Geller, Bruce L.; Mellbye, Brett; Lane, Douglas; Iversen, Patrick L.; Bavari, Sina
2012-01-01
Targeting bacterial essential genes using antisense phosphorodiamidate morpholino oligomers (PMOs) represents an important strategy in the development of novel antibacterial therapeutics. PMOs are neutral DNA analogues that inhibit gene expression in a sequence-specific manner. In this study, several cationic, membrane-penetrating peptides were conjugated to PMOs (PPMOs) that target 2 bacterial essential genes: acyl carrier protein (acpP) and gyrase A (gyrA). These were tested for their ability to inhibit growth of Bacillus anthracis, a gram-positive spore-forming bacterium and causative agent of anthrax. PPMOs targeted upstream of both target gene start codons and conjugated with the bacterium-permeating peptide (RFF)3R were found to be most effective in inhibiting bacterial growth in vitro. Both of the gene-targeted PPMOs protected macrophages from B. anthracis induced cell death. Subsequent, in vivo testing of the PPMOs resulted in increased survival of mice challenged with the virulent Ames strain of B. anthracis. Together, these studies suggest that PPMOs targeting essential genes have the potential of being used as antisense antibiotics to treat B. anthracis infections. PMID:22978365
Shabanpoor, Fazel; Gait, Michael J
2013-11-11
We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.
Geller, B. L.; Deere, J. D.; Stein, D. A.; Kroeker, A. D.; Moulton, H. M.; Iversen, P. L.
2003-01-01
Antisense phosphorodiamidate morpholino oligomers (PMOs) were tested for the ability to inhibit gene expression in Escherichia coli. PMOs targeted to either a myc-luciferase reporter gene product or 16S rRNA did not inhibit luciferase expression or growth. However, in a strain with defective lipopolysaccharide (lpxA mutant), which has a leaky outer membrane, PMOs targeted to the myc-luciferase or acyl carrier protein (acpP) mRNA significantly inhibited their targets in a dose-dependent response. A significant improvement was made by covalently joining the peptide (KFF)3KC to the end of PMOs. In strains with an intact outer membrane, (KFF)3KC-myc PMO inhibited luciferase expression by 63%. A second (KFF)3KC-PMO conjugate targeted to lacI mRNA induced β-galactosidase in a dose-dependent response. The end of the PMO to which (KFF)3KC is attached affected the efficiency of target inhibition but in various ways depending on the PMO. Another peptide-lacI PMO conjugate was synthesized with the cationic peptide CRRRQRRKKR and was found not to induce β-galactosidase. We conclude that the outer membrane of E. coli inhibits entry of PMOs and that (KFF)3KC-PMO conjugates are transported across both membranes and specifically inhibit expression of their genetic targets. PMID:14506035
Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja
2013-09-24
We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013
Moulton, H M; Fletcher, S; Neuman, B W; McClorey, G; Stein, D A; Abes, S; Wilton, S D; Buchmeier, M J; Lebleu, B; Iversen, P L
2007-08-01
The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.
Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.
Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M
2018-05-03
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M.; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin’ichi; Yokota, Toshifumi
2017-01-01
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart. PMID:28373570
Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Lim, Kenji Rowel Q; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin'ichi; Yokota, Toshifumi
2017-04-18
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMD J ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMD J dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMD J dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.
Shabanpoor, Fazel; Hammond, Suzan M; Abendroth, Frank; Hazell, Gareth; Wood, Matthew J.A.
2017-01-01
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases. PMID:28118087
Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Heald, Alison E; Charleston, Jay S; Sazani, Pete; Reid, St Patrick; Iversen, Patrick L; Bavari, Sina
2015-02-10
Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures. Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval. Copyright © 2015 Warren et al.
Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics.
Chen, Jennifer Cj; King, Oliver D; Zhang, Yuanfan; Clayton, Nicholas P; Spencer, Carrie; Wentworth, Bruce M; Emerson, Charles P; Wagner, Kathryn R
2016-08-01
Derepression of DUX4 in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of antisense phosphorodiamidate morpholino oligonucleotides to suppress DUX4 expression and function in FSHD myotubes and xenografts. The most effective was phosphorodiamidate morpholino oligonucleotide FM10, which targets the polyadenylation signal of DUX4. FM10 had no significant cell toxicity, and RNA-seq analyses of FSHD and control myotubes revealed that FM10 down-regulated many transcriptional targets of DUX4, without overt off-target effects. Electroporation of FM10 into FSHD patient muscle xenografts in mice also down-regulated DUX4 and DUX4 targets. These findings demonstrate the potential of antisense phosphorodiamidate morpholino oligonucleotides as an FSHD therapeutic option.
Shabanpoor, Fazel; McClorey, Graham; Saleh, Amer F.; Järver, Peter; Wood, Matthew J.A.; Gait, Michael J.
2015-01-01
The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage (‘click chemistry’) in the other. The most active bi-specific CPP–PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP–PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation. PMID:25468897
Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina
2009-05-01
Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.
Sun, Xin; Marque, Leonard O.; Cordner, Zachary; Pruitt, Jennifer L.; Bhat, Manik; Li, Pan P.; Kannan, Geetha; Ladenheim, Ellen E.; Moran, Timothy H.; Margolis, Russell L.; Rudnicki, Dobrila D.
2014-01-01
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient–derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of HdhQ7/Q150 knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT. PMID:25035419
Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D
2007-09-01
Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.
Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.
Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja
2010-10-01
Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.
Iversen, Patrick L; Warren, Travis K; Wells, Jay B; Garza, Nicole L; Mourich, Dan V; Welch, Lisa S; Panchal, Rekha G; Bavari, Sina
2012-11-06
There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.
Popik, Waldemar; Khatua, Atanu; Hildreth, James E K; Lee, Benjamin; Alcendor, Donald J
2018-06-01
Zika virus (ZIKV) infection has been associated with microcephaly in infants. Currently there is no treatment or vaccine. Here we explore the use of a morpholino oligonucleotide targeted to the 5' untranslated region (5'-UTR) of the ZIKV RNA to prevent ZIKV replication. Morpholino DWK-1 inhibition of ZIKV replication in human glomerular podocytes was examined by qRT-PCR, reduction in ZIKV genome copy number, western blot analysis, immunofluorescence and proinflammatory cytokine gene expression. Podocytes pretreated with DWK-1 showed reduced levels of both viral mRNA and ZIKV E protein expression compared to controls. We observed suppression in proinflammatory gene expression for IFN-β (interferon β) RANTES (regulated on activation, normal T cell expressed and secreted), MIP-1α (macrophage inflammatory protein-1α), TNF-α (tumor necrosis factor-α) and IL1-α (interleukin 1-α) in ZIKV-infected podocytes pretreated with DWK-1. Morpholino DWK-1 targeting the ZIKV 5'-UTR effectively inhibits ZIKV replication and suppresses ZIKV-induced proinflammatory gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Iversen, Patrick L.; Warren, Travis K.; Wells, Jay B.; Garza, Nicole L.; Mourich, Dan V.; Welch, Lisa S.; Panchal, Rekha G.; Bavari, Sina
2012-01-01
There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates. PMID:23202506
Heald, Alison E; Iversen, Patrick L; Saoud, Jay B; Sazani, Peter; Charleston, Jay S; Axtelle, Tim; Wong, Michael; Smith, William B; Vutikullird, Apinya; Kaye, Edward
2014-11-01
Two identical single-ascending-dose studies evaluated the safety and pharmacokinetics (PK) of AVI-6002 and AVI-6003, two experimental combinations of phosphorodiamidate morpholino oligomers with positive charges (PMOplus) that target viral mRNA encoding Ebola virus and Marburg virus proteins, respectively. Both AVI-6002 and AVI-6003 were found to suppress disease in virus-infected nonhuman primates in previous studies. AVI-6002 (a combination of AVI-7537 and AVI-7539) or AVI-6003 (a combination of AVI-7287 and AVI-7288) were administered as sequential intravenous (i.v.) infusions of a 1:1 fixed dose ratio of the two subcomponents. In each study, 30 healthy male and female subjects between 18 and 50 years of age were enrolled in six-dose escalation cohorts of five subjects each and received a single i.v. infusion of active study drug (0.005, 0.05, 0.5, 1.5, 3, and 4.5 mg/kg per component) or placebo in a 4:1 ratio. Both AVI-6002 and AVI-6003 were safe and well tolerated at the doses studied. A maximum tolerated dose was not observed in either study. The four chemically similar PMOplus components exhibited generally similar PK profiles. The mean peak plasma concentration and area under the concentration-time curve values of the four components exhibited dose-proportional PK. The estimated plasma half-life of all four components was 2 to 5 h. The safety of the two combinations and the PK of the four components were similar, regardless of the target RNA sequence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
Burki, Umar; Straub, Volker
2017-01-01
Determining the concentration of oligonucleotide in biological samples such as tissue lysate and serum is essential for determining the biodistribution and pharmacokinetic profile, respectively. ELISA-based assays have shown far greater sensitivities compared to other methods such as HPLC and LC/MS. Here, we describe a novel ultrasensitive hybridization-based ELISA method for quantitating morpholino oligonucleotides in mouse tissue lysate and serum samples. The assay has a linear detection range of 5-250 pM (R2 > 0.99).
Synthesis of Mikto-Arm Star Peptide Conjugates.
Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang
2018-01-01
Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.
Lipid-peptide-polymer conjugates and nanoparticles thereof
Xu, Ting; Dong, He; Shu, Jessica
2015-06-02
The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.
Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney
2015-09-22
Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.
Electroactive polymer-peptide conjugates for adhesive biointerfaces.
Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos
2015-10-15
Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.
Bis-polymer lipid-peptide conjugates and nanoparticles thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Dong, He; Shu, Jessica
The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.
Peptide-conjugated micelles as a targeting nanocarrier for gene delivery
NASA Astrophysics Data System (ADS)
Lin, Wen Jen; Chien, Wei Hsuan
2015-09-01
The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.
Lessons learned from vivo-morpholinos: How to avoid vivo-morpholino toxicity
Ferguson, David P.; Dangott, Lawrence J.; Lightfoot, J. Timothy
2014-01-01
Vivo-morpholinos are a promising tool for gene silencing. These oligonucleotide analogs transiently silence genes by blocking either translation or pre-mRNA splicing. Little to no toxicity has been reported for vivo-morpholino treatment. However, in a recent study conducted in our lab, treatment of mice with vivo-morpholinos resulted in high mortality rates. We hypothesized that the deaths were the result of oligonucleotide hybridization, causing an increased cationic charge associated with the dendrimer delivery moiety of the vivo-morpholino. The cationic charge increased blood clot formation in whole blood treated with vivo-morpholinos, suggesting that clotting could have caused cardiac arrest in the deceased mice. Therefore, we investigate the mechanism by which some vivo-morpholinos increase mortality rates and propose techniques to alleviate vivo-morpholino toxicity. PMID:24806225
Maruyama, Rika; Echigoya, Yusuke; Caluseriu, Oana; Aoki, Yoshitsugu; Takeda, Shin'ichi; Yokota, Toshifumi
2017-01-01
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.
Fatty acid conjugation enhances the activities of antimicrobial peptides.
Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun
2013-04-01
Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.
Peptide-Drug Conjugate: A Novel Drug Design Approach.
Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun
2017-01-01
More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system.
Mukherjee, Biswajit; Karmakar, Swapna D; Hossain, Chowdhury M; Bhattacharya, Sanchari
2014-01-01
In the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc. are used as carrier for drug and biomolecules. Conjugates of polymers with proteins have also shown strong potency in the field of drug delivery. Polyethylene glycol is one of the most successful polymers that has been used extensively to develop protein conjugated formulations. Besides, polyvinyl pyrrolidone, polylactic-co- glycolic acid, N-(2-hydroxypropyl) methacrylamide copolymer, polyglutamic acid have also been investigated. In this re- view, we will highlight on the most recent overview of various advantages, limitations and marketed products of proteins, peptides and protein/peptide-polymer conjugates as drug carriers, such products in clinical trials and their various uses in the field of modern drug delivery. Understanding the key features of these materials and the vigorous research in this field will develop new drug formulations that will combat various types of life-threatening diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.; ...
2016-10-26
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
Peptide/protein-polymer conjugates: synthetic strategies and design concepts.
Gauthier, Marc A; Klok, Harm-Anton
2008-06-21
This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.
Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine
NASA Astrophysics Data System (ADS)
Shu, Jessica Yo
The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly
Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces
NASA Astrophysics Data System (ADS)
Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.
2008-05-01
The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.
Method for synthesizing peptides with saccharide linked enzyme polymer conjugates
Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.
1997-01-01
A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.
Method for synthesizing peptides with saccharide linked enzyme polymer conjugates
Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.
1997-06-17
A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.
Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji
2015-05-01
To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Cirak, Sebahattin; Arechavala-Gomeza, Virginia; Guglieri, Michela; Feng, Lucy; Torelli, Silvia; Anthony, Karen; Abbs, Stephen; Garralda, Maria Elena; Bourke, John; Wells, Dominic J; Dickson, George; Wood, Matthew JA; Wilton, Steve D; Straub, Volker; Kole, Ryszard; Shrewsbury, Stephen B; Sewry, Caroline; Morgan, Jennifer E; Bushby, Kate; Muntoni, Francesco
2011-01-01
Summary Background We report clinical safety and biochemical efficacy from a dose-ranging study of intravenously administered AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy. Method We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5–15 years with amenable deletions in DMD. Participants had a muscle biopsy before starting treatment and after 12 weekly intravenous infusions of AVI-4658. The primary study objective was to assess safety and tolerability of AVI-4658. The secondary objectives were pharmacokinetic properties and the ability of AVI-4658 to induce exon 51 skipping and dystrophin restoration by RT-PCR, immunohistochemistry, and immunoblotting. The study is registered, number NCT00844597. Findings 19 patients took part in the study. AVI-4658 was well tolerated with no drug-related serious adverse events. AVI-4658 induced exon 51 skipping in all cohorts and new dystrophin protein expression in a significant dose-dependent (p=0·0203), but variable, manner in boys from cohort 3 (dose 2 mg/kg) onwards. Seven patients responded to treatment, in whom mean dystrophin fluorescence intensity increased from 8·9% (95% CI 7·1–10·6) to 16·4% (10·8–22·0) of normal control after treatment (p=0·0287). The three patients with the greatest responses to treatment had 21%, 15%, and 55% dystrophin-positive fibres after treatment and these findings were confirmed with western blot, which showed an increase after treatment of protein levels from 2% to 18%, from 0·9% to 17%, and from 0% to 7·7% of normal muscle, respectively. The dystrophin-associated proteins α-sarcoglycan and neuronal nitric oxide synthase were also restored at the sarcolemma. Analysis of the inflammatory infiltrate indicated a reduction of cytotoxic T cells in the post-treatment muscle biopsies in the two high
Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1
Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.
2012-01-01
Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711
Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.
Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang
2015-01-21
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Entropic (de)stabilization of surface-bound peptides conjugated with polymers
NASA Astrophysics Data System (ADS)
Carmichael, Scott P.; Shell, M. Scott
2015-12-01
In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.
Entropic (de)stabilization of surface-bound peptides conjugated with polymers.
Carmichael, Scott P; Shell, M Scott
2015-12-28
In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.
Peptide π-Electron Conjugates: Organic Electronics for Biology?
Ardoña, Herdeline Ann M; Tovar, John D
2015-12-16
Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.
Uematsu, Shuta; Tabuchi, Yudai; Ito, Yuji; Taki, Masumi
2018-06-01
A peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride. The reaction efficiency and site/position specificity of the covalent conjugation between the binder and the target protein were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and rationalized by a protein-ligand docking simulation.
Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.
Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien
2014-11-10
We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.
Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces
NASA Astrophysics Data System (ADS)
Bhagwat, Nandita
Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization
Synthesis of N-peptide-6-amino-D-luciferin Conjugates.
Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K
2018-01-01
A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.
Synthesis of N-peptide-6-amino-D-luciferin Conjugates
Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.
2018-01-01
A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588
Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors
2018-01-01
O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J. V.; Goheen, Steven C.
The formation of peptide and protein conjugates of cellulose on cotton fabrics provides promising leads for the development of wound healing, antibacterial, and decontaminating textiles. An approach to the design, synthesis, and analysis of bioconjugates containing cellulose peptide and protein conjugates includes: 1) computer graphic modeling for a rationally designed structure; 2) attachment of the peptide or protein to cotton cellulose through a linker amino acid, and 3) characterization of the resulting bioconjugate. Computer graphic simulation of protein and peptide cellulose conjugates gives a rationally designed biopolymer to target synthetic modifications to the cotton cellulose. Techniques for preparing these typesmore » of conjugates involve both sequential assembly of the peptide on the fabric and direct crosslinking of the peptide or protein as cellulose bound esters or carboxymethylcellulose amides.« less
Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.
2016-01-01
The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445
Evaluating Ga-68 Peptide Conjugates for Targeting VPAC Receptors: Stability and Pharmacokinetics.
Kumar, Pardeep; Tripathi, Sushil K; Chen, C P; Wickstrom, Eric; Thakur, Mathew L
2018-05-25
In recent years, considerable progress has been made in the use of gallium-68 labeled receptor-specific peptides for imaging oncologic diseases. The objective was to examine the stability and pharmacokinetics of [ 68 Ga]NODAGA and DOTA-peptide conjugate targeting VPAC [combined for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP)] receptors on tumor cells. A VPAC receptor-specific peptide was chosen as a model peptide and conjugated to NODAGA and DOTA via solid-phase synthesis. The conjugates were characterized by HPLC and MALDI-TOF. Following Ga-68 chelation, the radiochemical purity of Ga-68 labeled peptide conjugate was determined by radio-HPLC. The stability was tested against transmetallation using 100 nM Fe 3+ /Zn 2+ /Ca 2+ ionic solution and against transchelation using 200 μM DTPA solution. The ex vivo and in vivo stability of the Ga-68 labeled peptide conjugate was tested in mouse plasma and urine. Receptor specificity was determined ex vivo by cell binding assays using human breast cancer BT474 cells. Positron emission tomography (PET)/X-ray computed tomography (CT) imaging, tissue distribution, and blocking studies were performed in mice bearing BT474 xenografts. The chemical and radiochemical purity was greater than 95 % and both conjugates were stable against transchelation and transmetallation. Ex vivo stability at 60 min showed that the NODAGA-peptide-bound Ga-68 reduced to 42.1 ± 3.7 % (in plasma) and 37.4 ± 2.9 % (in urine), whereas the DOTA-peptide-bound Ga-68 was reduced to 1.2 ± 0.3 % (in plasma) and 4.2 ± 0.4 % (in urine) at 60 min. Similarly, the in vivo stability for [ 68 Ga]NODAGA-peptide was decreased to 2.1 ± 0.2 % (in plasma) and 2.2 ± 0.4 % (in urine). For [ 68 Ga]DOTA-peptide, it was decreased to 1.4 ± 0.3 % (in plasma) and 1.2 ± 0.4 % (in urine) at 60 min. The specific BT474 cell binding was 53.9 ± 0.8 % for [ 68 Ga]NODAGA-peptide
Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation.
Frutos, S; Jordan, J B; Bio, M M; Muir, T W; Thiel, O R; Vila-Perelló, M
2016-10-12
An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners.
Access to site-specific Fc–cRGD peptide conjugates through streamlined expressed protein ligation†
Frutos, S.; Jordan, J. B.; Bio, M. M.; Muir, T. W.; Thiel, O. R.; Vila-Perelló, M.
2018-01-01
An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners. PMID:27722696
NASA Astrophysics Data System (ADS)
Keten, Sinan
Hybrid peptide-polymer conjugates have the potential to combine the advantages of natural proteins and synthetic polymers, resulting in biomaterials with improved stability, controlled assembly, and tailored functionalities. However, the effect of polymer conjugation on peptide structural organization and functionality, along with the behavior of polymers at the interface with biomolecules remain to be fully understood. This talk will summarize our recent efforts towards establishing a modeling framework to design entropic forces in helix-polymer conjugates and polymer-conjugated peptide nanotubes to achieve hierarchical self-assembling systems with predictable order. The first part of the talk will discuss how self-assembly principles found in biology, combined with polymer physics concepts can be used to create artificial membranes that mimic certain features of ion channels. Thermodynamics and kinetics aspects of self-assembly and how it governs the growth and stacking sequences of peptide nanotubes will be discussed, along with its implications for nanoscale transport. The second part of the talk will review advances related to modeling polymer conjugated coiled coils at relevant length and time scales. Atomistic simulations combined with sampling techniques will be presented to discuss the energy landscapes governing coiled-coil stability, revealing cascades of events governing disassembly. This will be followed by a discussion of mechanisms through which polymers can stabilize small proteins, such as shielding of solvents, and how specific peptide sequences can reciprocate by altering polymer conformations. Correlations between mechanical and thermal stability of peptides will be discussed. Finally, coarse-grained simulations will provide insight into how the location of polymer attachment changes entropic forces and higher-level organization in helix bundle assemblies. Our findings set the stage for a materials-by-design capability towards dictating complex
Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection.
Ganda, Ingrid S; Zhong, Qian; Hali, Mirabela; Albuquerque, Ricardo L C; Padilha, Francine F; da Rocha, Sandro R P; Whittum-Hudson, Judith A
2017-07-15
Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance. Copyright © 2017 Elsevier B.V. All
Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.
Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario
2014-11-28
The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.
Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review
Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying
2012-01-01
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics. PMID:23741608
Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation.
Dal Pozzo, Alma; Ni, Ming-Hong; Esposito, Emiliano; Dallavalle, Sabrina; Musso, Loana; Bargiotti, Alberto; Pisano, Claudio; Vesci, Loredana; Bucci, Federica; Castorina, Massimo; Foderà, Rosanna; Giannini, Giuseppe; Aulicino, Concetta; Penco, Sergio
2010-01-01
Five RGD peptide-camptothecin (CPT) conjugates were designed and synthesized with the purpose to improve the therapeutic index of this antitumoral drug family. New RGD cyclopeptides were selected on the basis of their high affinity to alpha(v) integrin receptors overexpressed by tumor cells and their metabolic stability. The conjugates can be divided in two groups: in the first the peptide was attached to the drug through an amide bond, in the second through a hydrazone bond. The main difference between the two spacers lies in their acid stability. Affinity to the receptors was maintained for all conjugates and their internalization into tumor cells was demonstrated. The first group conjugates showed lower in vitro and in vivo activity than the parent drug, probably due to the excessive stability of the amide bond, even inside the tumor cells. Conversely, the hydrazone conjugates exhibited in vitro tumor cell inhibition similar to the parent drug, indicating high conversion in the culture medium and/or inside the cells, but their poor solubility hampered in vivo experiments. On the basis of these results, information was acquired for additional development of derivatives with different linkers and better solubility for in vivo evaluation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
In vitro imaging of cells using peptide-conjugated quantum dots
NASA Astrophysics Data System (ADS)
Ishikawa, Mitsuru; Biju, Vasudevan
2010-02-01
Efficient intracellular delivery of quantum dots (QDs) in living cells and elucidating the mechanism of the delivery are essential for advancing the applications of QDs to in vivo imaging and in vivo photodynamic therapy. Here, we demonstrate that clathrin-mediated endocytosis is the most dominant pathway for the delivery of peptide-conjugated QDs. We selected an insect neuropeptide, allatostatin (AST1), conjugated with CdSe-ZnS QDs, and investigated the delivery of the conjugate in living cells. We evaluated the contributions of clathrin-mediated endocytosis, receptormediated endocytosis, and charge-based cell penetration to the delivery of QD605-AST1 conjugates by flow cytometry and fluorescence video microscopy. The delivery was suppressed by ~57% in inhibiting phosphoinositide 3-kinase with wortmannin, which blocks the formation of clathrin-coated vesicles, and by ~45% in incubating the cells at 4°C. Also, we identified clathrin-mediated endocytosis by two-color experiment to find colocalization of QD560-labeled clathrin heavy-chain antibody and QD605-AST1. We further observed reduction of the galanin receptor-mediated delivery of QD605-AST1 by ~8% in blocking the cells with a galanin antagonist, and reduction of charge-based cell penetration delivery by ~30% in removing the positive charge in the peptide from arginine and suppressing the cell-surface negative charge from glycosaminoglycan.
Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
Shao, Zhenxing; Zhang, Xin; Pi, Yanbin; Wang, Xiaokun; Jia, Zhuqing; Zhu, Jingxian; Dai, Linghui; Chen, Wenqing; Yin, Ling; Chen, Haifeng; Zhou, Chunyan; Ao, Yingfang
2012-04-01
Mesenchymal stem cell (MSC) is a promising cell source candidate in tissue engineering (TE) and regenerative medicine. However, the inability to target MSCs in tissues of interest with high efficiency and engraftment has become a significant barrier for MSC-based therapies. The mobilization and transfer of MSCs to defective/damaged sites in tissues or organs in vivo with high efficacy and efficiency has been a major concern. In the present study, we identified a peptide sequence (E7) with seven amino acids through phage display technology, which has a high specific affinity to bone marrow-derived MSCs. Subsequent analysis suggested that the peptide could efficiently interact specifically with MSCs without any species specificity. Thereafter, E7 was covalently conjugated onto polycaprolactone (PCL) electrospun meshes to construct an "MSC-homing device" for the recruitment of MSCs both in vitro and in vivo. The E7-conjugated PCL electrospun meshes were implanted into a cartilage defect site of rat knee joints, combined with a microfracture procedure to mobilize the endogenous MSCs. After 7 d of implantation, immunofluorescence staining showed that the cells grown into the E7-conjugated PCL electrospun meshes yielded a high positive rate for specific MSC surface markers (CD44, CD90, and CD105) compared with those in arginine-glycine-aspartic acid (RGD)-conjugated PCL electrospun meshes (63.67% vs. 3.03%; 59.37% vs. 2.98%; and 61.45% vs. 3.82%, respectively). Furthermore, the percentage of CD68 positive cells in the E7-conjugated PCL electrospun meshes was much lower than that in the RGD-conjugated PCL electrospun meshes (5.57% vs. 53.43%). This result indicates that E7-conjugated PCL electrospun meshes absorb much less inflammatory cells in vivo than RGD-conjugated PCL electrospun meshes. The results of the present study suggest that the identified E7 peptide sequence has a high specific affinity to MSCs. Covalently conjugating this peptide on the synthetic PCL mesh
Moral, Mario E G; Siahaan, Teruna J
2017-01-01
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Bugaj, Joseph E.; Achilefu, Samuel I.; Dorshow, Richard B.; Rajagopalan, Raghavan
2001-04-01
We have designed, synthesized, and evaluated the efficacy of novel dye-peptide conjugates that are receptor specific. Contrary to the traditional approach of conjugating dyes to large proteins and antibodies, we used small peptide-dye conjugates that target over-expressed receptors on tumors. Despite the fact that the peptide and the dye probe have similar molecular mass, our results demonstrate that the affinity of the peptide for its receptor and the dye fluorescence properties are both retained. The use of small peptides has several advantages over large biomolecules, including ease of synthesis of a variety of compounds for potential combinatorial screening of new targets, reproducibility of high purity compounds, diffusiveness to solid tumors, and the ability to incorporate a variety of functional groups that modify the pharmacokinetics of the peptide-dye conjugates. The efficacy of these new fluorescent optical contrast agents was evaluated in vivo in well-characterized rat tumor lines expressing somatostatin (sst2) and bombesin receptors. A simple continuous wave optical imaging system was employed. The resulting optical images clearly show that successful specific tumor targeting was achieved. Thus, we have demonstrated that small peptide- dye conjugates are effective as contrast agents for optical imaging of tumors.
Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus.
Tsuchikama, Kyoji; Shimamoto, Yasuhiro; Anami, Yasuaki
2017-06-09
The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.
Peptide-cellulose conjugates for protease point of care diagnostics and treatment
USDA-ARS?s Scientific Manuscript database
Peptide-cellulose conjugates containing Human Neutrophil Elastase substrate sequences with both colorimetric and fluorometric signal molecules have been synthesized on a variety of cellulosic and nanocellulosic substrates including cotton and wood nanocrystals, wood nanocomposites, cotton-based aero...
Li, Wenjing; Tan, Sihai; Xing, Yutong; Liu, Qian; Li, Shuang; Chen, Qingle; Yu, Min; Wang, Fengwei; Hong, Zhangyong
2018-04-02
Pyropheophorbide-a (Pyro) is a highly promising photosensitizer for tumor photodynamic therapy (PDT), although its very limited tumor-accumulation ability seriously restricts its clinical applications. A higher accumulation of photosensitizers is very important for the treatment of deeply seated and larger tumors. The conjugation of Pyro with tumor-homing peptide ligands could be a very useful strategy to optimize the physical properties of Pyro. Herein, we reported our studies on the conjugation of Pyro with a cyclic cRGDfK (cRGD) peptide, an integrin binding sequence, to develop highly tumor-specific photosensitizers for PDT application. To further reduce the nonspecific uptake and, thus, reduce the background distribution of the conjugates in normal tissues, we opted to add a highly hydrophilic polyethylene glycol (PEG) chain and an extra strongly hydrophilic carboxylic acid group as the linker to avoid the direct connection of the strongly hydrophobic Pyro macrocycle and cRGD ligand. We reported here the synthesis and characterization of these conjugates, and the influence of the hydrophilic modification on the biological function of the conjugates was carefully studied. The tumor-accumulation ability and photodynamic-induced cell-killing ability of these conjugates were evaluated through both in vitro cell-based experiment and in vivo distribution and tumor therapy experiments with tumor-bearing mice. Thus, the synthesized conjugate significantly improved the tumor enrichment and tumor selectivity of Pyro, as well as abolished the xenograft tumors in the murine model through a one-time PDT treatment.
Intracellular Delivery System for Antibody–Peptide Drug Conjugates
Berguig, Geoffrey Y; Convertine, Anthony J; Frayo, Shani; Kern, Hanna B; Procko, Erik; Roy, Debashish; Srinivasan, Selvi; Margineantu, Daciana H; Booth, Garrett; Palanca-Wessels, Maria Corinna; Baker, David; Hockenbery, David; Press, Oliver W; Stayton, Patrick S
2015-01-01
Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody–drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody–drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines. PMID:25669432
Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D
2017-07-05
Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George
2015-08-01
The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-02-10
Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less
L1 Peptide-Conjugated Fibrin Hydrogels Promote Salivary Gland Regeneration.
Nam, K; Wang, C-S; Maruyama, C L M; Lei, P; Andreadis, S T; Baker, O J
2017-07-01
Hyposalivation contributes to dental caries, periodontitis, and microbial infections. Additionally, it impairs activities of daily living (e.g., speaking, chewing, and swallowing). Treatments for hyposalivation are currently limited to medications (e.g., the muscarinic receptor agonists pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells and the use of saliva substitutes. However, given that these therapies provide only temporary relief, the development of alternative treatments to restore gland function is essential. Previous studies demonstrated that laminin 1 (L1) is critical for intact salivary cell cluster formation and organization. However, the full L1 sequence is not suitable for clinical applications, as each protein domain may contribute to unwanted effects, such as degradation, tumorigenesis, and immune responses that, when compounded, outweigh the potential benefits provided by their sum. Although the L1 peptides YIGSR and A99 linked to fibrin hydrogels (FHs) promote intact salivary epithelial formation in vitro, little is known about their role during salivary gland regeneration in vivo. Therefore, the goal of this study was to demonstrate whether L1 peptides conjugated to FHs promote tissue regeneration in a wound-healing model of mouse submandibular glands (mSMGs). Our results suggest that YIGSR-A99 peptides, chemically conjugated to FHs and applied to wounded mSMGs in vivo, formed new organized salivary tissue. In contrast, wounded mSMGs treated with FHs alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. Together these studies indicate that damaged salivary gland tissue can grow and differentiate when treated with FHs containing L1 peptides.
Targeted delivery of peptide-conjugated biocompatible gold nanoparticles into cancer cell nucleus
NASA Astrophysics Data System (ADS)
Qian, Wei; Curry, Taeyjuana; Che, Yong; Kopelman, Raoul
2013-02-01
Nucleus remains a significant target for nanoparticles with diagnostic and therapeutic applications because both genetic information of the cell and transcription machinery reside there. Novel therapeutic strategies (for example, gene therapy), enabled by safe and efficient delivery of nanoparticles and drug molecules into the nucleus, are heralded by many as the ultimate treatment for severe and intractable diseases. However, most nanomaterials and macromolecules are incapable of reaching the cell nucleus on their own, because of biological barriers carefully honed by evolution including cellular membrane and nuclear envelope. In this paper, we have demonstrated an approach of fabrication of biocompatible gold nanoparticle (Au NP)-based vehicles which can entering into cancer cell nucleus by modifying Au NPs with both PEG 5000 and two different peptides (RGD and nuclear localization signal (NLS) peptide). The Au NPs used were fabricated via femtosecond laser ablation of Au bulk target in deionized water. The Au NPs produced by this method provide chemical free, virgin surface, which allows us to carry out "Sequential Conjugation" to modify their surface with PEG 5000, RGD, and NLS. "Sequential Conjugation" described in this presentation is very critical for the fabrication of Au NP-based vehicles capable of entering into cancer cell nucleus as it enables the engineering and tuning surface chemistries of Au NPs by independently adjusting amounts of PEG and peptides bound onto surface of Au NPs so as to maximize their nuclear targeting performance and biocompatibility regarding the cell line of interest. Both optical microscopy and transmission electron microscopy (TEM) are used to confirm the in vitro targeted nuclear delivery of peptide-conjugated biocompatible Au NPs by showing their presence in the cancer cell nucleus.
Targeted Delivery of Ubiquitin-Conjugated BH3 Peptide-Based Mcl-1 Inhibitors into Cancer Cells
2015-01-01
BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents. PMID:24410055
Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation.
Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F Begum; Topal, Ahmet E; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B; Guler, Mustafa O
2018-01-10
Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.
Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu
2015-01-01
To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron
Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Charleston, Jay S; Heald, Alison; Nichols, Donald K; Mattix, Marc E; Palacios, Gustavo; Kugleman, Jeffrey R; Iversen, Patrick L; Bavari, Sina
2016-02-01
Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.
Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R
2013-10-01
We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard
2015-08-03
The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications.
Spicer, Christopher D; Jumeaux, Coline; Gupta, Bakul; Stevens, Molly M
2018-05-21
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Solid-phase synthesis of self-assembling multivalent π-conjugated peptides
Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...
2017-02-07
Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less
NASA Astrophysics Data System (ADS)
Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel
2006-02-01
Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.
Alexander, Natasha; Vali, Reza; Ahmadzadehfar, Hojjat; Shammas, Amer; Baruchel, Sylvain
2018-01-01
Childhood neuroblastoma is a heterogenous disease with varied clinical presentation and biology requiring different approaches to investigation and management. Metaiodobenzylguanidine (MIBG) is an essential component of metastatic staging for neuroblastoma and has been used as a treatment strategy for relapsed and refractory neuroblastoma. However, as 10% of children with neuroblastoma will have 123I-MIBG non-avid imaging and up to 60% with relapsed and refractory neuroblastoma will require further treatment with 131I-MIBG, alternative radioisotopes have been investigated for imaging and treatment. Neuroblastoma tumors express mostly somatostatin receptor- 2 (SSTR2) that can be targeted by somatostatin analogues including DOTA-conjugated peptides e.g. DOTATATE, DOTATOC. This review summarizes the rationale, utility and experience of DOTA-conjugated peptides in imaging and treatment of childhood neuroblastoma. Radiolabeled DOTA-peptides are used routinely in adults to image neuroendocrine tumors and have potential to be used to image and treat neuroblastoma. 68Ga-DOTATATE PET/CT has been shown to have better sensitivity, quicker clearance and administration times, reduced radiation exposure and limited toxicity compared to 123I-MIBG. Therapeutic studies of peptide receptor radionuclides e.g. 177Lu-DOTATATE in patients with relapsed neuroblastoma have used 68Ga- DOTATATE PET/CT to determine eligibility for therapy. Further studies would need to investigate appropriate indications, timings, scoring and clinical significance of radiolabeled DOTA-peptide conjugated PET/CT imaging in childhood neuroblastoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function.
Nam, Kihoon; Maruyama, Christina L; Wang, Ching-Shuen; Trump, Bryan G; Lei, Pedro; Andreadis, Stelios T; Baker, Olga J
2017-01-01
Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.
Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function
Nam, Kihoon; Maruyama, Christina L.; Wang, Ching-Shuen; Trump, Bryan G.; Lei, Pedro; Andreadis, Stelios T.
2017-01-01
Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration. PMID:29095857
Organic arsenicals as efficient and highly specific linkers for protein/peptide-polymer conjugation.
Wilson, Paul; Anastasaki, Athina; Owen, Matthew R; Kempe, Kristian; Haddleton, David M; Mann, Sarah K; Johnston, Angus P R; Quinn, John F; Whittaker, Michael R; Hogg, Philip J; Davis, Thomas P
2015-04-01
The entropy-driven affinity of trivalent (in)organic arsenicals for closely spaced dithiols has been exploited to develop a novel route to peptide/protein-polymer conjugation. A trivalent arsenous acid (As(III)) derivative (1) obtained from p-arsanilic acid (As(V)) was shown to readily undergo conjugation to the therapeutic peptide salmon calcitonin (sCT) via bridging of the Cys(1)-Cys(7) disulfide, which was verified by RP-HPLC and MALDI-ToF-MS. Conjugation was shown to proceed rapidly (t < 2 min) in situ and stoichiometrically through sequential reduction-conjugation protocols, therefore exhibiting conjugation efficiencies equivalent to those reported for the current leading disulfide-bond targeting strategies. Furthermore, using bovine serum albumin as a model protein, the trivalent organic arsenical 1 was found to demonstrate enhanced specificity for disulfide-bond bridging in the presence of free cysteine residues relative to established maleimide functional reagents. This specificity represents a shift toward potential orthogonality, by clearly distinguishing between the reactivity of mono- and disulfide-derived (vicinal or neighbors-through-space) dithiols. Finally, p-arsanilic acid was transformed into an initiator for aqueous single electron-transfer living radical polymerization, allowing the synthesis of hydrophilic arsenic-functional polymers which were shown to exhibit negligible cytotoxicity relative to a small molecule organic arsenical, and an unfunctionalized polymer control. Poly(poly[ethylene glycol] methyl ether acrylate) (PPEGA480, DPn = 10, Mn,NMR = 4900 g·mol(-1), Đ = 1.07) possessing a pentavalent arsenic acid (As(V)) α-chain end was transformed into trivalent As(III) post-polymerization via initial reduction by biological reducing agent glutathione (GSH), followed by binding of GSH. Conjugation of the resulting As(III)-functional polymer to sCT was realized within 35 min as indicated by RP-HPLC and verified later by thermodynamically
Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel
2015-01-01
In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
NASA Astrophysics Data System (ADS)
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.
Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L
2015-05-21
We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-01-01
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Ferreira, Soraya M Z M D; Carneiro, Hellem C; Alves, Rosemeire B; Batista, Ana Carolina S; da Silva Junior, Eufranio N; Dias, Gleiston G; Resende, Jarbas M; Santos, Daniel A; Oliveira, Debora L; Rodrigues, Marcio L; Freitas, Rossimiriam P
2018-01-01
Cryptococcosis is a fungal disease of global significance for which new effective treatments are needed. The conjugation of the synthetic antimicrobial peptide fragment UBI 31-38 to a coumarin derivative showed to be an effective approach for the design of a novel anticryptococcal agent. In addition to antifungal activity, the conjugate exhibited intense fluorescence, which could be valuable for mechanistic investigations of this molecule. In this work, we studied the photophysical properties of the conjugate and confocal scanning laser microscopy was used to inspect the distribution of the peptide-coumarin conjugate in Cryptococcus cell. The synergism of this compound with amphotericin B or fluconazole against C. gattii and C. neoformans strains was also investigated. The results indicated that the fluorescent conjugate alone as well as its combination with amphotericin B are promising tools against cryptococcosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung
2010-02-17
Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.
Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki
2017-06-01
Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.
Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.
2018-01-01
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033
Edwards, J Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle Nee; French, Alfred D; Condon, Brian D
2018-03-13
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity ( K m ) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased K m observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency ( k cat / K m ), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.
Huang, Changjiang; Yi, Xiulin; Kong, Dexin; Chen, Ligong; Min, Gong
2016-01-01
Peptide drug conjugates offer a novel strategy to achieve controlled drug release. This approach avoids the clinical obstacles of non-specific toxicity and overall drug resistance of conventional cytotoxic agents, such as paclitaxel. MMP2 plays important functions in tumour proliferation and metastasis. Herein, we conjugated the paclitaxel with a hexapeptide which is specific recognized by MMP2 protein. The conjugate is dissociated upon the MMP2 specific proteolysis at COOH terminal of hexapeptide, PVGLIG. The results clearly indicated that the PVGLIG-paclitaxel conjugate significantly enhanced the tumor specificity against HT-1080 and U87-MG tumour cells. Our finding suggested that the hexapeptide PVGLIG is capable to act as a controlled and sustained drug carrier of paclitaxel for the treatment against tumour proliferation and metastasis with high MMP2 expression. PMID:27447567
Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I
2017-01-01
Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.
Peptides conjugated to silver nanoparticles in biomedicine - a "value-added" phenomenon.
Ramesh, Suhas; Grijalva, Marcelo; Debut, Alexis; de la Torre, Beatriz G; Albericio, Fernando; Cumbal, Luis H
2016-11-15
Nanotechnology is gaining impetus in the present century and particularly the use of nanoparticles (NPs), whose properties are significantly different from the larger matter. These have found wider and potential applications in the fields of medicine, energy, cosmetics, environment and biomedicine. Among the NPs, silver nanoparticles (AgNPs) are of particular interest for scientists and technologists due to their unique physico-chemical and biological properties. Besides, AgNPs by themselves also possess broad-spectrum microbial activity, which has further expanded their application in both academia and industries. On the other hand, research and drug discovery in the field of peptides is surging. Chemistry and biology of peptides have seen a renaissance in this century as many of the peptide-based therapeutics have entered the market and many more are in the different phases of clinical trials. To fuel this, peptides have also found numerous applications in nanotechnology. Taking advantage of these two scenarios, namely, AgNPs and peptides, conjugation of these entities have emerged as a powerful technique and have opened the doors for a new revolution. Keeping this motivation in mind, we here present a mini-review on the combined concept of AgNPs and peptides.
Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel.
Kulhari, Hitesh; Pooja, Deep; Shrivastava, Shweta; V G M, Naidu; Sistla, Ramakrishna
2014-05-01
The aim of this research work was to develop Bombesin peptide (BBN) conjugated, docetaxel loaded nanocarrier for the treatment of breast cancer. Docetaxel loaded nanoparticles (DNP) were prepared by solvent evaporation method using sodium cholate as surfactant. BBN was conjugated to DNP surface through covalent bonding. Both DNP and BBN conjugated DNP (BDNP) were characterized by various techniques such as dynamic light scattering, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis. The particle diameter and zeta potential of BDNP were 136±3.95 nm and -10.8±2.7 mV, respectively. The change in surface charge and FTIR studies confirmed the formation of amide linkage between BBN and DNP. AFM analysis showed that nanoparticles were spherical in shapes. In nanoparticles, docetaxel was present in its amorphous form as confirmed by DSC and PXRD analysis and was stable during the thermal studies. The formulations showed the sustained release of DTX over the period of 120 h. During cellular toxicity assay in gastrin releasing peptide receptor positive breast cancer cells (MDA-MB-231), BDNP were found to be 12 times more toxic than pure DTX and Taxotere. The IC50 value for DTX, Taxotere, DNP and BDNP was >375, >375, 142.23 and 35.53 ng/ml, respectively. The above studies showed that Bombesin conjugated nanocarrier system could be a promising carrier for active targeting of anticancer drugs in GRP receptor over expressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-01-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2′-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences. PMID:29094037
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J; Wellings, Don A; Wade, John D; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-01-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2'- O -methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce "on-resin" aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.
NASA Astrophysics Data System (ADS)
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-10-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2’-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.
Podust, Vladimir N; Sim, Bee-Cheng; Kothari, Dharti; Henthorn, Lana; Gu, Chen; Wang, Chia-wei; McLaughlin, Bryant; Schellenberger, Volker
2013-11-01
XTEN, unstructured biodegradable proteins, have been used to extend the in vivo half-life of genetically fused therapeutic proteins and peptides. To expand the applications of XTEN technology to half-life extension of other classes of molecules, XTEN protein polymers and methods for chemical XTENylation were developed. Two XTEN precursors were engineered to contain enzymatically removable purification tags. The proteins were readily expressed in bacteria and purified to homogeneity by chromatography techniques. As proof-of-principle, GLP2-2G peptide was chemically conjugated to each of the two XTEN protein polymers using maleimide-thiol chemistry. The monodisperse nature of XTEN protein polymer enabled reaction monitoring as well as the detection of peptide modifications in the conjugated state using reverse phase-high performance liquid chromatography (RP-HPLC) and electrospray ionization mass spectrometry. The resulting GLP2-2G-XTEN conjugates were purified by preparative RP-HPLC to homogeneity. In comparison with recombinantly fused GLP2-2G-XTEN, chemically conjugated GLP2-2G-XTEN molecules exhibited comparable in vitro activity, in vitro plasma stability and pharmacokinetics in rats. These data suggest that chemical XTENylation could effectively extend the half-life of a wide spectrum of biologically active molecules, therefore broadening its applicability.
Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M
1997-03-01
Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.
Tsoneva, Yana; Jonker, Hendrik R A; Wagner, Manfred; Tadjer, Alia; Lelle, Marco; Peneva, Kalina; Ivanova, Anela
2015-02-19
The search for targeted drug delivery systems requires the design of drug-carrier complexes, which could both reach the malignant cells and preserve the therapeutic substance activity. A promising strategy aimed at enhancing the uptake and reducing the systemic toxicity is to bind covalently the drug to a cell-penetrating peptide. To understand the structure-activity relationship in such preparations, the chemotherapeutic drug doxorubicin was investigated by unrestrained molecular dynamics simulations, supported by NMR, which yielded its molecular geometry in aqueous environment. Furthermore, the structure and dynamics of a conjugate of the drug with a cell-penetrating peptide was obtained from molecular dynamics simulations in aqueous solution. The geometries of the unbound compounds were characterized at different temperatures, as well as the extent to which they change after covalent binding and whether/how they influence each other in the drug-peptide conjugate. The main structural fragments that affect the conformational ensemble of every molecule were found. The results show that the transitions between different substructures of the three compounds require a modest amount of energy. At increased temperature, either more conformations become populated as a result of the thermal fluctuations or the relative shares of the various conformers equalize at the nanosecond scale. These frequent structural interconversions suggest expressed conformational freedom of the molecules. Conjugation into the drug-peptide compound partially immobilizes the molecules of the parent compounds. Nevertheless, flexibility still exists, as well as an effective intra- and intermolecular hydrogen bonding that stabilizes the structures. We observe compact packing of the drug within the peptide that is also based on stacking interactions. All this outlines the drug-peptide conjugate as a prospective building block of a more complex drug-carrier system.
Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.
Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B
2017-02-15
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavor, John
The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less
Zou, Tingting; Liu, Jianbin; Song, Huanlu; Liu, Ye
2018-06-01
Knowledge of the role of peptides in the Maillard reaction is rather limited. In this study, peptide Maillard reaction model systems were established. Volatile and nonvolatile MRPs (Maillard reaction products) were investigated by GC-O-MS and LC-MS. Carbohydrate module labeling (CAMOLA) experiments were performed to elucidate the carbon skeleton of these compounds. Results showed that the peptide reaction system generated more pyrazines than the free amino acid group. Several new Amadori-type conjugates were identified as novel Maillard reaction products that could greatly influence the formation of pyrazines. Our work suggested anew mechanism involving these Amadori-type conjugates and subsequent investigation revealed that the conjugates could be important intermediate products in the reaction between dicarbonyl and dipeptide. Our findings demonstrate anew pyrazine generation mechanism in the dipeptide Maillard reaction. We found that a dipeptide Maillard reaction system generated more pyrazines than a reaction system composed of free amino acids. New cross-linked peptide-sugar compounds were identified and found to impact the formation of pyrazines. The results of this study may help in the preparation of thermal reaction flavors using enzymatically hydrolyzed vegetable/animal proteins, which contain a considerable amount of peptides, as one of the major reactants. © 2018 Institute of Food Technologists®.
Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.
2007-01-01
The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837
Sun, Yuanxia; Hayakawa, Shigeru; Ogawa, Masahiro; Izumori, Ken
2005-12-28
Protein-sugar conjugates generated in nonenzymatic glycation of alpha-lactalbumin (LA) with rare sugars [D-allose (All) and D-psicose (Psi)] and alimentary sugars as controls [D-glucose (Glc) and D-fructose (Fru)] were qualitatively determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Mass spectra revealed that the extent of glycation at lysine residues on LA with D-aldose molecules was very much higher than that of glycation with d-ketose molecules. To identify the specific site of glycation, the peptide mapping was established from protease V8 digestion, using a combination of computational cutting of proteins and MALDI-TOF-MS. As compared to peptide mapping, three and seven glycation sites were located in the primary structure of LA-ketose and LA-aldose conjugates, respectively. On the other hand, the antioxidant activities of protein-sugar conjugates and their peptic hydrolysates were investigated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging method. The antioxidant activities of proteins/peptides glycated with rare sugars were significantly higher than those modified with the control sugars. The results indicated that the glycation degree and position were not markedly different between rare sugar and corresponding control sugar, but the antioxidant properties of protein and its hydrolysate were significantly enhanced by modifying with rare sugar.
Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C
2008-01-07
The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.
Okorochenkov, Sergei A; Zheltukhina, Galina A; Mirchink, Elena P; Isakova, Elena B; Feofanov, Alexey V; Nebolsin, Vladimir E
2013-10-01
The increasing prevalence of antibiotic-resistant bacterial strains has necessitated the synthesis of novel antibacterial agents. It was previously shown that naturally occurring metalloporphyrin hemin possesses dark antibacterial activity against Gram-positive bacteria. To improve hemin antibacterial activity, we synthesized a number of hemin conjugates with amino acids and branched peptides. Arginine-containing hemin conjugates demonstrated high antibacterial activity against Gram-positive bacteria including methicillin- and vancomycin-resistant strains in vitro. Most of the synthesized conjugates showed low toxicity against human erythrocytes and leukocytes. © 2013 John Wiley & Sons A/S.
Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O
2018-05-31
π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.
Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva
2010-10-07
Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.
Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito
2017-12-15
The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
McLean, Alan M.; Socher, Elke; Varnavski, Oleg; Clark, Travis B.
2014-01-01
We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the important calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments. PMID:24245815
Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes
Place, Elsie S.; Smith, James C.
2017-01-01
Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALENs, and we have gone on to establish a viable homozygous tmem88aΔ8 mutant line. Although tmem88aΔ8 mutants have reduced expression of some key haematopoietic genes, differentiation of erythrocytes and neutrophils is unaffected, contradicting our previous study using antisense morpholino oligonucleotides. We find that expression of the tmem88a paralogue tmem88b is not significantly changed in tmem88aΔ8 mutants and injection of the tmem88a splice-blocking morpholino oligonucleotide into tmem88aΔ8 mutants recapitulates the reduction of erythrocytes observed in morphants using o-Dianisidine. This suggests that there is a partial, but inessential, requirement for tmem88a during haematopoiesis and that morpholino injection exacerbates this phenotype in tmem88a morpholino knockdown embryos. PMID:28192479
NASA Astrophysics Data System (ADS)
Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.
2012-03-01
Enhanced permeability and retention (EPR) effects for tumor treatment have been utilized as a representative strategy to accumulate untargeted nanoparticles in the blood vessels around tumors. However, the EPR effect itself was not sufficient for the nanoparticles to penetrate into cancer cells. For the improvement of diagnosis and treatment of cancer using nanoparticles, many more nanoparticles need to specifically enter cancer cells. Otherwise, can leave the tumor area and not contribute to treatment. In order to enhance the internalization process, specific ligands on nanoparticles can help their specific internalization in cancer cells by receptor-mediated endocytosis. We previously developed glycol chitosan based nanoparticles that suggested a promising possibility for in vivo tumor imaging using the EPR effect. The glycol chitosan nanoparticles showed a long circulation time beyond 1 day and they were accumulated predominantly in tumor. In this study, we evaluated two peptides for specific targeting and better internalization into urinary bladder cancer cells. We conjugated the peptides on to the glycol chitosan nanoparticles; the peptide-conjugated nanoparticles were also labeling with near infrared fluorescent (NIRF) dye, Cy5.5, to visualize them by optical imaging in vivo. Importantly real-time NIRF imaging can also be used for fluorescence (NIRF)-guided surgery of tumors beyond normal optical penetration depths. The peptide conjugated glycol chitosan nanoparticles were characterized with respect to size, stability and zeta-potential and compared with previous nanoparticles without ligands in terms of their internalization into bladder cancer cells. This study demonstrated the possibility of our nanoparticles for tumor imaging and emphasized the importance of specific targeting peptides.
DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes
Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.
2002-01-01
The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673
Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel
2016-08-16
The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.
Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.
Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J
2016-03-21
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
Sadowsky, Jack D; Pillow, Thomas H; Chen, Jinhua; Fan, Fang; He, Changrong; Wang, Yanli; Yan, Gang; Yao, Hui; Xu, Zijin; Martin, Shanique; Zhang, Donglu; Chu, Phillip; Dela Cruz-Chuh, Josefa; O'Donohue, Aimee; Li, Guangmin; Del Rosario, Geoffrey; He, Jintang; Liu, Luna; Ng, Carl; Su, Dian; Lewis Phillips, Gail D; Kozak, Katherine R; Yu, Shang-Fan; Xu, Keyang; Leipold, Douglas; Wai, John
2017-08-16
Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.
Neuner, Philippe; Peier, Andrea M; Talamo, Fabio; Ingallinella, Paolo; Lahm, Armin; Barbato, Gaetano; Di Marco, Annalise; Desai, Kunal; Zytko, Karolina; Qian, Ying; Du, Xiaobing; Ricci, Davide; Monteagudo, Edith; Laufer, Ralph; Pocai, Alessandro; Bianchi, Elisabetta; Marsh, Donald J; Pessi, Antonello
2014-01-01
Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi,K.; Brown, C.; Gu, Z.
2005-01-01
Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone bindingmore » destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.« less
40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...
40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...
40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...
Abes, Saïd; Moulton, Hong M; Clair, Philippe; Prevot, Paul; Youngblood, Derek S; Wu, Rebecca P; Iversen, Patrick L; Lebleu, Bernard
2006-12-01
The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.
Neuman, Benjamin W.; Stein, David A.; Kroeker, Andrew D.; Churchill, Michael J.; Kim, Alice M.; Kuhn, Peter; Dawson, Philip; Moulton, Hong M.; Bestwick, Richard K.; Iversen, Patrick L.; Buchmeier, Michael J.
2005-01-01
The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) is a potent pathogen of humans and is capable of rapid global spread. Peptide-conjugated antisense morpholino oligomers (P-PMO) were designed to bind by base pairing to specific sequences in the SARS-CoV (Tor2 strain) genome. The P-PMO were tested for their capacity to inhibit production of infectious virus as well as to probe the function of conserved viral RNA motifs and secondary structures. Several virus-targeted P-PMO and a random-sequence control P-PMO showed low inhibitory activity against SARS coronavirus. Certain other virus-targeted P-PMO reduced virus-induced cytopathology and cell-to-cell spread as a consequence of decreasing viral amplification. Active P-PMO were effective when administered at any time prior to peak viral synthesis and exerted sustained antiviral effects while present in culture medium. P-PMO showed low nonspecific inhibitory activity against translation of nontargeted RNA or growth of the arenavirus lymphocytic choriomeningitis virus. Two P-PMO targeting the viral transcription-regulatory sequence (TRS) region in the 5′ untranslated region were the most effective inhibitors tested. After several viral passages in the presence of a TRS-targeted P-PMO, partially drug-resistant SARS-CoV mutants arose which contained three contiguous base point mutations at the binding site of a TRS-targeted P-PMO. Those partially resistant viruses grew more slowly and formed smaller plaques than wild-type SARS-CoV. These results suggest PMO compounds have powerful therapeutic and investigative potential toward coronavirus infection. PMID:16014928
Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R
2015-02-11
Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brezden, Anna; Mohamed, Mohamed F; Nepal, Manish; Harwood, John S; Kuriakose, Jerrin; Seleem, Mohamed N; Chmielewski, Jean
2016-08-31
Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.
Aiba, Yuichiro; Honda, Yuta; Komiyama, Makoto
2015-03-02
Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M
2016-04-01
Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Characterization of zebrafish dysferlin by morpholino knockdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.
2011-09-23
Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafishmore » dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.« less
Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok
2014-12-12
Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less
Johnson, Gregory A; Muthukrishnan, Nandhini; Pellois, Jean-Philippe
2013-01-16
We test the hypothesis that the antimicrobial peptide (KLAKLAK)(2) enhances the photodynamic activity of the photosensitizer eosin Y upon conjugation. The conjugate eosin-(KLAKLAK)(2) was obtained by solid-phase peptide synthesis. Photoinactivation assays were performed against the Gram-negative bacteria Escherichia coli , Pseudomonas aeruginosa , and multidrug resistant Acinetobacter baumannii AYE, as well as the Gram-positive bacteria Staphylococcus aureus , and Staphylococcus epidermidis . Partitioning assays were performed with E. coli and S. aureus . Photohemolysis and photokilling assays were also performed to assess the photodynamic activity of the conjugate toward mammalian cells. Eosin-(KLAKLAK)(2) photoinactivates 99.999% of 10(8) CFU/mL of most bacteria tested at a concentration of 1 μM or below. In contrast, neither eosin Y nor (KLAKLAK)(2) cause any significant photoinactivation under similar conditions. The increase in photodynamic activity of the photosensitizer conferred by the antimicrobial peptide is in part due to the fact that (KLAKLAK)(2) promotes the association of eosin Y to bacteria. Eosin-(KLAKLAK)(2) does not significantly associate with red blood cells or the cultured mammalian cell lines HaCaT, COS-7, and COLO 316. Consequently, little photodamage or photokilling is observed with these cells under conditions for which bacterial photoinactivation is achieved. The peptide (KLAKLAK)(2) therefore significantly enhances the photodynamic activity of eosin Y toward both Gram-positive and Gram-negative bacteria while interacting minimally with human cells. Overall, our results suggest that antimicrobial peptides such as (KLAKLAK)(2) might serve as attractive agents that can target photosensitizers to bacteria specifically.
Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells
NASA Astrophysics Data System (ADS)
Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.
2014-02-01
Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side
Self-assembling peptide-based building blocks in medical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less
Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer
Hwang, Patrick; McIntosh, Roberus; Green, Hadiyah N; Jun, Ho-Wook; Dean, Derrick
2014-01-01
Summary The field of nanomedicine has emerged as an approach to enhance the specificity and efficacy of cancer treatments as stand-alone therapies and in combination with standard chemotherapeutic treatment regimens. The current standard of care for metastatic cancer, doxorubicin (DOX), is presented with challenges, namely toxicity due to a lack of specificity and targeted delivery. Nano-enabled targeted drug delivery systems can provide an avenue to overcome these issues. Nanodiamonds (ND), in particular, have been researched over the past five years for use in various drug delivery systems but minimal work has been done that incorporates targeting capability. In this study, a novel targeted drug delivery system for bone metastatic prostate cancer was developed, characterized, and evaluated in vitro. NDs were conjugated with the Asp–Gly–Glu–Ala (DGEA) peptide to target α2β1 integrins over-expressed in prostate cancers during metastasis. To facilitate drug delivery, DOX was adsorbed to the surface of the ND-DGEA conjugates. Successful preparation of the ND-DGEA conjugates and the ND-DGEA+DOX system was confirmed with transmission electron microscopy, hydrodynamic size, and zeta potential measurements. Since traditional DOX treatment regimens lack specificity and increased toxicity to normal tissues, the ND-DGEA conjugates were designed to distinguish between cells that overexpress α2β1 integrin, bone metastatic prostate cancers cells (PC3), and cells that do not, human mesenchymal stem cells (hMSC). Utilizing the ND-DGEA+DOX system, the efficacy of 1 µg/mL and 2 µg/mL DOX doses increased from 2.5% to 12% cell death and 11% to 34% cell death, respectively. These studies confirmed that the delivery and efficacy of DOX were enhanced by ND-DGEA conjugates. Thus, the targeted ND-DGEA+DOX system provides a novel approach for decreasing toxicity and drug doses. PMID:25161829
Engelmann, Brett W
2017-01-01
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
NASA Astrophysics Data System (ADS)
Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.
2016-07-01
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.
Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J
2016-01-01
Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243
2015-01-01
The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg11)CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg11)CCMSH (2), RVD-β-Ala-(Arg11)CCMSH (3), RAD-β-Ala-(Arg11)CCMSH (4), NAD-β-Ala-(Arg11)CCMSH (5), and EAD-β-Ala-(Arg11)CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their 99mTc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six 99mTc-peptides. 99mTc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these 99mTc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using 99mTc-4 as an imaging probe. PMID:25290883
Flook, Adam M; Yang, Jianquan; Miao, Yubin
2014-11-13
The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.
Palomo, Jose M
2017-01-01
This chapter describes the rational design and synthesis of semisynthetic lipases by site-directed incorporation of tailor-made peptides on the lipase-lid site to improve its activity, specificity, and enantioselectivity in specific biotransformations. Cysteine was genetically introduced at a particular point of the oligopeptide lid of the enzyme, and cysteine-containing peptides, complementary to the amino acid sequence on the lid site of Geobacillus thermocatenulatus lipase (BTL), were covalently attached on the lid of two different cysteine-BTL variants based on a fast thiol-disulfide exchange ligation followed by desulfurization. The BTL variants were initially immobilized on solid support to introduce the advantages of solid-state chemistry, such as quantitative transformations, easy purification, and recyclability. In the two different immobilized variants BTL-A193C and BTL-L230C, the cysteine was then activated with 2-dipyridyldisulfide to help the disulfide exchange with the peptide, generating the semisynthetic enzyme in high yield. Excellent results of improvement of activity and selectivity were obtained. For example, the peptide-BTL conjugate (at position 193) was 40-fold more active than the corresponding unmodified enzyme for the hydrolysis of per-acetylated thymidine at pH 5, or fourfold in the desymmetrization of dimethyl-3-phenylglutarate at pH 7. The new enzyme also exhibited excellent enantioselectivity in the desymmetrization reaction with enantiomeric excess (ee) of >99% when compared to that of the unmodified enzyme (ee=78%). © 2017 Elsevier Inc. All rights reserved.
Echigoya, Yusuke; Lim, Kenji Rowel Q; Trieu, Nhu; Bao, Bo; Miskew Nichols, Bailey; Vila, Maria Candida; Novak, James S; Hara, Yuko; Lee, Joshua; Touznik, Aleksander; Mamchaoui, Kamel; Aoki, Yoshitsugu; Takeda, Shin'ichi; Nagaraju, Kanneboyina; Mouly, Vincent; Maruyama, Rika; Duddy, William; Yokota, Toshifumi
2017-11-01
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan
2015-01-01
Despite adenovirus (Ad) vector’s numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. PMID:26437261
Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai
2018-04-01
A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Anajafi, Tayebeh; Yu, Junru; Sedigh, Abbas; Haldar, Manas K; Muhonen, Wallace W; Oberlander, Seth; Wasness, Heather; Froberg, Jamie; Molla, Md Shahjahan; Katti, Kalpana S; Choi, Yongki; Shabb, John B; Srivastava, D K; Mallik, Sanku
2017-06-05
Improving the therapeutic index of anticancer agents is an enormous challenge. Targeting decreases the side effects of the therapeutic agents by delivering the drugs to the intended destination. Nanocarriers containing the nuclear localizing peptide sequences (NLS) translocate to the cell nuclei. However, the nuclear localization peptides are nonselective and cannot distinguish the malignant cells from the healthy counterparts. In this study, we designed a "masked" NLS peptide which is activated only in the presence of overexpressed matrix metalloproteinase-7 (MMP-7) enzyme in the pancreatic cancer microenvironment. This peptide is conjugated to the surface of redox responsive polymersomes to deliver doxorubicin and curcumin to the pancreatic cancer cell nucleus. We have tested the formulation in both two- and three-dimensional cultures of pancreatic cancer and normal cells. Our studies revealed that the drug-encapsulated polymeric vesicles are significantly more toxic toward the cancer cells (shrinking the spheroids up to 49%) compared to the normal cells (shrinking the spheroids up to 24%). This study can lead to the development of other organelle targeted drug delivery systems for various human malignancies.
NASA Astrophysics Data System (ADS)
Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen
2013-08-01
Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific
Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach
2016-07-01
In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.
Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach
2016-01-01
Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639
Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan
2015-12-28
Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.
Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yang; Moore, Edwin G.; Guo, Yanshu
Amyloid aggregation and deposition are associated with many intractable human diseases. Although the inhibition of amyloid protein aggregation has been well-studied, the disaggregation and dissolution of existing amyloid fibrils is less known. Taking a fibrillar assembly of amyloid β (Aβ) peptide as the model system, in this paper we report multivalent polymer–peptide conjugates (mPPCs) that disassemble preformed Aβ fibrils into dispersible sub-100 nm structures. Atomic force microscopy and dynamic light scattering studies show that the disassembly rate of preformed Aβ fibrils is controlled by the molecular weight of mPPCs. Rate equations on fibril disappearance are deduced from a simple model,more » which indicate that the disassembly reaction is first-order in the concentration of Aβ fibrils and a pseudo-first-order reaction in the concentration of peptide moieties on mPPCs, respectively. We eliminate the possibility that the disassembly occurs by the association between mPPCs and Aβ monomer/oligomers based on circular dichroism and Thioflavin T fluorescence assays. It is mostly likely that the mPPCs disassemble Aβ fibrils through a direct interaction. Finally, the mPPCs may thus offer a general macromolecular design concept that breaks down existing amyloid fibrils in a predictable fashion.« less
Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner
Song, Yang; Moore, Edwin G.; Guo, Yanshu; ...
2017-03-14
Amyloid aggregation and deposition are associated with many intractable human diseases. Although the inhibition of amyloid protein aggregation has been well-studied, the disaggregation and dissolution of existing amyloid fibrils is less known. Taking a fibrillar assembly of amyloid β (Aβ) peptide as the model system, in this paper we report multivalent polymer–peptide conjugates (mPPCs) that disassemble preformed Aβ fibrils into dispersible sub-100 nm structures. Atomic force microscopy and dynamic light scattering studies show that the disassembly rate of preformed Aβ fibrils is controlled by the molecular weight of mPPCs. Rate equations on fibril disappearance are deduced from a simple model,more » which indicate that the disassembly reaction is first-order in the concentration of Aβ fibrils and a pseudo-first-order reaction in the concentration of peptide moieties on mPPCs, respectively. We eliminate the possibility that the disassembly occurs by the association between mPPCs and Aβ monomer/oligomers based on circular dichroism and Thioflavin T fluorescence assays. It is mostly likely that the mPPCs disassemble Aβ fibrils through a direct interaction. Finally, the mPPCs may thus offer a general macromolecular design concept that breaks down existing amyloid fibrils in a predictable fashion.« less
Besar, Kalpana; Ardoña, Herdeline Ann M; Tovar, John D; Katz, Howard E
2015-12-22
π-Conjugated peptide materials are attractive for bioelectronics due to their unique photophysical characteristics, biofunctional interfaces, and processability under aqueous conditions. In order to be relevant for electrical applications, these types of materials must be able to support the passage of current and the transmission of applied voltages. Presented herein is an investigation of both the current and voltage transmission activities of one-dimensional π-conjugated peptide nanostructures. Observations of the nanostructures as both semiconducting and gate layers in organic field-effect transistors (OFETs) were made, and the effect of systematic changes in amino acid composition on the semiconducting/conducting functionality of the nanostructures was investigated. These molecular variations directly impacted the hole mobility values observed for the nanomaterial active layers over 3 orders of magnitude (∼0.02 to 5 × 10(-5) cm(2) V(-1) s(-1)) when the nanostructures had quaterthiophene cores and the assembled peptide materials spanned source and drain electrodes. Peptides without the quaterthiophene core were used as controls and did not show field-effect currents, verifying that the transport properties of the nanostructures rely on the semiconducting behavior of the π-electron core and not just ionic rearrangements. We also showed that the nanomaterials could act as gate electrodes and assessed the effect of varying the gate dielectric layer thickness in devices where the conventional organic semiconductor pentacene spanned the source and drain electrodes in a top-contact OFET, showing an optimum performance with 35-40 nm dielectric thickness. This study shows that these peptides that self-assemble in aqueous environments can be used successfully to transmit electronic signals over biologically relevant distances.
O'Connor, Stephen; Szwej, Emilia; Nikodinovic-Runic, Jasmina; O'Connor, Aisling; Byrne, Annette T; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M; Babu, Ramesh; Kenny, Shane T; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin E
2013-04-01
The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.
Conjugation Approach To Produce a Staphylococcus aureus Synbody with Activity in Serum.
Lainson, John C; Fuenmayor, Mariana Ferrer; Johnston, Stephen Albert; Diehnelt, Chris W
2015-10-21
Synbodies show promise as a new class of synthetic antibiotics. Here, we explore improvements in their activity and production through conjugation chemistry. Maleimide conjugation is a widely used conjugation strategy due to its high yield, selectivity, and low cost. We used this strategy to conjugate two antibacterial peptides to produce a bivalent antibacterial peptide, called a synbody that has bactericidal activity against methicillin resistant Staphylococcus aureus (MRSA). The synbody was prepared by conjugation of a partially d-amino acid substituted synthetic antibacterial peptide to a bis-maleimide scaffold. The synbody slowly degrades in serum, but also undergoes exchange reactions with other serum proteins, such as albumin. Therefore, we hydrolyzed the thiosuccinimide ring using a mild hydrolysis protocol to produce a new synbody with similar bactericidal activity. The synbody was now resistant to exchange reactions and maintained bactericidal activity in serum for 2 h. This work demonstrates that low-cost maleimide coupling can be used to produce antibacterial peptide conjugates with activity in serum.
Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wartchow, C.A.; Wang, Peng; Bednarski, M.D.
1995-12-31
The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonylmore » amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.« less
Gastrin Receptor-Avid Peptide Conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2005-07-26
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, C. A.
2001-01-01
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Sieckman, Gary; Smith, Charles J.; Gali, Hariprasad
2006-06-13
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a-moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2006-12-12
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Hegde, Aswathi R; Rewatkar, Prarthana V; Manikkath, Jyothsna; Tupally, Karnaker; Parekh, Harendra S; Mutalik, Srinivas
2017-05-01
The aim of this study was to evaluate skin delivery of ketoprofen when covalently tethered to mildly cationic (2 + or 4 + ) peptide dendrimers prepared wholly by solid phase peptide synthesis. The amino acids glycine, arginine and lysine formed the dendrimer with ketoprofen tethered either to the lysine side-arm (N ε ) or periphery of dendrimeric branches. Passive diffusion, sonophoresis- and iontophoresis-assisted permeation of each peptide dendrimer-drug conjugate (D1-D4) was studied across mouse skin, both in vitro and in vivo. In addition, skin toxicity of dendrimeric conjugates when trialed with iontophoresis or sonophoresis was also evaluated. All dendrimeric conjugates improved aqueous solubility at least 5-fold, compared to ketoprofen alone, while also exhibiting appreciable lipophilicity. In vitro passive diffusion studies revealed that ketoprofen in its native form was delivered to a greater extent, compared with a dendrimer-conjugated form at the end of 24h (Q 24h (μg/cm 2 ): ketoprofen (68.06±3.62)>D2 (49.62±2.92)>D4 (19.20±0.89)>D1 (6.45±0.40)>D3 (2.21±0.19). However, sonophoresis substantially increased the skin permeation of ketoprofen-dendrimer conjugates in 30min (Q 30min (μg/cm 2 ): D4 (122.19±7.14)>D2 (66.74±3.86)>D1 (52.10±3.22)>D3 (41.66±3.22)) although ketoprofen alone again proved superior (Q 30min : 167.99±9.11μg/cm 2 ). Next, application of iontophoresis was trialed and shown to considerably increase permeation of dendrimeric ketoprofen in 6h (Q 6h (μg/cm 2 ): D2 (711.49±39.14)>D4 (341.23±16.43)>D3 (89.50±4.99)>D1 (50.91±2.98), with a Q 6h value of 96.60±5.12μg/cm 2 for ketoprofen alone). In vivo studies indicated that therapeutically relevant concentrations of ketoprofen could be delivered transdermally when iontophoresis was paired with D2 (985.49±43.25ng/mL). Further, histopathological analysis showed that the dendrimeric approach was a safe mode as ketoprofen alone. The present study successfully demonstrates that
Huang, Xiaohua; Peng, Xianghong; Wang, Yiqing; Wang, Yuxiang; Shin, Dong M.; El-Sayed, Mostafa A.; Nie, Shuming
2010-01-01
The targeted delivery of nanoparticles to solid tumors is one of the most important and challenging problems in cancer nanomedicine, but the detailed delivery mechanisms and design principles are still not well understood. Here we report quantitative tumor uptake studies for a class of elongated gold nanocrystals (called nanorods) that are covalently conjugated to tumor-targeting peptides. A major advantage in using gold as a “tracer” is that the accumulated gold in tumors and other organs can be quantitatively determined by elemental mass spectrometry (gold is not a natural element found in animals). Thus, colloidal gold nanorods are stabilized with a layer of polyethylene glycols (PEGs), and are conjugated to three different ligands: (i) a single-chain variable fragment (ScFv) peptide that recognizes the epidermal growth factor receptor (EGFR); (ii) an amino terminal fragment (ATF) peptide that recognizes the urokinase plasminogen activator receptor (uPAR); and (iii) a cyclic RGD peptide that recognizes the avb3 integrin receptor. Quantitative pharmacokinetic and biodistribution data show that these targeting ligands only marginally improve the total gold accumulation in xenograft tumor models in comparison with nontargeted controls, but their use could greatly alter the intracellular and extracellular nanoparticle distributions. When the gold nanorods are administered via intravenous injection, we also find that active molecular targeting of the tumor microenvironments (e.g., fibroblasts, macrophages, and vasculatures) does not significantly influence the tumor nanoparticle uptake. These results suggest that for photothermal cancer therapy, the preferred route of gold nanorod administration is intra-tumoral injection instead of intravenous injection. PMID:20863096
2006-01-01
Bavari 1* 1 US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America, 2 AVI BioPharma ...used as controls in these experiments. The PMOs were synthesized by AVI BioPharma , (Corvallis, Oregon, United States), as previously described [35]. In...interests. RB, DAS, and PLI have financial interest in AVI BioPharma , the company that supplied the PMO compounds for these studies. & References 1
Xie, Xiangyang; Lin, Wen; Liu, Hui; Deng, Jianping; Chen, Ying; Liu, Hong; Fu, Xudong; Yang, Yang
2016-10-01
To improve the targeting delivery efficiency of anticancer drug to tumor sites, a new strategy combining cell-permeable peptide (CPP) and ultrasound was reported in this article. In this study, we devised and tested a strategy for functional payload delivery to cells by loading CPP-camptothecin conjugate (CPP-CPT) into nanobubble (CPP-CPT NB). Here, CPP existing in the conjugation form of CPP and CPT was hidden in nanobubble to cloak the penetration activity of CPP. Meanwhile, local tumor ultrasound was utilized to achieve specific targeting of CPP-CPT to the tumor cells. The mean particle size of the prepared CPP-CPT NB was ∼200 nm, and the drug entrapment efficiency was >80%. Stimulated by ultrasound, over 90% of the entrapped CPP-CPTs would release from the nanobubbles. Subsequent research demonstrated that the CPP-CPT NB showed effective cellular uptake and significant cytotoxic activity in HeLa cells in vitro. Additionally, after systemic administration in mice, CPP-CPT NB with ultrasound showed a higher tumor inhibition effect in nude mice xenografted HeLa cells tumors and excellent body safety when compared with normal CPT injection group. In conclusion, the carrier constructed in this study would be a safe and efficiently drug delivery system for specific cancer treatment.
Peetla, Chiranjeevi; Rao, Kavitha S.; Labhasetwar, Vinod
2009-01-01
The aim of the study was to test the hypothesis that the biophysical interactions of the trans-activating transcriptor (TAT) peptide-conjugated nanoparticles (NPs) with a model cell membrane could predict the cellular uptake of the encapsulated therapeutic agent. To test the above hypothesis, the biophysical interactions of ritonavir-loaded poly (L-lactide) nanoparticles (RNPs), either conjugated to a TAT peptide (TAT-RNPs) or scrambled TAT peptide (sc-TAT-RNPs), were studied with an endothelial cell model membrane (EMM) using a Langmuir film balance, and the corresponding human vascular endothelial cells (HUVECs) were used to study the uptake of the encapsulated therapeutic. Biophysical interactions were determined from the changes in surface pressure (SP) of the EMM as a function of time following interaction with NPs, and the compression isotherm (π–A) of the EMM lipid mixture in the presence of NPs. In addition, the EMMs were transferred onto a silicon substrate following interactions with NPs using the Langmuir–Schaeffer (LS) technique. The transferred LS films were imaged by atomic force microscopy (AFM) to determine the changes in lipid morphology and to characterize the NP–membrane interactions. TAT-RNPs showed an increase in SP of the EMM, which was dependent upon the amount of the peptide bound to NPs and the concentration of NPs, whereas sc-TAT-RNPs and RNPs did not show any significant change in SP. The isotherm experiment showed a shift towards higher mean molecular area (mmA) in the presence of TAT-RNPs, indicating their interactions with the lipids of the EMM, whereas sc-TAT-RNPs and RNPs did not show any significant change. The AFM images showed condensation of the lipids following interaction with TAT-RNPs, indicating their penetration into the EMM, whereas RNPs did not cause any change. Surface analysis and 3-D AFM images of the EMM further confirmed penetration of TAT-RNPs into the EMM whereas RNPs were seen anchored loosely to the
Peterson, Elizabeth; Joseph, Christine; Peterson, Hannah; Bouwman, Rachael; Tang, Shengzhuang; Cannon, Jayme; Sinniah, Kumar; Choi, Seok Ki
2018-06-19
Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van) 4 bound most tightly with a K D of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van) 1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.
Anticancer activity of drug conjugates in head and neck cancer cells.
Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M
2016-06-01
Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).
Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A
2015-07-08
Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
NASA Astrophysics Data System (ADS)
Srinivasa, Hosapalya Thimmaiah; Harishkumar, Hosanagara Narayana; Palakshamurthy, Bandrehalli Siddagangappa
2017-03-01
New set of trifluromethyl, diethylamino and morpholino derived coumarin compounds were prepared by reacting various coumarin 3-carboxylic acids with various phenyl esters with peripheral alkyl, ester and polar cyano moieties in the presence of EDC.HCl/DMAP as esterification agent. The chemical structures of new coumarin derivatives were confirmed by standard spectroscopic techniques and mesomorphic behaviours were established by polarised optical microscopy (POM) and differential scanning calorimetry (DSC). Trifluoromethane and morpholino derivatives show SmA/Nematic phase, while diethylamino derivatives did not show liquid crystalline property.
Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate.
Mohamed, Mohamed F; Brezden, Anna; Mohammad, Haroon; Chmielewski, Jean; Seleem, Mohamed N
2017-04-01
The worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS). Antibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated. P14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens. The potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections. This study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides. Copyright © 2017 Elsevier B.V. All rights reserved.
Soler, Marta; González-Bártulos, Marta; Figueras, Eduard; Ribas, Xavi; Costas, Miquel; Massaguer, Anna; Planas, Marta; Feliu, Lidia
2015-02-07
The undecapeptide KKLFKKILKKL-NH2 (BP16) is a non-toxic cell-penetrating peptide (CPP) that is mainly internalized into cancer cells through a clathrin dependent endocytic mechanism and localizes in late endosomes. Moreover, this CPP is able to enhance the cellular uptake of chlorambucil (CLB) improving its cytotoxicity. In this work, we further explored the cell-penetrating properties of BP16 and those of its arginine analogue BP308. We investigated the influence on the cytotoxicity and on the cellular uptake of conjugating CLB at the N- or the C-terminal end of these undecapeptides. The effect of incorporating the cathepsin B-cleavable sequence Gly-Phe-Leu-Gly in CLB-BP16 and CLB-BP308 conjugates was also evaluated. The activity of CLB was significantly improved when conjugated at the N- or the C-terminus of BP16, or at the N-terminus of BP308. While CLB alone was not active (IC50 of 73.7 to >100 μM), the resulting conjugates displayed cytotoxic activity against CAPAN-1, MCF-7, PC-3, 1BR3G and SKMEL-28 cell lines with IC50 values ranging from 8.7 to 25.5 μM. These results were consistent with the internalization properties observed for the corresponding 5(6)-carboxyfluorescein-labeled conjugates. The presence of the tetrapeptide Gly-Phe-Leu-Gly at either the N- or the C-terminus of CLB-BP16 conjugates further increased the efficacy of CLB (IC50 of 3.6 to 16.2 μM), which could be attributed to its selective release in the lysosomal compartment. Enzymatic assays with cathepsin B showed the release of CLB-Gly-OH from these sequences within a short time. Therefore, the combination of BP16 with an enzymatic cleavable sequence can be used as a drug delivery system for the effective uptake and release of drugs in cancer cells.
Bendifallah, Nadia; Rasmussen, Frank Winther; Zachar, Vladimir; Ebbesen, Peter; Nielsen, Peter E; Koppelhus, Uffe
2006-01-01
Cell-penetrating peptides (CPPs) are characterized by their ability to be internalized in mammalian cells. To investigate the relative potency of CPPs as carriers of medicinally relevant cargo, a positive read-out assay based on the ability of a peptide nucleic acid (PNA) oligomer to promote correct expression of a recombinant luciferase gene was employed. Seven different CPPs were included in the study: Transportan, oligo-arginine (R7-9), pTat, Penetratin, KFF, SynB3, and NLS. The CPP-PNA conjugates were synthesized by different conjugation chemistries: continuous synthesis, maleimide coupling, and ester or disulfide linkage. Under serum-free conditions PNA-SS-Transportan-amide (ortho)-PNA was found to be the most potent conjugate, resulting in maximum luciferase signal at a concentration of 1-2 microM. (D-Arg)9-PNA showed optimal efficacy at 5 microM but gave rise to only one-third of the luciferase signal obtained with the Transportan conjugate. The pTat- and KFF-PNA conjugates showed significantly lower efficacy. The penetratin-, SynB3-. and NLS-PNA conjugates showed only minimal or no activity. Serum was found to have a drastic negative impact on CPP-driven cellular uptake. PNA-SS-Transportan-acid (ortho) and (D-Arg)9-PNA were least sensitive to the presence of serum. Both the chemical nature and, in the case of Transportan, the position of the peptide PNA coupling were found to have a major impact on the transport capacity of the peptides. However, no simple relationship between linker type and antisense activity of the conjugates could be deduced from the data.
Improving Peptide Applications Using Nanotechnology.
Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P
2016-01-01
Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.
Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy.
Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M
2015-01-01
Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.
Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy
Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M
2015-01-01
Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS. PMID:26604753
Xiong, Xiao-Bing; Mahmud, Abdullah; Uludağ, Hasan; Lavasanifar, Afsaneh
2007-03-01
An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.
Zanuy, David; Hamley, Ian W; Alemán, Carlos
2011-07-21
The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helical-like arrangements. Furthermore, calculations indicate that backbone···side chain interactions involving the N-H of the amide groups and the π clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand, MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.
Janghra, Narinder; Mitrpant, Chalermchai; Dickinson, Rachel L.; Anthony, Karen; Price, Loren; Eperon, Ian C.; Wilton, Stephen D.; Morgan, Jennifer
2013-01-01
Abstract In the search for the most efficacious antisense oligonucleotides (AOs) aimed at inducing SMN2 exon 7 inclusion, we systematically assessed three AOs, PMO25 (−10, −34), PMO18 (−10, −27), and PMO20 (−10, −29), complementary to the SMN2 intron 7 splicing silencer (ISS-N1). PMO25 was the most efficacious in augmenting exon 7 inclusion in vitro in spinal muscular atrophy (SMA) patient fibroblasts and in vitro splicing assays. PMO25 and PMO18 were compared further in a mouse model of severe SMA. After a single intracerebroventricular (ICV) injection in neonatal mice, PMO25 increased the life span of severe SMA mice up to 30-fold, with average survival greater by 3-fold compared with PMO18 at a dose of 20 μg/g and 2-fold at 40 μg/g. Exon 7 inclusion was increased in the CNS but not in peripheral tissues. Systemic delivery of PMO25 at birth achieved a similar outcome and produced increased exon 7 inclusion both in the CNS and peripherally. Systemic administration of a 10-μg/g concentration of PMO25 conjugated to an octaguanidine dendrimer (VMO25) increased the life span only 2-fold in neonatal type I SMA mice, although it prevented tail necrosis in mild SMA mice. Higher doses and ICV injection of VMO25 were associated with toxicity. We conclude that (1) the 25-mer AO is more efficient than the 18-mer and 20-mer in modifying SMN2 splicing in vitro; (2) it is more efficient in prolonging survival in SMA mice; and (3) naked Morpholino oligomers are more efficient and safer than the Vivo-Morpholino and have potential for future SMA clinical applications. PMID:23339722
Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes
2013-07-22
RXR)4XB and (KFF)3K, were previously reported as a potent permeabilizer against E. coli and MRSA cells (Mellbye, 2009). (RW)4D, a small dendrimeric ...lethal concentration (Liu, 2007). Scheme 1. Synthesis of PNA- dendrimer conjugate. (a) (RW)4D-cysteine (b)Free PNA (C) PNA-(RW)4D conjugates
Costley, David; Nesbitt, Heather; Ternan, Nigel; Dooley, James; Huang, Ying-Ying; Hamblin, Michael R; McHale, Anthony P; Callan, John F
2017-01-01
Combating antimicrobial resistance is one of the most serious public health challenges facing society today. The development of new antibiotics or alternative techniques that can help combat antimicrobial resistance is being prioritised by many governments and stakeholders across the globe. Antimicrobial photodynamic therapy is one such technique that has received considerable attention but is limited by the inability of light to penetrate through human tissue, reducing its effectiveness when used to treat deep-seated infections. The related technique sonodynamic therapy (SDT) has the potential to overcome this limitation given the ability of low-intensity ultrasound to penetrate human tissue. In this study, a Rose Bengal-antimicrobial peptide conjugate was prepared for use in antimicrobial SDT (ASDT). When Staphylococcus aureus and Pseudomonas aeruginosa planktonic cultures were treated with the conjugate and subsequently exposed to ultrasound, 5 log and 7 log reductions, respectively, in bacterial numbers were observed. The conjugate also displayed improved uptake by bacterial cells compared with a mammalian cell line (P ≤ 0.01), whilst pre-treatment of a P. aeruginosa biofilm with ultrasound resulted in a 2.6-fold improvement in sensitiser diffusion (P ≤ 0.01). A preliminary in vivo experiment involving ASDT treatment of P. aeruginosa-infected wounds in mice demonstrated that ultrasound irradiation of conjugate-treated wounds affects a substantial reduction in bacterial burden. Combined, the results obtained from this study highlight ASDT as a targeted broad-spectrum novel modality with potential for the treatment of deep-seated bacterial infections. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha
2016-09-01
Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.
NASA Astrophysics Data System (ADS)
Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki
2011-09-01
We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.
Modulation of Stat3 Alternative Splicing in Breast Cancer
2010-09-01
using morpholino oligonucleotides covalently linked to an octaguanidine dendrimer (vivo- morpholinos) [54]. Since delivery of vivo-morpholino oligos...Li, and S. Jiang, Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques, 2008. 45(6
Deas, Tia S; Binduga-Gajewska, Iwona; Tilgner, Mark; Ren, Ping; Stein, David A; Moulton, Hong M; Iversen, Patrick L; Kauffman, Elizabeth B; Kramer, Laura D; Shi, Pei-Yong
2005-04-01
RNA elements within flavivirus genomes are potential targets for antiviral therapy. A panel of phosphorodiamidate morpholino oligomers (PMOs), whose sequences are complementary to RNA elements located in the 5'- and 3'-termini of the West Nile (WN) virus genome, were designed to anneal to important cis-acting elements and potentially to inhibit WN infection. A novel Arg-rich peptide was conjugated to each PMO for efficient cellular delivery. These PMOs exhibited various degrees of antiviral activity upon incubation with a WN virus luciferase-replicon-containing cell line. Among them, PMOs targeting the 5'-terminal 20 nucleotides (5'End) or targeting the 3'-terminal element involved in a potential genome cyclizing interaction (3'CSI) exhibited the greatest potency. When cells infected with an epidemic strain of WN virus were treated with the 5'End or 3'CSI PMO, virus titers were reduced by approximately 5 to 6 logs at a 5 muM concentration without apparent cytotoxicity. The 3'CSI PMO also inhibited mosquito-borne flaviviruses other than WN virus, and the antiviral potency correlated with the conservation of the targeted 3'CSI sequences of specific viruses. Mode-of-action analyses showed that the 5'End and 3'CSI PMOs suppressed viral infection through two distinct mechanisms. The 5'End PMO inhibited viral translation, whereas the 3'CSI PMO did not significantly affect viral translation but suppressed RNA replication. The results suggest that antisense PMO-mediated blocking of cis-acting elements of flavivirus genomes can potentially be developed into an anti-flavivirus therapy. In addition, we report that although a full-length WN virus containing a luciferase reporter (engineered at the 3' untranslated region of the genome) is not stable, an early passage of this reporting virus can be used to screen for inhibitors against any step of the virus life cycle.
Cysteine-containing peptide tag for site-specific conjugation of proteins
Backer, Marina V.; Backer, Joseph M.
2008-04-08
The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.
Cysteine-containing peptide tag for site-specific conjugation of proteins
Backer, Marina V.; Backer, Joseph M.
2010-10-05
The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.
Chan, Judy Yuet-Wa; Zhou, Hefeng; Kwan, Yiu Wa; Chan, Shun Wan; Radis-Baptista, Gandhi; Lee, Simon Ming-Yuen
2017-11-01
Crotamine is defensin-like cationic peptide from rattlesnake venom that possesses anticancer, antimicrobial, and antifungal properties. Despite these promising biological activities, toxicity is a major concern associated with the development of venom-derived peptides as therapeutic agents. In the present study, we used zebrafish as a system model to evaluate the toxicity of rhodamine B-conjugated (RhoB) crotamine derivative. The lethal toxic concentration of RhoB-crotamine was as low as 4 μM, which effectively kill zebrafish larvae in less than 10 min. With non-lethal concentrations (<1 μM), crotamine caused malformation in zebrafish embryos, delayed or completely halted hatching, adversely affected embryonic developmental programming, decreased the cardiac functions, and attenuated the swimming distance of zebrafish. The RhoB-crotamine translocated across vitelline membrane and accumulated in zebrafish yolk sac. These results demonstrate the sensitive responsivity of zebrafish to trial crotamine analogues for the development of novel therapeutic peptides with improved safety, bioavailability, and efficacy profiles. © 2017 Wiley Periodicals, Inc.
CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.
Zhao, Jingjing; Zhang, Bo; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Pang, Zhiqing
2015-07-15
Glioblastoma multiforme (GBM) is the most aggressive central nervous system (CNS) tumor because of its fast development, poor prognosis, difficult control and terrible mortality. Poor penetration and retention in the glioblastoma parenchyma were crucial challenges in GBM nanomedicine therapy. Nanoparticle diameter can significantly influence the delivery efficiency in tumor tissue. Decreasing nanoparticle size can improve the nanoparticle penetration in tumor tissue but decrease the nanoparticle retention effect. Therefore, small nanoparticles with high retention effect in tumor are urgently needed for effective GBM drug delivery. In present study, a small nanoparticle drug delivery system was developed by conjugating fibrin-binding peptide CREKA to Polyamidoamine (PAMAM) dendrimer, where PEGylated PAMAM is used as drug carrier due to its small size and good penetration in tumor and CREKA is used to target the abundant fibrin in GBM for enhanced retention in tumor. In vitro binding ability tests demonstrated that CREKA can significantly enhanced nanoparticle binding with fibrin. In vivo fluorescence imaging of GBM bearing nude mice, ex vivo brain imaging and frozen slices fluorescence imaging further revealed that the CREKA-modified PAMAM achieved higher accumulation and deeper penetration in GBM tissue than unmodified one. These results indicated that the CREKA-modified PAMAM could penetrate the GBM tissue deeply and enhance the retention effect, which was a promising strategy for brain tumor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Template-Directed Ligation of Peptides to Oligonucleotides
NASA Technical Reports Server (NTRS)
Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.
1996-01-01
Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.
Yu, Qian; Wu, Yongmei; Liu, Zi; Lei, Sheng; Li, Gaiping; Ye, Baoxian
2018-06-01
This work designed an artificial substrate peptide to synthesize peptide-hemin/G-quadruplex (peptide-DNAzyme) conjugates. In addition to enhancing catalytic activity of hemin/G-quadruplex, the peptide could also be induced and cleaved by prostate specific antigen (PSA). It was the first report on peptide-DNAzyme conjugates in application of the peptide biosensor. The polyethyleneimine-reduced graphene oxide@hollow platinum nanotubes (PEI-rGO@PtNTs) nanocomposites were cast on the glassy carbon electrode in order to form the interface of biocompatibility and huge surface area for bioprobes immobilization. In absence of PSA, the peptide-DNAzyme conjugates retained intact on the surface of the electrode to produce a strong response signal. But in presence of PSA, the peptide-DNAzyme conjugates were destroyed to release electron mediators, resulting in dramatical decrease of the electrochemicl signal. Therefore, the method had high sensitivity and super selectivity with the limit of detection calculated as 2.0 fg/mL. Furthermore, the strategy would be promising to apply for other proteases by transforming the synthetic peptide module of target. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie
2015-05-01
Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.
Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M
2013-06-03
Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.
NASA Astrophysics Data System (ADS)
Arsene, Cristian G.; Schulze, Dirk; Kratzsch, Jürgen; Henrion, André
2012-12-01
Amphiphilic peptide conjugation affords a significant increase in sensitivity with protein quantification by electrospray-ionization mass spectrometry. This has been demonstrated here for human growth hormone in serum using N-(3-iodopropyl)-N,N,N-dimethyloctylammonium iodide (IPDOA-iodide) as derivatizing reagent. The signal enhancement achieved in comparison to the method without derivatization enables extension of the applicable concentration range down to the very low concentrations as encountered with clinical glucose suppression tests for patients with acromegaly. The method has been validated using a set of serum samples spiked with known amounts of recombinant 22 kDa growth hormone in the range of 0.48 to 7.65 \\mug/L. The coefficient of variation (CV) calculated, based on the deviation of results from the expected concentrations, was 3.5% and the limit of quantification (LoQ) was determined as 0.4 \\mug/L. The potential of the method as a tool in clinical practice has been demonstrated with patient samples of about 1 \\mug/L.
Processing of carcinoembryonic antigen by Kupffer cells: recognition of a penta-peptide sequence.
Gangopadhyay, A; Thomas, P
1996-10-01
Carcinoembryonic antigen (CEA) binds to an 80-kDa cell surface receptor on Kupffer cells via the peptide sequence PELPK (residues 108-112) located at the hinge region between the N and Al immunoglobulin-like domains. This study is aimed at analyzing the specificity of the peptide binding, determining biodistribution of 80-kDa receptor, and processing of CEA by this receptor. We synthesized a number of bovine serum albumin (BSA) derivatives carrying PELPK and related sequences. A series of peptides (YPELPK, YPDLPK, YPDLPR, and YPELGK) were conjugated to bovine serum albumin using N-hydroxysuccinimidyl-4-azidobenzoate. When 125I peptide conjugates, CEA, and BSA were injected intravenously into rats CEA and the PELPK-albumin conjugate were cleared rapidly. The other peptide conjugates and BSA cleared at a much slower rate. Activity of 125I-labeled CEA and PELPK-albumin conjugate per gram of tissue was highest for the liver and spleen. Clearance of 125I-CEA was inhibited by the presence of higher concentrations of the PELPK-albumin conjugate. With isolated rat Kupffer cells, only CEA and the PELPK-albumin conjugate were bound and internalized in vitro and CEA binding was inhibited by higher concentrations of the PELPK-albumin conjugate. Similarly, binding of the PELPK-albumin conjugate was inhibited by the presence of unlabeled CEA. Use of a heterobifunctional cross linking agent demonstrated reaction of the PELPK-albumin with an 80-kDa protein on the Kupffer cell surface by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). This semisynthetic ligand (PELPK-albumin) allows us to examine the function of the 80-kDa receptor without interference due to other properties of CEA including its ability to bind lectins and to cause homotypic aggregation of cells. The consequences of CEA binding to the 80-kDa receptor may have implications in the development of hepatic metastasis from colorectal cancer.
Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo
2018-01-11
Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.
Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin.
Yuan, Zhi-xiang; Wu, Xiao-juan; Mo, Jingxin; Wang, Yan-li; Xu, Chao-qun; Lim, Lee Yong
2015-08-01
We have previously demonstrated that peptide fragments (PFs) of the human serum albumin could be developed as potential renal targeting carriers, in particular, the peptide fragment, PF-A299-585 (A299-585 representing the amino acid sequence of the human serum albumin). In this paper, we conjugated triptolide (TP), the anti-inflammatory Chinese traditional medicine, to PF-A299-585 via a succinic acid spacer to give TPS-PF-A299-585 (TP loading 2.2% w/w). Compared with the free TP, TPS-PF-A299-585 exhibited comparable anti-inflammatory activity in the lipopolysaccharide stimulated MDCK cells, but was significantly less cytotoxic than the free drug. Accumulation of TPS-PF-A299-585 in the MDCK cells in vitro and in rodent kidneys in vivo was demonstrated using FITC-labeled TPS-PF-A299-585. Renal targeting was confirmed in vivo in a membranous nephropathic (MN) rodent model, where optical imaging and analyses of biochemical markers were combined to show that TPS-PF-A299-585 was capable of alleviating the characteristic symptoms of MN. The collective data affirm PF-A299-585 to be a useful carrier for targeting TP to the kidney. Copyright © 2015 Elsevier B.V. All rights reserved.
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately
Shariat, Sheida; Badiee, Ali; Jalali, Seyed Amir; Mansourian, Mercedeh; Yazdani, Mona; Mortazavi, Seyed Alireza; Jaafari, Mahmoud Reza
2014-12-01
Vaccines containing synthetic peptides derived from tumor-associated antigens (TAA) can elicit potent cytotoxic T lymphocyte (CTL) response if they are formulated in an optimal vaccine delivery system. The aim of this study was to develop a simple and effective lipid-based vaccine delivery system using P5 HER2/neu-derived peptide conjugated to Maleimide-PEG2000-DSPE. The conjugated lipid was then incorporated into liposomes composed of DMPC:DMPG:Chol:DOPE containing Monophosphoryl lipid A (MPL) (Lip-DOPE-P5-MPL). Different liposome formulations were prepared and characterized for their physicochemical properties. To evaluate anti-tumoral efficacy, BALB/c mice were immunized subcutaneously 3 times in two-week intervals and the generated immune response was studied. The results demonstrated that Lip-DOPE-P5-MPL induced a significantly higher IFN-γ production by CD8+ T cells intracellularly which represents higher CTL response in comparison with other control formulations. CTL response induced by this formulation caused the lowest tumor size and the longest survival time in a mice model of TUBO tumor. The encouraging results achieved by Lip-DOPE-P5-MPL formulation could make it a promising candidate in developing effective vaccines against Her2 positive breast cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C
2012-01-27
In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling
Novel alpha-MSH peptide analogs for melanoma targeting
NASA Astrophysics Data System (ADS)
Flook, Adam Michael
Skin cancer is the one of the most diagnosed cancers in the United States with increasing incidence over the past two decades. There are three major forms of skin cancer but melanoma is the deadliest. It is estimated that 76,690 new diagnoses of melanoma and 9,480 deaths will occur in 2013. Melanoma accounts for approximately 1.6% of all cancer related deaths and is the 5 th leading diagnosed cancer in the United States. The mean survival rate of patients diagnosed with metastatic melanoma is six months, with five year survival rates of less than 5%. In this project, we describe the design and characterization of novel melanoma-targeting peptide analogs for use in diagnostic imaging of both primary and metastatic melanoma lesions. Novel alpha-MSH peptide conjugates were designed to target the melanocortin-1 receptor present and over-expressed on melanoma cells. These peptides were synthesized and their in-vitro melanocortin-1 receptor binding affinities were established in murine melanoma cells. Once binding affinities were determined, the peptides were radiolabeled with 99mTc utilizing a novel direct radiolabeling technique developed in our laboratory. The peptides were purified via reverse-phase high performance liquid chromatography and in-vivo melanoma targeting and pharmacokinetic properties were determined in B16/F1 melanoma-bearing female C57BL/6 mice. Biodistribution and SPECT/CT imaging studies were performed with the promising 99m Tc-labeled peptide conjugates. All alpha-MSH peptide conjugates tested showed low nanomolar binding affinity for the melanocortin-1 receptor. All peptides were readily radiolabeld with 99mTc with greater than 95% radiochemical purity. All 99mTc-labeled peptides displayed high specific in-vivo melanoma tumor uptake while maintaining low normal organ accumulation, and were excreted through the urinary system in a timely fashion. In addition, all tested 99mTc-labeld alpha-MSH peptides demonstrated clear visualization of in
Connell, Timothy U; Hayne, David J; Ackermann, Uwe; Tochon-Danguy, Henri J; White, Jonathan M; Donnelly, Paul S
2014-04-01
New 1,4-substituted pyridyl-1,2,3-triazole ligands with pendent phenyl isothiocyanate functional groups linked to the heterocycle through a short methylene or longer polyethylene glycol spacers were prepared and conjugated to a peptide containing the arginine-glycine-aspartic acid peptide motif. Rhenium and technetium carbonyl complexes, [M(CO)3 L(x) (py)](+) (where M = Re(I) or (99m) Tc(I) ; L(x) = 1,4-substituted pyridyl-1,2,3-triazole ligands and py = pyridine) were prepared. One rhenium complex has been characterized by X-ray crystallography, and the luminescent properties of [M(CO)3 L(x) (py)](+) are reported. Copyright © 2013 John Wiley & Sons, Ltd.
Light-induced propulsion of a giant liposome driven by peptide nanofibre growth.
Inaba, Hiroshi; Uemura, Akihito; Morishita, Kazushi; Kohiki, Taiki; Shigenaga, Akira; Otaka, Akira; Matsuura, Kazunori
2018-04-19
Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.
Peptide Transduction-Based Therapies for Prostate Cancer
2004-06-01
using an M13 peptide phage display library. Initial screening of the library for transduction of tumors in vivo has identified peptides able to...marker conjugates may have to be tested. (Months 6-12, Year 1) Progress: These experiments have been initiated. Task 4. An M13 peptide phage display ... phage 12 amino acid control peptide display library (New England Biolabs, Beverly, MA ) was used. Briefly, One nude mouse bearing a human tumor line
Xie, Xiangyang; Yang, Yanfang; Lin, Wen; Liu, Hui; Liu, Hong; Yang, Yang; Chen, Ying; Fu, Xudong; Deng, Jianping
2015-12-01
Due to the absence of effective in vivo delivery systems, the employment of small interference RNA (siRNA) in the clinic has been hindered. In this paper, a new siRNA targeting system for EphA2-positive tumors was developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, a CPP-siRNA conjugate (CPP-siRNA) was entrapped in an ephrin mimetic peptide (YSA peptide)-modified NB (CPP-siRNA/YSA-NB) and the penetration of the CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research demonstrated that the CPP-siRNA/YSA-NBs had particle sizes of approximately 200 nm and a siRNA entrapment efficiency of more than 85%. The in vitro release results showed that over 90% of the encapsulated CPP-siRNA released from the NBs in the presence of ultrasound, while less than 1.5% of that (30 min) released without ultrasound. Cell experiments showed a the higher CPP-siRNA cellular uptake of CPP-siRNA/YSA-NB among the various formulations in human breast adenocarcinoma cells (MCF-7, EphA2 positive cells). Additionally, after systemic administration in mice, CPP-siRNA/YSA-NB accumulated in the tumor, augmented c-Myc silencing and delayed tumor progression. In conclusion, the application of CPP-siRNA/YSA-NB with ultrasound may provide a strategy for the selective and efficient delivery of siRNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Lin, Wen; Xie, Xiangyang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yang
2016-01-01
A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment.
Chen, Guanyu; Svirskis, Darren; Lu, Weiyue; Ying, Man; Huang, Yuan; Wen, Jingyuan
2018-05-10
Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the
Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.
Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie
2016-08-15
In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hitting bacteria at the heart of the central dogma: sequence-specific inhibition.
Rasmussen, Louise Carøe Vohlander; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk
2007-08-10
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.
Smilkov, Katarina; Janevik, Emilija; Guerrini, Remo; Pasquali, Micol; Boschi, Alessandra; Uccelli, Licia; Di Domenico, Giovanni; Duatti, Adriano
2014-09-01
New (188)Re and (99m)Tc peptide conjugates with substance- P (SP) were prepared and biologically evaluated. The radiopharmaceuticals have been labelled with the [M≡N](2+) (M=(99m)Tc, (188)Re) core using a combination of π-donor tridentate and π-acceptor monodentate ancillary ligands. The new radiopharmaceuticals have been prepared through a two-step reaction by simultaneous addition of the tridentate and monodentate ligands to a vial containing a preformed [M≡N](2+) core. The tridentate ligand was formed by linking two cysteine residues to the terminal arginine of the undecapeptide SP, whereas the monodentate ligand was a tertiary phosphine. The preparation of the corresponding Re-188 derivative required developing a more complex chemical procedure to obtain the [Re≡N](2+) core in satisfactory yields. Characterization of the resulting products was obtained by chromatographic methods. Biological evaluation was performed for both Tc-99m and Re-188 derivatives by in-vitro studies on isolated cells expressing NK1-receptors. In-vivo imaging in mice was carried out using a small-animal YAP(S)PET tomograph. New Tc-99m and Re-188 peptide radiopharmaceuticals with SP have been prepared in high-yield and with high-specific activity. Both Tc-99m and Re-188 peptide radioconjugates exhibit high affinity for NK1 receptors, thus giving further evidence to the empirical rule that structurally related Tc-99m and Re-188 radiopharmaceuticals exhibit identical biological properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Opačak-Bernardi, Teuta; Ryu, Jung Su; Raucher, Drazen
2017-07-01
Notch pathway was found to be activated in most glioblastomas (GBMs), underlining the importance of Notch in formation and recurrence of GBM. In this study, a Notch inhibitory peptide, dominant negative MAML (dnMAML), was conjugated to elastin-like polypeptide (ELP) for tumor targeted delivery. ELP is a thermally responsive polypeptide that can be actively and passively targeted to the tumor site by localized application of hyperthermia. This complex was further modified with the addition of a cell penetrating peptide, SynB1, for improved cellular uptake and blood-brain barrier penetration. The SynB1-ELP1-dnMAML was examined for its cellular uptake, cytotoxicity, apoptosis, cell cycle inhibition and the inhibition of target genes' expression. SynB1-ELP1-dnMAML inhibited the growth of D54 and U251 cells by inducing apoptosis and cell cycle arrest, especially in the presence of hyperthermia. Hyperthermia increased overall uptake of the polypeptide by the cells and enhanced the resulting pharmacological effects of dnMAML, showing the inhibition of targets of Notch pathway such as Hes-1 and Hey-L. These results confirm that dnMAML is an effective Notch inhibitor and combination with ELP may allow thermal targeting of the SynB1-ELP1-dnMAML complex in cancer cells while avoiding the dangers of systemic Notch inhibition.
Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides
Arnusch, Christopher J.; Pieters, Roland J.; Breukink, Eefjan
2012-01-01
Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted. PMID:22768121
Gao, Lipeng; Yu, Jing; Liu, Yang; Zhou, Jinge; Sun, Lei; Wang, Jing; Zhu, Jianzhong; Peng, Hui; Lu, Weiyue; Yu, Lei; Yan, Zhiqiang; Wang, Yiting
2018-01-01
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor. PMID:29290795
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
Laughlin, Taylor D; Miles, Jeremy R; Wright-Johnson, Elane C; Rempel, Lea A; Lents, Clay A; Pannier, Angela K
2017-11-01
Although deficiencies in porcine blastocyst elongation play a significant role in early embryonic mortality and establishment of within-litter developmental variation, the exact mechanisms of elongation are poorly understood. Secreted phosphoprotein 1 (SPP1) is increased within the uterine milieu during early porcine pregnancy and contains an Arg-Gly-Asp (RGD) peptide sequence that binds to cell surface integrins on the uterine endometrium and trophectoderm, promoting cell adhesion and migration. The aim of the present study was to evaluate the development of preimplantation porcine blastocysts encapsulated and cultured within alginate hydrogels either supplemented with SPP1 or conjugated with RGD. Blastocysts encapsulated within alginate hydrogels supplemented with SPP1 or conjugated with RGD had increased survival compared with non-encapsulated control blastocysts. In addition, the percentage of blastocysts encapsulated within RGD hydrogels that underwent morphological changes was greater than that of blastocysts encapsulated within standard alginate hydrogels or SPP1-supplemented hydrogels. Finally, only blastocysts encapsulated within RGD hydrogels had both increased expression of steroidogenic and immune responsiveness transcripts and increased 17β-oestradiol production, consistent with blastocysts undergoing elongation in vivo. These results illustrate the importance of the integrin-binding RGD peptide sequence for stimulating the initiation of blastocyst elongation.
Protein/oligonucleotide conjugates as a cell specific PNA carrier.
Obara, K; Ishihara, T; Akaike, T; Maruyama, A
2001-01-01
We have focused on proteineus ligand conjugate with oligonucleotides (ODNs) as a cell-specific delivery vector for peptide nucleic acids (PNAs). Asialofetuin (AF), a hepatocyte-specific proteineus ligand, was conjugated with ODNs that served as binding sites for PNAs. Succinimidyl-transe-4(N-maleimidylmethyl)-cyclohexane-1-carboxylate (SMCC) modified AF was coupled with 5'-thiolated oligodeoxynucleotide (HS-ODN). The resulting conjugate held PNAs with sequence-specific manner. The PNA/DNA conjugate complex has resistance against nucleases in serum. The efficient release of PNA from the complex was observed when the complex was made in contact with a target nucleotide. PNA uptake to hepatocytes was greatly enhanced when hepatocytes was incubated with PNA/conjugate complex. Free AF thoroughly inhibited PNA uptake with the conjugate, evidencing asialoglycoprotein receptor (ASGP-R) mediated endocytosis to be a major-route for the cellular uptake.
Chaudhari, Atul A; Ashmore, D'andrea; Nath, Subrata Deb; Kate, Kunal; Dennis, Vida; Singh, Shree R; Owen, Don R; Palazzo, Chris; Arnold, Robert D; Miller, Michael E; Pillai, Shreekumar R
2016-07-13
Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5
Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates
NASA Astrophysics Data System (ADS)
Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel
2018-02-01
Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.
An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells.
Romanelli, Alessandra; Affinito, Alessandra; Avitabile, Concetta; Catuogno, Silvia; Ceriotti, Paola; Iaboni, Margherita; Modica, Jessica; Condorelli, Geroloma; Catalucci, Daniele
2018-01-01
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman
2016-11-01
Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.
Jones, Mathew W; Mantovani, Giuseppe; Blindauer, Claudia A; Ryan, Sinead M; Wang, Xuexuan; Brayden, David J; Haddleton, David M
2012-05-02
Direct polymer conjugation at peptide tyrosine residues is described. In this study Tyr residues of both leucine enkephalin and salmon calcitonin (sCT) were targeted using appropriate diazonium salt-terminated linear monomethoxy poly(ethylene glycol)s (mPEGs) and poly(mPEG) methacrylate prepared by atom transfer radical polymerization. Judicious choice of the reaction conditions-pH, stoichiometry, and chemical structure of diazonium salt-led to a high degree of site-specificity in the conjugation reaction, even in the presence of competitive peptide amino acid targets such as histidine, lysines, and N-terminal amine. In vitro studies showed that conjugation of mPEG(2000) to sCT did not affect the peptide's ability to increase intracellular cAMP induced in T47D human breast cancer cells bearing sCT receptors. Preliminary in vivo investigation showed preserved ability to reduce [Ca(2+)] plasma levels by mPEG(2000)-sCT conjugate in rat animal models. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes.
Ma, Dan; DeBenedictis, Elizabeth P; Lund, Reidar; Keten, Sinan
2016-11-24
Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.
Morris, Christopher J; Smith, Mathew W; Griffiths, Peter C; McKeown, Neil B; Gumbleton, Mark
2011-04-10
With the aim of identifying a peptide sequence that promotes pulmonary epithelial transport of macromolecule cargo we used a stringent peptide-phage display library screening protocol against rat lung alveolar epithelial primary cell cultures. We identified a peptide-phage clone (LTP-1) displaying the disulphide-constrained 7-mer peptide sequence, C-TSGTHPR-C, that showed significant pulmonary epithelial translocation across highly restrictive polarised cell monolayers. Cell biological data supported a differential alveolar epithelial cell interaction of the LTP-1 peptide-phage clone and the corresponding free synthetic LTP-1 peptide. Delivering select phage-clones to the intact pulmonary barrier of an isolated perfused rat lung (IPRL) resulted in 8.7% of lung deposited LTP-1 peptide-phage clone transported from the IPRL airways to the vasculature compared (p<0.05) to the cumulative transport of less than 0.004% for control phage-clone groups. To characterise phage-independent activity of LTP-1 peptide, the LTP-1 peptide was conjugated to a 53kDa anionic PAMAM dendrimer. Compared to respective peptide-dendrimer control conjugates, the LTP-1-PAMAM conjugate displayed a two-fold (bioavailability up to 31%) greater extent of absorption in the IPRL. The LTP-1 peptide-mediated enhancement of transport, when LTP-1 was either attached to the phage clone or conjugated to dendrimer, was sequence-dependent and could be competitively inhibited by co-instillation of excess synthetic free LTP-1 peptide. The specific nature of the target receptor or mechanism involved in LTP-1 lung transport remains unclear although the enhanced transport is enabled through a mechanism that is non-disruptive with respect to the pulmonary transport of hydrophilic permeability probes. This study shows proof-of principle that array technologies can be effectively exploited to identify peptides mediating enhanced transmucosal delivery of macromolecule therapeutics across an intact organ. Copyright
Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE
2014-11-01
The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.
Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji
2012-01-01
Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290
NASA Astrophysics Data System (ADS)
Krishna, Ohm Divyam
2011-12-01
Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the
Dosselli, Ryan; Ruiz-González, Rubén; Moret, Francesca; Agnolon, Valentina; Compagnin, Chiara; Mognato, Maddalena; Sella, Valentina; Agut, Montserrat; Nonell, Santi; Gobbo, Marina; Reddi, Elena
2014-02-27
Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.
Peptide assemblies: from cell scaffolds to immune adjuvants
NASA Astrophysics Data System (ADS)
Collier, Joel
2011-03-01
This talk will discuss two interrelated aspects of peptide self-assemblies in biological applications: their use as matrices for regenerative medicine, and their use as chemically defined adjuvants for directing immune responses against engineered antigens. In the first half of the presentation, the design of peptide self-assemblies as analogues for the extracellular matrix will be described, with a focus on self-assemblies displaying multiple different cell-binding peptides. We conducted multi-factorial investigations of peptide co-assemblies containing several different ligand-bearing peptides using statistical ``design of experiments'' (DoE). Using the DoE techniques of factorial experimentation and response surface modeling, we systematically explored how precise combinations of ligand-bearing peptides modulated endothelial cell growth, in the process finding interactions between ligands not previously appreciated. By investigating immune responses against the materials intended for tissue engineering applications, we discovered that the basic self-assembling peptides were minimally immunogenic or non-immunogenic, even when delivered in strong adjuvants. -But when they were appended to an appropriately restricted epitope peptide, these materials raised strong and persistent antibody responses. These responses were dependent on covalent conjugation between the epitope and self-assembling domains of the peptides, were mediated by T cells, and could be directed towards both peptide epitopes and conjugated protein antigens. In addition to their demonstrated utility as scaffolds for regenerative medicine, peptide self-assemblies may also be useful as chemically defined adjuvants for vaccines and immunotherapies. This work was funded by NIH/NIDCR (1 R21 DE017703-03), NIH/NIBIB (1 R01 EB009701-01), and NSF (CHE-0802286).
Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms
Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil
2016-01-01
Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007
Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms
NASA Astrophysics Data System (ADS)
Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil
2016-08-01
Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape.
Antisense antibiotics: a brief review of novel target discovery and delivery.
Bai, Hui; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Meng, Jingru; Luo, Xiaoxing
2010-06-01
The nightmare of multi-drug resistant bacteria will still haunt if no panacea is ever found. Efforts on seeking desirable natural products with bactericidal property and screening chemically modified derivatives of traditional antibiotics have lagged behind the emergence of new multi-drug resistant bacteria. The concept of using antisense antibiotics, now as revolutionary as is on threshold has experienced ups and downs in the past decade. In the past five years, however, significant technology advances in the fields of microbial genomics, structural modification of oligonucleotides and efficient delivery system have led to fundamental progress in the research and in vivo application of this paradigm. The wealthy information provided in the microbial genomics era has allowed the identification and/or validation of a number of essential genes that may serve as possible targets for antisense inhibition; antisense oligodeoxynucleotides (ODNs) based on the 3rd generation of modified structures, e.g., peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) have shown great potency in gene expression inhibition in a sequence-specific and dosedependent manner at low micromolar concentrations; and cell penetrating peptide mediated delivery system has enabled the effective display of intracellular antisense inhibition of targeted genes both in vitro and in vivo. The new methods show promise in the discovery of novel gene-specific antisense antibiotics that will be useful in the future battle against drug-resistant bacterial infections. This review describes this promising paradigm, the targets that have been identified and the recent technologies on which it is delivered.
Hill, Elliott; Shukla, Rameshwer; Park, Steve S; Baker, James R
2007-01-01
Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.
Collagen like peptide bioconjugates for targeted drug delivery applications
NASA Astrophysics Data System (ADS)
Luo, Tianzhi
Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by
White, Derek R; Khedri, Zahra; Kiptoo, Paul; Siahaan, Teruna J; Tolbert, Thomas J
2017-07-19
Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
Baltzer, Lars
2011-06-01
A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.
A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis
Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor
2014-01-01
BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552
Antibody-peptide-MHC fusion conjugates target non-cognate T cells to kill tumour cells.
King, Ben C; Hamblin, Angela D; Savage, Philip M; Douglas, Leon R; Hansen, Ted H; French, Ruth R; Johnson, Peter W M; Glennie, Martin J
2013-06-01
Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2K(b)/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab' fragments. In vitro, the [SCT × Fab'] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20(+) target cells, and in the presence of CD20(+) target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab']-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab'] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab'] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab'] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.
NASA Astrophysics Data System (ADS)
Lau, Jeffrey M. C.; Muslin, Anthony J.
The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.
Installing amino acids and peptides on N-heterocycles under visible-light assistance
Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua
2016-01-01
Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014
Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J
2013-10-01
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.
Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna
2013-02-12
Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.
NASA Astrophysics Data System (ADS)
Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna
2013-02-01
Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.
Zhao, Ying; Liu, Wenfei; Tian, Ying; Yang, Zhenlu; Wang, Xiaofen; Zhang, Yunlei; Tang, Yuxia; Zhao, Shuang; Wang, Chunyan; Liu, Ying; Sun, Jing; Teng, Zhaogang; Wang, Shouju; Lu, Guangming
2018-05-23
Non-small cell lung cancer (NSCLC) is difficult to cure because of the high recurrence rate and the side effects of current treatments. It is urgent to develop a new treatment that is safer and more effective than current treatments against NSCLC. Herein, we constructed anti-epidermal growth factor receptor (EGFR) peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) as a targeting photothermal therapy (PTT) agent to treat NSCLC under the guidance of computed tomography (CT) and photoacoustic (PA) imaging. The surface of TGNs is successfully conjugated with a novel peptide P75 that has the specific affinity to epidermal growth factor receptor (EGFR). It is found that the EGFR is overexpressed in NSCLC cells. The TGN-PEG-P75 has uniform edge length (77.9 ± 7.0 nm) and neutrally charged surface. The cell uptake experiments demonstrate remarkable affinity of the TGN-PEG-P75 to high EGFR expression cells than low EGFR expression cells (5.1-fold). Thanks to the strong near-infrared absorbance, high photothermal conversion efficiency, and the increased accumulation in tumor cells via the interaction of P75 and EGFR, TGN-PEG-P75 exhibits 3.8-fold superior therapeutic efficacy on HCC827 cells than TGN-PEG. The in vivo CT/PA dual-modal imaging of the TGN-PEG-P75 is helpful in selecting the optimal treatment time and providing real-time visual guidance of PTT. Furthermore, treatments on HCC827 tumor-bearing mouse model demonstrate that the growth of NSCLC cells can be effectively inhibited by the TGN-PEG-P75 through PTT, indicating the great promise of the nanoplatform for treating NSCLC in vivo.
Cell penetration: scope and limitations by the application of cell-penetrating peptides.
Reissmann, Siegmund
2014-10-01
The penetration of polar or badly soluble compounds through a cell membrane into live cells requires mechanical support or chemical helpers. Cell-penetrating peptides (CPPs) are very promising chemical helpers. Because of their low cytotoxicity and final degradation to amino acids, they are particularly favored in in vivo studies and for clinical applications. Clearly, the future of CPP research is bright; however, the required optimization studies for each drug require considerable individualized attention. Thus, CPPs are not the philosopher's stone. As of today, a large number of such transporter peptides with very different sequences have been identified. These have different uptake mechanisms and can transport different cargos. Intracellular concentrations of cargos can reach a low micromole range and are able to influence intracellular reactions. Internalized ribonucleic acids such as small interfering RNA (siRNA) and mimics of RNA such as peptide nucleic acids, morpholino nucleic acids, and triesters of oligonucleotides can influence transcription and translation. Despite the highly efficient internalization of antibodies, enzymes, and other protein factors, as well as siRNA and RNA mimics, the uptake and stabile insertion of DNA into the genome of the host cells remain substantially challenging. This review describes a wide array of differing CPPs, cargos, cell lines, and tissues. The application of CPPs is compared with electroporation, magnetofection, lipofection, viral vectors, dendrimers, and nanoparticles, including commercially available products. The limitations of CPPs include low cell and tissue selectivity of the first generation and the necessity for formation of fusion proteins, conjugates, or noncovalent complexes to different cargos and of cargo release from intracellular vesicles. Furthermore, the noncovalent complexes require a strong molar excess of CPPs, and extensive experimentation is required to determine the most optimal CPP for any
Sun, Jing; Qiu, Chong; Diao, Yiping; Wei, Wei; Jin, Hongwei; Zheng, Yi; Wang, Jiancheng; Zhang, Lihe; Yang, Zhenjun
2018-03-02
Small interfering RNA (siRNA) has been continuously explored for clinical applications. However, neither nanocarriers nor conjugates have been able to remove the obstacles. In this study, we employed a combined nanochemistry strategy to optimize its delivery dilemma, where different interactions and assembly modes were cooperatively introduced into the forming process of siRNA/lipids nanoplexes. In the nanoplexes, the 3',3″-bis-peptide-siRNA conjugate (pp-siRNA) and gemini-like cationic lipids (CLDs) were employed as dual regulators to improve their bio-behavior. We demonstrated that the "cicada pupa"-shaped nanoplexes of MT-pp-siRNA/CLDs (MT represented the mixed two-phase method) exhibited more compact multi-sandwich structure (∼25 layers), controllable size (∼150 nm), and lower zeta potential (∼22 mV) than other comparable nanoplexes and presented an increased siRNA protection and stability. Significantly, the nanoplex was internalized into melanoma cells by almost caveolae-mediated endocytosis and macropinocytosis (∼99.46%), and later reduced/avoided lysosomal degradation. Finally, the nanoplex facilitated the silencing of mRNA of the mutant B-Raf protein (down by ∼60%). In addition, pp-siRNA had a high intracellular sustainability, a significantly prolonged circulating time, and accumulation in tumor tissues in vivo. Our results have demonstrated that the combined approach can improve the intracellular fate of siRNA, which opens up novel avenues for efficient siRNA delivery. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.
Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman
In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-). In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine. The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies.
Licari, Amelia; Castagnoli, Riccardo; De Sando, Elisabetta; Marseglia, Gian Luigi
2017-04-01
Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.
Perspectives and Peptides of the Next Generation
NASA Astrophysics Data System (ADS)
Brogden, Kim A.
Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.
Barbari, Ghullam Reza; Dorkoosh, Farid Abedin; Amini, Mohsen; Sharifzadeh, Mohammad; Atyabi, Fateme; Balalaie, Saeed; Rafiee Tehrani, Niyousha; Rafiee Tehrani, Morteza
2017-01-01
A simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as “nano-containers and nano-reactors”. The entrapped polymer chains of CS inside these “nano-reactors” are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH ranges due to chemical cross-linking with PEG. A potent and newly developed cell-penetrating peptide (CPP) is further chemically conjugated to the surface of the NPs, leading to development of a novel peptide-conjugated derivative of CS with profound tight-junction opening properties. The CPP-conjugated NPs can easily be loaded with almost all kinds of proteins, peptides and nucleotides for oral delivery applications. Feasibility of this nanoparticulate system for oral delivery of a model peptide (insulin) is investigated in Caco-2 cell line. The cell culture results for translocation of insulin across the cell monolayer are very promising (15%–19% increase), and animal studies are actively under progress and will be published separately. PMID:28496323
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuecheng; Li, Bo; Li, Songsong
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
Zhou, Yuecheng; Li, Bo; Li, Songsong; ...
2017-08-17
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.
Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu
2012-05-01
To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.
Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells
Zamuner, Annj; Cavo, Marta; Scaglione, Silvia; Messina, Grazia Maria Lucia; Russo, Teresa; Gloria, Antonio; Marletta, Giovanni; Dettin, Monica
2016-01-01
Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate. PMID:28773852
Production of carrier-peptide conjugates using chemically reactive unnatural amino acids
Young, Travis; Schultz, Peter G
2013-12-17
Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.
Production of carrier-peptide conjugates using chemically reactive unnatural amino acids
Young, Travis; Schultz, Peter G
2014-01-28
Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.
Production of carrier-peptide conjugates using chemically reactive unnatural amino acids
Young, Travis; Schultz, Peter G.
2015-08-18
Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.
Kimura, Richard H; Cheng, Zhen; Gambhir, Sanjiv Sam; Cochran, Jennifer R
2009-01-01
There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with low nM affinity to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or 64Cu-DOTA to their N-termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. Near-infrared fluorescence and microPET imaging both demonstrated that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 h post injection for two high affinity (IC50 ∼20 nM) 64Cu-DOTA-conjugated knottin peptides was 4.47 ± 1.21 and 4.56 ± 0.64 % injected dose/gram (%ID/g), compared to a low affinity knottin peptide (IC50 ∼0.4 μM; 1.48 ± 0.53 %ID/g) and c(RGDyK) (IC50 ∼1 μM; 2.32 ± 0.55 %ID/g), a low affinity cyclic pentapeptide under clinical development. Furthermore, 64Cu-DOTA-conjugated knottin peptides generated lower levels of non-specific liver uptake (∼2 %ID/g) compared to c(RGDyK) (∼4 %ID/g) 1 h post injection. MicroPET imaging results were confirmed by in vivo biodistribution studies. 64Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers. PMID:19276378
Peptide mediated intracellular delivery of semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi
2017-02-01
As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.
Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.
Dissanayake, Shama; Denny, William A; Gamage, Swarna; Sarojini, Vijayalekshmi
2017-03-28
Efficient intracellular trafficking and targeted delivery to the site of action are essential to overcome the current drawbacks of cancer therapeutics. Cell Penetrating Peptides (CPPs) offer the possibility of efficient intracellular trafficking, and, therefore the development of drug delivery systems using CPPs as cargo carriers is an attractive strategy to address the current drawbacks of cancer therapeutics. Additionally, the possibility of incorporating Tumor Targeting Peptides (TTPs) into the delivery system provides the necessary drug targeting effect. Therefore the conjugation of CPPs and/or TTPs with therapeutics provides a potentially efficient method of improving intracellular drug delivery mechanisms. Peptides used as cargo carriers in DDS have been shown to enhance the cellular uptake of drugs and thereby provide an efficient therapeutic benefit over the drug on its own. After providing a brief overview of various drug targeting approaches, this review focusses on peptides as carriers and targeting moieties in drug-peptide covalent conjugates and summarizes the most recent literature examples where CPPs on their own or CPPs together with TTPs have been conjugated to anticancer drugs such as Doxorubicin, Methotrexate, Paclitaxel, Chlorambucil etc. A short section on CPPs used in multicomponent drug delivery systems is also included. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic engineering and chemical conjugation of potato virus X.
Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F
2014-01-01
Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).
Antonucci, Alessandra; Kupis-Rozmysłowicz, Justyna; Boghossian, Ardemis A
2017-04-05
The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp 2 bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to
Fan, Li-Qiang; Du, Guo-Xiu; Li, Peng-Fei; Li, Ming-Wei; Sun, Yao; Zhao, Li-Ming
2016-12-01
Lack of satisfactory specificity towards tumor cells and poor intracellular delivery efficacy are the major drawbacks with conventional cancer chemotherapy. Conjugated anticancer drugs to targeting moieties e.g. to peptides with the ability to recognize cancer cells and to cell penetrating peptide can improve these characteristics, respectively. Combining a tumor homing peptide with an appropriate cell-penetrating peptide can enhance the tumor-selective internalization efficacy of the carrying cargo molecules. In the present study, the breast cancer homing ability of SP90 peptide and the synergistic effect of SP90 with a cell-penetrating peptide(C peptide) were evaluated. SP90 and chimeric peptide SP90-C specifically targeted cargo molecule into breast cancer cells, especially triple negative MDA-MB-231 cell, in a dose- and time-dependent manner, but not normal breast cells and other cancer cells, while C peptide alone had no cell-selectivity. SP90-C increased the intracellular delivery efficiency by 12-fold or 10-fold compared to SP90 or C peptide alone, respectively. SP90 and SP90-C conjugation increased the anti-proliferative and apoptosis-inducing activity of HIV-1 Vpr, a potential novel anticancer protein drug, to breast cancer cell but not normal breast cell by arresting cells in G2/M phase. With excellent breast cancer cell-selective penetrating efficacy, SP90-C appears as a promising candidate vector for targeted anti-cancer drug delivery. SP90-VPR-C is a potential novel breast cancer-targeted anticancer agent for its high anti-tumor activity and low toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun
The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation andmore » invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.« less
Structural insights of a PI3K/mTOR dual inhibitor with the morpholino-triazine scaffold
NASA Astrophysics Data System (ADS)
Takeda, Takako; Wang, Yanli; Bryant, Stephen H.
2016-04-01
Stimulation of the PI3K/Akt/mTOR pathway, which controls cell proliferation and growth, is often observed in cancer cell. Inhibiting both PI3K and mTOR in this pathway can switch off Akt activation and hence, plays a powerful role for modulating this pathway. PKI-587, a drug containing the structure of morpholino-triazines, shows a dual and nano-molar inhibition activity and is currently in clinical trial. To provide an insight into the mechanism of this dual inhibition, pharmacophore and QSAR models were developed in this work using compounds based on the morpholino-triazines scaffold, followed by a docking study. Pharmacophore model suggested the mechanism of the inhibition of PI3Kα and mTOR by the compounds were mostly the same, which was supported by the docking study showing similar docking modes. The analysis also suggested the importance of the flat plane shape of the ligands, the space surrounding the ligands in the binding pocket, and the slight difference in the shape of the binding sites between PI3Kα and mTOR.
Zhao, Shao-Jun; Wang, De-Hua; Li, Yan-Wei; Han, Lei; Xiao, Xing; Ma, Min; Wan, David Chi-Cheong; Hong, An; Ma, Yi
2017-01-01
A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H 2 O 2 -injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against
Zhao, Shao-Jun; Wang, De-Hua; Li, Yan-Wei; Han, Lei; Xiao, Xing; Ma, Min; Wan, David Chi-Cheong; Hong, An; Ma, Yi
2017-01-01
A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against
Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes
Ruwona, Tinashe B; Mcbride, Ryan; Chappel, Rebecca; Head, Steven R; Ordoukhanian, Phillip; Burton, Dennis R.; Law, Mansun
2014-01-01
Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology, improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays were confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research. PMID:24269751
A method for the 32P labeling of peptides or peptide nucleic acid oligomers
NASA Technical Reports Server (NTRS)
Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.
Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik
2016-09-10
A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Niu, Fan; Yan, Jin; Ma, Bohan; Li, Shichao; Shao, Yongping; He, Pengcheng; Zhang, Wanggang; He, Wangxiao; Ma, Peter X; Lu, Wuyuan
2018-06-01
Roughly one third of all human cancers are attributable to the functional inhibition of the tumor suppressor protein p53 by its two negative regulators MDM2 and MDMX, making dual-specificity peptide antagonists of MDM2 and MDMX highly attractive drug candidates for anticancer therapy. Two pharmacological barriers, however, remain a major obstacle to the development of peptide therapeutics: susceptibility to proteolytic degradation in vivo and inability to traverse the cell membrane. Here we report the design of a fluorescent lanthanide oxyfluoride nanoparticle (LONp)-based multifunctional peptide drug delivery system for potential treatment of acute myeloid leukemia (AML) that commonly harbors wild type p53, high levels of MDM2 and/or MDMX, and an overexpressed cell surface receptor, CD33. We conjugated to LONp via metal-thiolate bonds a dodecameric peptide antagonist of both MDM2 and MDMX, termed PMI, and a CD33-targeted, humanized monoclonal antibody to allow for AML-specific intracellular delivery of a stabilized PMI. The resultant nanoparticle antiCD33-LONp-PMI, while nontoxic to normal cells, induced apoptosis of AML cell lines and primary leukemic cells isolated from AML patients by antagonizing MDM2 and/or MDMX to activate the p53 pathway. Fluorescent antiCD33-LONp-PMI also enabled real-time visualization of a series of apoptotic events in AML cells, proving a useful tool for possible disease tracking and treatment response monitoring. Our studies shed light on the development of antiCD33-LONp-PMI as a novel class of antitumor agents, which, if further validated, may help targeted molecular therapy of AML. Copyright © 2018 Elsevier Ltd. All rights reserved.
Han, Jing; Fei, Yingying; Zhou, Feng; Chen, Xinyu; Zhang, Ying; Liu, Lin; Fu, Junjie
2018-02-01
Incretin-based therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments of type 2 diabetes. Abundant research has focused on the development of long-acting GLP-1 receptor agonists. However, all GLP-1 receptor agonists in clinical use or development are based on human or Gila GLP-1. We have identified a potent GLP-1 receptor agonist, xGLP-1B, based on Xenopus GLP-1. To further modify the structure of xGLP-1B, alanine scanning was performed to study the structure -activity relationship of xGLP-1B. Two strategies were then employed to improve bioactivity. First, the C-terminal tail of lixisenatide was appended to cysteine-altered xGLP-1B analogues. Second, polyethylene glycol (PEG) chains with different molecular weights were conjugated with the peptides, giving a series of PEGylated conjugates. Comprehensive bioactivity studies of these conjugates were performed in vitro and in vivo. From the in vitro receptor activation potency and in vivo acute hypoglycaemic activities of conjugates 25 -36, 33 was identified as the best candidate for further biological assessments. Conjugate 33 exhibited prominent hypoglycaemic and insulinotropic activities, as well as improved pharmacokinetic profiles in vivo. The prolonged antidiabetic duration of 33 was further confirmed by pre-oral glucose tolerance tests (OGTT) and multiple OGTT. Furthermore, chronic treatment of db/db mice with 33 ameliorated non-fasting blood glucose and insulin levels, reduced HbA1c values and normalized their impaired glucose tolerance. Importantly, no in vivo toxicity was observed in mice treated with 33. Peptide 33 is a promising long-acting type 2 diabetes therapeutic deserving further investigation. © 2017 The British Pharmacological Society.
Liu, Shan; Yang, Hao; Wan, Lin; Cai, Hua-wei; Li, Sheng-fu; Li, You-ping; Cheng, Jing-qiu; Lu, Xiao-feng
2011-01-01
Aim: To investigate whether the conjugation of magainin II (MG2), an antimicrobial peptides (AMPs), to the tumor-homing peptide bombesin could enhance its cytotoxicity in tumor cells. Methods: A magainin II-bombesin conjugate (MG2B) was constructed by attaching magainin II (MG2) to bombesin at its N-terminus. The peptides were synthesized using Fmoc-chemistry. The in vitro cytotoxicity of the peptide in cancer cells was quantitatively determined using the CCK-8 cell counting kit. Moreover, the in vivo antitumor effect of the peptide was determined in tumor xenograft models. Results: The IC50 of MG2B for cancer cells (10–15 μmol/L) was at least 10 times lower than the IC50 of unconjugated MG2 (125 μmol/L). Moreover, the binding affinity of MG2B for cancer cells was higher than that of unconjugated MG2. In contrast, conjugation to a bombesin analog lacking the receptor-binding domain failed to increase the cytotoxicity of MG2, suggesting that bombesin conjugation enhances the cytotoxicity of MG2 in cancer cells through improved binding. Indeed, MG2B selectively induced cell death in cancer cells in vitro with the IC50 ranging from 10 to 15 μmol/L, which was about 6–10 times lower than the IC50 for normal cells. MG2B (20 mg/kg per day, intratumorally injected for 5 d) also exhibited antitumor effects in mice bearing MCF-7 tumor grafts. The mean weights of tumor grafts in MG2B- and PBS-treated mice were 0.21±0.05 g and 0.59±0.12 g, respectively. Conclusion: The results suggest that conjugation of AMPs to bombesin might be an alternative approach for targeted cancer therapy. PMID:21131998
Liu, Shan; Yang, Hao; Wan, Lin; Cai, Hua-wei; Li, Sheng-fu; Li, You-ping; Cheng, Jing-qiu; Lu, Xiao-feng
2011-01-01
To investigate whether the conjugation of magainin II (MG2), an antimicrobial peptides (AMPs), to the tumor-homing peptide bombesin could enhance its cytotoxicity in tumor cells. A magainin II-bombesin conjugate (MG2B) was constructed by attaching magainin II (MG2) to bombesin at its N-terminus. The peptides were synthesized using Fmoc-chemistry. The in vitro cytotoxicity of the peptide in cancer cells was quantitatively determined using the CCK-8 cell counting kit. Moreover, the in vivo antitumor effect of the peptide was determined in tumor xenograft models. The IC(50) of MG2B for cancer cells (10-15 μmol/L) was at least 10 times lower than the IC(50) of unconjugated MG2 (125 μmol/L). Moreover, the binding affinity of MG2B for cancer cells was higher than that of unconjugated MG2. In contrast, conjugation to a bombesin analog lacking the receptor-binding domain failed to increase the cytotoxicity of MG2, suggesting that bombesin conjugation enhances the cytotoxicity of MG2 in cancer cells through improved binding. Indeed, MG2B selectively induced cell death in cancer cells in vitro with the IC(50) ranging from 10 to 15 μmol/L, which was about 6-10 times lower than the IC(50) for normal cells. MG2B (20 mg/kg per day, intratumorally injected for 5 d) also exhibited antitumor effects in mice bearing MCF-7 tumor grafts. The mean weights of tumor grafts in MG2B- and PBS-treated mice were 0.21±0.05 g and 0.59±0.12 g, respectively. The results suggest that conjugation of AMPs to bombesin might be an alternative approach for targeted cancer therapy.
Shi, Nian-Qiu; Qi, Xian-Rong
2017-03-29
Cell-penetrating peptide (CPP), also called "Trojan Horse" peptide, has become a successful approach to deliver various payloads into cells for achieving the intracellular access. However, the "Trojan Horse" peptide is too wild, not just to "Troy", but rather widely distributed in the body. Thus, there is an urgent need to tame the wildness of "Trojan Horse" peptide for targeted delivery of antineoplastic agents to the tumor site. To achieve this goal, we exploit a masked CPP-doxorubicin conjugate platform for targeted delivery of chemotherapeutic drugs using charge-guided masking and protease-triggered demasking strategies. In this platform, the cell-penetrating function of the positively CPP (d-form nonaarginine) is abrogated by a negatively shielding peptide (masked CPP), and between them is a cleavable substrate peptide by the protease (MMP-2/9). Protease-triggered demasking would occur when the masked CPP reached the MMP-2/9-riched tumor. The CPP-doxorubicin conjugate (CPP-Dox) and the masked CPP-Dox conjugate (mCPP-Dox) were used as models for the evaluation of masking and demasking processes. It was found that exogenous MMP-2/9 could effectively trigger the reversion of CPP-cargo in this conjugate, and this trigger adhered to the Michaelis-Menten kinetics profile. This conjugate was sensitive to the trigger of endogenous MMP-2/9 and could induce enhanced cytotoxicity toward MMP-2/9-rich tumor cells. In vivo antitumor efficacy revealed that this masked conjugate had considerable antitumor activity and could inhibit the tumor growth at a higher level relative to CPP-cargo. Low toxicity in vivo showed the noticeably decreased wildness of this conjugate toward normal tissues and more controllable entry of antitumor agents into "Troy". On the basis of analyses in vitro and in vivo, this mCPP-cargo conjugate delivery system held an improved selectivity toward MMP-2/9-rich tumors and would be a promising strategy for tumor-targeted treatment.
Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts
Jette, Cicely A.
2016-01-01
The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC
Szabó, Ildikó; Orbán, Erika; Schlosser, Gitta; Hudecz, Ferenc; Bánóczi, Zoltán
2016-06-10
The emerging resistance of tumor cells against methotrexate (MTX) is one of the major limitations of the MTX treatment of tumorous diseases. The disturbance in the polyglutamation which is a main step in the mechanism of methotrexate action is often the reason of the resistance. Delivery of polyglutamylated MTX into cells may evade the mechanisms that are responsible for drug resistance. In this study conjugates of methotrexate and its pentaglutamylated derivatives with cell-penetrating peptides - penetratin and octaarginine - were investigated. The cellular-uptake and in vitro cytostatic activity of conjugates were examined on breast cancer cell cultures (MDA-MB-231 as resistant and MCF-7 as sensitive cell culture). These cell cultures showed very different behaviour towards the conjugates. Although the presence of pentaglutamyl moiety significantly decreased the internalisation of conjugates, some of them were significantly active in vitro. All of the conjugates were able to penetrate in some extent into both cell types, but only the conjugates of penetratin showed in vitro cytostatic activity. The most effective conjugates were the MTX-Glu5-Penetratin(desMet) and MTX-Glu5-GFLG-Penetratin(desMet). The latter was effective on both cell cultures while the former was active only on the resistant tumor cells. Our results suggest that the translocation of polyglutamylated MTX may be a new way to treat sensitive and more importantly resistant tumors. While both penetratin and octaarginine peptides were successfully used to deliver several kinds of cargos earlier in our case the activity of penetratin conjugates was more pronounced. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T
1997-12-18
An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.
PET/PDT theranostics: synthesis and biological evaluation of a peptide-targeted gallium porphyrin.
Bryden, Francesca; Savoie, Huguette; Rosca, Elena V; Boyle, Ross W
2015-03-21
The development of novel theranostic agents is an important step in the pathway towards personalised medicine, with the combination of diagnostic and therapeutic modalities into a single treatment agent naturally lending itself to the optimisation and personalisation of treatment. In pursuit of the goal of a molecular theranostic suitable for use as a PET radiotracer and a photosensitiser for PDT, a novel radiolabelled peptide-porphyrin conjugate targeting the α6β1-integrin has been developed. (69/71)Ga and (68)Ga labelling of an azide-functionalised porphyrin has been carried out in excellent yields, with subsequent bioconjugation to an alkyne-functionalised peptide demonstrated. α6β1-integrin expression of two cell lines has been evaluated by flow cytometry, and therapeutic potential of the conjugate demonstrated. Evaluation of the phototoxicity of the porphyrin-peptide theranostic conjugate in comparison to an untargeted control porphyrin in vitro, demonstrated significantly enhanced activity for a cell line with higher α6β1-integrin expression when compared with a cell line exhibiting lower α6β1-integrin expression.
Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.
McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun
2016-01-01
With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.
Reduced T cell response to beta-lactoglobulin by conjugation with acidic oligosaccharides.
Yoshida, Tadashi; Sasahara, Yoshimasa; Miyakawa, Shunpei; Hattori, Makoto
2005-08-24
We have previously reported that the conjugation of beta-lactoglobulin (beta-LG) with alginic acid oligosaccharide (ALGO) and phosphoryl oligosaccharides reduced the immunogenicity of beta-LG. In addition, those conjugates showed higher thermal stability and improved emulsifying properties than those of native beta-LG. We examine in this study the effect of conjugation on the T cell response. Our results demonstrate that the T cell response was reduced when mice were immunized with the conjugates. The findings obtained from an experiment using overlapping synthetic peptides show that novel epitopes were not generated by conjugation. One of the mechanisms for the reduced T cell response to the conjugates was found to be the reduced susceptibility of the conjugates to processing enzymes for antigen presentation. We further clarify that the beta-LG-ALGO conjugate modulated the immune response to Th1 dominance. We consider that this property of the beta-LG-ALGO conjugate would be effective for preventing food allergy as well as by its reduced immunogenicity. Our observations indicate that the method used in this study could be applied to various protein allergens to achieve reduced allergenicity with multiple improvements in their properties.
Riahifard, Neda; Tavakoli, Kathy; Yamaki, Jason; Parang, Keykavous; Tiwari, Rakesh
2017-06-08
The development of a new class of antibiotics to fight bacterial resistance is a time-consuming effort associated with high-cost and commercial risks. Thus, modification, conjugation or combination of existing antibiotics to enhance their efficacy is a suitable strategy. We have previously reported that the amphiphilic cyclic peptide [R₄W₄] had antibacterial activity with a minimum inhibitory concentration (MIC) of 2.97 µg/mL against Methicillin-resistant Staphylococcus aureus (MRSA). Herein, we hypothesized that conjugation or combination of the amphiphilic cyclic peptide [R₄W₄] with levofloxacin or levofloxacin-Q could improve the antibacterial activity of levofloxacin and levofloxacin-Q. Fmoc/tBu solid-phase chemistry was employed to synthesize conjugates of [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin. The carboxylic acid group of levofloxacin or levofloxacin-Q was conjugated with the amino group of β-alanine attached to lysine in the presence of 2-(1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and N , N -diisopropylethylamine (DIPEA) for 3 h to afford the products. Antibacterial assays were conducted to determine the potency of conjugates [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin against MRSA and Klebsiella pneumoniae . Although levofloxacin-Q was inactive even at a concentration of 128 µg/mL, [R₄W₄K]-levofloxacin-Q conjugate and the corresponding physical mixture showed MIC values of 8 µg/mL and 32 µg/mL against MRSA and Klebsiella pneumonia , respectively, possibly due to the activity of the peptide. On the other hand, [R₄W₄K]-levofloxacin conjugate (MIC = 32 µg/mL and MIC = 128 µg/mL) and the physical mixture (MIC = 8 µg/mL and 32 µg/mL) was less active than levofloxacin (MIC = 2 µg/mL and 4 = µg/mL) against MRSA and Klebsiella pneumoniae , respectively. The data showed that the conjugation of levofloxacin with [R₄W₄K] significantly reduced the antibacterial activity
NASA Astrophysics Data System (ADS)
Huang, Richard Y.-C.; O'Neil, Steven R.; Lipovšek, Daša; Chen, Guodong
2018-05-01
Higher-order structure (HOS) characterization of therapeutic protein-drug conjugates for comprehensive assessment of conjugation-induced protein conformational changes is an important consideration in the biopharmaceutical industry to ensure proper behavior of protein therapeutics. In this study, conformational dynamics of a small therapeutic protein, adnectin 1, together with its drug conjugate were characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS) with different spatial resolutions. Top-down HDX allows detailed assessment of the residue-level deuterium content in the payload conjugation region. HDX-MS dataset revealed the ability of peptide-based payload/linker to retain deuterium in HDX experiments. Combined results from intact, top-down, and bottom-up HDX indicated no significant conformational changes of adnectin 1 upon payload conjugation. [Figure not available: see fulltext.
Flook, Adam M; Yang, Jianquan; Miao, Yubin
2013-11-14
The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.
Flook, Adam M.; Yang, Jianquan; Miao, Yubin
2013-01-01
The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new 99mTc-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg11)CCMSH {c[Arg-Ser-Asp-dTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg11)CCMSH, RPheD-Lys-(Arg11)CCMSH and RdPheD-Lys-(Arg11)CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of 99mTc-RSD-Lys-(Arg11)CCMSH, 99mTc-RFD-Lys-(Arg11)CCMSH and 99mTc-RfD-Lys-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. 99mTc-RSD-Lys-(Arg11)CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these 99mTc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using 99mTc-RSD-Lys-(Arg11)CCMSH as an imaging probe. It is desirable to reduce the renal uptake of 99mTc-RSD-Lys-(Arg11)CCMSH to facilitate its potential therapeutic application. PMID:24131154
Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates
Pasquinelli, Amy E.; Powers, Maureen A.; Lund, Elsebet; Forbes, Douglass; Dahlberg, James E.
1997-01-01
Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery. PMID:9405623
Smart linkers in polymer-drug conjugates for tumor-targeted delivery.
Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei
2016-01-01
To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.
Li, Meng; Guan, Yijia; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang
2017-01-01
Development of sensitive detectors of Aβ aggregates and effective inhibitors of Aβ aggregation are of diagnostic importance and therapeutic implications for Alzheimer's disease (AD) treatment. Herein, a novel strategy has been presented by self-assembly of peptide conjugated Au nanorods (AuP) as multifunctional Aβ fibrillization detectors and inhibitors. Our design combines the unique high NIR absorption property of AuNRs with two known Aβ inhibitors, Aβ15-20 and polyoxometalates (POMs). The synthesized AuP can effectively inhibit Aβ aggregation and dissociate amyloid deposits with NIR irradiation both in buffer and in mice cerebrospinal fluid (CSF), and protect cells from Aβ-related toxicity upon NIR irradiation. In addition, with the shape and size-dependent optical properties, the nanorods can also act as effective diagnostic probes to sensitively detect the Aβ aggregates. This is the first report to integrate 3 segments, an Aβ-targeting element, a reporter and inhibitors, in one drug delivery system for AD treatment.
Li, Meng; Guan, Yijia; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang
2017-01-01
Development of sensitive detectors of Aβ aggregates and effective inhibitors of Aβ aggregation are of diagnostic importance and therapeutic implications for Alzheimer's disease (AD) treatment. Herein, a novel strategy has been presented by self-assembly of peptide conjugated Au nanorods (AuP) as multifunctional Aβ fibrillization detectors and inhibitors. Our design combines the unique high NIR absorption property of AuNRs with two known Aβ inhibitors, Aβ15-20 and polyoxometalates (POMs). The synthesized AuP can effectively inhibit Aβ aggregation and dissociate amyloid deposits with NIR irradiation both in buffer and in mice cerebrospinal fluid (CSF), and protect cells from Aβ-related toxicity upon NIR irradiation. In addition, with the shape and size-dependent optical properties, the nanorods can also act as effective diagnostic probes to sensitively detect the Aβ aggregates. This is the first report to integrate 3 segments, an Aβ-targeting element, a reporter and inhibitors, in one drug delivery system for AD treatment. PMID:28839459
Bernstein-Levi, Ortal; Ochbaum, Guy; Bitton, Ronit
2016-01-01
Covalently modified polysaccharides are routinely used in tissue engineering due to their tailored biofunctionality. Understanding the effect of single-chain level modification on the solution conformation of the single chain, and more importantly on the self-assembly and aggregation of the ensemble of chains is expected to improve our ability to control network topology and the properties of the resulting gels. Attaching an RGD peptide to a polysaccharide backbone is a common procedure used to promote cell adhesion in hydrogel scaffolds. Recently it has been shown that the spatial presentation of the RGD sequences affects the cell behavior; thus, understanding the effects of grafted RGD on the conformational properties of the solvated polysaccharide chains is a prerequisite for rational design of polysaccharide-peptide based biomaterials. Here we investigate the effect of covalently linked G4RGDS on the conformational state of the individual chain and chain assemblies of alginate, chitosan, and hyaluronic acid (HA) in aqueous solutions. Two peptide fractions were studied using small-angle X-ray scattering (SAXS) and rheology. In all cases, upon peptide conjugation structural differences were observed. Analysis of the scattering data shows evidence of clustering for a higher fraction of bound peptide. Moreover for all three polysaccharides the typical shear thinning behavior of the natural polysaccharide solutions is replaced by a Newtonian fluid behavior for the lower fraction conjugated peptide while a more pronounced shear thinning behavior is observed for the higher fraction. These results indicate that the fraction of the bounded peptide, determines the behavior of a polysaccharide-peptide conjugates in solution, regardless of the specific nature of the polysaccharide. Copyright © 2015 Elsevier B.V. All rights reserved.
Peptide-Appended Permethylated β-Cyclodextrins with Hydrophilic and Hydrophobic Spacers
2017-01-01
A novel synthetic methodology, employing a combination of the strain-promoted azide–alkyne cycloaddition and maleimide–thiol reactions, for the preparation of permethylated β-cyclodextrin-linker-peptidyl conjugates is reported. Two different bifunctional maleimide cross-linking probes, the polyethylene glycol containing hydrophilic linker bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5′-dibenzoazacyclooctyne-maleimide, were attached to azide-appended permethylated β-cyclodextrin. The successfully introduced maleimide function was exploited to covalently graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide) to produce the target conjugates. The final target compounds were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography. This novel synthetic approach is expected to give access to many different cyclodextrin–linker peptides. PMID:28697600
Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin
NASA Astrophysics Data System (ADS)
Rodriguez, Carlos; Papanastasiou, Emilios; Juba, Melanie; Bishop, Barney
2014-09-01
The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.
Peptides: important tools for the treatment of central nervous system disorders.
Malavolta, Luciana; Cabral, Francisco Romero
2011-10-01
This review shows some classical applications of peptides and suggests there is great promise for the treatment of various central nervous system diseases. Actually, peptides are considered the new generation of biologically active tools because they are key regulators in cellular and intercellular physiological responses, which possess enormous potential for the treatment of various diseases. In spite of their clinical potential, native peptides have seen limited use due to their poor bioavailability and low stability in physiological conditions. Moreover, most peptide or protein pharmaceuticals currently in use are delivered by invasive routes such as via subcutaneous injection. Considerable efforts have been made to design new drugs based on peptides and recent developments in technology and science have provided the means and opportunity to produce a stable as well as controlled-release form of peptide and protein drugs to combat poorly controlled diseases and to increase patients' quality of life. A major challenge in this regard, however, is the delivery of peptides over the blood-brain barrier. This review gives an overview of some strategies used to improve both bioavailability and uptake of peptide drugs for delivery into the brain. Indeed, recent findings suggest that the use of peptides by conjugation to a polymer such as nanoparticles can offer tremendous hope in the treatment of brain disorders. The polymer conjugation improves pharmacokinetics by increasing the molecular mass of proteins and peptides and shielding them from proteolytic enzymes. These new strategies will create new opportunities for the future development of neurotherapeutic drugs. In the present review we have focused our attention on the peptide controlled delivery, summarizing literature reports on the use of peptides and nanotechnology for the treatment and diagnosis of brain disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jia, Fang; Balaji, Baghavathy S; Gallazzi, Fabio; Lewis, Michael R
2015-11-01
The bcl-2 gene is overexpressed in non-Hodgkin's lymphoma (NHL). We have reported micro-SPECT/CT imaging of Mec-1 human lymphoma xenografts in SCID mice, using [(111)In]DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate. In order to reduce normal organ accumulation and improve imaging contrast, modified monomers with neutral hydrophilic (serine, TS) or negatively charged (aspartic acid, TD) residues were synthesized as substitutes for glycine at T(14) in the PNA sequence. The parent and modified PNA-peptide conjugates were labeled with (64)Cu and evaluated in biodistribution studies and high resolution PET/CT imaging of SCID mice bearing bcl-2-positive Mec-1 xenografts as well as bcl-2-negative Ramos xenografts. Mice were administered the (64)Cu-labeled conjugates for biodistribution and imaging studies. Biodistributions were obtained from 1 to 48 h post-injection. Mice were imaged from 1 to 48 h post-injection. The parent glycine conjugate and two modified conjugates all showed selective tumor uptake in Mec-1 xenografts. The liver uptake of the serine conjugate was significantly reduced compared to the two other PNA conjugates. Its kidney uptake was highest of the three at 47.1% ID/g at 1h and dropped to 20.6% ID/g at 24h. [Copper-64]DOTA-anti-bcl-2-TS-PNA-Tyr(3)-octreotate showed tumor uptake of 1.38% ID/g at 1h and 1.06% ID/g at 24h. The tumor-to-blood ratio was increased by factor of 2 from 1h to 24h. This compound detected Mec-1 tumors by micro-PET/CT as early as 1h post-injection and at time points out to 48 h. However, the negative control Ramos tumor could not be detected. These (64)Cu-labeled, amino acid-modified PNA conjugates showed selective tumor targeting in vivo, and tumor xenografts were detected by micro-PET/CT as early as 1h post-injection, suggesting that bcl-2 expression at the mRNA level can detected by PET in mouse models of NHL. Advances in knowledge and implications for patient care Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism
Engineering Amyloid-Like Assemblies from Unstructured Peptides via Site-Specific Lipid Conjugation
López Deber, María Pilar; Hickman, David T.; Nand, Deepak; Baldus, Marc; Pfeifer, Andrea; Muhs, Andreas
2014-01-01
Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer’s disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1–2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures. PMID:25207975
Yang, Jianquan; Guo, Haixun; Gallazzi, Fabio; Berwick, Marianne; Padilla, R Steven; Miao, Yubin
2009-08-19
The purpose of this study was to determine whether Arg-Gly-Asp (RGD)-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptide could be employed to target melanocortin-1 (MC1) receptor for potential melanoma therapy. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), DPhe(7), Arg(11)]α-MSH(3-13) {(Arg(11))CCMSH} to generate RGD-Lys-(Arg(11))CCMSH hybrid peptide. The MC1 receptor binding affinity of RGD-Lys-(Arg(11))CCMSH was determined in B16/F1 melanoma cells. The internalization and efflux, melanoma targeting and pharmacokinetic properties and single photon emission computed tomography/CT (SPECT/CT) imaging of (99m)Tc-RGD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma cells and melanoma-bearing C57 mice. Clonogenic cytotoxic effect of RGD-Lys-(Arg(11))CCMSH was examined in B16/F1 melanoma cells. RGD-Lys-(Arg(11))CCMSH displayed 2.1 nM MC1 receptor binding affinity. (99m)Tc-RGD-Lys-(Arg(11))CCMSH showed rapid internalization and extended retention in B16/F1 cells. The cellular uptake of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was MC1 receptor-mediated. (99m)Tc-RGD-Lys-(Arg(11))CCMSH exhibited high tumor uptake (14.83 ± 2.94% ID/g 2 h postinjection) and prolonged tumor retention (7.59 ± 2.04% ID/g 24 h postinjection) in B16/F1 melanoma-bearing mice. Nontarget organ uptakes were generally low except for the kidneys. Whole-body clearance of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was rapid, with approximately 62% of the injected radioactivity cleared through the urinary system by 2 h postinjection. Flank melanoma tumors were clearly imaged by small animal SPECT/CT using (99m)Tc-RGD-Lys-(Arg(11))CCMSH as an imaging probe 2 h postinjection. Single treatment (3 h incubation) with 100 nM of RGD-Lys-(Arg(11))CCMSH significantly (p < 0.05) decreased the clonogenic survival of B16/F1 cells by 65% compared to the untreated control cells. Favorable melanoma targeting property of (99m)Tc-RGD-Lys-(Arg(11))CCMSH and remarkable cytotoxic effect of RGD
An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.
Gali, Hariprasad
2017-10-01
The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.
Yunlong, Bai; Hao, Huang; Kai, Yang; Hong, Tang
2014-10-01
To investigate in situ visualization using near-infrared quantum dots (QDs) conjugated with arginine- glycine-aspartic acid (ROD) peptide fluorescent probes in oral squamous cell carcinoma (08CC). QDs with emission wavelength of 800 nm (QD800) were conjugated with RGD peptides to produce QD800-RGD fluorescent probes. Human OSCC cell line BcaCD885 was inoculated in nude mice cheeks to establish OSCC mouse models. Frozen BcaCD885 tumor slices were immunofluorescence double stained by using QD800-RGD and CD105 monoclonal antibody and were observed using a laser scanning confocal microscope. QD800-RGD was injected into the OSCC models through the tail veins, and the in situ visualization was analyzed at different time points. The mice were sacrificed 12 h after injection to isolate tumors for the ex vivo analysis of probe localization in the tumors. QD800-RGD specifically targeted the integrin avβ3 expressed in the endothelial cells of tumor angiogenic vessels in vitro and in vivo, producing clear tumor fluorescence images after intravenous injection. The most complete tumor images with maximal signal-to-noise ratios were observed 0.5 h to 6 h after injection of the probe and significantly reduced 9 h after the injection. However, the tumor image was still clearly visible at 12 h. Using intravenously injected QD800-RGD generates high quality OSCC images when integrin avβ3, which is expressed in the endothelial cells of tumor angiogenic vessels, is used as the target. The technique offers great potential in the diagnosis and individual treatment of OSCC.
Zhang, Chengjin; Boa-Amponsem, Oswald; Cole, Gregory J
2017-08-01
This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.
Fu, Chen; Xiang, Yonggang; Li, Xiaorong; Fu, Ailing
2018-06-01
For successful theranosis of brain diseases, limited access of therapeutic molecules across blood-brain barrier (BBB) needs be overcome in brain delivery. Currently, peptide derivatives of rabies virus glycoprotein (RVG) have been exploited as delivery ligands to transport nanocarriers across BBB and specifically into the brain. The targeting peptides usually conjugate to the nanocarrier surface, and the cargoes, including siRNA, miRNA, DNA, proteins and small molecular chemicals, are complexed or encapsulated in the nanocarriers. The peptide ligand of the RVG-modified nanocarriers introduces the conjugated targeted-delivery into the brain, and the cargoes are involved in disease theranosis. The peptide-modified nanocarriers have been applied to diagnose and treat various brain diseases, such as glioma, Alzheimer's disease, ischemic injury, protein misfolding diseases etc. Since the targeting delivery system has displayed good biocompatibility and desirable therapeutic effect, it will raise a potential application in treating brain diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Salomone, Fabrizio; Breton, Marie; Leray, Isabelle; Cardarelli, Francesco; Boccardi, Claudia; Bonhenry, Daniel; Tarek, Mounir; Mir, Lluis M; Beltram, Fabio
2014-07-07
We report a novel nontoxic, high-yield, gene delivery system based on the synergistic use of nanosecond electric pulses (NPs) and nanomolar doses of the recently introduced CM18-Tat11 chimeric peptide (sequence of KWKLFKKIGAVLKVLTTGYGRKKRRQRRR, residues 1-7 of cecropin-A, 2-12 of melittin, and 47-57 of HIV-1 Tat protein). This combined use makes it possible to drastically reduce the required CM18-Tat11 concentration and confines stable nanopore formation to vesicle membranes followed by DNA release, while no detectable perturbation of the plasma membrane is observed. Two different experimental assays are exploited to quantitatively evaluate the details of NPs and CM18-Tat11 cooperation: (i) cytofluorimetric analysis of the integrity of synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles exposed to CM18-Tat11 and NPs and (ii) the in vitro transfection efficiency of a green fluorescent protein-encoding plasmid conjugated to CM18-Tat11 in the presence of NPs. Data support a model in which NPs induce membrane perturbation in the form of transient pores on all cellular membranes, while the peptide stabilizes membrane defects selectively within endosomes. Interestingly, atomistic molecular dynamics simulations show that the latter activity can be specifically attributed to the CM18 module, while Tat11 remains essential for cargo binding and vector subcellular localization. We argue that this result represents a paradigmatic example that can open the way to other targeted delivery protocols.
NASA Astrophysics Data System (ADS)
Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia
2015-08-01
Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study
Carbon nanotube-enzyme conjugates for the fabrication of diagnostic biosensors
NASA Astrophysics Data System (ADS)
Karunwi, Olukayode Adedamola
The fabrication of multi-analyte biotransducers continues to be a major technical challenge when the length scales of the individual transducer elements are on the order of microns Generation-3 (Gen-3) biosensors and advanced enzyme biofuel cells will benefit from direct electron transfer to oxidoreductases facilitated by single-walled carbon nanotubes (SWNTs). Direct electron transfer helps to mitigate errors from the instability in oxygen tension, eliminate use of a mediator and produce a device with low operating potential close to the redox potential of the enzymes. Supramolecular conjugates of SWNT-glucose oxidase (GOx-SWNT) may be produced via ultrasonic processing. Using a Plackett-Burman experimental design to investigate the process of tip ultrasonication, conjugate formation was investigated as a function of ultrasonication times and functionalized SWNTs of various tube lengths. Supramolecular conjugates formed from shorter, -OH functionalized SWNTs using longer sonication times gave the most favored combination for forming bioactive conjugates. There has also been growing interest in the fabrication of CNT-enzyme supramolecular constructs that control the placement of SWNTs within tunneling distance of co-factors for enhanced electron transfer efficiency in generation 3 biosensors and advanced biofuel cells. These conjugate systems raise a series of questions such as: Which peptide sequences within the enzymes have high affinity for the SWNTs? And, are these high affinity sequences likely to be in the vicinity of the redox-active co-factor to allow for direct electron transfer? Phage display has recently been used to identify specific peptide sequences that have high affinity for SWNTs. Molecular dynamics simulations were performed to study the interactions of five discrete peptides with (16,0) SWNT in explicit water as well as with graphene. The end residues appear to dominate the progression of adsorption regardless of character. Sequences identified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Kyung oh; Biomedical Sciences, Seoul National University College of Medicine; Cancer Research Institute, Seoul National University College of Medicine
Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescencemore » signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.« less
Azmi, Sarfuddin; Jiang, Keren; Stiles, Michael; Thundat, Thomas; Kaur, Kamaljit
2015-03-09
We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.
Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin
2016-03-10
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
2012-01-01
antibody conjugation to HA The conjugation chemistry followed a method previously developed in our laboratory. Briefly, HA (12 mg) was modi - fied...Webster MW, McGill JB, Schwartz SL. Promotion and acceleration of diabetic ulcer healing by arginine-glycine-aspartic acid (RGD) peptide matrix. RGD...Study Group. Diabetes Care 1995; 18: 39–46. 32. Ho-Asjoe M, Chronnell CM, Frame JD, Leigh IM, Carver N. Immunohistochemical analysis of burn depth. J
Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy.
Ferguson, Elaine L; Alshame, Alshame M J; Thomas, David W
2010-12-15
Bioresponsive polymers may effectively be utilized to enhance the circulation time and stability of biologically active proteins and peptides, while reducing their immunogenicity and toxicity. Recently, dextrin-epidermal growth factor (EGF) conjugates, which make use of the Polymer-masked UnMasked Protein Therapy (PUMPT) concept, have been developed and shown potential as modulators of impaired wound healing. This study investigated the potential of PUMPT using hyaluronic acid (HA) conjugates to mask activity and enhance protein stability, while allowing restoration of biological activity following triggered degradation. HA fragments (Mw ∼90,000g/mol), obtained by acid hydrolysis of Rooster comb HA, were conjugated to trypsin as a model enzyme or to EGF as a model growth factor. Conjugates contained 2.45 and 0.98% (w/w) trypsin or EGF, respectively, and contained <5% free protein. HA conjugation did not significantly alter trypsin's activity. However, incubation of the conjugate with physiological concentrations of HAase increased its activity to ∼145% (p<0.001) that of the free enzyme. In contrast, when HA-EGF conjugates were tested in vitro, no effect on cell proliferation was seen, even in the presence of HAase. HA conjugates did not display typical masking/unmasking behavior, HA-trypsin conjugates exhibited ∼52% greater stability in the presence of elastase, compared to free trypsin, demonstrating the potential of HA conjugates for further development as modulators of tissue repair. Copyright © 2010 Elsevier B.V. All rights reserved.
He, Xuezhong; Ma, Junyu; Jabbari, Esmaiel
2008-11-04
Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization
Alalwiat, Ahlam; Tang, Wen; Gerişlioğlu, Selim; Becker, Matthew L; Wesdemiotis, Chrys
2017-01-17
The bioconjugate BMP2-(PEO-HA) 2 , composed of a dendron with two monodisperse poly(ethylene oxide) (PEO) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone growth stimulating peptide (BMP2), has been comprehensively characterized by mass spectrometry (MS) methods, encompassing matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), tandem mass spectrometry (MS 2 ), and ion mobility mass spectrometry (IM-MS). MS 2 experiments using different ion activation techniques validated the sequences of the synthetic, bioactive peptides HA and BMP2, which contained highly basic amino acid residues either at the N-terminus (BMP2) or C-terminus (HA). Application of MALDI-MS, ESI-MS, and IM-MS to the polymer-peptide biomaterial confirmed its composition. Collision cross-section measurements and molecular modeling indicated that BMP2-(PEO-HA) 2 exists in several folded and extended conformations, depending on the degree of protonation. Protonation of all basic sites of the hybrid material nearly doubles its conformational space and accessible surface area.
Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools
NASA Astrophysics Data System (ADS)
Sayeh, Naser Ali
conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the
Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua
2017-01-01
Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis
Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.
2012-01-01
Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a
Versatile synthesis and rational design of caged morpholinos.
Ouyang, Xiaohu; Shestopalov, Ilya A; Sinha, Surajit; Zheng, Genhua; Pitt, Cameron L W; Li, Wen-Hong; Olson, Andrew J; Chen, James K
2009-09-23
Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies.
Versatile Synthesis and Rational Design of Caged Morpholinos
2009-01-01
Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies. PMID:19708646
C-terminal peptide extension via gas-phase ion/ion reactions
Peng, Zhou; McLuckey, Scott A.
2015-01-01
The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400
Shi, Chuan; Goldberg, Shalom; Lin, Tricia; Dudkin, Vadim; Widdison, Wayne; Harris, Luke; Wilhelm, Sharon; Jmeian, Yazen; Davis, Darryl; O'Neil, Karyn; Weng, Naidong; Jian, Wenying
2018-04-17
Bioanalysis of antibody-drug conjugates (ADCs) is challenging due to the complex, heterogeneous nature of their structures and their complicated catabolism. To fully describe the pharmacokinetics (PK) of an ADC, several analytes are commonly quantified, including total antibody, conjugate, and payload. Among them, conjugate is the most challenging to measure, because it requires detection of both small and large molecules as one entity. Existing approaches to quantify the conjugated species of ADCs involve a ligand binding assay (LBA) for conjugated antibody or hybrid LBA/liquid chromatography/tandem mass spectrometry (LC/MS/MS) for quantitation of conjugated drug. In our current work for a protein-drug conjugate (PDC) using the Centyrin scaffold, a similar concept to ADCs but with smaller protein size, an alternative method to quantify the conjugate by using a surrogate peptide approach, was utilized. The His-tagged proteins were isolated from biological samples using immobilized metal affinity chromatography (IMAC), followed by trypsin digestion. The tryptic peptide containing the linker attached to the payload was used as a surrogate of the conjugate and monitored by LC/MS/MS analysis. During method development and its application, we found that hydrolysis of the succinimide ring of the linker was ubiquitous, taking place at many stages during the lifetime of the PDC including in the initial drug product, in vivo in circulation in the animals, and ex vivo during the trypsin digestion step of the sample preparation. We have shown that hydrolysis during trypsin digestion is concentration-independent and consistent during the work flow-therefore, having no impact on assay performance. However, for samples that have undergone extensive hydrolysis prior to trypsin digestion, significant bias could be introduced if only the non-hydrolyzed form is considered in the quantitation. Therefore, it is important to incorporate succinimide hydrolysis products in the
Zhang, Liang; Navaratna, Tejas; Thurber, Greg M
2016-07-20
Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.
(68)Ga small peptide imaging: comparison of NOTA and PCTA.
Ferreira, Cara L; Yapp, Donald T T; Mandel, Derek; Gill, Rajanvir K; Boros, Eszter; Wong, May Q; Jurek, Paul; Kiefer, Garry E
2012-11-21
In this study, a bifunctional version of the chelate PCTA was compared to the analogous NOTA derivative for peptide conjugation, (68)Ga radiolabeling, and small peptide imaging. Both p-SCN-Bn-PCTA and p-SCN-Bn-NOTA were conjugated to cyclo-RGDyK. The resulting conjugates, PCTA-RGD and NOTA-RGD, retained their affinity for the peptide target, the α(v)β(3) receptor. Both PCTA-RGD and NOTA-RGD could be radiolabeled with (68)Ga in >95% radiochemical yield (RCY) at room temperature within 5 min. For PCTA-RGD, higher effective specific activities, up to 55 MBq/nmol, could be achieved in 95% RCY with gentle heating at 40 °C. The (68)Ga-radiolabeled conjugates were >90% stable in serum and in the presence of excess apo-transferrin over 4 h; (68)Ga-PCTA-RGD did have slightly lower stability than (68)Ga-NOTA-RGD, 93 ± 2% compared to 98 ± 1%, at the 4 h time point. Finally, the tumor and nontarget organ uptake and clearance of (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD was compared in mice bearing HT-29 colorectal tumor xenografts. Activity cleared quickly from the blood and muscle tissue with >90% and >70% of the initial activity cleared within the first 40 min, respectively. The majority of activity was observed in the kidney, liver, and tumor tissue. The observed tumor uptake was specific with up to 75% of the tumor uptake blocked when the mice were preinjected with 160 nmol (100 μg) of unlabeled peptide. Uptake observed in the blocked tumors was not significantly different than the background activity observed in muscle tissue. The only significant difference between the two (68)Ga-radiolabeled bioconjugates in vivo was the kidney uptake. (68)Ga-radiolabeled PCTA-RGD had significantly lower (p < 0.05) kidney uptake (1.1 ± 0.5%) at 2 h postinjection compared to (68)Ga-radiolabeled NOTA-RGD (2.7 ± 1.3%). Overall, (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD performed similarly, but the lower kidney uptake for (68)Ga-radiolabeled PCTA-RGD may be advantageous in some
Chong, Siow-Feng; Sexton, Amy; De Rose, Robert; Kent, Stephen J; Zelikin, Alexander N; Caruso, Frank
2009-10-01
We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.
Gauvreau, Virginie; Laroche, Gaétan
2005-01-01
We report here the development of an original multistep micropatterning technique for printing peptides on surfaces, based on the ink-jet printer technology. Contrary to most micropatterning methods used nowadays, this technique is advantageous because it allows displaying 2D-arrays of multiple biomolecules. Moreover, this low cost procedure allies the advantages of computer-aided design with high flexibility and reproducibility. A Hewlett-Packard printer was modified to print peptide solutions, and Adobe Illustrator was used as the graphic-editing software to design high-resolution checkerboard-like micropatterns. In a first step, PTFE films were treated with ammonia plasma to introduce amino groups on the surface. These chemical functionalities were reacted with heterobifunctional cross-linker sulfo-succinimidyl 4-(N-maleimidomethyl)cycloexane-1-carboxylate (S-SMCC) to allow the subsequent surface covalent conjugation of various cysteine-modified peptides to the polymer substrate. These peptidic molecules containing RGD and WQPPRARI sequences were selected for their adhesive, spreading, and migrational properties toward endothelial cells. On one hand, our data demonstrated that the initial cell adhesion does not depend on the chemical structure and combination of the peptides covalently bonded either through conventional conjugation or micropatterning. On the other hand, spreading and migration of endothelial cells is clearly enhanced while coconjugating the GRGDS peptide in conjunction with WQPPRARI. This behavior is further improved by micropatterning these peptides on specific areas of the polymer surface.
Huang, Chiun-Wei; Li, Zibo; Cai, Hancheng; Shahinian, Tony; Conti, Peter S
2011-02-16
Robust chelating stability under biological condi-tions is critical for the design of copper-based radiopharmaceuticals. In this study, the stabilities of (64)Cu-DOTA and diamsar (two bifunctional Cu-64 chelators (BFCs)) conjugated DGEA peptides were evaluated. The in vitro stabilities of (64)Cu-DOTA-DGEA, (64)Cu-DOTA-Ahx-DGEA, and (64)Cu-Z-E(diamsar)-Ahx-DGEA were evaluated in PBS. A carboxyl-protected DOTA-DGEA was also synthesized to study the potential inter- and intramolecular interactions between DOTA and the carboxylate groups of DGEA peptide. microPET imaging of (64)Cu-DOTA-DGEA and (64)Cu-Z-E(diamsar)-Ahx-DGEA were performed in PC-3 prostate tumor model to further investigate the in vivo behavior of the tracers. DOTA-DGEA, DOTA-Ahx-DGEA, Z-E(diamsar)-Ahx-DGEA, and protected DOTA-DGEA peptides were readily obtained, and their identities were confirmed by MS. (64)Cu(2+) labeling was performed with high radiochemical yields (>98%) for all tracers after 1 h incubation. Stability experiments revealed that (64)Cu-DOTA-DGEA had unexpectedly high (64)Cu(2+) dissociation when incubated in PBS (>55% free (64)Cu(2+) was observed at 48 h time point). The (64)Cu(2+) dissociation was significantly reduced in the carboxyl-protected (64)Cu-DOTA-DGEA complex but not in the (64)Cu-DOTA-Ahx-DGEA complex, which suggests the presence of competitive binding for (64)Cu(2+) between DOTA and the carboxyl groups of the DGEA peptide. In contrast, no significant (64)Cu(2+) dissociation was observed for (64)Cu-Z-E(diamsar)-Ahx-DGEA in PBS. For microPET imaging, the PC-3 tumors were clearly visualized with both (64)Cu-DOTA-DGEA and (64)Cu-Z-E(diamsar)-Ahx-DGEA tracers. However, (64)Cu-DOTA-DGEA demonstrated 5× higher liver uptake than (64)Cu-Z-E(diamsar)-Ahx-DGEA. This biodistribution variance could be attributed to the chelating stability difference between these two tracers, which correlated well with the PBS stability experiments. In summary, the in vitro and in vivo evaluations of
Burke, Christopher S; Byrne, Aisling; Keyes, Tia E
2018-06-06
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
NASA Astrophysics Data System (ADS)
Mansbach, Rachael; Ferguson, Andrew
Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.
NASA Astrophysics Data System (ADS)
Kim, Kwan-Soo; Kim, Chang-Beom; Song, Ki-Bong
2013-05-01
This article describes a novel method for detection of amyloid-β (Aβ) peptide that utilizes a photo-sensitive field-effect transistor (p-FET). According to a recent study, Aβ protein is known to play a central role in the pathogenesis of Alzheimer's disease (AD). Accordingly, we investigated the variation of photo current of the p-FET generated by the magnetic beads conjugated with Aβ peptides which are placed on the p-FET sensing areas. Additionally, in order to amplify the output signal, we used the lock-in amplifier (LIA) and confirmed the generating the photo current by a small incident light power under 100 μW. It means that it is possible to simply detect a certain protein using magnetic beads conjugated with Aβ peptide and fluorescent label located on the p-FET device. Therefore, in this paper, we suggest that our method could detect tiny amounts of Aβ peptide for early diagnosis of AD using the p-FET devices.
2015-01-01
This study was aimed at developing a triazine-based modular platform for targeted PET imaging. We synthesized mono- or bis-cyclo(RGDfK) linked triazine-based conjugates specifically targeting integrin αvβ3 receptors. The core molecules could be easily linked to targeting peptide and radiolabeled bifunctional chelator. The spacer core molecule was synthesized in 2 or 3 steps in 64–80% yield, and the following conjugation reactions with cyclo(RGDfK) peptide or bifunctional chelator were accomplished using “click” chemistry or amidation reactions. The DOTA-TZ-Bis-cyclo(RGDfK) 13 conjugate was radiolabeled successfully with 64Cu(OAc)2 using a microfluidic method, resulting in higher specific activity with above 95% labeling yields compared to conventional radiolabeling (SA ca. 850 vs 600 Ci/mmol). The dimeric cyclo(RGDfK) peptide was found to display significant bivalency effect using I125-Echistatin binding assay with IC50 value as 178.5 ± 57.1 nM, which displayed a 3.6-fold enhancement of binding affinity compared to DOTA-TZ-cyclo(RGDfK) 14 conjugate on U87MG human glioblastoma cell. Biodistribution of all four conjugates in female athymic nude mice were evaluated. DOTA-“Click”-cyclo(RGDfK) 15 had the highest tumor uptake among these four at 4 h p.i. with 1.90 ± 0.65%ID/g, while there was no clear bivalency effect for DOTA-TZ-BisRGD in vivo, which needs further experiments to address the unexpected questions. PMID:24661266
Boron nitride nanotubes for gene silencing.
Şen, Özlem; Çobandede, Zehra; Emanet, Melis; Bayrak, Ömer Faruk; Çulha, Mustafa
2017-09-01
Non-viral gene delivery is increasingly investigated as an alternative to viral vectors due to low toxicity and immunogenicity, easy preparation, tissue specificity, and ability to transfer larger sizes of genes. In this study, boron nitride nanotubes (BNNTs) are functionalized with oligonucleotides (oligo-BNNTs). The morpholinos complementary to the oligonucleotides attached to the BNNTs (morpholino/oligo-BNNTs) are hybridized to silence the luciferase gene. The morpholino/oligo-BNNTs conjugates are administered to luciferase-expressing cells (MDA-MB-231-luc2) and the luciferase activity is monitored. The luciferase activity is decreased when MDA-MB-231-luc2 cells were treated with morpholino/oligo-BNNTs. The study suggests that BNNTs can be used as a potential vector to transfect cells. BNNTs are potential new nanocarriers for gene delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Huifeng; An, Yanming; Battistel, Marcos D; Cipollo, John F; Freedberg, Darón I
2018-04-17
Conjugate vaccines are highly heterogeneous in terms of glycosylation sites and linked oligosaccharide length. Therefore, the characterization of conjugate vaccines' glycosylation state is challenging. However, improved product characterization can lead to enhancements in product control and product quality. Here, we present a synergistic combination of high-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) for the analysis of glycoconjugates. We use the power of this strategy to characterize model polysaccharide conjugates and to demonstrate a detailed level of glycoproteomic analysis. These are first steps on model compounds that will help untangle the details of complex product characterization in conjugate vaccines. Ultimately, this strategy can be applied to enhance the characterization of polysaccharide conjugate vaccines. In this study, we lay the groundwork for the analysis of conjugate vaccines. To begin this effort, oligosaccharide-peptide conjugates were synthesized by periodate oxidation of an oligosaccharide of a defined length, α,2-8 sialic acid trimer, followed by a reductive amination, and linking the trimer to an immunogenic peptide from tetanus toxoid. Combined mass spectrometry and nuclear magnetic resonance were used to monitor each reaction and conjugation products. Complete NMR peak assignment and detailed MS information on oxidized oligosialic acid and conjugates are reported. These studies provide a deeper understanding of the conjugation chemistry process and products, which can lead to a better controlled production process.
Imanaka, Hiroyuki; Yamadzumi, Daisuke; Yanagita, Keisuke; Ishida, Naoyuki; Nakanishi, Kazuhiro; Imamura, Koreyoshi
2016-03-01
In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a "cushion" between the PS-affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS-affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527-534, 2016. © 2016 American Institute of Chemical Engineers.
Abdelhedi, Ola; Mora, Leticia; Jemil, Ines; Jridi, Mourad; Toldrá, Fidel; Nasri, Moncef; Nasri, Rim
2017-09-01
The effect of ultrasound (US) pre-treatment on the evolution of Maillard reaction (MR), induced between low molecular weight (LMW) peptides and sucrose, was studied. LMW peptides (<1kDa) were obtained by the ultrafiltration of smooth hound viscera protein hydrolysates, produced by Neutrase, Esperase and Purafect. MR was induced by heating the LMW peptides in the presence of sucrose for 2h at 90°C, without or with US pre-treatment. During the reaction, a marked decrease in pH values, coupled to the increase in colour of the Maillard reaction products (MRPs), were recorded. In addition, after sonication, the glycation degree was significantly enhanced in Esperase-derived peptides/sucrose conjugates (p<0.05). Moreover, results showed that thermal heating, particularly after US treatment, reduced the bitter taste and enhanced the antioxidant capacities of the resulting conjugates. Hence, it could be concluded that US leads to efficient mixing of sugar-protein solution and efficient heat/mass transfer, contributing to increase the MR rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen
2018-06-06
α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Targeted Type 1 phototherapeutic agents using azido-peptide bioconjugates
NASA Astrophysics Data System (ADS)
Rajagopalan, Raghavan; Achilefu, Samuel I.; Jimenez, Hermo N.; Webb, Elizabeth G.; Schmidt, Michelle A.; Bugaj, Joseph E.; Dorshow, Richard B.
2001-07-01
Five peptides binding to somatostatin and bombesin receptors were conjugated to 4-azido-2,3,4,6-tetrafluorophenylbenzoic acid, a Type 1 photosensitizer, at the N-terminal position. The receptor affinities were determined by competition binding assay using two different pancreatic tumor cell lines, CA20948 and AR42-J, that expresses somatostatin-2 (SST-2) and bombesin receptors receptively. All compounds exhibited high receptor specificity, i.e., the IC50 values ranged between 1.0 to 64.0 nM. These conjugates may be useful for targeted Type 1 phototherapy via the generation of nitrenes at the cell surfaces expressing these receptors.
Kondo, Naoya; Temma, Takashi; Deguchi, Jun; Sano, Kohei; Ono, Masahiro; Saji, Hideo
2015-12-28
Since the processing activity of the matrix metalloproteinase MT1-MMP regulates various cellular functions such as motility, invasion, growth, differentiation and apoptosis, precise in vivo evaluation of MT1-MMP activity in cancers can provide beneficial information for both basic and clinical studies. For this purpose, we designed a cleavable Positron Emission Tomography (PET)/optical imaging probe consisting of BODIPY650/665 and polyethylene glycol (PEG) conjugated to opposite ends of MT1-MMP substrate peptides. We used in vitro and in vivo fluorescence experiments to select suitable substrate peptide sequences and PEG sizes for the MT1-MMP probes and obtained an optimized structure referred to here as MBP-2k. Radiofluorinated MBP-2k ([(18)F]MBP-2k) was then successfully synthesized via an (18)F-(19)F isotopic exchange reaction in BODIPY650/665. After intravenous injection into mice with xenografted tumors, [(18)F]MBP-2k showed significantly higher accumulation in HT1080 tumors with high MT1-MMP activity than in A549 tumors that have low MT1-MMP activity. Moreover, PET images showed better contrast in HT1080 tumors. These results show that [(18)F]MBP-2k can be used as a hybrid PET/optical imaging agent and is a promising probe for non-invasive monitoring of MT1-MMP activity in cancers. This probe may also efficiently combine targeted tumor imaging with image-guided surgery that could be beneficial for patients in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Yu, Hui; Guo, Xiaojuan; Qi, Xueliang; Liu, Peifeng; Shen, Xinyuan; Duan, Yourong
2008-03-01
A biodegradable Copolymer of poly(lactic acid-co-lysine)(PLA-PLL) was synthesized by a modified method and novel Arginine-Glycine-Aspartic (RGD) peptides were chemical conjugated to the primary epsilon-amine groups of lysine components in four steps: I to prepare the monomer of 3-(Nepsilon-benzoxycarbonyl-L-lysine)-6-L-methyl-2,5-morpholinedione; II to prepare diblock copolymer poly(lactic acid-co-(Z)-L-lysine) (PLA-PLL(Z)) by ring-opening polymerization of monomer and L,L-lactide with stannous octoate as initiator; III to prepare diblock copolymer PLA-PLL by deprotected the copolymer PLA-PLL(Z) in HBr/HoAc solution; IV the reaction between RGD and the primary epsilon-amine groups of the PLA-PLL. The structure of PLA-PLL-RGD and its precursors were conformed by FTIR-Raman and 1H NMR. Low weight average molecular weight (9,200 g/mol) of the PLA-PLL was obtained and its PDI is 1.33 determined by GPC. The PLA-PLL contained 2.1 mol% lysine groups as determined by 1H NMR using the lysine protecting group's phenyl protons. Therefore, the novel RGD-grafted diblock copolymer is expected to find application in drug carriers for tumor therapy or non-viral DNA carriers for gene therapy.
A novel prosthetic group for site-selective labeling of peptides for positron emission tomography.
Olberg, Dag Erlend; Hjelstuen, Ole Kristian; Solbakken, Magne; Arukwe, Joseph; Karlsen, Hege; Cuthbertson, Alan
2008-06-01
Efficient methodologies for the radiolabeling of peptides with [(18)F]fluoride are a prerequisite to enabling commercialization of peptide-containing radiotracers for positron emission tomography (PET) imaging. It was the purpose of this study to investigate a novel chemoselective ligation reaction comprising conjugation of an [(18)F]-N-methylaminooxy-containing prosthetic group to a functionalized peptide. Twelve derivatives of general formula R1-CO-NH-Lys-Gly-Phe-Gly-Lys-OH were synthesized where R1 was selected from a short list of moieties anticipated to be reactive toward the N-methylaminooxy group. Conjugation reactions were initially carried out with nonradioactive precursors to assess, in a qualitative manner, their general suitability for PET chemistry with only the most promising pairings progressing to full radiochemical assessment. Best results were obtained for the ligation of O-[2-(2-[(18)F]fluoroethoxy)ethyl]-N-methyl-N-hydroxylamine 18 to the maleimidopropionyl-Lys-Gly-Phe-Gly-Lys-OH precursor 10 in acetate buffer (pH 5) after 1 h at 70 degrees C. The non-decay-corrected isolated yield was calculated to be 8.5%. The most encouraging result was observed with the combination 18 and 4-(2-nitrovinyl)benzoyl-Lys-Gly-Phe-Gly-Lys-OH, 9, where the conjugation reaction proceeded rapidly to completion at 30 degrees C after only 5 min. The corresponding non-decay-corrected radiochemical yield for the isolated (18)F-labeled product 27 was 12%. The preliminary results from this study demonstrate the considerable potential of this novel strategy for the radiolabeling of peptides.
Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
Ramaker, Katrin; Henkel, Maik; Krause, Thorsten; Röckendorf, Niels; Frey, Andreas
2018-11-01
Delivering reagents into cells is a key demand in molecular medicine. The vehicle of choice is often cell penetrating peptides (CPPs), which can ferry conjugated cargo across membranes. Although numerous peptides have been shown to promote such uptake events, there has been no comprehensive comparison of individual performance under standardized conditions. We have devised a method to rapidly analyze the ability of a multitude of CPP conjugates to carry a model cargo into HeLa cells. Sequence information for 474 CPPs was collected from literature sources, and the respective peptides were synthesized and modified with carboxyfluorescein (FAM) as model cargo. All candidates were evaluated in an identical uptake test, and transport was quantified using cellular fluorescence intensities. Substantial differences in the ability to carry the fluorophore into the cells were observed, with transport performance differing by a factor of 70 between the best CPP investigated and cargo alone. Strong correlations were observed between uptake efficiency and both sequence length and the presence of positive net charge. A compilation of the 20 top performers with regard to cargo delivery performance and cell compatibility is provided.
Waite, Carolyn L.; Roth, Charles M.
2011-01-01
Generation 5 poly(amidoamine) (PAMAM) dendrimers were modified by the addition of cyclic RGD targeting peptides and were evaluated for their ability to associate with siRNA and mediate siRNA delivery to U87 malignant glioma cells. PAMAM-RGD conjugates were able to complex with siRNA to form complexes of approximately 200 nm in size. Modest siRNA delivery was observed in U87 cells using either PAMAM or PAMAM-RGD conjugates. PAMAM-RGD conjugates prevented the adhesion of U87 cells to fibrinogen coated plates, in a manner that depends on the number of RGD ligands per dendrimer. The delivery of siRNA through three-dimensional multicellular spheroids of U87 cells was enhanced using PAMAM-RGD conjugates compared to the native PAMAM dendrimers, presumably by interfering with integrin-ECM contacts present in a three-dimensional tumor model. PMID:19775120
Peptide protected gold clusters: chemical synthesis and biomedical applications
NASA Astrophysics Data System (ADS)
Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun
2016-06-01
Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.
Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.
2016-01-01
Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034
Bashari, O; Redko, B; Cohen, A; Luboshits, G; Gellerman, G; Firer, M A
2017-11-01
Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer. Copyright © 2017. Published by Elsevier B.V.
Cell Penetrating Peptides in the Delivery of Biopharmaceuticals
Munyendo, Were LL; Lv, Huixia; Benza-Ingoula, Habiba; Baraza, Lilechi D.; Zhou, Jianping
2012-01-01
The cell membrane is a highly selective barrier. This limits the cellular uptake of molecules including DNA, oligonucleotides, peptides and proteins used as therapeutic agents. Different approaches have been employed to increase the membrane permeability and intracellular delivery of these therapeutic molecules. One such approach is the use of Cell Penetrating Peptides (CPPs). CPPs represent a new and innovative concept, which bypasses the problem of bioavailability of drugs. The success of CPPs lies in their ability to unlock intracellular and even intranuclear targets for the delivery of agents ranging from peptides to antibodies and drug-loaded nanoparticles. This review highlights the development of cell penetrating peptides for cell-specific delivery strategies involving biomolecules that can be triggered spatially and temporally within a cell transport pathway by change in physiological conditions. The review also discusses conjugations of therapeutic agents to CPPs for enhanced intracellular delivery and bioavailability that are at the clinical stage of development. PMID:24970133
The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.
Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R
2017-12-01
Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.
Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo
2018-01-01
Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.
Olszanecki, Rafał; Gawlik, Grzegorz
2014-01-01
The 2014 outbreak clearly showed that Ebola viruses (EBOV) remain a substantial threat for public health. The mainstay of management of patients with Ebola disease is isolation of patients and use of strict barrier nursing procedures; the present treatment strategies are mainly symptomatic and supportive (fluid resuscitation, antypyretics, antidiarrheal drugs). Currently, there is no approved therapy for Ebola hemorrhagic fever (EHF), however several advanced treatment options were tested in animal models (on non-human primates or rodents). They include use of both symptomatic (e.g. use of tissue factor inhibitors - rhNAPc2, rhAPC - to abolish coagulopathy) and specific antiviral approaches: e.g. monoclonal anti EBOV antibodies (ZMapp, MB-003), phosphorodiamidate morpholino oligomers (PMOs), liposomes containing siRNA (LNP-siRNA:TKM-Ebola) and small molecule inhibitors (e.g. BCX4430, favipiravir). The scope of this article is to briefly review the most promising therapeutics for EHF, based on the data coming from rare clinical reports, studies on animals and results from in vitro models.
Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy.
Kollberg, Gittan; Holme, Elisabeth
2009-12-01
Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.
NASA Astrophysics Data System (ADS)
Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei
2014-04-01
Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe3O4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe3O4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue.
Maddalo, Danilo; Neeb, Antje; Jehle, Katja; Schmitz, Katja; Muhle-Goll, Claudia; Shatkina, Liubov; Walther, Tamara Vanessa; Bruchmann, Anja; Gopal, Srinivasa M.; Wenzel, Wolfgang; Ulrich, Anne S.; Cato, Andrew C. B.
2012-01-01
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy. PMID:23049684
Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H
1999-05-01
N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.
PEG conjugates in clinical development or use as anticancer agents: an overview.
Pasut, Gianfranco; Veronese, Francesco M
2009-11-12
During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.
Using Morpholinos to Probe Gene Networks in Sea Urchin.
Materna, Stefan C
2017-01-01
The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.
Host Defense Antimicrobial Peptides as Antibiotics: Design and Application Strategies
Mishra, Biswajit; Reiling, Scott; Zarena, D.; Wang, Guangshun
2017-01-01
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs, including biofilm). Finally, we highlight AMPs already in use or under clinical trials. PMID:28399505
A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide
Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.
2010-01-01
Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593
Jain, Aastha; Chugh, Archana
2016-09-01
Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics. © 2016 Federation of European Biochemical Societies.
Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi
1999-01-01
N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B. PMID:10223949
Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O
2016-05-11
Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.
Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R
2016-03-15
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Godinho, Bruno M D C; Gilbert, James W; Haraszti, Reka A; Coles, Andrew H; Biscans, Annabelle; Roux, Loic; Nikan, Mehran; Echeverria, Dimas; Hassler, Matthew; Khvorova, Anastasia
2017-12-01
Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.
NASA Astrophysics Data System (ADS)
Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa
2017-04-01
Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin esculentin-1a, named esculentin-1a(1-21)NH2, [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa, a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e. α-aminoisobutyric acid or D-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.
Ignat'eva, G A; Maksiutov, A Z; L'vov, V L; Kolobov, A A; Ignat'ev, T I
2011-01-01
The short multiepitopic synthetic peptides from the sequences of hypervariable area of V3-loope of gp120 of HIV don't induce anti-peptides antibodies production in mice themselves. We prepared the potent immunogen by noncovalent conjugations of the multitude peptides with pure peptidoglycans from cell wall of Salmonella typhi. The sera from immunized mice have the anti-peptides antibody titers (3-5) x 10(5) in ELISA, as high as Freund's adjuvant is of use.
Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei
2016-11-01
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.
Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel
2010-01-01
The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-γin vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV. PMID:20331473
Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel
2010-08-01
The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.
Thapa, Raj Kumar; Nguyen, Hanh Thuy; Gautam, Milan; Shrestha, Aarajana; Lee, Eung Seok; Ku, Sae Kwang; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2017-11-01
Nanoparticle-based drug delivery systems are designed to reach tumor sites based on their enhanced permeation and retention effects. However, a lack of interaction of these nanoparticles with cancer cells might lead to reduced uptake in the tumors, which might compromise the therapeutic efficacy of the system. Therefore, we developed bortezomib and IR-820-loaded hybrid-lipid mesoporous silica nanoparticles conjugated with the hydrophobic-binding peptide, cyclosporine A (CsA), and referred to them as CLMSN/BIR. Upon reaching the tumor site, CsA interacts hydrophobically with the cancer cell membranes to allow effective uptake of the nanoparticles. Nanoparticles ∼160 nm in size were prepared and the stability of IR-820 significantly improved. High cellular uptake of the nanoparticles was evident with pronounced apoptotic effects in PANC-1 and MIA PaCa-2 cells that were mediated by the chemotherapeutic effect of bortezomib and the photothermal and reactive oxygen species generation effects of IR-820. An in vivo biodistribution study indicated there was high accumulation in the tumor with an enhanced photothermal effect in PANC-1 xenograft mouse tumors. Furthermore, enhanced antitumor effects in PANC-1 xenograft tumors were observed with minimal toxicity induction in the organs of mice. Cumulatively, these results indicated the promising effects of CLMSN/BIR for effective chemo-phototherapy of pancreatic cancers.
Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides.
Kern, Hanna B; Srinivasan, Selvi; Convertine, Anthony J; Hockenbery, David; Press, Oliver W; Stayton, Patrick S
2017-05-01
Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA 300 but not with PEGMA 950 . MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a
Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells
Zhang, Yanfen; Yang, Xiantao; Ma, Yuan; Guan, Zhu; Wu, Yun; Zhang, Lihe; Yang, Zhenjun
2017-01-01
In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA). Single strands of siRNA targeting to BRAFV600E gene (siMB3) conjugated with cRGD peptide at 3′-terminus or 5′-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD) developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate) nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5) which cRGD was conjugated at 5′-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. PMID:29042774
Un, Frank; Zhou, Bingsen; Yen, Yun
2012-11-01
Ribonucleotide reductase composed of the hRRM1 and hRRM2 subunits catalyzes the conversion of ribonucleotides to their corresponding deoxy forms for DNA replication. Anti-hRRM2 siRNA degrades hRRM2's mRNA and suppresses tumorigenesis. A Phase I clinical trial demonstrated its therapy potential. HN-1 represents a tumor-specifically internalizing peptide for targeted-drug delivery into human head and neck squamous cell carcinoma. Internalization of peptide was monitored by fluorescence microscopy. The peptide-siRNA conjugate was chemically synthesized. The hRRM2 expression was monitored by western blot analysis. HN-1(TYR) (HN-1 with two N-terminally added tyrosines) was internalized by human head and neck or breast cancer cells. Anti-hRRM2 siRNA(R) (resistant to RNase degradation) was conjugated to HN-1(TYR) without compromising their properties. The treatment with HN-1(TYR)-anti-hRRM2 siRNA(R) partly suppressed the endogenously expressed hRRM2 in human breast cancer cells. Our results establish the utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human cancer cells.
Ramezani, Fatemeh; Habibi, Mostafa; Rafii-Tabar, Hashem; Amanlou, Massoud
2015-01-29
Gold nanoparticles now command a great deal of attention for medical applications. Despite the importance of nano-bio interfaces, interaction between peptides and proteins with gold surfaces is not still fully understood, especially in a molecular level. In the present study computational simulation of adsorption of 20 amino acids, in three forms of mono-amino acid, homo di-peptide and homo tri-peptide, on the gold nanoparticles was performed by Gromacs using OPLSAA force field. The flexibility, stability, and size effect of the peptides on the gold nanoparticles were studied as well as the molecular structure of them. According to our results, adsorbed homo tri-peptides on the gold surface had more flexibility, more gyration, and the farthest distance from the GNP in comparison with homo di-peptides and mono-amino acids. Our findings provide new insights into the precise control of interactions between amino acids anchored on the GNPs.
Sun, Wei; Li, Lian; Li, Li-jia; Yang, Qing-qing; Zhang, Zhi-rong; Huang, Yuan
2017-01-01
Active tumor-targeting approaches using specific ligands have drawn considerable attention over the years. However, a single ligand often fails to simultaneously target the cancer cell surface and subcellular organelles, which limits the maximum therapeutic efficacy of delivered drugs. We describe a polymeric delivery system modified with the G3-C12 peptide for sequential dual targeting. In this study, galectin-3-targeted G3-C12 peptide was conjugated onto the N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer for the delivery of D(KLAKLAK)2 (KLA) peptide. G3-C12-HPMA-KLA exhibited increased receptor-mediated internalization into galectin-3-overexpressing PC-3 cells. Furthermore, G3-C12 peptide also directed HPMA-KLA conjugates to mitochondria. This occurred because the apoptosis signal triggered the accumulation of galectin-3 in mitochondria, and the G3-C12 peptide that specifically bound to galectin-3 was trafficked along with its receptor intracellularly. As a result, G3-C12-HPMA-KLA disrupted the mitochondrial membrane, increased the generation of reactive oxygen species (ROS) and induced cytochrome c release, which ultimately resulted in enhanced cytotoxicity. An in vivo study revealed that the G3-C12 peptide significantly enhanced the tumor accumulation of the KLA conjugate. In addition, G3-C12-HPMA-KLA exhibited the best therapeutic efficacy and greatly improved the animal survival rate. Our work demonstrates that G3-C12 is a promising ligand with dual-targeting functionality. PMID:28065935
Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel
2014-07-15
Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.
Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark
2015-04-09
Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.
Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian
2014-01-01
Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980
Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian
2014-01-01
Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.
Orally active-targeted drug delivery systems for proteins and peptides.
Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi
2014-09-01
In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.
NASA Astrophysics Data System (ADS)
Belfield, Kevin D.; Yue, Xiling; Morales, Alma R.; Githaiga, Grace W.; Woodward, Adam W.; Tang, Simon; Sawada, Junko; Komatsu, Masanobu; Liu, Xuan
2016-03-01
Observation of the activation and inhibition of angiogenesis processes is important in the progression of cancer. Application of targeting peptides, such as a small peptide that contains adjacent L-arginine (R), glycine (G) and L-aspartic acid (D) residues can afford high selectivity and deep penetration in vessel imaging. To facilitate deep tissue vasculature imaging, probes that can be excited via two-photon absorption (2PA) in the near-infrared (NIR) and subsequently emit in the NIR are essential. In this study, the enhancement of tissue image quality with RGD conjugates was investigated with new NIR-emitting pyranyl fluorophore derivatives in two-photon fluorescence microscopy. Linear and nonlinear photophysical properties of the new probes were comprehensively characterized; significantly the probes exhibited good 2PA over a broad spectral range from 700-1100 nm. Cell and tissue images were then acquired and examined, revealing deep penetration and high contrast with the new pyranyl RGD-conjugates up to 350 μm in tumor tissue.
Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E
2018-01-01
Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.
NASA Astrophysics Data System (ADS)
Chen, Yu-Shiun; Hung, Yao-Ching; Lin, Wei-Hsu; Huang, Guewha Steven
2010-05-01
To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.
Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-06-01
Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Burns, Kelly E; Delehanty, James B
2018-04-27
In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC 50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug. Published by Elsevier B.V.
You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun
2016-05-01
Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.
Qiao, Zeng-Ying; Zhao, Wen-Jing; Cong, Yong; Zhang, Di; Hu, Zhiyuan; Duan, Zhong-Yu; Wang, Hao
2016-05-09
One of the major challenges in current cancer therapy is to maximize therapeutic effect and evaluate tumor progression under the scheduled treatment protocol. To address these challenges, we synthesized the cytotoxic peptide (KLAKLAK)2 (named KLAK) conjugated amphiphilic poly(β-thioester)s copolymers (H-P-K) composed of reactive oxygen species (ROS) sensitive backbones and hydrophilic polyethylene glycol (PEG) side chains. H-P-K could self-assemble into micelle-like nanoparticles by hydrophobic interaction with copolymer backbones as cores and PEG and KLAK as shells. The assembled polymer-peptide nanoparticles remarkably improved cellular internalization and accumulation of therapeutic KLAK in cells. Compared to free KLAK peptide, the antitumor activity of H-P-K was significantly enhanced up to ∼400 times, suggesting the effectiveness of the nanoscaled polymer-peptide conjugation as biopharmaceuticals. The higher antitumor activity of nanoparticles was attributed to the efficient disruption of mitochondrial membranes and subsequent excessive ROS production in cells. To realize the ROS monitoring and treatment evaluation, we encapsulated squaraine (SQ) dyes as built-in reporters in ROS-sensitive H-P-K micelles. The overgenerated ROS around mitochondria stimulated the swelling of nanoparticles and subsequent release of SQ, which formed H-aggregates and significantly increased the photoacoustic (PA) signal. We believed that this self-assembled polymer-peptide nanotherapeutics incorporating built-in reporters has great potential for high antitumor performance and in situ treatment evaluation.
Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo.
Roma-Rodrigues, Catarina; Heuer-Jungemann, Amelie; Fernandes, Alexandra R; Kanaras, Antonios G; Baptista, Pedro V
2016-01-01
In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP-peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP-peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.
Location of the antigenic determinants of conjugative F-like pili.
Worobec, E A; Frost, L S; Pieroni, P; Armstrong, G D; Hodges, R S; Parker, J M; Finlay, B B; Paranchych, W
1986-01-01
The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope. Images PMID:2426247
Location of the antigenic determinants of conjugative F-like pili.
Worobec, E A; Frost, L S; Pieroni, P; Armstrong, G D; Hodges, R S; Parker, J M; Finlay, B B; Paranchych, W
1986-08-01
The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope.
Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems.
He, Zhi-Yao; Chu, Bing-Yang; Wei, Xia-Wei; Li, Jiao; Edwards, Carl K; Song, Xiang-Rong; He, Gu; Xie, Yong-Mei; Wei, Yu-Quan; Qian, Zhi-Yong
2014-07-20
Poly(ethylene glycol)-cholesterol (PEG-Chol) conjugates are composed of "hydrophilically-flexible" PEG and "hydrophobically-rigid" Chol molecules. PEG-Chol conjugates are capable of forming micelles through molecular self-assembly and they are also used extensively for the PEGylation of drug delivery systems (DDS). The PEGylated DDS have been shown to display optimized physical stability properties in vitro and longer half-lives in vivo when compared with non-PEGylated DDS. Cell uptake studies have indicated that PEG-Chol conjugates are internalized via clathrin-independent pathways into endosomes and Golgi apparatus. Acid-labile PEG-Chol conjugates are also able to promote the content release of PEGylated DDS when triggered by dePEGylation at acidic conditions. More importantly, biodegradable PEG-Chol molecules have been shown to decrease the "accelerated blood clearance" phenomenon of PEG-DSPE. Ligands, peptides or antibodies which have been modified with PEG-Chols are oftentimes used to formulate active targeting DDS, which have been shown in many systems recently to enhance the efficacy and lower the adverse effects of drugs. Production of PEG-Chol is simple and efficient, and production costs are relatively low. In conclusion, PEG-Chol conjugates appear to be very promising multifunctional biomaterials for many uses in the biomedical sciences and pharmaceutical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Nagy, A; Szoke, B; Schally, A V
1993-01-01
A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004
Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications
NASA Astrophysics Data System (ADS)
Bazan, Guillermo
2005-03-01
Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.
NASA Astrophysics Data System (ADS)
Ju, Soomi; Lee, Ki-Young; Min, Sun-Joon; Yoo, Yong Kyoung; Hwang, Kyo Seon; Kim, Sang Kyung; Yi, Hyunjung
2015-03-01
Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.
NASA Astrophysics Data System (ADS)
Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian
2017-07-01
The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.
Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang
2016-06-01
Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
High-Throughput Detection of Bacillus Anthracis Spores using Peptide-Conjugated Nano/Micro-Beads
2006-07-26
natto was a lab-stock isolated from natto . Expertise with B. anthracis ∆Sterne (pXO1-, pXO2-) and B. anthracis Sterne 34F2 (pXO1+, pXO2-) were...spore-peptide-Qdot complexes were analyzed by FACS. We found that BA1 peptide did not bind to B. subtilis DB104, B. subtilis natto and B. cereus...subtilis DB104, B. subtilis natto and B. cereus used as other more negative controls did not show fluorescence (data not shown). We then examined the
Fu, Qiuguo; Zhang, Jianbo; Borchardt, Dan; Schlenk, Daniel; Gan, Jay
2017-06-06
Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and 14 C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.
Wang, Liang; Chan, Judy Y W; Rêgo, Juciane V; Chong, Cheong-Meng; Ai, Nana; Falcão, Cláudio B; Rádis-Baptista, Gandhi; Lee, Simon M Y
2015-06-01
Animal venoms contain a diverse array of proteins and enzymes that are toxic toward various physiological systems. However, there are also some practical medicinal uses for these toxins including use as anti-bacterial and anti-tumor agents. In this study, we identified a nine-residue cryptic oligopeptide, KRFKKFFKK (EVP50) that is repeatedly encoded in tandem within vipericidin sequences. EVP50 displayed in vivo potent lethal toxicity to zebrafish larvae (LD50=6 μM) when the peptide's N-terminus was chemically conjugated to rhodamine B (RhoB). In vitro, RhoB-conjugated EVP50 (RhoB-EVP50) exhibited a concentration-dependent cytotoxic effect toward MCF-7 and MDA-MB-231 breast cancer cells. In MCF-7 cells, the RhoB-EVP50 nonapeptide accumulated inside the cells within minutes. In the cytoplasm, the RhoB-EVP50 induced extracellular calcium influx and intracellular calcium release. Membrane budding was also observed after incubation with micromolar concentrations of the fluorescent EVP50 conjugate. The conjugate's interference with calcium homeostasis, its intracellular accumulation and its induced membrane dysfunction (budding and vacuolization) seem to act in concert to disrupt the cell circuitry. Contrastively, unconjugated EVP50 peptide did not display neither toxic nor cytotoxic activities in our in vivo and in vitro models. The synergic mechanism of toxicity was restricted to the structurally modified encrypted vipericidin nonapeptide. Copyright © 2015 Elsevier B.V. All rights reserved.
Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana
2018-05-17
We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Xiangyang; Yang, Yanfang; Yang, Yang; Zhang, Hui; Li, Ying; Mei, Xingguo
2016-09-01
The conjugation of tunable peptides or materials with nanocarriers represents a promising approach for drug delivery to tumor cells. In this study, we report the development of a novel liposomal carrier system that exploits the cell surface binding synergism between photo-sensitive peptides (PSPs) and targeting ligands. The positive charges of the lysine residues on the cell-penetrating peptides (CPPs) were temporarily caged by the photolabile-protective groups (PG), thereby forming a PSP. Furthermore, this PSP enhances specific uptake into cancer cells after rapidly uncaging the PG via near-infrared (NIR) light illumination. In the circulatory system, the cell penetrability of PSP was hindered. In contrast, the asparagine-glycine-arginine (NGR) peptide moieties, selectively bind to CD13-positive tumors, were attached to the nanocarrier to facilitate the active accumulation of this liposomal carrier in tumor tissue. The dual-modified liposomes (PSP/NGR-L) were prepared by emulsification method, and the concentrations of DSPE-PEG 2000 -psCPP and DSPE-PEG 5000 -NGR in the liposomes were chosen to be 4% and 1% (molar ratio), respectively. The mean particle size of the PSP/NGR-L was about 95 nm, and the drug entrapment efficiency was more than 90%. Cellular uptake results demonstrated that the proposed PSP/NGR-L had an enhancement of cancer cell recognition and specific uptake. Furthermore, the PSP/NGR-L demonstrated a stronger antitumor efficacy in the HT-1080 tumor model in nude mice with the aid of NIR illumination.
Peptide-functionalized iron oxide magnetic nanoparticle for gold mining
NASA Astrophysics Data System (ADS)
Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo
2017-02-01
Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.
Exciton transport in π-conjugated polymers with conjugation defects.
Meng, Ruixuan; Li, Yuan; Li, Chong; Gao, Kun; Yin, Sun; Wang, Luxia
2017-09-20
In π-conjugated polymers for photovoltaic applications, intrinsic conjugation defects are known to play crucial roles in impacting exciton transport after photoexcitation. However, the understanding of the associated microscopic processes still remains limited. Here, we present a theoretical investigation of the effects of different conjugation defects on the dynamics of exciton transport in two linearly coupled poly(p-phenylene vinylene) (PPV) molecules. The model system is constructed by employing an extended version of the Su-Schrieffer-Heeger model and the exciton behaviors are simulated by means of a quantum nonadiabatic dynamics. We identify two types of conjugation defects, i.e., weakening conjugation and strengthening conjugation, which are demonstrated to play different roles in impacting the dynamics of exciton transport in the system. The weakening conjugation acts as an energy well inclined to trap a moving exciton, while the strengthening conjugation acts as an energy barrier inclined to block the exciton. We also systematically simulate both intrachain and interchain dynamics of exciton transport, and find that an exciton could experience a "short-time delaying", "trapping", "blocking", or "hopping" process, which is determined by the defect type, strength, and position. These findings provide a microscopic understanding of how the exciton transport dynamics can be impacted by conjugation defects in an actual polymer system.
Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer
2010-12-29
We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic
Timme-Laragy, Alicia R.; Karchner, Sibel I.; Hahn, Mark E.
2014-01-01
Summary The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knock-down via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level, while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e. phenotypic anchoring). In this chapter we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use. PMID:22669659
Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki
2014-06-01
Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.
Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio
2012-10-04
The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.
Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug
Wang, Hao; Gu, Wei; Xiao, Ning; Ye, Ling; Xu, Qunyuan
2014-01-01
Current chemotherapy for glioma is rarely satisfactory due to low therapeutic efficiency and systemic side effects. We have developed a glioma-targeted drug delivery system based on graphene oxide. Targeted peptide chlorotoxin-conjugated graphene oxide (CTX-GO) sheets were successfully synthesized and characterized. Doxorubicin was loaded onto CTX-GO (CTX-GO/DOX) with high efficiency (570 mg doxorubicin per gram CTX-GO) via noncovalent interactions. Doxorubicin release was pH-dependent and showed sustained-release properties. Cytotoxicity experiments demonstrated that CTX-GO/DOX mediated the highest rate of death of glioma cells compared with free doxorubicin or graphene oxide loaded with doxorubicin only. Further, conjugation with chlorotoxin enhanced accumulation of doxorubicin within glioma cells. These findings indicate that CTX-GO is a promising platform for drug delivery and provide a rationale for developing a glioma-specific drug delivery system. PMID:24672236
Discovery and application of peptides that bind to proteins and solid state inorganic materials
NASA Astrophysics Data System (ADS)
Stearns, Linda A.
A series of three projects was undertaken on the theme of peptide-based molecular recognition. In the first project, a messenger RNA (mRNA) display selection was carried out against the II-VI semiconductors zinc sulfide (ZnS), zinc selenide (ZnSe), and cadmium sulfide (CdS). Sequence analysis of 18-mer semiconductor-binding peptides (SBPs) following four rounds of selection indicated that the amino acid sequences were enriched in polar residues compared to the naive library, suggesting that hydrogen-bonding interactions are a dominant mode of interaction between the SBPs and their cognate inorganic surfaces. Select peptides were expressed as fusions of the green fluorescent protein (GFP) to visualize their recognition of semiconductor crystals. Interpretation of the results was complicated by a high fluorescence background that was observed with certain control GFP fusions. Additional experiments, including cross-specificity binding assays, are needed to characterize the peptides that were isolated in this selection. A second project described the practical application of a known inorganic-binding and nucleating peptide. Peptide A3, which was previously isolated by phage display, was chemically conjugated to a short DNA strand using the heterobifunctional linker succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (SMCC). The resulting peptide-DNA conjugate was hybridized to ten complementary single-stranded capture probes extending outward from the surface of an origami DNA nanotube. A gold precursor solution was added to initiate nucleation and growth of gold nanoparticles at the site of the peptide. Transmission electron microscopy (TEM) was used to visualize the gold nanoparticle-decorated nanostructures. This approach holds immense promise for organizing compositionally-diverse materials at the nanoscale. In a third project, a novel non-iterative approach to mRNA display called covalent capture was demonstrated. Using human transferrin as a target
Sandra, Koen; Vanhoenacker, Gerd; Vandenheede, Isabel; Steenbeke, Mieke; Joseph, Maureen; Sandra, Pat
2016-10-01
Antibody-drug conjugates might be the magic bullets referred to by Paul Ehrlich over 100 years ago. Together with a huge therapeutic potential, these molecules come with a structural complexity that drives state-of-the-art chromatography and mass spectrometry to its limits. The use of multiple heart-cutting (mLC-LC) and comprehensive (LC×LC) multidimensional LC in combination with high resolution mass spectrometry for the characterization of the lysine conjugated antibody-drug conjugate ado-trastuzumab emtansine, commercialized as Kadcyla, is presented. By combining protein and peptide measurements, attributes such as drug loading, drug distribution and drug conjugation sites can be assessed in an elegant manner. Copyright © 2016 Elsevier B.V. All rights reserved.
99mTc-D(LPR): A novel retro-inverso peptide for VEGF receptor-1 targeted tumor imaging.
Rezazadeh, Farzaneh; Sadeghzadeh, Nourollah; Abedi, Seyed Mohammad; Abediankenari, Saeid
2018-05-31
The aim of this study was to evaluate the ability of D (LPR), a novel retro-inverso peptidomimetic derivative for imaging colon cancer. Two different D (LPR) analogs were designed and compared based on conjugation of HYNIC at peptide's C or N terminal and then labeled with technetium-99m using tricine/EDDA as an exchange coligands. The radiolabeled conjugates were assessed for in vitro stability in saline and serum. The VEGFR-1 and NRP-1 receptors affinity, in vitro internalization and also dissociation Constance was evaluated. SPCET imaging and biodistribution studies were performed in nude mice bearing HT-29 xenograft tumors. Both peptides labeled with technetium-99m in high radiochemical yield (˃97%). Peptide stability studies indicated a high metabolic stability of the radiopeptides in solution and serum. In vitro blocking studies demonstrated specific binding and internalization of [ 99m Tc]Tc-HYNIC-peptides in cultured HUVEC cells. The K d value for 99m Tc-peptide 1 and 99m Tc-peptide 2 were found to be 56.8 ± 12.9 nM and 71.6 ± 17.9 nM respectively. The tumor to muscle ratio was significant at 0.5 and 1 h after injection (4.5 and 4 for 99m Tc-peptide 1 and 4.9 and 4.4 for 99m Tc-peptide 2 at 0.5 and 1 h p.i. respectively). SPECT imaging studies revealed that both radioconjugates had prominent activity accumulation in VEGFR-1 and NRP-1 expressing HT-29 tumors. This study is the first instance of using a radiolabeled retro-inverso peptide for tumor imaging which is a promising tool to improve the performance of fragile peptide probes in vivo as imaging agents and warrant further investigations in other peptide-target systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Conjugate-like immunogens produced as protein capsular matrix vaccines.
Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J
2015-03-10
Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.
Huang, Na; Lu, Shuai; Liu, Xiao-Ge; Zhu, Jie; Wang, Yu-Jiong; Liu, Rui-Tian
2017-10-06
Alzheimer's disease (AD) is the most common form of dementia, characterized by the formation of extracellular senile plaques and neuronal loss caused by amyloid β (Aβ) aggregates in the brains of AD patients. Conventional strategies failed to treat AD in clinical trials, partly due to the poor solubility, low bioavailability and ineffectiveness of the tested drugs to cross the blood-brain barrier (BBB). Moreover, AD is a complex, multifactorial neurodegenerative disease; one-target strategies may be insufficient to prevent the processes of AD. Here, we designed novel kind of poly(lactide-co-glycolic acid) (PLGA) nanoparticles by loading with Aβ generation inhibitor S1 (PQVGHL peptide) and curcumin to target the detrimental factors in AD development and by conjugating with brain targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin receptor (TfR), to improve BBB penetration. The average particle size of drug-loaded PLGA nanoparticles and CRT-conjugated PLGA nanoparticles were 128.6 nm and 139.8 nm, respectively. The results of Y-maze and new object recognition test demonstrated that our PLGA nanoparticles significantly improved the spatial memory and recognition in transgenic AD mice. Moreover, PLGA nanoparticles remarkably decreased the level of Aβ, reactive oxygen species (ROS), TNF-α and IL-6, and enhanced the activities of super oxide dismutase (SOD) and synapse numbers in the AD mouse brains. Compared with other PLGA nanoparticles, CRT peptide modified-PLGA nanoparticles co-delivering S1 and curcumin exhibited most beneficial effect on the treatment of AD mice, suggesting that conjugated CRT peptide, and encapsulated S1 and curcumin exerted their corresponding functions for the treatment.
Rana, Niki; Cultrara, Christopher; Phillips, Mariana; Sabatino, David
2017-09-01
In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK) 2 -AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK) 2 -AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK) 2 -AK. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shivhare, Kriti; Garg, Charu; Priyam, Ayushi; Gupta, Alka; Sharma, Ashwani Kumar; Kumar, Pradeep
2018-01-01
Molecular self-assembly of biodegradable amphiphilic polymers allows rational design of biocompatible nanomaterials for drug delivery. Use of substituted polysaccharides for such applications offers the ease of design and synthesis, and provides higher biofunctionality and biocompatibility to nanomaterials. The present work focuses on the synthesis, characterization and potential biomedical applications of self-assembled polysaccharide-based materials. We demonstrated that the synthesized amphiphilic inulin self-assembled in aqueous medium into nanostructures with average size in the range of 146-486nm and encapsulated hydrophobic therapeutic molecule, ornidazole. Hydrophophic dehydropeptide was conjugated with inulin via a biocompatible ester linkage. Dehydrophenylalanine, an unusual amino acid, was incorporated in the peptide to make it stable at a broader range of pH as well as against proteases. The resulting core-shell type of nanostructures could encapsulate ornidazole in the hydrophobic core and released it in a controlled fashion. By taking the advantage of inulin, which gets degraded in the colon by colonic bacteria, the effect of enzyme, inulinase, present in the microflora of the large intestine, on inulin-peptide degradation followed by drug release has been studied. Altogether, small peptide conjugated to inulin offers novel scaffold for the future design of nanostructures with potential applications in the field of targeted drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Gourni, Eleni; Mansi, Rosalba; Jamous, Mazen; Waser, Beatrice; Smerling, Christiane; Burian, Antje; Buchegger, Franz; Reubi, Jean Claude; Maecke, Helmut R
2014-10-01
Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated
Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming
2013-02-01
CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.
Stephenson, Karin A; Banerjee, Sangeeta Ray; Sogbein, Oyebola O; Levadala, Murali K; McFarlane, Nicole; Boreham, Douglas R; Maresca, Kevin P; Babich, John W; Zubieta, Jon; Valliant, John F
2005-01-01
A new solid-phase synthetic methodology was developed that enables libraries of peptide-based Tc(I)/Re(I) radiopharmaceuticals to be prepared using a conventional automated peptide synthesizer. Through the use of a tridentate ligand derived from N-alpha-Fmoc-l-lysine, which we refer to as a single amino acid chelate (SAAC), a series of 12 novel bioconjugates [R-NH(CO)ZLF(SAAC)G, R = ethyl, isopropyl, n-propyl, tert-butyl, n-butyl, benzyl; Z = Met, Nle] that are designed to target the formyl peptide receptor (FPR) were prepared. Construction of the library was carried out in a multiwell format on an Advanced ChemTech 348 peptide synthesizer where multi-milligram quantities of each peptide were isolated in high purity without HPLC purification. After characterization, the library components were screened for their affinity for the FPR receptor using flow cytometry where the K(d) values were found to be in the low micromolar range (0.5-3.0 microM). Compound 5j was subsequently labeled with (99m)Tc(I) and the product isolated in high radiochemical yield using a simple Sep-Pak purification procedure. The retention time of the labeled compound matched that of the fully characterized Re-analogue which was prepared through the use of the same solid-phase synthesis methodology that was used to construct the library. The work reported here is a rare example of a method by which libraries of peptide-ligand conjugates and their rhenium complexes can be prepared.
Qi, Yizhi; Simakova, Antonina; Ganson, Nancy J.; Li, Xinghai; Luginbuhl, Kelli M.; Özer, Imran; Liu, Wenge; Hershfield, Michael S.; Matyjaszewski, Krzysztof; Chilkoti, Ashutosh
2017-01-01
The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) — a therapeutic peptide that is clinically used to treat type 2 diabetes — and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) with precisely controlled molecular weights lowered blood glucose for up to 120 h in fed mice. Most notably, we show that an exendin-C-POEGMA conjugate with an average of 9 side-chain ethylene glycol (EG) repeats exhibits significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (PEG) antibodies than two FDA-approved PEGylated drugs, and that reducing the side-chain length to 3 EG repeats completely eliminates PEG antigenicity without compromising in vivo efficacy. Our findings establish the site-specific conjugation of POEGMA as a next-generation PEGylation technology for improving the pharmacological performance of traditional PEGylated drugs, whose safety and efficacy are hindered by pre-existing anti-PEG antibodies in patients. PMID:28989813
Craft, Jeffrey M; De Silva, Ravindra A; Lears, Kimberly A; Andrews, Rebecca; Liang, Kexian; Achilefu, Samuel; Rogers, Buck E
2012-07-01
Bombesin (BN) is an amphibian peptide that binds to the gastrin-releasing peptide receptor (GRPR). It has been demonstrated that BN analogues can be radiolabeled for potential diagnosis and treatment of GRPR-expressing malignancies. Previous studies have conjugated various chelators to the eight C-terminal amino acids of BN [BN(7-14)] for radiolabeling with 64Cu. Recently, (1,4,7-triazacyclononane-1,4,7-triacetic acid) (NOTA) has been evaluated as the five-coordinate 64Cu complex, with results indicating GRPR-specific tumor uptake. This study aimed to conjugate S-2-(4-isothiocyanatobenzyl)-NOTA (p-SCN-Bn-NOTA) to BN(7-14) such that it could form a six-coordinate complex with 64Cu and to evaluate the resulting peptide. p-SCN-NOTA was conjugated to 8-aminooctanoic acid (Aoc)-BN(7-14) in solution to yield NOTA-Bn-SCN-Aoc-BN(7-14). The unlabeled peptide was evaluated in a cell binding assay using PC-3 prostate cancer cells and 125I-Tyr4-BN to determine the IC50 value. The peptide was radiolabeled with 64Cu and evaluated for internalization into PC-3 cells and for tumor uptake in mice bearing PC-3 xenografts using biodistribution and micro-positron emission tomography imaging studies. The binding assay demonstrated that NOTA-Bn-SCN-Aoc-BN(7-14) bound with high affinity to GRPR with an IC50 of 1.4 nM. The radiolabeled peptide demonstrated time-dependent internalization into PC-3 cells. In vivo, the peptide demonstrated tumor-specific uptake and imaging that were comparable to those of previously reported 64Cu-labeled BN analogues. These studies demonstrate that 64Cu-NOTA-Bn-SCN-Aoc-BN(7-14) binds to GRPR-expressing cells and that it can be used for imaging of GRPR-expressing prostate cancer. Copyright © 2012 Elsevier Inc. All rights reserved.
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417
Kugelman, Jeffrey R; Sanchez-Lockhart, Mariano; Andersen, Kristian G; Gire, Stephen; Park, Daniel J; Sealfon, Rachel; Lin, Aaron E; Wohl, Shirlee; Sabeti, Pardis C; Kuhn, Jens H; Palacios, Gustavo F
2015-01-20
Until recently, Ebola virus (EBOV) was a rarely encountered human pathogen that caused disease among small populations with extraordinarily high lethality. At the end of 2013, EBOV initiated an unprecedented disease outbreak in West Africa that is still ongoing and has already caused thousands of deaths. Recent studies revealed the genomic changes this particular EBOV variant undergoes over time during human-to-human transmission. Here we highlight the genomic changes that might negatively impact the efficacy of currently available EBOV sequence-based candidate therapeutics, such as small interfering RNAs (siRNAs), phosphorodiamidate morpholino oligomers (PMOs), and antibodies. Ten of the observed mutations modify the sequence of the binding sites of monoclonal antibody (MAb) 13F6, MAb 1H3, MAb 6D8, MAb 13C6, and siRNA EK-1, VP24, and VP35 targets and might influence the binding efficacy of the sequence-based therapeutics, suggesting that their efficacy should be reevaluated against the currently circulating strain. Copyright © 2015 Kugelman, et al.
Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis
NASA Astrophysics Data System (ADS)
Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.
2015-11-01
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.
Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis
Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.
2015-01-01
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes. PMID:26555958
Martins, Diogo; Wei, Xi; Levicky, Rastislav; Song, Yong-Ak
2016-04-05
We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.
Selection of antitumor displayed peptides for the specific delivery of the anticancer drug lactaptin
Nemudraya, Anna Andreevna; Kuligina, Elena Vladimirovna; Ilyichev, Alexandr Alexeevich; Fomin, Alexandr Sergeevich; Stepanov, Grigory Alexandrovich; Savelyeva, Anna Valentinovna; Koval, Olga Alexandrovna; Richter, Vladimir Alexandrovich
2016-01-01
It has been previously demonstrated that lactaptin, the proteolytic fragment of human milk protein κ-casein, induces the death of various cultured cancer cells. The recombinant analog of lactaptin, RL2, effectively induces the apoptosis of mouse hepatocarcinoma-1 (HA-1) tumor cells in vitro and suppress the growth of HA-1 tumors and metastases in vivo. The antitumor drug Lactaptin developed on the basis of RL2 has been successful in preclinical trials. Lactaptin shows its efficiency in relation to mouse and human cancer cells and tumors. However, Lactaptin, as with the majority of protein-based therapeutic drugs, is distributed evenly throughout the organism, which reduces its antitumor efficacy. To develop the targeted delivery of lactaptin, the present study selected tumor-specific peptides by screening a phage display peptide library in vivo on A/Sn strain mice with subcutaneously transplanted HA-1 cells. Two genetic constructs were made for the production of recombinant fusion proteins composed of RL2 and the selected tumor-targeting peptide. In vitro experiments involving HA-1, MDA-MB-231 and MCF-7 cells cultures demonstrated that the fusion proteins induce apoptotic death in mouse and human tumor cells, as with RL2. The in vivo experiments involving the mouse HA-1 tumor model demonstrated that the tumor fluorescence intensity of the Cy5-fusion protein conjugates is higher than that of RL2-Cy5. As conjugation of the tumor-specific peptides to RL2 provided retention of RL2 in the tumor tissues, fusion proteins composed of lactaptin and peptides specific for human tumors are deemed promising to improve the antitumor efficiency of lactaptin. PMID:28105163
Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery
NASA Astrophysics Data System (ADS)
Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.
1993-04-01
Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.
Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K.; Karimi, Tahereh
2015-01-01
An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73–92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005–0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the
Ardona, Herdeline Ann M.; Tovar, John D.
2014-12-05
Energy transfer is demonstrated within a responsive donor–acceptor system which incorporates two different semiconducting units (oligo( p-phenylenevinylene and quaterthiophene) coassembled within peptide nanostructures in completely aqueous environments.
A biomimetic approach for enhancing the in vivo half-life of peptides
Penchala, Sravan C; Miller, Mark R; Pal, Arindom; Dong, Jin; Madadi, Nikhil R.; Xie, Jinghang; Joo, Hyun; Tsai, Jerry; Batoon, Patrick; Samoshin, Vyacheslav; Franz, Andreas; Cox, Trever; Miles, Jesse; Chan, William K; Park, Miki S; Alhamadsheh, Mamoun M
2015-01-01
The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy. PMID:26344696
Wang, Hao; Sun, Yantong; Guo, Wei; Fang, Chunxue; Fawcett, J Paul; Li, Wei; Gao, Yin; Yang, Yan; Gu, Jingkai
2014-09-01
The deuterohemin-peptide conjugate (DhHP-6) is a microperoxidase mimetic, which has demonstrated substantial benefits in vivo as a scavenger of reactive oxygen species. This paper reports the development of a sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of DhHP-6 in rat plasma using triptorelin as an internal standard (IS). 50μL plasma was used in sample preparation, and a simple protein precipitation procedure with acetonitrile was involved. Satisfactory peak shapes of analyte and IS were obtained on an Agilent HC-C18 column by using a gradient elution with 10mM ammonium acetate-0.5% formic acid (v:v) and acetonitrile, there was no significant interference impacting the determination. A calibration curve obtained from this method was linear within the concentration range 10-3000ng/mL with intra- and inter-day precisions of 4.2-6.8% and 3.2-8.9%, respectively and accuracy of -1.3% to 2.1%. The recovery was above 80% with low matrix effects. The method was successfully applied to support a preclinical pharmacokinetic study in rat. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J
2004-08-10
We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.
Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O
2014-09-01
Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis
Eckhard, Lea H.; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J.
2014-01-01
Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti- E. faecalis activity. PMID:25279943
Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap
Mohanram, Harini
2014-01-01
Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, “trapped” by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338
Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech
2016-01-15
Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech
2016-01-01
Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.
Tailoring peptide amphiphiles and their assemblies for biomedical applications
NASA Astrophysics Data System (ADS)
Lin, Brian
Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.
Lee, Won-Kyu; Han, Jason J; Jin, Bong-Suk; Boo, Doo Wan; Yu, Yeon Gyu
2009-12-18
Seven transmembrane (7TM) synthetic peptides mimicking the alpha-helical TM domains of the human serotonin receptor subtype-6 (5-HT(6)) were autonomously reconstituted in detergent micelle and liposome environments. The degree of assembly of the 7TM peptides was characterized by monitoring the fluorescence resonance energy transfer (FRET) between donor and acceptor probes labeled at the amino termini of the second and fourth TM-peptides, respectively. The FRET efficiency of these peptides significantly increased when the 7TM peptides were reconstituted in liposome compare to detergent micelles. Furthermore, the 7TM peptides reconstituted in liposomes selectively bound to free serotonin and serotonin-conjugated magnetic beads, yielding a dissociation constant of 0.84 microM. These results show that the seven individual TM domains of 5-HT(6) can spontaneously assemble into liposomes in a conformation that mimics a native structure, and further demonstrate that specific interactions between TM helices play a critical role in the folding and stabilizing of GPCRs. The autonomous assembly of 7TM-peptides can be applied to the screening of agonists for GPCRs that are difficult to manipulate.
Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'.
Monnet, V; Gardan, R
2015-07-01
Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular Microbiology, Hoover et al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present. © 2015 John Wiley & Sons Ltd.
Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan
2017-10-01
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang
2010-08-01
Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.
Walker, Leslie; Perkins, Eddie; Kratz, Felix; Raucher, Drazen
2012-10-15
Elastin-like polypeptide (ELP) is a macromolecular carrier with thermally responsive properties that can passively accumulate in solid tumors and additionally aggregate in tumor tissue when exposed to hyperthermia. In this study, ELP was conjugated to the anticancer drug doxorubicin (DOXO) and three different cell penetrating peptides (CPP) in order to inhibit tumor growth in mice compared to free doxorubicin. Fluorescence microscopy studies in MCF-7 breast carcinoma cells demonstrated that the three different CPP-ELP-DOXO conjugates delivered doxorubicin to the cell nucleus. All CPP-ELP-DOXO conjugates showed cytotoxicity with IC(50) values in the range of 12-30 μM at 42 °C, but the ELP carrier with SynB1 as the cell penetrating peptide had the lowest intrinsic cytotoxicity. Therefore, the antitumor efficacy of SynB1-ELP-DOXO was compared to doxorubicin under hyperthermic conditions. C57BL/6 female mice bearing syngeneic E0771 murine breast tumors were treated with either free doxorubicin or the SynB1-ELP-DOXO conjugate with or without focused hyperthermia on the tumor. Under hyperthermic conditions, tumor inhibition with SynB1-ELP-DOXO was 2-fold higher than under therapy with free doxorubicin at the equivalent dose, and is thus a promising lead candidate for optimizing thermally responsive drug polymer conjugates. Copyright © 2012 Elsevier B.V. All rights reserved.
Velasco-Aguirre, Carolina; Morales-Zavala, Francisco; Salas-Huenuleo, Edison; Gallardo-Toledo, Eduardo; Andonie, Oscar; Muñoz, Luis; Rojas, Ximena; Acosta, Gerardo; Sánchez-Navarro, Macarena; Giralt, Ernest; Araya, Eyleen; Albericio, Fernando; Kogan, Marcelo Javier
2017-10-01
To improve the in vivo delivery of gold nanorods (GNRs) to the central nervous system of rats, these gold nanoparticles were conjugated to Angiopep-2, a shuttle peptide that can cross the blood-brain barrier. GNRs were synthesized and modified using polyethylene glycol and Angiopep-2 (GNR-PEG-Angiopep-2). The physicochemical properties, in vitro cytotoxicity and ex vivo biodistribution of the conjugate were examined. GNR-PEG-Angiopep-2 was stable over the following days, and the different concentrations that were tested did not affect the viability of microvascular endothelial cells. The conjugation of Angiopep-2 to GNRs enhanced the endocytosis of these particles (in vitro) and the accumulation in brains (in vivo), when compared with GNRs modified only with PEG. This study provides evidence that Angiopep-2 improves the delivery of GNRs to the brain parenchyma. This property is highly relevant for future applications of GNRs as platforms for photothermal and theranostic purposes.
Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra
2011-02-28
A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Davaa, Enkhzaya; Lee, Junghan; Jenjob, Ratchapol; Yang, Su-Geun
2017-01-11
In this study, we demonstrated that the MT1-MMP-responsive peptide (sequence: GPLPLRSWGLK) and doxorubicin-conjugated poly(lactic-co-glycolic acid/poly(styrene-alt-maleic anhydride) core/shell microparticles (PLGA/pSMA MPs) can be applied for intrahepatic arterial injection for hepatocellular carcinoma (HCC). PLGA/pSMA MPs were prepared with a capillary-focused microfluidic device. The particle size, observed by scanning electron microscopy (SEM), was around 22 ± 3 μm. MT1-MMP-responsive peptide and doxorubicin (DOX) were chemically conjugated with pSMA segments on the shell of MPs to form a PLGA/pSMA-peptide-DOX complex, resulting in high encapsulation efficiency (91.1%) and loading content (2.9%). DOX was released from PLGA/pSMA-peptide-DOX MPs in a pH-dependent manner (∼25% at pH 5.4 and ∼8% at pH 7.4) and accumulated significantly in an MT1-MMP-overexpressing Hep3B cell line. An in vivo intrahepatic injection study showed localization of MPs on the hepatic vessels and hepatic lobes up to 24 h after the injection without any shunting to the lung. Moreover, MPs efficiently inhibited tumor growth of Hep3B hepatic tumor xenografted mouse models. We expect that PLGA/pSMA-peptide-DOX MPs can be utilized as an effective intrahepatic drug delivery system for the treatment of HCC.
Process development of a FGF21 protein-antibody conjugate.
Dirksen, Anouk; Davis, Keith A; Collins, Joe T; Bhattacharya, Keshab; Finneman, Jari I; Pepin, Erin L; Ryczek, Jeffrey S; Brown, Paul W; Wellborn, William B; Mangalathillam, Ratish; Evans, Brad P; Pozzo, Mark J; Finn, Rory F
2017-09-26
A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21 A129C dimerization and stabilizing the FGF21 A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21 A129C dimerization through disulfide formation was eliminated. FGF21 A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21 A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21 A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21 A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21 A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21 A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance
Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.
2004-01-01
We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375
Inducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate†
Liu, Yang; Rokita, Steven E.
2012-01-01
The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alkylation of non-complementary sequences is only possible when a template strand is present to co-localize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self adducts formed between the PNA and its attached QM remained active and reversible over more than eight days in aqueous solution prior to reaction with a chosen target added subsequently. PMID:22243337
The backbone N-(4-azidobutyl) linker for the preparation of peptide chimera.
Fernández-Llamazares, Ana I; García, Jesús; Adan, Jaume; Meunier, David; Mitjans, Francesc; Spengler, Jan; Albericio, Fernando
2013-09-06
A robust synthetic strategy for the introduction of the N-(4-azidobutyl) linker into peptides using standard SPPS techniques is described. Based on the example of Cilengitide it is shown that the N-(4-azidobutyl) group exerts similar conformational restraints as a backbone N-Me group and allows conjugation of a desired molecule either via click chemistry or-after azide reduction-via acylation or reductive alkylation.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M
2015-02-18
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.
Roosenburg, S; Laverman, P; Joosten, L; Cooper, M S; Kolenc-Peitl, P K; Foster, J M; Hudson, C; Leyton, J; Burnet, J; Oyen, W J G; Blower, P J; Mather, S J; Boerman, O C; Sosabowski, J K
2014-11-03
Cholecystokinin-2 (CCK-2) receptors, overexpressed in cancer types such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), may serve as targets for peptide receptor radionuclide imaging. A variety of CCK and gastrin analogues has been developed, but a major drawback is metabolic instability or high kidney uptake. The minigastrin analogue PP-F11 has previously been shown to be a promising peptide for imaging of CCK-2 receptor positive tumors and was therefore further evaluated. The peptide was conjugated with one of the macrocyclic chelators DOTA, NOTA, or NODAGA. The peptide conjugates were then radiolabeled with either (68)Ga, (64)Cu, or (111)In. All (radio)labeled compounds were evaluated in vitro (IC50) and in vivo (biodistribution and PET/CT and SPECT/CT imaging). IC50 values were in the low nanomolar range for all compounds (0.79-1.51 nM). In the biodistribution studies, (68)Ga- and (111)In-labeled peptides showed higher tumor-to-background ratios than the (64)Cu-labeled compounds. All tested radiolabeled compounds clearly visualized the CCK2 receptor positive tumor in PET or SPECT imaging. The chelator did not seem to affect in vivo behavior of the peptide for (111)In- and (68)Ga-labeled peptides. In contrast, the biodistribution of the (64)Cu-labeled peptides showed high uptake in the liver and in other organs, most likely caused by high blood levels, probably due to dissociation of (64)Cu from the chelator and subsequent transchelation to proteins. Based on the present study, (68)Ga-DOTA-PP-F11 might be a promising radiopharmaceutical for PET/CT imaging of CCK2 receptor expressing tumors such as MTC and SCLC. Clinical studies are warranted to investigate the potential of this tracer.
Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan
2013-11-01
The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes.
Iaccino, Enrico; Mimmi, Selena; Dattilo, Vincenzo; Marino, Fabiola; Candeloro, Patrizio; Di Loria, Antonio; Marimpietri, Danilo; Pisano, Antonio; Albano, Francesco; Vecchio, Eleonora; Ceglia, Simona; Golino, Gaetanina; Lupia, Antonio; Fiume, Giuseppe; Quinto, Ileana; Scala, Giuseppe
2017-10-13
Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression.
Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide
Vandergriff, Adam; Huang, Ke; Shen, Deliang; Hu, Shiqi; Hensley, Michael Taylor; Caranasos, Thomas G.; Qian, Li; Cheng, Ke
2018-01-01
Rationale: Cardiac stem cell-derived exosomes have been demonstrated to promote cardiac regeneration following myocardial infarction in preclinical studies. Recent studies have used intramyocardial injection in order to concentrate exosomes in the infarct. Though effective in a research setting, this method is not clinically appealing due to its invasive nature. We propose the use of a targeting peptide, cardiac homing peptide (CHP), to target intravenously-infused exosomes to the infarcted heart. Methods: Exosomes were conjugated with CHP through a DOPE-NHS linker. Ex vivo targeting was analyzed by incubating organ sections with the CHP exosomes and analyzing with fluorescence microscopy. In vitro assays were performed on neonatal rat cardiomyocytes and H9C2 cells. For the animal study, we utilized an ischemia/reperfusion rat model. Animals were treated with either saline, scramble peptide exosomes, or CHP exosomes 24 h after surgery. Echocardiography was performed 4 h after surgery and 21 d after surgery. At 21 d, animals were sacrificed, and organs were collected for analysis. Results: By conjugating the exosomes with CHP, we demonstrate increased retention of the exosomes within heart sections ex vivo and in vitro with neonatal rat cardiomyocytes. In vitro studies showed improved viability, reduced apoptosis and increased exosome uptake when using CHP-XOs. Using an animal model of ischemia/reperfusion injury, we measured the heart function, infarct size, cellular proliferation, and angiogenesis, with improved outcomes with the CHP exosomes. Conclusions: Our results demonstrate a novel method for increasing delivery of for treatment of myocardial infarction. By targeting exosomes to the infarcted heart, there was a significant improvement in outcomes with reduced fibrosis and scar size, and increased cellular proliferation and angiogenesis. PMID:29556361
Yurt Lambrecht, Fatma; Durkan, Kübra; Ozgür, Aykut; Gündüz, Cumhur; Avcı, Cığır Biray; Susluer, Sunde Yılmaz
2013-05-01
Bombesin and its derivatives exhibit a high affinity for gastrin-releasing peptide receptor (GRPr), which is over-expressed in a variety of human cancers (prostate, pancreatic, lung, etc.). The aim of this study was to investigate the in vitro potential of the hydrazinonicotinamide (HYNIC)-Q-Litorin. (99m)Tc labeling was performed by using different co-ligands: tricine and ethylenediamine diacetic acid (EDDA). The radiochemical stability of radiolabeled peptide conjugates was checked at room temperature and in cysteine solution up to 24 h. The in vitro cell uptake of (99m)Tc-EDDA-HYNIC-Q-Litorin and (99m)Tc-tricine-HYNIC-Q-Litorin were evaluated on pancreatic tumor and control cell lines. Optimum specific activity and incubation time were determined for all the cell lines. The results showed that the cell uptake of the radiolabeled peptide conjugates in tumor cell lines were higher than in the control cell line. The findings of this study indicated the need for further development of in vivo study as a radiopharmaceutical for pancreatic tumor imaging.
Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien
2018-01-08
Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.
Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E
2012-01-01
The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.
David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick
2018-01-01
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998
Salvarese, Nicola; Spolaore, Barbara; Marangoni, Selena; Pasin, Anna; Galenda, Alessandro; Tamburini, Sergio; Cicoria, Gianfranco; Refosco, Fiorenzo; Bolzati, Cristina
2018-06-01
An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-(N 4 -amino-3-thiosemicarbazone), H 2 ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-[N 4 -(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H 2 ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H 2 ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx)] ( 99m Tc1) and [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx-SP)] ( 99m Tc2). The chemical identity of 99m Tc1 and 99m Tc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99m Tc1 and 99g/99m Tc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64 Cu-analogues, 64 Cu1 and 64 Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging. Copyright © 2018 Elsevier Inc. All rights
Synthesis and evaluation of two NIR fluorescent cyclic RGD penta-peptides for targeting integrins
NASA Astrophysics Data System (ADS)
Ye, Yunpeng; Bloch, Sharon; Xu, Baogang; Achilefu, Samuel
2006-02-01
Interest in novel RGD peptides has been increasingly growing as the interactions between RGD peptides and integrins are the basis for a variety of cellular functions and medical applications such as modulation of cell adhesion, invasion, tumor angiogenesis, and metastasis. In particular, we have been interested in novel NIR fluorescent RGD peptides as potential optical contrast agents for in vivo tumor optical imaging. Therefore, two cyclic RGD penta-peptides conjugated with a NIR fluorescent carbocyanine (Cypate), i.e. lactam-based cyclo[RGDfK(Cypate)] (1) and disulfide-containing Cypate-cyclo(CRGDC)-NH II (2), were designed and synthesized. The competitive binding assay between the purified α vβ 3 integrin and the peptide ligands using 125I-echistatin as a tracer showed that 1 had a higher receptor binding affinity (IC 50~10 -7 M) than 2 (IC 50~10 -6 M). Furthermore, the internalization of 1 in A549 cells in vitro was less than 2, as revealed by fluorescence microscopy. These results suggest that both the lactam- and disulfide-based cyclic RGD penta-peptides should be further studied structurally and functionally to elucidate the advantages of each class of compounds.
Tamiaki, Hitoshi; Isoda, Yasuaki; Tanaka, Takuya; Machida, Shinnosuke
2014-02-15
A chlorophyll-a derivative bonded directly with epoxide at the peripheral position of the chlorin π-system was reacted with N-urethane and C-ester protected amino acids bearing an alcoholic or phenolic hydroxy group as well as a carboxy group at the residue to give chlorophyll-amino acid conjugates. The carboxy residues of N,C-protected aspartic and glutamic acids were esterified with the epoxide in high yields. The synthetic conjugates in dichloromethane had absorption bands throughout the visible region including intense red-side Qy and blue-side Soret bands. By their excitation at the visible bands, strong and efficient fluorescence emission was observed up to the near-infrared region. The chromo/fluorophores are promising for preparation of functional peptides and modification of proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Guojun; Jaskula-Sztul, Renata; Harrison, April; Dammalapati, Ajitha; Xu, Wenjin; Cheng, Yiqiang; Chen, Herbert; Gong, Shaoqin
2016-08-01
Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of thiolated polymers as carrier matrix in oral peptide delivery--proof of concept.
Bernkop-Schnürch, Andreas; Pinter, Yvonne; Guggi, Davide; Kahlbacher, Hermann; Schöffmann, Gudrun; Schuh, Maximilian; Schmerold, Ivo; Del Curto, Maria Dorly; D'Antonio, Mauro; Esposito, Pierandrea; Huck, Christian
2005-08-18
It was the aim of this study to develop an oral delivery system for the peptide drug antide. The stability of the therapeutic peptide towards gastrointestinal peptidases was evaluated. The therapeutic agent and the permeation mediator glutathione were embedded in the thiolated polymer chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) and compressed to tablets. Drug release studies were performed in the dissolution test apparatus according to the Pharmacopoeia Europea using the paddle method and demineralized water as release medium. In order to avoid mucoadhesion of these delivery systems already in the oral cavity and oesophagus tablets were coated with a triglyceride. These tablets were orally given to pigs (weight: 50+/-2 kg; Edelschwein Pietrain). Moreover, antide was administered intravenously, subcutaneously and orally in solution. Results showed stability of antide towards pepsin, trypsin and chymotrypsin. In contrast, antide was rapidly degraded by elastase. Consequently a stomach-targeted delivery system was designed. Drug release studies demonstrated an almost zero-order controlled release of antide over 8 h. In vivo studies demonstrated a relative bioavailability of 34.4% for the subcutaneous administration. Oral administration of antide in solution led to no detectable concentrations of the drug in plasma at all. In contrast, administering antide being incorporated in the thiolated polymer resulted in a significant uptake of the peptide. The absolute and relative bioavailability was determined to be 1.1% and 3.2%, respectively.
Vázquez, Olalla; Blanco-Canosa, Juan B; Vázquez, M Eugenio; Martínez-Costas, Jose; Castedo, Luis; Mascareñas, José L
2008-11-24
Efficient targeting of DNA by designed molecules requires not only careful fine-tuning of their DNA-recognition properties, but also appropriate cell internalization of the compounds so that they can reach the cell nucleus in a short period of time. Previous observations in our group on the relatively high affinity displayed by conjugates between distamycin derivatives and bZIP basic regions for A-rich DNA sites, led us to investigate whether the covalent attachment of a positively charged cell-penetrating peptide to a distamycin-like tripyrrole might yield high affinity DNA binders with improved cell internalization properties. Our work has led to the discovery of synthetic tripyrrole-octa-arginine conjugates that are capable of targeting specific DNA sites that contain A-rich tracts with low nanomolar affinity; they simultaneously exhibit excellent membrane and nuclear translocation properties in living HeLa cells.
Measurement of beta-amyloid peptides in specific cells using a photo thin-film transistor
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Chae, Cheol-Joo; Shin, Hye-Rim; Song, Ki-Bong
2012-01-01
The existence of beta-amyloid [Aβ] peptides in the brain has been regarded as the most archetypal biomarker of Alzheimer's disease [AD]. Recently, an early clinical diagnosis has been considered a great importance in identifying people who are at high risk of AD. However, no microscale electronic sensing devices for the detection of Aβ peptides have been developed yet. In this study, we propose an effective method to evaluate a small quantity of Aβ peptides labeled with fluorescein isothiocyanate [FITC] using a photosensitive field-effect transistor [p-FET] with an on-chip single-layer optical filter. To accurately evaluate the quantity of Aβ peptides within the cells cultured on the p-FET device, we measured the photocurrents which resulted from the FITC-conjugated Aβ peptides expressed from the cells and measured the number of photons of the fluorochrome in the cells using a photomultiplier tube. Thus, we evaluated the correlation between the generated photocurrents and the number of emitted photons. We also evaluated the correlation between the number of emitted photons and the amount of FITC by measuring the FITC volume using AFM. Finally, we estimated the quantity of Aβ peptides of the cells placed on the p-FET sensing area on the basis of the binding ratio between FITC molecules and Aβ peptides.
Simulation-based Discovery of Cyclic Peptide Nanotubes
NASA Astrophysics Data System (ADS)
Ruiz Pestana, Luis A.
Today, there is a growing need for environmentally friendly synthetic membranes with selective transport capabilities to address some of society's most pressing issues, such as carbon dioxide pollution, or access to clean water. While conventional membranes cannot stand up to the challenge, thin nanocomposite membranes, where vertically aligned subnanometer pores (e.g. nanotubes) are embedded in a thin polymeric film, promise to overcome some of the current limitations, namely, achieving a monodisperse distribution of subnanometer size pores, vertical pore alignment across the membrane thickness, and tunability of the pore surface chemistry. Self-assembled cyclic peptide nanotubes (CPNs), are particularly promising as selective nanopores because the pore size can be controlled at the subnanometer level, exhibit high chemical design flexibility, and display remarkable mechanical stability. In addition, when conjugated with polymer chains, the cyclic peptides can co-assemble in block copolymer domains to form nanoporous thin films. CPNs are thus well positioned to tackle persistent challenges in molecular separation applications. However, our poor understanding of the physics underlying their remarkable properties prevents the rational design and implementation of CPNs in technologically relevant membranes. In this dissertation, we use a simulation-based approach, in particular molecular dynamics (MD) simulations, to investigate the critical knowledge gaps hindering the implementation of CPNs. Computational mechanical tests show that, despite the weak nature of the stabilizing hydrogen bonds and the small cross section, CPNs display a Young's modulus of approximately 20 GPa and a maximum strength of around 1 GPa, placing them among the strongest proteinaceous materials known. Simulations of the self-assembly process reveal that CPNs grow by self-similar coarsening, contrary to other low-dimensional peptide systems, such as amyloids, that are believed to grow through
Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp
Han, Juhye; Jyoti, Md. Anirban; Song, Ho-Yeon; Jang, Woong Sik
2016-01-01
The candidacidal activity of histatin 5 is initiated through cell wall binding, followed by translocation and intracellular targeting, while the halocidin peptide exerts its activity by attacking the Candida cell membrane. To improve antimicrobial activities and to understand the killing mechanism of two peptides, six hybrid peptides were designed by conjugating histatin 5 and halocidin. A comparative approach was established to study the activity, salt tolerance, cell wall glucan binding assay, cytotoxicity, generation of ROS and killing kinetics. CD spectrometry was conducted to evaluate secondary structures of these hybrid peptides. Furthermore the cellular localization of hybrid peptides was investigated by confocal fluorescence microscopy. Of the six hybrid congeners, di-PH2, di-WP2 and HHP1 had stronger activities than other hybrid peptides against all tested Candida strains. The MIC values of these peptides were 1–2, 2–4 and 2–4 μg/ml, respectively. Moreover, none of the hybrid peptides was cytotoxic in the hemolytic assay and cell-based cytotoxicity assay. Confocal laser microscopy showed that di-PH2 and HHP1 were translocated into cytoplasm whereas di-WP2 was accumulated on surface of C. albicans to exert their candidacidal activity. All translocated peptides (Hst 5, P113, di-PH2) were capable of generating intracellular ROS except HHP1. Additionally, the KFH residues at C-terminal end of these peptides were assumed for core sequence for active translocation. PMID:26918792
Li, Mengshi; Zhang, Xiuli; Quinn, Thomas P; Lee, Dongyoul; Liu, Dijie; Kunkel, Falk; Zimmerman, Brian E; McAlister, Daniel; Olewein, Keith; Menda, Yusuf; Mirzadeh, Saed; Copping, Roy; Johnson, Frances L; Schultz, Michael K
2017-09-01
A method for preparation of Pb-212 and Pb-203 labeled chelator-modified peptide-based radiopharmaceuticals for cancer imaging and radionuclide therapy has been developed and adapted for automated clinical production. Pre-concentration and isolation of radioactive Pb2+ from interfering metals in dilute hydrochloric acid was optimized using a commercially-available Pb-specific chromatography resin packed in disposable plastic columns. The pre-concentrated radioactive Pb2+ is eluted in NaOAc buffer directly to the reaction vessel containing chelator-modified peptides. Radiolabeling was found to proceed efficiently at 85°C (45min; pH 5.5). The specific activity of radiolabeled conjugates was optimized by separation of radiolabeled conjugates from unlabeled peptide via HPLC. Preservation of bioactivity was confirmed by in vivo biodistribution of Pb-203 and Pb-212 labeled peptides in melanoma-tumor-bearing mice. The approach has been found to be robustly adaptable to automation and a cassette-based fluid-handling system (Modular Lab Pharm Tracer) has been customized for clinical radiopharmaceutical production. Our findings demonstrate that the Pb-203/Pb-212 combination is a promising elementally-matched radionuclide pair for image-guided radionuclide therapy for melanoma, neuroendocrine tumors, and potentially other cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heat-enhanced peptide synthesis on Teflon-patterned paper.
Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir
2016-06-14
In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.
Zhou, Binbin; Li, Chun-Lan; Hao, Yuan-Qiang; Johnny, Muya Chabu; Liu, You-Nian; Li, Juan
2013-01-15
Alzheimer's disease (AD) is the most common cause of dementia, and currently there is no clinical treatment to cure it or to halt its progression. Aggregation and fibril formation of β-amyloid peptides (Aβ) are central events in the pathogenesis of AD. Many efforts have been spent on the development of effective inhibitors to prevent Aβ fibrillogenesis and cause disaggregation of preformed Aβ fibrils. In this study, the conjugates of ferrocene and Gly-Pro-Arg (GPR) tripeptide, Boc-Gly-Pro-Arg(NO(2))-Fca-OMe (4, GPR-Fca) and Fc-Gly-Pro-Arg-OMe (7, Fc-GPR) (Fc: ferrocene; Fca: ferrocene amino acid) were synthesized by HOBT/HBTU protocol in solution. These ferrocene GPR conjugates were employed to inhibit Aβ(1-42) fibrillogenesis and to disaggregate preformed Aβ fibrils. The inhibitory properties of ferrocene GPR conjugates on Aβ(1-42) fibrillogenesis were evaluated by thioflavin T (ThT) fluorescence assay, and confirmed by atomic force microscopy (AFM) analysis. The interaction between the ferrocene GPR conjugates and Aβ(1-42) was monitored by electrochemical means. Our results showed that both GPR and GPR-Fca can significantly inhibit the fibril formation of Aβ(1-42), and cause disaggregation of the preformed fibrils. As expected, GPR-Fca shows stronger inhibitory effect on Aβ(1-42) fibrillogenesis than that of its parent peptide GPR. In contrast, Fc-GPR shows no inhibitory effect on fibrillogenesis of Aβ(1-42). Furthermore, GPR-Fca demonstrates significantly protection against Aβ-induced cytotoxicity and exhibits high resistance to proteolysis and good lipophilicity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Carter, Joshua D; LaBean, Thomas H
2011-03-22
An interesting alternative to top-down nanofabrication is to imitate biology, where nanoscale materials frequently integrate organic molecules for self-assembly and molecular recognition with ordered, inorganic minerals to achieve mechanical, sensory, or other advantageous functions. Using biological systems as inspiration, researchers have sought to mimic the nanoscale composite materials produced in nature. Here, we describe a combination of self-assembly, molecular recognition, and templating, relying on an oligonucleotide covalently conjugated to a high-affinity gold-binding peptide. After integration of the peptide-coupled DNA into a self-assembling superstructure, the templated peptides recognize and bind gold nanoparticles. In addition to providing new ways of building functional multinanoparticle systems, this work provides experimental proof that a single peptide molecule is sufficient for immobilization of a nanoparticle. This molecular construction strategy, combining DNA assembly and peptide recognition, can be thought of as programmable, granular, artificial biomineralization. We also describe the important observation that the addition of 1-2% Tween 20 surfactant to the solution during gold particle binding allows the gold nanoparticles to remain soluble within the magnesium-containing DNA assembly buffer under conditions that usually lead to the aggregation and precipitation of the nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xiaoli; Xia, Chang-Qing, E-mail: cqx65@yahoo.com; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610
It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleenmore » cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.« less
Jiang, Li-Yang; Lv, Bing; Luo, Ying
2013-04-01
By presenting biomolecular ligands on the surface in high density, ligand-decorated dendrimers are capable of binding to membrane receptors and cells with specificity and avidity. Despite the various uses, fundamental investigations on ligand-dendrimer conjugates have mainly focused on their binding behavior with cells, whereas their potential bioactivity and applications in multicellular systems, especially in three-dimensional (3D) culture systems, remains untapped. In this study, a typical adhesive peptide ligand - RGD - was modified to generation 4 polyamidoamine (PAMAM), and the bioactivity of suspended RGD-PAMAM conjugates was investigated on cells cultured as multicellular spheroids. Our results demonstrate that the RGD-PAMAM conjugates, after being incorporated into the 3D spheroids, were able to promote cellular proliferation and aggregation, and affect the mRNA expression of extracellular factors by NIH 3T3 cells. These bioactive functions were multivalency-dependent, as none of similar effects was observed for monovalent RGD ligand. Our study suggests that multivalent ligand-dendrimer conjugates may act as a unique type of artificial factors to mediate the cellular microenvironment in 3D culture, a property attributable to the spatial organization of the ligands and possible "cell-gluing" function of multivalent conjugates. This new finding opens the door for further exploring multivalent ligand-dendrimer conjugates for applications in 3D cell culture and tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang
2014-05-01
Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.
Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells
Wang, Yu; Dehigaspitiya, Dilani C.; Levine, Paul M.; Profit, Adam A.; Haugbro, Michael; Imberg-Kazdan, Keren; Logan, Susan K.; Kirshenbaum, Kent; Garabedian, Michael J.
2016-01-01
Development of resistance to anti-androgens for treating advanced prostate cancer is a growing concern, and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its anti-proliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction, and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacological studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. PMID:27488525
Kristiansson, Monica H; Lindh, Christian H; Jönsson, Bo A G
2004-01-01
Organic acid anhydrides (OAAs) are low molecular weight, reactive compounds extensively used in industry. Exposure to these compounds may lead to allergic symptoms such as rhinitis and asthma. It is important to develop better and more informative methods for assessment of exposure to OAAs. The aim of this study was to develop a method for analysis of specific hexahydrophthalic anhydride (HHPA)-adducted tryptic peptides of human serum albumin (HSA) in nasal lavage (NAL). Furthermore, these peptides were evaluated as biomarkers of exposure. The proteins in the NAL samples were reduced, alkylated and digested with trypsin and the obtained peptides were analyzed using liquid chromatography/tandem mass spectrometry. The total amount of hydrolyzable HHPA in an HHPA-HSA conjugate was used for calibration. A deuterium-labeled HHPA-HSA conjugate was used as internal standard. Five volunteers were exposed to 10, 40 and 80 microg/m3 of HHPA in an exposure chamber and NAL samples were collected before and after exposure. Acceptable precisions of the assay at 13-14% were found for three adducted peptides. The mean levels of these three peptides for the five subjects ranged between 5-22, 15-75 and 33-125 pmol/mL NAL for the exposures at 10, 40 and 80 microg/m3, respectively. High correlations between air levels and the measured peptides were found on an individual basis but there were large inter-individual differences ranging between 63 and 110% for the three peptides. The large differences remained after protein adjustments. It was possible to detect exposures below 10 microg/m3 with the method. Thus, these adducted peptides may be used as biomarkers of exposure, which may better estimate the risk than previous biomarkers developed for OAAs. Copyright 2004 John Wiley and Sons, Ltd.
Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn
2010-05-01
Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.
Conjugate and method for forming aminomethyl phosphorus conjugates
Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.; Churchill, Robert
1999-01-01
A method of forming phosphine-amine conjugates includes reacting a hydroxymethyl phosphine group of an amine-free first molecule with at least one free amine group of a second molecule to covalently bond the first molecule with the second molecule through an aminomethyl phosphorus linkage and the conjugates formed thereby.
2015-01-01
Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target specificity, which impede their clinical applications. To this end, we report magnetic core–shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis. PMID:25133971
Porphyrin Cyclodextrin Conjugates Modulate Amyloid Beta Peptide Aggregation and Cytotoxicity.
Oliveri, Valentina; Zimbone, Stefania; Giuffrida, Maria Laura; Bellia, Francesco; Tomasello, Marianna Flora; Vecchio, Graziella
2018-04-25
Although fibrillar amyloid beta peptide (Aβ) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aβ oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aβ toxicity. In this work, the biological properties of 5[4-(6-O-β-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aβ and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aβ intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.
2016-01-01
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741
Fritzell, Bernard
2005-01-01
Encapsulated bacterial pathogens (e.g. Haemophilus influenzae type b [Hib], Neisseria meningitidis, or Streptococcus pneumoniae) target infants and young children who have lost any protective anti-capsular antibodies supplied maternally and whose immune systems are ineffective against T-independent antigens such as the polysaccharides of the capsule. The polysaccharide-protein conjugate vaccines overcome this limitation by converting the polysaccharide to a T-dependent antigen, which allows a vaccinated infant to mount a protective immune response. Where conjugated vaccines have been introduced into paediatric vaccination schedules, the incidence of invasive diseases caused by Hib, the group C meningococcus, or the pneumococcus has plummeted by at least 80%, a major public health success. Furthermore, surveillance has demonstrated that the conjugate vaccines provide 'herd protection' through their beneficial impact on nasopharyngeal colonisation among vaccinated children. Promising future approaches include enhancement of the number of capsular serogroups targeted by the meningococcal or pneumococcal conjugate vaccines.
Kim, Ji Eun; Lee, Jung Hwa; Kim, Soo Hyun; Jung, Youngmee
2018-01-01
The wound healing process requires enough blood to supply nutrients and various growth factors to the wound area. However, chronic wounds such as diabetic skin ulcers have limited regeneration due to a lack of cellular and molecular signals because of a deficient blood flow. Mesenchymal stem cells (MSCs) are known to provide various factors, including growth factors, cytokines, and angiogenic mediators. Although MSCs have great therapeutic potential, their transplantation has many obstacles, including the time required to culture the cells, the invasiveness of the procedure, and limited stem cell sources. In this study, we induced a diabetic 1 model in rats aged 7 weeks by injecting streptozotocin and citrate buffer solution. After confirming that diabetes was induced in the rats, we created critical sized wounds on the dorsal area of the rats and then injected hydrogels. We performed the experiments with four groups (defect model for the control, self-assembled peptides (SAPs), SAP with soluble substance P, and SAP conjugated with substance P) to treat the wound defect. Tissues were harvested at 1, 2, and 3 weeks after injection and examined for the wound closure, histological analysis, quantitative real-time polymerase chain reaction analysis, and quantification of collagen deposits to investigate stem cell recruitment and full recovery of wounds at an accelerated time period. As our results show, the wounds treated with SAP and substance P exhibited significantly accelerated wound closure, enhanced collagen deposition, and increased angiogenesis. Furthermore, we confirmed the ability of SAP with substance P to promote the recruitment and homing of cells by immunofluorescence staining of a MSC marker. In addition, it was observed that substance P remained in the wound area up to 3 weeks after the injection of SAP with substance P. It is believed that the endogenous MSCs mobilized by substance P had therapeutic effects through their proper differentiation and
Samson, W K; Alexander, B D; Skala, K D; Huang, F L; Fulton, R J
1992-05-01
A variety of neural factors can influence reproductive hormone secretion by neuromodulatory actions within the hypothalamus or neuroendocrine actions within the anterior pituitary gland. Passive immunoneutralization and antagonist administration protocols have suggested physiological roles for a number of these factors; however, both experimental approaches have severe technical limitations. We have developed novel methodology utilizing cytotoxin cell targeting with neuropeptides linked to the toxic A chain of the plant cytotoxin ricin. With this methodology we can target and destroy in vivo or in vitro cells bearing receptors for that peptide. Ricin A chain conjugated to atrial natriuretic peptide (ANP), a neuropeptide known to pharmacologically inhibit luteinizing hormone-releasing hormone (LHRH) release, was injected into the cerebroventricular system of intact, cycling rats and ovariectomized rats. Cytotoxin conjugate treatment significantly lengthened the estrous cycle. In ovariectomized rats the luteinizing hormone surge induced by steroid priming was completely inhibited. LHRH content of the median eminences of these rats was not significantly altered. These data suggest that ANP binding to clearance receptors in the hypothalamus displaces the C-type natriuretic peptide (CNP) from the shared clearance receptor, making more CNP available to inhibit LHRH release. In the absence of cells bearing the clearance receptor all available CNP binds to the ANPR-B receptor and exerts its effect via an inhibitory interneuron, since LHRH fibers are spared by this treatment.
Kimura, Richard H.; Miao, Zheng; Cheng, Zhen; Gambhir, Sanjiv S.; Cochran, Jennifer R.
2010-01-01
Previously, we used directed evolution to engineer mutants of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin that bind to αvβ3 and αvβ5 integrin receptors with low nanomolar affinity, and showed that Cy5.5- or 64Cu-DOTA-labeled knottin peptides could be used to image integrin expression in mouse tumor models using near-infrared fluorescence (NIRF) imaging or positron emission tomography (PET). Here, we report the development of a dual-labeled knottin peptide conjugated to both NIRF and PET imaging agents for multimodality imaging in living subjects. We created an orthogonally-protected peptide-based linker for stoichiometric coupling of 64Cu-DOTA and Cy5.5 onto the knottin N-terminus, and confirmed that conjugation did not affect binding to αvβ3 and αvβ5 integrins. NIRF and PET imaging studies in tumor xenograft models showed that Cy5.5 conjugation significantly increased kidney uptake and retention compared to the knottin peptide labeled with 64Cu-DOTA alone. In the tumor, the dual-labeled 64Cu-DOTA/Cy5.5 knottin probe showed decreased wash-out leading to significantly better retention (p < 0.05) compared to the 64Cu-DOTA-labeled knottin probe. Tumor uptake was significantly reduced (p < 0.05) when the dual-labeled probe was co-injected with an excess of unlabeled competitor and when tested in a tumor model with lower levels of integrin expression. Finally, plots of tumor-to-background tissue ratios for Cy5.5 versus 64Cu uptake were well correlated over several time points post injection, demonstrating pharmacokinetic cross validation of imaging labels. This dual-modality NIRF/PET imaging agent is promising for further development in clinical applications where high sensitivity and high-resolution are desired, such as detection of tumors located deep within the body and image-guided surgical resection. PMID:20131753
Feasibility and availability of ⁶⁸Ga-labelled peptides.
Decristoforo, Clemens; Pickett, Roger D; Verbruggen, Alfons
2012-02-01
(68)Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from (68)Ge/(68)Ga generators, making it independent of cyclotron production. (68)Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of (68)Ga-labelled peptides, including generator technology, (68)Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. (68)Ge/(68)Ga generators based on SnO(2), TiO(2) or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for (68)Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of (68)Ga-labelled peptides outside the marketing authorization track are also discussed.
Silaffin peptides as a novel signal enhancer for gravimetric biosensors.
Nam, Dong Hyun; Lee, Jeong-O; Sang, Byoung-In; Won, Keehoon; Kim, Yong Hwan
2013-05-01
Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin-GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.
K C, Tara Bahadur; Tada, Seiichi; Zhu, Liping; Uzawa, Takanori; Minagawa, Noriko; Luo, Shyh-Chyang; Zhao, Haichao; Yu, Hsiao-Hua; Aigaki, Toshiro; Ito, Yoshihiro
2018-05-17
An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.
Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.
Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G
2018-06-01
The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.
(18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).
Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen
2009-09-01
Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to
Downham, M R; Auton, T R; Rosul, A; Sharp, H L; Sjöström, L; Rushton, A; Richards, J P; Mant, T G K; Gardiner, S M; Bennett, T; Glover, J F
2003-01-01
Aims We aim to modulate the renin–angiotensin system (RAS) by active immunization against angiotensin I hormone (AI), potentially providing a novel conjugate vaccine treatment for hypertension in man. Methods Immunization studies in rat and human subjects compare the effectiveness of tetanus toxoid (TT) and keyhole limpet haemocyanin (KLH) vaccines for immunotherapy following conjugation with an AI peptide analogue (AI). Cardiovascular responses were assessed in immunized rats and human subjects (two-dose trial only), following increasing i.v. infusions of either AI or angiotensin II hormone (AII). Results The AI–TT and AI–KLH conjugate vaccines induced an equivalent immune response, and inhibition of the pressor effects to exogenous AI in rats. Single-dose clinical trials with both conjugate vaccines only resulted in an immune response to the KLH carrier protein. A two-dose clinical trial of AI–KLH conjugate vaccine resulted in a significant immune response to AI. A shift in diastolic blood pressure (DBP) dose–response was demonstrated following challenge with AI and AII for the study volunteer showing the largest anti-AI IgG induction. Conclusion KLH was shown to be a suitable alternative to TT as a carrier protein for AI, thus supporting continued evaluation of our AI–KLH conjugate vaccine for treatment of hypertension in man. PMID:14651724
VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis
2007-09-01
with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are
2015-01-01
Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559
EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.
Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong
2015-05-20
Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.