than 20% for eight sera, and below 10% for eight sera. In comparison, anti-Ara h 2 rabbit IgG antibodies inhibited binding to Ara h 2 by 48% ±13.5%. Our data provide evidence for the feasibility of this novel approach towards the development of a peanut allergen peptide-based carrier-bound vaccine. Our experiments further indicate that more than one allergen-peptide will be needed to induce a broader protection of patients allergic to Ara h 2. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights