Science.gov

Sample records for peptide-derivatized dendrimers inhibit

  1. Peptide-Derivatized SB105-A10 Dendrimer Inhibits the Infectivity of R5 and X4 HIV-1 Strains in Primary PBMCs and Cervicovaginal Histocultures

    PubMed Central

    Bon, Isabella; Lembo, David; Rusnati, Marco; Clò, Alberto; Morini, Silvia; Miserocchi, Anna; Bugatti, Antonella; Grigolon, Sonia; Musumeci, Giuseppina; Landolfo, Santo; Re, Maria Carla; Gibellini, Davide

    2013-01-01

    Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs) that were challenged with reference and wild-type human immunodeficiency virus type 1 (HIV-1) strains. SB105-A10 inhibited infections by HIV-1 X4 and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate proteoglycans (HSPGs) and, importantly, the surface plasmon resonance (SPR) assay revealed that SB105-A10 strongly binds gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10 inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of HIV-1. PMID:24116111

  2. Peptide-derivatized albumins that inhibit fibrin polymerization.

    PubMed

    Watson, Joseph W; Doolittle, Russell F

    2011-11-15

    Synthetic peptides patterned on sequences that appear during thrombin proteolysis of fibrinogen are known to influence fibrin formation in very different ways. A-Knob sequences (GPR-) inhibit polymerization, but B-knob sequences (GHR-) can actually enhance the process. We now report that when such peptides are attached to albumin carriers, both knob conjugates inhibit fibrin formation. In contrast, the 2-aminoethylthiol-albumin conjugate control enhances the polymerization to the same degree as albumin. The peptide AHRPam, which is known to bind exclusively to the βC holes of fibrinogen/fibrin, nullifies the inhibitory effects of the GHRPYGGGCam-albumin conjugate on fibrin polymerization, indicating that the inhibition was exclusively due to interactions with βC holes. AHRPam was much less effective in countering inhibition by the GPRPGGGGCam-albumin conjugate, suggesting that the observed effects with this conjugate involve mainly the γC holes of fibrin/fibrinogen. This study demonstrates that peptides modeled on fibrin polymerization knobs tethered to albumin retain their capacity to interact with fibrinogen/fibrin and may prove useful as inhibitors of clotting in vivo.

  3. Dendrimers

    NASA Astrophysics Data System (ADS)

    Bryant, L. Henry; Bulte, Jeff W. M.

    Dendrimers have received an enormous amount of attention in the last ten years and several recent review articles have appeared in the literature that address their potential applications [1-3]. Stoddart et al [1] have stated that: "We are now approaching a time when the study of dendriniers bec omes inextricably linked with many other fields, leaving the comprehensive reviewer of the subject a near-impossible task to fulfil". On that note, this review provides a brief introduction to the chemical principles of dendrimers by highlighting main synthetic strategies and methods for characterisation. p]Dendrimers containing heteroatoms will not be reviewed per se since these have recently been reviewed [4]. The major thrust of this review is the potential applications of dendrimers in such areas as boron neutron capture therapy, as contrast agents in magnetic resonance imaging, as vaccines, as cellular transfection agents and as bioconjugate dendrimers, i.e., in-vitro immunoassays for antigens. The outline used in this review proved to be effective in classifying most published papers about dendrimers, but it must be kept in mind that some articles not only transcended two different classifications, such as synthesis and characterisation, but several classifications such as synthesis, characterisation and at least one potential application covered in this review.

  4. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    PubMed

    Wan, Jingjing; Brust, Andreas; Bhola, Rebecca F; Jha, Prerna; Mobli, Mehdi; Lewis, Richard J; Christie, Macdonald J; Alewood, Paul F

    2016-05-01

    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition.

    PubMed

    Chittasupho, Chuda; Anuchapreeda, Songyot; Sarisuta, Narong

    2017-10-01

    CXCR4 and its ligand CXCL12 play a critical role in the metastasis of various types of cancer including breast cancer. Breast tumors preferentially metastasize to the lung, bones and distant lymph nodes, secreting high levels of CXCL12. We hypothesized that targeted inhibition of CXCR4 in breast cancer cells should suppress CXCR4-positive tumor cells toward secondary metastatic sites. In the present study, the efficacy of CXCR4 targeted dendrimers carrying DOX (LFC131-DOX-D4) on cellular binding, cytotoxicity, and migration of BT-549-Luc and T47D breast cancer cells was investigated. PAMAM dendrimers encapsulating DOX was surface functionalized with LFC131 peptide which recognized CXCR4 expressed on the surface of breast cancer cells. The LFC131-DOX-D4 bound to breast cancer cells resulting in significantly enhanced in vitro cellular toxicity as compared with non-targeted dendrimers. The LFC131-D4 exhibited remarkable reduced migration of BT-549-Luc breast cancer cells toward chemoattractant. This report demonstrated the potential utility of LFC131-dendrimer conjugates for breast cancer therapy and metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression

    PubMed Central

    Walworth, Kyla; Bodas, Manish; Campbell, Ryan John; Swanson, Doug; Sharma, Ajit; Vij, Neeraj

    2016-01-01

    Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover

  7. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression.

    PubMed

    Walworth, Kyla; Bodas, Manish; Campbell, Ryan John; Swanson, Doug; Sharma, Ajit; Vij, Neeraj

    2016-01-01

    Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover

  8. Potential inhibition of HIV-1 encapsidation by oligoribonucleotide–dendrimer nanoparticle complexes

    PubMed Central

    Parboosing, Raveen; Chonco, Louis; de la Mata, Francisco Javier; Govender, Thavendran; Maguire, Glenn EM; Kruger, Hendrik G

    2017-01-01

    Background Encapsidation, the process during which the genomic RNA of HIV is packaged into viral particles, is an attractive target for antiviral therapy. This study explores a novel nanotechnology-based strategy to inhibit HIV encapsidation by an RNA decoy mechanism. The design of the 16-mer oligoribonucleotide (RNA) decoy is based on the sequence of stem loop 3 (SL3) of the HIV packaging signal (Ψ). Recognition of the packaging signal is essential to the encapsidation process. It is theorized that the decoy RNA, by mimicking the packaging signal, will disrupt HIV packaging if efficiently delivered into lymphocytes by complexation with a carbosilane dendrimer. The aim of the study is to measure the uptake, toxicity, and antiviral activity of the dendrimer–RNA nanocomplex. Materials and methods A dendriplex was formed between cationic carbosilane dendrimers and the RNA decoy. Uptake of the fluorescein-labeled RNA into MT4 lymphocytes was determined by flow cytometry and confocal microscopy. The cytoprotective effect (50% effective concentration [EC50]) and the effect on HIV replication were determined in vitro by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and viral load measurements, respectively. Results Flow cytometry and confocal imaging demonstrated efficient transfection of lymphocytes. The dendriplex containing the Ψ decoy showed some activity (EC50 =3.20 µM, selectivity index =8.4). However, there was no significant suppression of HIV viral load. Conclusion Oligoribonucleotide decoys containing SL3 of the packaging sequence are efficiently delivered into lymphocytes by carbosilane dendrimers where they exhibit a modest cytoprotective effect against HIV infection. PMID:28115849

  9. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The nucleic acid scavenger polyamidoamine third-generation dendrimer inhibits fibroblast activation and granulation tissue contraction.

    PubMed

    Holl, Eda K; Bond, Jennifer E; Selim, Maria A; Ehanire, Tosan; Sullenger, Bruce; Levinson, Howard

    2014-09-01

    Pathologic cutaneous scarring affects over 40 million people worldwide and costs billions of dollars annually. Understanding mechanisms of fibroblast activation and granulation tissue contraction is the first step toward preventing pathologic scarring. The authors hypothesize that nucleic acids increase fibroblast activation and cause granulation tissue contraction and that sequestration of nucleic acids by application of a nucleic acid scavenger dendrimer, polyamidoamine third-generation dendrimer, will decrease pathologic scarring. In vitro experiments were performed to assess the effect of nucleic acids on pathologic scar-associated fibroblast activity. The effect of nucleic acids on cytokine production and migration on mouse fibroblasts was evaluated. Immunofluorescence microscopy was used to determine the effect of nucleic acids on the differentiation of human primary fibroblasts into myofibroblasts. Using a murine model, the effect of polyamidoamine third-generation dendrimer on granulation tissue contraction was evaluated by gross and histologic parameters. Mouse fibroblasts stimulated with nucleic acids had increased cytokine production (i.e., transforming growth factor-β, monocyte chemotactic protein 1, interleukin-10, tumor necrosis factor-α, and interferon-γ), migration, and differentiation into myofibroblasts. Polyamidoamine third-generation dendrimer blocked cytokine production, migration, and differentiation into myofibroblasts. Using a murine model of granulation tissue contraction, polyamidoamine third-generation dendrimer decreased wound contraction and angiogenesis. Collagen deposition in polyamidoamine third-generation dendrimer-treated tissues was aligned more randomly and whorl-like compared with control tissue. The data demonstrate that nucleic acid-stimulated fibroblast activation and granulation tissue contraction are blocked by polyamidoamine third-generation dendrimer. Sequestration of pathogen-associated molecular patterns may be an

  11. Dendrimers incorporating benzenesulfonamide moieties strongly inhibit carbonic anhydrase isoforms I-XIV.

    PubMed

    Carta, Fabrizio; Osman, Sameh M; Vullo, Daniela; AlOthman, Zeid; Supuran, Claudiu T

    2015-06-21

    As extension of our previous study herein we report a comprehensive investigation of poly(amidoamine) (PAMAM) dendrimers as modulators of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms I-XIV. Interestingly inhibitory activity was observed for the non-functionalized dendrimers against the hCA I, VII, IX, XII and XIV isoforms, whereas activation properties were reported only for the cytosolic abundant hCA II. Highly efficient inhibitory action against many isoforms having medicinal chemistry applications, such as hCA II, V, VII, IX, XII and XIV, was observed for the PAMAM functionalized counterparts bearing 4, 8, 16 and 32 benzenesulfonamide moieties. Possible applications of dendrimer-CA inhibitors as therapeutic/diagnostic agents are envisaged.

  12. Optimization of a Class of Tryptophan Dendrimers That Inhibit HIV Replication Leads to a Selective, Specific, and Low-Nanomolar Inhibitor of Clinical Isolates of Enterovirus A71

    PubMed Central

    Rivero-Buceta, Eva; Sun, Liang; Martínez-Gualda, Belén; Doyagüez, Elisa G.; Donckers, Kim; Quesada, Ernesto; Camarasa, María-José; Delang, Leen; Leyssen, Pieter

    2016-01-01

    Tryptophan dendrimers that inhibit HIV replication by binding to the HIV envelope glycoproteins gp120 and gp41 have unexpectedly also proven to be potent, specific, and selective inhibitors of the replication of the unrelated enterovirus A71. Dendrimer 12, a consensus compound that was synthesized on the basis of the structure-activity relationship analysis of this series, is 3-fold more potent against the BrCr lab strain and, surprisingly, inhibits a large panel of clinical isolates in the low-nanomolar/high-picomolar range. PMID:27246775

  13. Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs.

    PubMed

    El Brahmi, Nabil; Mignani, Serge M; Caron, Joachim; El Kazzouli, Saïd; Bousmina, Mosto M; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2015-03-07

    The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.

  14. Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs

    NASA Astrophysics Data System (ADS)

    El Brahmi, Nabil; Mignani, Serge M.; Caron, Joachim; El Kazzouli, Saïd; Bousmina, Mosto M.; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2015-02-01

    The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05983b

  15. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.

    PubMed

    Sakuma, Shinji; Kanamitsu, Shun; Teraoka, Yumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Shirasaka, Yoshiyuki; Tamai, Ikumi; Muraoka, Masahiro; Nakatsuji, Yohji; Kida, Toshiyuki; Akashi, Mitsuru

    2012-04-02

    A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na⁺/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated D-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated D-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro D-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated D-glucose uptake.

  16. Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo.

    PubMed

    Posadas, I; Romero-Castillo, L; El Brahmi, N; Manzanares, D; Mignani, S; Majoral, J-P; Ceña, V

    2017-09-12

    Inflammation is part of the physiological response of the organism to infectious diseases caused by organisms such as bacteria, viruses, fungi, or parasites. Innate immunity, mediated by mononuclear phagocytes, including monocytes and macrophages, is a first line of defense against infectious diseases and plays a key role triggering the delayed adaptive response that ensures an efficient defense against pathogens. Monocytes and macrophages stimulation by pathogen antigens results in activation of different signaling pathways leading to the release of proinflammatory cytokines. However, inflammation can also participate in the pathogenesis of several diseases, the autoimmune diseases that represent a relevant burden for human health. Dendrimers are branched, multivalent nanoparticles with a well-defined structure that have a high potential for biomedical applications. To explore new approaches to fight against the negative aspects of inflammation, we have used neutral high-generation phosphorus dendrimers bearing 48 (G3) or 96 (G4) bisphosphonate groups on their surface. These dendrimers show no toxicity and have good solubility and chemical stability in aqueous solutions. Here, we present data indicating that neutral phosphorus dendrimers show impressive antiinflammatory activities both in vitro and in vivo. In vitro, these dendrimers reduced the secretion of proinflammatory cytokines from mice and human monocyte-derived macrophages. In addition, these molecules present efficient antiinflammatory activity in vivo in a mouse model of subchronic inflammation. Taken together, these data suggest that neutral G3-G4 phosphorus dendrimers have strong potential applications in the therapy of inflammation and, likely, of autoimmune diseases.

  17. Inhibition of Bacterial Growth and Intramniotic Infection in a Guinea Pig Model of Chorioamnionitis Using PAMAM Dendrimers

    PubMed Central

    Wang, Bing; Navath, Raghavendra S.; Menjoge, Anupa R.; Balakrishnan, Bindu; Bellair, Robert; Dai, Hui; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in-vitro, in-vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 µg of generation-4 neutral dendrimer (G4-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs post treatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNFα) and interleukin (IL-6 and IL-1β)] in placenta of the G4-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G4-PAMAM-NH2 shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10µg / mL, while the G4-PAMAM-OH was non cytotoxic upto 1mg / mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G4-PAMAM-OH dendrimer efficiently changed the OM permeability, while G4-PAMAM-NH2 and G3.5-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are; G4-PAMAM-NH2 acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G4-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G3.5-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G4-PAMAM-OH dendrimer acts as an antibacterial agent. PMID:20580797

  18. Electron transfer dynamics of peptide-derivatized Ru(II) -polypyridyl complexes on nanocrystalline metal oxide films.

    PubMed

    Hanson, Kenneth; Wilger, Dale J; Jones, Sean T; Harrison, Daniel P; Bettis, Stephanie E; Luo, Hanlin; Papanikolas, John M; Waters, Marcey L; Meyer, Thomas J

    2013-01-01

    The performance of dye-sensitized solar and photoelectrochemical cells is strongly dependent on the electron transfer events at the electrode-sensitizer interface. Surface-bound peptides derivatized with chromophores have not been used in dye-sensitized solar and photoelectrochemical cells, but they have properties for these applications that could be advantageous by exploiting secondary structure and the attachment of multiple chromophores. In this manuscript, we have investigated structure-property relationships for three metallopeptide-based assemblies to solution and chemically bound to nanocrystalline MO(2) (M = Ti, Zr) films. A particular interest was exploring the influence of increasing separation distance between a common chromophore, [Ru(bpy)(2) (4-Me-4'-(NHCO)bpy)](2+) , and the underlying oxide substrate on excited and ground state electron transfer. Rates of Ru(II) oxidation to Ru(III) at the interface were measured by cyclic voltammetry on fluorine-doped tin oxide and cross-surface electron transfer on TiO(2) . Excited state injection by [Ru(III) (bpy)(2) (bpy(-) )](2+) was monitored by transient absorption and time-resolved emission. There are discernible trends in the electron transfer rate data with approximated, fully extended distances between the [Ru(bpy)(2) (4-Me-4'-(NHCO)bpy)](2+) sites and the interface. However, the distance dependences that are observed are smaller than anticipated, a result consistent with a lack of ordered secondary structure in the surface-bound peptide chains and a distribution of local orientations. For the surface-bound excited states, only a small fraction undergo quenching by electron transfer to TiO(2) , presumably from those oriented near the surface. Copyright © 2012 Wiley Periodicals, Inc.

  19. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis.

    PubMed

    Brockman, Scott Mackenzie; Bodas, Manish; Silverberg, David; Sharma, Ajit; Vij, Neeraj

    2017-01-01

    Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. We demonstrate here the efficacy of dendrimer-based autophagy-induction in

  20. Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41.

    PubMed

    Rivero-Buceta, Eva; Doyagüez, Elisa G; Colomer, Ignacio; Quesada, Ernesto; Mathys, Leen; Noppen, Sam; Liekens, Sandra; Camarasa, María-José; Pérez-Pérez, María-Jesús; Balzarini, Jan; San-Félix, Ana

    2015-12-01

    Dendrimers containing from 9 to 18 tryptophan residues at the peryphery have been efficiently synthesized and tested against HIV replication. These compounds inhibit an early step of the replicative cycle of HIV, presumably virus entry into its target cell. Our data suggest that HIV inhibition can be achieved by the preferred interaction of the compounds herein described with glycoproteins gp120 and gp41 of the HIV envelope preventing interaction between HIV and the (co)receptors present on the host cells. The results obtained so far indicate that 9 tryptophan residues on the periphery are sufficient for efficient gp120/gp41 binding and anti-HIV activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Influence of PAMAM dendrimers on the human insulin

    NASA Astrophysics Data System (ADS)

    Nowacka, Olga; Miłowska, Katarzyna; Ionov, Maksim; Bryszewska, Maria

    2015-12-01

    Dendrimers are specific class of polymeric macromolecules with wide spectrum of properties. One of the promising activities of dendrimers involves inhibition of protein fibril formation. Aggregation and fibrillation of insulin occurs in insulin-dependent diabetic patients after repeated administration, due to these processes being very easily triggered by the conditions of drug administration. The aim of this work was to study the influence of various generations PAMAM dendrimers on human insulin zeta potential, secondary structure and dithiotreitol (DTT)-induced aggregation. We observed the dependence between the number of positive charges on the surface of the PAMAM dendrimer and the values of zeta potential. Addition of dendrimers to insulin caused insignificant changes in the secondary structure. There was a small decrease in ellipticity, but it did not result in alterations in the circular dichroism (CD) spectrum shape. Dendrimers neither induced protein aggregation nor inhibited the aggregation process induced by DTT, except for 0.01 µmol/l concentration.

  2. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.

    PubMed

    Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara

    2013-10-01

    In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure.

  3. SRL-Coated PAMAM Dendrimer Nano-Carrier for Targeted Gene Delivery to the Glioma Cells and Competitive Inhibition by Lactoferrin.

    PubMed

    Zarebkohan, Amir; Najafi, Farhood; Moghimi, Hamid Reza; Hemmati, Mohammad; Deevband, Mohammad Reza; Kazemi, Bahram

    2016-01-01

    Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perform this investigation, our newly developed nanocarrier (PAMAM-PEG-SRL) was used for gene delivery to C6 glioma cell lines. DNA (GFP) was loaded in these functionalized nanoparticles and their cellular uptake/distribution and gene transfection efficacy was evaluated by fluorescence and confocal microscopy. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy. Results revealed improved gene transfection efficiency of newly-synthesized delivery system. We also found that lactoferrin, as a LRP ligand, reduced the gene transfection efficacy of the delivery system due to its higher affinity compared to SRL peptides (Competitive inhibition). The present results suggest that the synthesized delivery system has the potential to be used as an alternative targeted drug delivery system for brain tumors.

  4. SRL-Coated PAMAM Dendrimer Nano-Carrier for Targeted Gene Delivery to the Glioma Cells and Competitive Inhibition by Lactoferrin

    PubMed Central

    zarebkohan, Amir; Najafi, Farhood; Moghimi, Hamid Reza; Hemmati, Mohammad; Deevband, Mohammad Reza; Kazemi, Bahram

    2016-01-01

    Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perform this investigation, our newly developed nanocarrier (PAMAM-PEG-SRL) was used for gene delivery to C6 glioma cell lines. DNA (GFP) was loaded in these functionalized nanoparticles and their cellular uptake/distribution and gene transfection efficacy was evaluated by fluorescence and confocal microscopy. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy. Results revealed improved gene transfection efficiency of newly-synthesized delivery system. We also found that lactoferrin, as a LRP ligand, reduced the gene transfection efficacy of the delivery system due to its higher affinity compared to SRL peptides (Competitive inhibition). The present results suggest that the synthesized delivery system has the potential to be used as an alternative targeted drug delivery system for brain tumors. PMID:28243262

  5. Phosphorus dendrimers for nanomedicine.

    PubMed

    Caminade, Anne-Marie

    2017-08-31

    From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.

  6. Influence of dendrimer's structure on its activity against amyloid fibril formation

    SciTech Connect

    Klajnert, B. . E-mail: aklajn@biol.uni.lodz.pl; Cortijo-Arellano, M.; Cladera, J.; Bryszewska, M.

    2006-06-23

    Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide A{beta} 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure.

  7. Antiviral properties against HIV of water soluble copper carbosilane dendrimers and their EPR characterization.

    PubMed

    Galan, M; Sanchez-Rodriguez, J; Cangiotti, M; Garcia-Gallego, S; Jimenez, J L; Gomez, R; Ottaviani, M F; Munoz-Fernandez, M A; de la Mata, F J

    2012-01-01

    We describe here the use of anionic carbosilane dendrimers to obtain new copper complexes. UV-Vis and a computer aided analysis of the EPR spectra provided information about the coordination modes of copper depending on the nature of the dendrimer and about the geometry and structure of the complexes in solution. Some of these metallo-dendrimers have been tested "in vitro" as antiviral compounds in the inhibition of HIV infection in pre and post-infection treatment.

  8. Development of Topical Treatment for Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers

    DTIC Science & Technology

    2013-01-01

    Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers PRINCIPAL INVESTIGATOR...Development of Topical Treatment for Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers ...finding was the specific inhibition of PAMAM dendrimers on Pseudomonas aeruginosa (PA) biofilm formation and growth. This is significant because PA in

  9. Effect of Terminal-Group Functionality on the Ability of Dendrimers to Bind Proteins.

    PubMed

    Chiba, Fumiko; Twyman, Lance J

    2017-08-16

    It is known that dendrimers can bind proteins with good selectively. This selectivity comes about from an optimization based on matching the size of the dendrimer with the size of the protein's interfacial binding area. In this paper, we report how this selectivity can be moderated by the functionality on the surface of the dendrimer. Specifically, we describe the synthesis of amino acid functionalized dendrimers and the effect of functionality on the dendrimer's ability to bind and inhibit the enzymatic protein, chymotrypsin. The results show how dendrimer binding can be increased or decreased depending on the terminal functionality. These results will allow new ligands to be designed and synthesized, possessing increased and selective protein-binding abilities.

  10. Electrostatic Swelling and Conformational Variation Observed in High-Generation Polyelectrolyte Dendrimers

    SciTech Connect

    Butler, Paul D; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Gregory Scott; Chen, Hsin-Lung; Chen, Chun-Yu; Li, Xin; Liu, Emily

    2010-01-01

    A coordinated study combining small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) measurements was conducted to investigate the structural characteristics of aqueous (D2O) generation 7 and 8 (G7 & G8) PAMAM dendrimer solutions as a function of molecular protonation at room temperature. The change in intra-molecular conformation was clearly exhibited in the data analysis by separating the variation in the inter-molecular correlation. Our results unambiguously demonstrate an increased molecular size and evolved intra-molecular density profile upon increasing the molecular protonation. This is contrary to the existing understanding that in higher generation polyelectrolyte dendrimers, steric crowding stiffens the local motion of dendrimer segments exploring additional available intra-dendrimer volume and therefore inhibits the electrostatic swelling. Our observation is relevant to elucidation of the general microscopic picture of polyelectrolyte dendrimer structure, as well as the development of dendrimer-based packages with based on the stimuli-responsive principle.

  11. Light harvesting dendrimers.

    PubMed

    Nantalaksakul, Arpornrat; Reddy, D Raghunath; Bardeen, Christopher J; Thayumanavan, S

    2006-01-01

    Tree-like dendrimers with decreasing number of chromophores from periphery to core is an attractive candidate for light-harvesting applications. Numerous dendritic designs with different kinds of light-collecting chromophores at periphery and an energy-sink at the core have been demonstrated with high energy transfer efficiency. These building blocks are now being developed for several applications such as light-emitting diodes, frequency converters and other photonic devices. This review outlines the efforts that are based on both conjugated and non-conjugated dendrimers.

  12. Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers.

    PubMed

    Jishkariani, Davit; MacDermaid, Christopher M; Timsina, Yam N; Grama, Silvia; Gillani, Syeda S; Divar, Masoumeh; Yadavalli, Srujana S; Moussodia, Ralph-Olivier; Leowanawat, Pawaret; Berrios Camacho, Angely M; Walter, Ricardo; Goulian, Mark; Klein, Michael L; Percec, Virgil

    2017-03-21

    2,2-Bis(azidomethyl)propionic acid was prepared in four steps and 85% yield from the commercially available 2,2-bis(hydroxymethyl)propionic acid and used as the starting building block for the divergent, convergent, and double-stage convergent-divergent iterative methods for the synthesis of dendrimers and dendrons containing ethylenediamine (EDA), piperazine (PPZ), and methyl 2,2-bis(aminomethyl)propionate (COOMe) cores. These cores have the same multiplicity but different conformations. A diversity of synthetic methods were used for the synthesis of dendrimers and dendrons. Regardless of the method used, a self-interruption of the synthesis was observed at generation 4 for the dendrimer with an EDA core and at generation 5 for the one with a PPZ core, whereas for the COOMe core, self-interruption was observed at generation 6 dendron, which is equivalent to generation 5 dendrimer. Molecular modeling and molecular-dynamics simulations demonstrated that the observed self-interruption is determined by the backfolding of the azide groups at the periphery of the dendrimer. The latter conformation inhibits completely the heterogeneous hydrogenation of the azide groups catalyzed by 10% Pd/carbon as well as homogeneous hydrogenation by the Staudinger method. These self-terminated polyamide dendrimers are enzymatically and hydrolytically stable and also exhibit antimicrobial activity. Thus, these nanoscale constructs open avenues for biomedical applications.

  13. Mathematical Description of Dendrimer Structure

    NASA Technical Reports Server (NTRS)

    Majoros, Istvan J.; Mehta, Chandan B.; Baker, James R., Jr.

    2004-01-01

    Characteristics of starburst dendrimers can be easily attributed to the multiplicity of the monomers used to synthesize them. The molecular weight, degree of polymerization, number of terminal groups and branch points for each generation of a dendrimer can be calculated using mathematical formulas incorporating these variables. Mathematical models for the calculation of degree of polymerization, molecular weight, and number of terminal groups and branching groups previously published were revised and elaborated on for poly(amidoamine) (PAMAM) dendrimers, and introduced for poly(propyleneimine) (POPAM) dendrimers and the novel POPAM-PAMAM hybrid, which we call the POMAM dendrimer. Experimental verification of the relationship between theoretical and actual structure for the PAMAM dendrimer was also established.

  14. Lactose-Functionalized Dendrimers Arbitrate the Interaction of Galectin-3/MUC1 Mediated Cancer Cellular Aggregation

    PubMed Central

    Michel, Anna K.; Nangia-Makker, Pratima; Raz, Avraham

    2015-01-01

    By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased. PMID:25138772

  15. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth

    PubMed Central

    Al-Jamal, Khuloud T.; Al-Jamal, Wafa’ T.; Akerman, Simon; Podesta, Jennifer E.; Yilmazer, Açelya; Turton, John A.; Bianco, Alberto; Vargesson, Neil; Kanthou, Chryso; Florence, Alexander T.; Tozer, Gillian M.; Kostarelos, Kostas

    2010-01-01

    This study describes the previously unreported intrinsic capacity of poly-L-lysine (PLL) sixth generation (G6) dendrimer molecules to exhibit systemic antiangiogenic activity that could lead to solid tumor growth arrest. The PLL-dendrimer-inhibited tubule formation of SVEC4-10 murine endothelial cells and neovascularization in the chick embryo chick chorioallantoic membrane (CAM) assay. Intravenous administration of the PLL-dendrimer molecules into C57BL/6 mice inhibited vascularisation in Matrigel plugs implanted subcutaneously. Antiangiogenic activity was further evidenced using intravital microscopy of tumors grown within dorsal skinfold window chambers. Reduced vascularization of P22 rat sarcoma implanted in the dorsal window chamber of SCID mice was observed following tail vein administration (i.v.) of the PLL dendrimers. Also, the in vivo toxicological profile of the PLL-dendrimer molecules was shown to be safe at the dose regime studied. The antiangiogenic activity of the PLL dendrimer was further shown to be associated with significant suppression of B16F10 solid tumor volume and delayed tumor growth. Enhanced apoptosis/necrosis within tumors of PLL-dendrimer-treated animals only and reduction in the number of CD31 positive cells were observed in comparison to protamine treatment. This study suggests that PLL-dendrimer molecules can exhibit a systemic antiangiogenic activity that may be used for therapy of solid tumors, and in combination with their capacity to carry other therapeutic or diagnostic agents may potentially offer capabilities for the design of theranostic systems. PMID:20150514

  16. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    PubMed

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.

  17. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  18. Dendrimers Application Related to Bioimaging

    PubMed Central

    Barrett, Tristan; Ravizzini, Gregory; Choyke, Peter L.; Kobayashi, Hisataka

    2009-01-01

    Dendrimers are a class of synthetically produced highly branched, spherical nanostructures that can be used as carrier molecules for imaging agents. A variety of dendrimers exist and each has biological properties that will alter its biodistribution. Dendrimers are composed of combinations of core types such as ethylene diamine (EDA), diaminobutyl (DAB), polyamidoamine (PAMAM) and polypropylimine (PPI) and different surface residues such as amine, carboxyl, and alcoholic groups. Increasing the number of primary amine groups attached to the core will increase the size of the dendrimer, which is known by the term ‘generation’ of the dendrimer. Because dendrimers are highly structured in size and shape and have a low poly-dispersity index, each dendrimer generation has distinct pharmacokinetic and pharmacodynamic properties which may prove advantageous for particular medical applications. Research has centered on developing these macromolecules as imaging agents for numerous modalities including magnetic resonance imaging, X-ray computed tomography, optical imaging and nuclear medicine. Another prospective function of dendrimers is as drug delivery vectors, whereby therapeutic payloads are encapsulated within the shell, or incorporated onto their multivalent surface, and targeted to tumor cells using ligands that specifically bind to cancer cells or in normal cells altered by nearby cancer cells. Furthermore, the larger size of high generation dendrimers offers potential to develop dual purpose agents that can act both as imaging agents and as delivery vectors, or can be imaged with more than one modality. Herein, we discuss the current and future applications of dendrimers in medicine and the central role they play in the emerging field of nanotechnology. PMID:19150767

  19. Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors

    PubMed Central

    2015-01-01

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629

  20. Dendrimers: synthesis, applications, and properties

    NASA Astrophysics Data System (ADS)

    Abbasi, Elham; Aval, Sedigheh Fekri; Akbarzadeh, Abolfazl; Milani, Morteza; Nasrabadi, Hamid Tayefi; Joo, Sang Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Pashaei-Asl, Roghiyeh

    2014-05-01

    Dendrimers are nano-sized, radially symmetric molecules with well-defined, homogeneous, and monodisperse structure that has a typically symmetric core, an inner shell, and an outer shell. Their three traditional macromolecular architectural classes are broadly recognized to generate rather polydisperse products of different molecular weights. A variety of dendrimers exist, and each has biological properties such as polyvalency, self-assembling, electrostatic interactions, chemical stability, low cytotoxicity, and solubility. These varied characteristics make dendrimers a good choice in the medical field, and this review covers their diverse applications.

  1. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers

    PubMed Central

    Crampton, Hannah L; Simanek, Eric E

    2009-01-01

    This mini review highlights issues associated with the use of dendrimers as drug delivery vehicles. The review introduces dendrimers and summarizes findings on their use in vivo and in vitro. Specifically, this review is limited to examples wherein the drug is non-covalently associated with the dendrimer. Examples wherein the drug is covalently attached to the dendrimer are not discussed. PMID:19960104

  2. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

    PubMed Central

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  3. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as π stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy.

  4. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery.

  5. Gene delivery by dendrimers operates via a cholesterol dependent pathway.

    PubMed

    Manunta, Maria; Tan, Peng Hong; Sagoo, Pervinder; Kashefi, Kirk; George, Andrew J T

    2004-01-01

    Understanding the cellular uptake and intracellular trafficking of dendrimer-DNA complexes is an important prerequisite for improving the transfection efficiency of non-viral vector-mediated gene delivery. Dendrimers are synthetic polymers used for gene transfer. Although these cationic molecules show promise as versatile DNA carriers, very little is known about the mechanism of gene delivery. This paper investigates how the uptake occurs, using an endothelial cell line as model, and evaluates whether the internalization of dendriplexes takes place randomly on the cell surface or at preferential sites such as membrane rafts. Following extraction of plasma membrane cholesterol, the transfection efficiency of the gene delivered by dendrimers was drastically decreased. Replenishment of membrane cholesterol restored the gene expression. The binding and especially internalization of dendriplexes was strongly reduced by cholesterol depletion before transfection. However, cholesterol removal after transfection did not inhibit expression of the delivered gene. Fluorescent dendriplexes co-localize with the ganglioside GM1 present into membrane rafts in both an immunoprecipitation assay and confocal microscopy studies. These data strongly suggest that membrane cholesterol and raft integrity are physiologically relevant for the cellular uptake of dendrimer-DNA complexes. Hence these findings provide evidence that membrane rafts are important for the internalization of non-viral vectors in gene therapy.

  6. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Li, Yubin; Wang, Shaofei; Wang, Ziyu; Qian, Xiaolu; Fan, Jiajun; Zeng, Xian; Sun, Yun; Song, Ping; Feng, Meiqing; Ju, Dianwen

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers are proposed as one of the most promising nanomaterials for biomedical applications because of their unique tree-like structure, monodispersity and tunable properties. In this study, we found that PAMAM dendrimers could induce the formation of autophagosomes and the conversion of microtubule-associated protein 1 light chain 3 (LC3) in hepatocellular carcinoma HepG2 cells, while the inhibition of the Akt/mTOR and activation of the Erk 1/2 signaling pathways were involved in autophagy-induced by PAMAM dendrimers. We also investigated the suppression of autophagy with the obviously enhanced cytotoxicity of PAMAM dendrimers. Moreover, the blockage of a reactive oxygen species (ROS) could enhance the growth inhibition and apoptosis of hepatocellular carcinoma cells, induced by PAMAM dendrimers through reducing autophagic effects. Taken together, these findings explored the role and mechanism of autophagy induced by PAMAM dendrimers in HepG2 cells, provided new insight into the effect of autophagy on drug delivery nanomaterials and tumor cells and contributed to the use of a drug delivery vehicle for hepatocellular carcinoma treatment.

  7. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction.

    PubMed

    Wang, Juan; He, Hongliang; Cooper, Remy C; Yang, Hu

    2017-03-29

    In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, β-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.

  8. The specific contribution of phosphorus in dendrimer chemistry.

    PubMed

    Majoral, Jean-Pierre; Caminade, Anne-Marie; Maraval, Valérie

    2002-12-21

    Besides properties commonly found for all types of dendrimers, phosphorus-containing dendrimers possess some specific properties seldom or never found for other types of dendrimers. Emphasis will be put on these specificities.

  9. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  10. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    PubMed Central

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-01-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering. PMID:27759006

  11. [Study on the interaction of cobalt (II) polyamidomine dendrimer with DNA by spectrometry techniques].

    PubMed

    Li, Jin-Huan; Ai, Shi-Yun; Shi, Wei-Jie; Yin, Huan-Shun; Du, Hong-Xia

    2009-03-01

    Cobalt (II) polyamidomine dendrimer was prepared by the reaction of cobalt chloride, glyoxal and polyamidomine dendrimer of 5.0 generation. The interaction of cobalt (II) polyamidomine dendrimer complex with herring sperm (hsDNA) was carried out using methylene blue (MB) as the probe molecule by absorption and fluorescence spectroscopy and synchronous fluorescence spectroscopy. The results showed that the intensity of absorption peaks and fluorescence peaks increased when the complex interacted with hsDNA. The effect of sodium chloride showed that sodium ion can significantly constrain the interaction of cobalt(II) polyamidomine dendrimer with hsDNA. The curves indicated the competitive inhibition of MB binding to hsDNA in the presence of cobalt (II) polyamidomine dendrimer complexes, also MB could insert into interior of cobalt (II) polyamidomine dendrimer complexes. The results suggested that the complex mainly interacted with negatively charged phosphate moieties on hsDNA through electrostatic attraction and stacked on the surface of double stranded hsDNA, which may reduce the binding affinity of MB to hsDNA in the surrounding site. It was indicated that sodium ion might neutralize the negatively charged phosphate backbone of hsDNA, and then weaken the electrostatic attraction between complexes and hsDNA.

  12. Nanomedicine for prion disease treatment: new insights into the role of dendrimers.

    PubMed

    McCarthy, James M; Appelhans, Dietmar; Tatzelt, Jörg; Rogers, Mark S

    2013-01-01

    Despite their devastating impact, no effective therapeutic yet exists for prion diseases at the symptomatic stage in humans or animals. Progress is hampered by the difficulty in identifying compounds that affect PrP (Sc) and the necessity of any potential therapeutic to gain access to the CNS. Synthetic polymers known as dendrimers are a particularly promising candidate in this area. Studies with cell culture models of prion disease and prion infected brain homogenate have demonstrated that numerous species of dendrimers eliminate PrP (Sc) in a dose and time dependent fashion and specific glycodendrimers are capable of crossing the CNS. However, despite their potential a number of important questions remained unanswered such as what makes an effective dendrimer and how dendrimers eliminate prions intracellularly. In a number of recent studies we have tackled these questions and revealed for the first time that a specific dendrimer can inhibit the intracellular conversion of PrP (C) to PrP (Sc) and that a high density of surface reactive groups is a necessity for dendrimers in vitro anti-prion activity. Understanding how a therapeutic works is a vital component in maximising its activity and these studies therefore represent a significant development in the race to find effective treatments for prion diseases.

  13. Orientational relaxation in semiflexible dendrimers.

    PubMed

    Kumar, Amit; Biswas, Parbati

    2013-12-14

    The orientational relaxation dynamics of semiflexible dendrimers are theoretically calculated within the framework of optimized Rouse-Zimm formalism. Semiflexibility is modeled through appropriate restrictions in the direction and orientation of the respective bond vectors, while the hydrodynamic interactions are included via the preaveraged Oseen tensor. The time autocorrelation function M(i)(1)(t) and the second order orientational autocorrelation function P(i)(2)(t) are analyzed as a function of the branch-point functionality and the degree of semiflexibility. Our approach of calculating M(i)(1)(t) is completely different from that of the earlier studies (A. Perico and M. Guenza J. Chem. Phys., 1985, 83, 3103; J. Chem. Phys., 1986, 84, 510), where the expression of M(i)(1)(t) obtained from earlier studies does not demarcate the flexible dendrimers from the semiflexible ones. The component of global motion of the time autocorrelation function exhibits a strong dependence on both degree of semiflexibility and branch-point functionality, while the component of pulsation motion depends only on the degree of semiflexibility. But it is difficult to distinguish the difference in the extent of pulsation motion among the compressed (0 < φ < π/2) and expanded (π/2 < φ < π) conformations of semiflexible dendrimers. The qualitative behavior of P(i)(2)(t) obtained from our calculations closely matches with the expression for P(exact)(2)(t) in the earlier studies. Theoretically calculated spectral density, J(ω), is found to depend on the degree of semiflexibility and the branch-point functionality for the compressed and expanded conformations of semiflexible dendrimers as a function of frequency, especially in the high frequency regime, where J(ω) decays with frequency for both compressed and expanded conformations of semiflexible dendrimers. This decay of the spectral density occurs after displaying a cross-over behavior with the variation in the degree of

  14. Dendrimers as Innovative Radiopharmaceuticals in Cancer Radionanotherapy.

    PubMed

    Liko, Flonja; Hindré, François; Fernandez-Megia, Eduardo

    2016-10-10

    Radiotherapy is one of the most commonly used cancer treatments, with an estimate of 40% success that could be improved further if more efficient targeting and retention of radiation at the tumor site were achieved. This review focuses on the use of dendrimers in radionanotherapy, an emerging technology aimed to improve the efficiency of radiotherapy by implementing nanovectorization, an already established praxis in drug delivery and diagnosis. The labeling of dendrimers with radionuclides also aims to reduce the dose of radiolabeled materials and, hence, their toxicity and tumor resistance. Examples of radiolabeled dendrimers with alpha, beta, and Auger electron emitters are commented, along with the use of dendrimers in boron neutron capture therapy (BNCT). The conjugation of radiolabeled dendrimers to monoclonal antibodies for a more efficient targeting and the application of dendrimers in gene delivery radiotherapy are also covered.

  15. Labeling Cells with Silver/Dendrimer Nanocomposites

    DTIC Science & Technology

    2005-01-01

    labeling. A PAMAME5.NH 2 dendrimer was used as a template to prepare first a silver -dendrimer complex in an aqueous solution at biologic pH=7.4...electron microscope operating at 200 kV. Samples were prepared by mounting a drop of aqueous solutions of nanoparticles on carbon-coated copper grids...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP019741 TITLE: Labeling Cells with Silver /Dendrimer Nanocomposites

  16. Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against α-, β-, γ- and η-class enzymes.

    PubMed

    Carta, Fabrizio; Osman, Sameh M; Vullo, Daniela; AlOthman, Zeid; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

    2015-11-01

    Four generations of poly(amidoamine) (PAMAM) dendrimers incorporating benzenesulfonamide moieties were investigated as inhibitors of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ- and η-classes which are present in pathogenic bacteria, fungi or protozoa. The following bacterial, fungal and protozoan organisms were included in the study: Vibrio cholerae, Trypanosoma cruzi, Leishmania donovani chagasi, Porphyromonas gingivalis, Cryptococcus neoformans, Candida glabrata, and Plasmodium falciparum. The eight pathozymes present in these organisms were efficiently inhibited by the four generations PAMAM-sulfonamide dendrimers, but multivalency effects were highly variable among the different enzyme classes. The Vibrio enzyme VchCA was best inhibited by the G3 dendrimer incorporating 32 sulfamoyl moieties. The Trypanosoma enzyme TcCA on the other hand was best inhibited by the first generation dendrimer G0 (with 4 sulfamoyl groups), whereas for other enzymes the optimal inhibitory power was observed for the G1 or G2 dendrimers, with 8 and 16 sulfonamide functionalities. This study thus proves that the multivalency may be highly relevant for enzyme inhibition for some but not all CAs from pathogenic organisms. On the other hand, some dendrimers investigated here showed a better inhibitory power compared to acetazolamide for enzymes from widespread pathogens, such as the η-CA from Plasmodium falciparum. Overall, the main conclusion is that this class of molecules may lead to important developments in the field of anti-infective CA inhibitors.

  17. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  18. Computational design principles for bioactive dendrimer based constructs as antagonists of the TLR4-MD-2-LPS complex.

    PubMed

    Barata, Teresa; Teo, Ian; Lalwani, Sanjiv; Simanek, Eric; Zloh, Mire; Shaunak, Sunil

    2011-11-01

    The cell surface interaction between bacterial lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) and MD-2 is central to bacterial sepsis syndromes and wound healing. We have shown that a generation (G) 3.5 polyamidoamine (PAMAM) dendrimer that was partially glycosylated with glucosamine inhibits TLR4-MD-2-LPS induced inflammation in a rabbit model of tissue scaring. However, it was a mixture of closely related chemical species because of the polydispersity of the starting PAMAM dendrimer. Generation 2 triazine dendrimers with single chemical entity material status are available at low cost and at the kilogram scale. PAMAM dendrimer can be synthetically grafted onto this triazine core dendrimer to make new triazine-PAMAM hybrid dendrimers. This led us to examine whether molecular modelling methods could be used to identify the key structural design principles for a bioactive lead molecule that could be synthesized and biologically evaluated. We describe our computer aided molecular studies of several dendrimer based constructs and the key design principles identified. Our approach should be more broadly applicable to the biologically focused, rational and accelerated design of molecules for other TLR receptors. They could be useful for treating infectious, inflammatory and malignant diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Design considerations for PAMAM dendrimer therapeutics.

    PubMed

    Goonewardena, Sascha N; Kratz, Jeremy D; Zong, Hong; Desai, Ankur M; Tang, Shengzhuang; Emery, Sarah; Baker, James R; Huang, Baohua

    2013-05-15

    We have previously shown that methotrexate (MTX) conjugated to a cancer-specific poly amido amine (PAMAM) dendrimer has a higher therapeutic index than MTX alone. Unfortunately, these therapeutics have been difficult to advance because of the complicated syntheses and an incomplete understanding of the dendrimer properties. We wished to address these obstacles by using copper-free click chemistry to functionalize the dendrimer scaffolds and to exploring the effects of two dendrimer properties (the targeting ligand and drug linkage) on cytotoxicity. We conjugated either ester or amide-linker modified MTX to dendrimer scaffolds with or without folic acid (FA). Because of multivalency, the FA and MTX functionalized dendrimers had similar capacities to target the folate receptor on cancer cells. Additionally, we found that the ester- and amide-linker modified MTX compounds had similar cytotoxicity but the dendrimer-ester MTX conjugates were much more cytotoxic than the dendrimer-amide MTX conjugates. These results clarify the impact of these properties on therapeutic efficacy and will allow us to design more effective polymer therapeutics.

  20. Uses of Dendrimers for DNA Microarrays

    PubMed Central

    Caminade, Anne-Marie; Padié, Clément; Laurent, Régis; Maraval, Alexandrine; Majoral, Jean-Pierre

    2006-01-01

    Biosensors such as DNA microarrays and microchips are gaining an increasing importance in medicinal, forensic, and environmental analyses. Such devices are based on the detection of supramolecular interactions called hybridizations that occur between complementary oligonucleotides, one linked to a solid surface (the probe), and the other one to be analyzed (the target). This paper focuses on the improvements that hyperbranched and perfectly defined nanomolecules called dendrimers can provide to this methodology. Two main uses of dendrimers for such purpose have been described up to now; either the dendrimer is used as linker between the solid surface and the probe oligonucleotide, or the dendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the first case the dendrimer generally induces a higher loading of probes and an easier hybridization, due to moving away the solid phase. In the second case the high number of localized labels (generally fluorescent) induces an increased sensitivity, allowing the detection of small quantities of biological entities.

  1. Dendrimers for siRNA Delivery

    PubMed Central

    Biswas, Swati; Torchilin, Vladimir P.

    2013-01-01

    Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers. PMID:24275946

  2. Cucurbituril and Cyclodextrin Complexes of Dendrimers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Kaifer, Angel E.

    This chapter reviews the growing body of data on the binding interactions between dendrimers and two types of well-established molecular hosts: cyclodextrins and cucurbit[n]urils. Dendrimers are highly branched macromolecules to which functional groups can be attached in spatially defined locations. The attachment of guest functional groups to dendrimers allows the investigation of their binding interactions with freely diffusing hosts/receptors. The effect of dendrimer size on the thermodynamics of these host-guest reactions varies widely depending on factors described here. In optimum cases, it is possible to use these binding interactions to exert redox control on dendrimer self-assembly and even control the size of the resulting assemblies.

  3. Dendrimer building toolkit: model building and characterization of various dendrimer architectures.

    PubMed

    Maingi, Vishal; Jain, Vaibhav; Bharatam, Prasad V; Maiti, Prabal K

    2012-09-30

    We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications.

  4. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo

    PubMed Central

    Akhtar, Saghir; Al-Zaid, Bashayer; El-Hashim, Ahmed Z.; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H. M.; Benter, Ibrahim F.

    2015-01-01

    Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling—an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM

  5. Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers.

    PubMed

    Jia, Lan; Xu, Jian-Ping; Wang, Hai; Ji, Jian

    2011-05-01

    Biomimetic acryloyloxyethyl phosphorylcholine (APC) was used to react with generation 5 poly(amido amine) (PAMAM) dendrimers (G5) via the Michael addition reaction between primary amino group of PAMAM dendrimers and acrylic functional group of APC. FTIR and (1)H NMR confirmed the success of surface modification of G5. The primary amino and phosphorylcholine (PC) group numbers of the surface engineered PAMAM dendrimers (G5-PC) were calculated to be 56 and 50 via (1)H NMR and potentiometric titration. Cell viability and cell morphology studies indicated that biomimetic phosphorylcholine surface engineering successfully lowered the cytotoxicity of G5 PAMAM dendrimers. The hydrophobic interior of G5-PC was used to incorporate anti-cancer drug Adriamycin (ADR) and the G5-PC showed sustained releasing behavior for ADR. Cell morphology and viability tests indicated that the drug-loaded G5-PC conjugate could effectively enter the cancer cells and inhibit the growth of cancer cells. Biomimetic phosphorylcholine surface engineered PAMAM dendrimers with lowered cytotoxicity and high cellular penetrating ability showed great potential for the biomedical applications as nanocarrier system.

  6. Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes.

    PubMed

    Pooja, Deep; Kulhari, Hitesh; Singh, Mayank K; Mukherjee, Sudip; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-09-01

    Taxanes are the most effective, efficient and broad spectrum anticancer drugs for the treatment of various cancers. However, poor aqueous solubility is the major problem in their delivery at higher concentrations in cancer cells. In this research work, poor solubility of taxanes is addressed by preparing dendrimer and d-α-tocopherol polyethylene glycol succinate (TPGS) mixed micelles by taking into consideration the advantages of TPGS such as solubility enhancement and P-glycoprotein inhibition. Dendrimer-TPGS mixed micelles were prepared by solvent casting method. Docetaxel (DTX) and paclitaxel (PTX) were chosen as model drugs representing the group of taxanes. Nanomicelles were characterized by DLS, FTIR, PXRD, in vitro drug release and hemolytic studies. Effects of pH and dendrimer to TPGS ratio on the solubility of taxanes were also studied. Solubility of DTX and PTX were increased by 20.36 and 34.95 folds, respectively, when formulated in dendrimer-TPGS mixed micelles. Drug release studies exhibited better release profile of encapsulated drug at acidic pH which is advantageous in enhanced intracellular drug release in cancer cells. Formulations were found to be biocompatible in hemolytic toxicity assay. Cytotoxicity studies revealed that anticancer activities of both drugs were enhanced after encapsulation in micelles against cancer cells while caused very low toxicity to normal cells. Thus, dendrimer-TPGS mixed micelles are promising alternate for delivery of poorly water-soluble drugs taxanes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrimers: Dendrimers Specifically Designed for Pharmaceutical Applications.

    PubMed

    Toms, Steven; Carnachan, Susan M; Hermans, Ian F; Johnson, Keryn D; Khan, Ashna A; O'Hagan, Suzanne E; Tang, Ching-Wen; Rendle, Phillip M

    2016-08-05

    Poly ethoxy ethyl glycinamide (PEE-G) dendrimers have been specifically designed and synthesized with the aim of providing a readily available dendrimer scaffold that can be used to make products that can meet the stringent requirements of pharmaceutical applications. The synthesis has been refined to produce dendrimers that are of high HPLC purity. The suitability of PEE-G dendrimers for their designed use has been verified by subsequent measurements to demonstrate that they are of high stability, high aqueous solubility, low cytotoxicity, low immunogenicity and with low in vivo toxicity in an escalating-dose rat study. PEE-G dendrimers therefore provide a useful scaffold for researchers wanting to develop dendrimer-based drug candidates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    NASA Astrophysics Data System (ADS)

    Shukla, Rameshwer; Thomas, Thommey P.; Desai, Ankur M.; Kotlyar, Alina; Park, Steve J.; Baker, James R., Jr.

    2008-07-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  9. Mean field theory of charged dendrimer molecules

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat

    2011-11-01

    Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge bar{α } inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations.

  10. Mean field theory of charged dendrimer molecules.

    PubMed

    Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat

    2011-11-28

    Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge α inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations.

  11. Analysis of polyamidoamine dendrimers by isoelectric focusing.

    PubMed

    Upadhaya, Samik K; Swanson, Douglas R; Tomalia, Donald A; Sharma, Ajit

    2014-01-01

    Polyamidoamine dendrimers have been studied extensively for their potential applications in nanomedicine. Their uses as imaging, drug, and nucleic acid delivery agents are nearing clinical trials. As such, characterization of polyamidoamine dendrimers and their nano-devices is of immense importance for monitoring the efficiency of their synthesis, purity, and quality control of manufactured products as well as their in vivo behavior. We report here the analysis of polyamidoamine dendrimers possessing various cores and surface groups with a simple and inexpensive isoelectric focusing method. The isoelectric points of the dendrimers were readily determined from a calibration plot generated by running proteins with known pI values. The isoelectric points for various surface-modified polyamidoamine dendrimers ranged from 4 to 9. Polyamidoamine dendrimers possessing terminal hydroxyl groups gave a pI > 7, while those with terminal carboxyl groups exhibit a pI < 7. Generation number and cores of the dendrimers did not significantly affect their isoelectric points. Isoelectric focusing thus offers another important tool for characterizing these nanomolecules.

  12. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  13. Conductive dendrimers obtained by click chemistry

    NASA Astrophysics Data System (ADS)

    Lewis, Donald G.; Krasnova, Larissa B.; Skinner, Philip J.; Fokin, Valery V.

    2010-08-01

    First generation dendrimers having a high level of size/shape/symmetry homogeneity were fabricated using a synthetic scheme that employs highly quantitative copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions in combination with a molecular architecture that favors homogeneity. An "outside-in" or convergent synthetic approach was employed wherein dendrons having Sierpinski triangular fractal architectures were coupled to core structures having D2h or D3h point group symmetries to form the desired dendrimers. The individual dendrons consisted of branched-backbone conductive polymers having benzene branch points and 1,2,3-triazole linkages with uninterrupted π-electron cloud overlap throughout. Each dendron was then coupled to a benzene core structure having acetylene substituents by means of a CuAAC reaction so as to extend the uninterrupted π-conjugation from the dendron to the core structure for imparting conductivity throughout the entire dendrimer. The resulting dendrimers maintained the point group symmetry of their core structure, with the core structure serving to electronically couple the dendrons to one another by extension of their uninterrupted π-electron systems. Synthesis of these first generation dendrimers provides a proof of principle for the synthesis of higher generation conductive dendrimers. Since the nanophotonic properties of conductive dendrimers may be dependent, at least in some instances, upon their size, shape, and symmetry, enhancements with respect to their homogeneity may unmask new nanophotonic properties.

  14. Dendrimers as Nanovectors for Nucleic Acid Delivery

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxuan; Wang, Qi; Peng, Ling

    2013-09-01

    Nucleic acid based gene therapy holds great promise in the treatment of various diseases. However, the success of both DNA- and siRNAbased gene therapies depends critically on safe and efficient nucleic acid delivery systems. Owing to their well-defined structure and multivalent cooperativity, dendrimers have attracted particular attention as ideal nanocarriers for nucleic acid delivery. The present chapter highlights the current status of dendrimers as non-viral nanovectors for both DNA and siRNA delivery, focusing on the different dendrimers investigated for their delivery efficiency with respect to structural alterations in the view to developing safe and efficient nanovectors for gene therapy application.

  15. Radiolabeled Dendrimers for Nuclear Medicine Applications.

    PubMed

    Zhao, Lingzhou; Zhu, Meilin; Li, Yujie; Xing, Yan; Zhao, Jinhua

    2017-08-25

    Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.

  16. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity

    PubMed Central

    Shao, Naimin; Su, Yunzhang; Hu, Jingjing; Zhang, Jiahai; Zhang, Hongfeng; Cheng, Yiyun

    2011-01-01

    Background Polyamidoamine (PAMAM) and polypropylenimine (PPI) dendrimers are the commercially available and most widely used dendrimers in pharmaceutical sciences and biomedical engineering. In the present study, the loading and release behaviors of generation 3 PAMAM and generation 4 PPI dendrimers with the same amount of surface amine groups (32 per dendrimer) were compared using phenylbutazone as a model drug. Methods The dendrimer-phenylbutazone complexes were characterized by 1H nuclear magnetic resonance and nuclear Overhauser effect techniques, and the cytotoxicity of each dendrimer was evaluated. Results Aqueous solubility results suggest that the generation 3 PAMAM dendrimer has a much higher loading ability towards phenylbutazone in comparison with the generation 4 PPI dendrimer at high phenylbutazone-dendrimer feeding ratios. Drug release was much slower from the generation 3 PAMAM matrix than from the generation 4 PPI dendrimer. In addition, the generation 3 PAMAM dendrimer is at least 50-fold less toxic than generation 4 PPI dendrimer on MCF-7 and A549 cell lines. Conclusion Although the nuclear Overhauser effect nuclear magnetic resonance results reveal that the generation 4 PPI dendrimer with a more hydrophobic interior encapsulates more phenylbutazone, the PPI dendrimer-phenylbutazone inclusion is not stable in aqueous solution, which poses a great challenge during drug development. PMID:22267921

  17. First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: A linkage with toxicity and oxidative stress.

    PubMed

    Gonzalo, Soledad; Rodea-Palomares, Ismael; Leganés, Francisco; García-Calvo, Eloy; Rosal, Roberto; Fernández-Piñas, Francisca

    2015-01-01

    This article reports novel results on the toxic mechanisms of action of amine- and hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers toward microorganisms of environmental relevance, namely a cyanobacterium of the genus Anabaena and the green alga Chlamydomonas reinhardtii. We used PAMAM ethylenediamine core dendrimers from generations G2 to G4, which displayed a positive charge, measured as ζ-potential, in culture media. All amine-terminated and most remarkably the G4 hydroxyl-terminated dendrimer inhibited the growth of both microorganisms. The effect on the growth of the green alga was significantly higher than that on the cyanobacterium. With concentrations expressed in terms of molarity, there was a clear relationship between dendrimer generation and toxicity, with higher toxicity for higher generation. Hormesis was observed for hydroxyl-terminated dendrimers at low concentrations. The cationic dendrimers and G4-OH significantly increased the formation of reactive oxygen species (ROS) in both organisms. ROS formation was not related with the chloroplast or photosynthetic membranes and photosystem II photochemistry was unaffected. Cell damage resulted in cytoplasm disorganization and cell deformities and was associated to an increase in ROS formation and lipid peroxidation in mitochondria in the green alga; cell wall and membrane disruption with apparent loss of cytoplasmic contents was found in the cyanobacterium. It was determined for the first time that cationic PAMAM dendrimers were quickly and largely internalized by both organisms. These results warn against the generalization of the use of dendrimers, which may pose significant risk for the environment and particularly for primary producers which are determinant for the health of natural ecosystems.

  18. On Topological Indices of Certain Dendrimer Structures

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei

    2017-05-01

    A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.

  19. Type III-B rotaxane dendrimers.

    PubMed

    Ho, Watson K-W; Lee, Siu-Fung; Wong, Chi-Hin; Zhu, Xiao-Ming; Kwan, Chak-Shing; Chak, Chun-Pong; Mendes, Paula M; Cheng, Christopher H K; Leung, Ken Cham-Fai

    2013-11-28

    Type III-B first generation [3]rotaxane and second generation [4]rotaxane dendrimers have been synthesized via (1) a modified copper-catalyzed alkyne-azide cycloaddition (CuAAC), (2) Glaser-Hay's acetylenic oxidative homo-coupling, and (3) amide formation. The dendron does not reveal obvious cytotoxicities in L929 fibroblast cells. The rotaxane dendrimers can capture ammonia and are switchable both in solution and on surfaces.

  20. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.

    PubMed

    Stevens, Corey A; Drori, Ran; Zalis, Shiran; Braslavsky, Ido; Davies, Peter L

    2015-09-16

    By binding to ice, antifreeze proteins (AFPs) depress the freezing point of a solution and inhibit ice recrystallization if freezing does occur. Previous work showed that the activity of an AFP was incrementally increased by fusing it to another protein. Even larger increases in activity were achieved by doubling the number of ice-binding sites by dimerization. Here, we have combined the two strategies by linking multiple outward-facing AFPs to a dendrimer to significantly increase both the size of the molecule and the number of ice-binding sites. Using a heterobifunctional cross-linker, we attached between 6 and 11 type III AFPs to a second-generation polyamidoamine (G2-PAMAM) dendrimer with 16 reactive termini. This heterogeneous sample of dendrimer-linked type III constructs showed a greater than 4-fold increase in freezing point depression over that of monomeric type III AFP. This multimerized AFP was particularly effective at ice recrystallization inhibition activity, likely because it can simultaneously bind multiple ice surfaces. Additionally, attachment to the dendrimer has afforded the AFP superior recovery from heat denaturation. Linking AFPs together via polymers can generate novel reagents for controlling ice growth and recrystallization.

  1. Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice.

    PubMed

    Tang, Yin; Han, Yingchun; Liu, Lu; Shen, Wenwen; Zhang, Huayu; Wang, Yunan; Cui, Xin; Wang, Yuhui; Liu, George; Qi, Rong

    2015-01-12

    In this study, generation 5 (G5) polyamidoamine (PAMAM) dendrimers with two different surface groups, G4.5-COOH and G5-OH, were investigated for their protective effects on pancreas injury in a caerulein-induced acute pancreatitis (AP) mouse model. Both dendrimers significantly decreased pathological changes in the pancreas and reduced the inflammatory infiltration of macrophages in pancreatic tissues. In addition, the expression of pro-inflammatory cytokines was significantly inhibited by the two dendrimers, not only in pancreatic tissues from AP mice but also in vitro in mouse peritoneal macrophages with LPS-induced inflammation. G4.5-COOH, which had better in vivo protective effects for AP than G5-OH, led to a significant reduction in the total number of plasma white blood cells (WBCs) and monocytes in AP mice, and its anti-inflammatory mechanism was related to inhibition of the nuclear translocation of NF-κB in macrophages.

  2. Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity

    PubMed Central

    Tyssen, David; Henderson, Scott A.; Johnson, Adam; Sterjovski, Jasminka; Moore, Katie; La, Jennifer; Zanin, Mark; Sonza, Secondo; Karellas, Peter; Giannis, Michael P.; Krippner, Guy; Wesselingh, Steve; McCarthy, Tom; Gorry, Paul R.; Ramsland, Paul A.; Cone, Richard; Paull, Jeremy R. A.; Lewis, Gareth R.; Tachedjian, Gilda

    2010-01-01

    Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as Viva

  3. Transition Metal Catalysis Using Functionalized Dendrimers.

    PubMed

    Oosterom, G. Eric; Reek, Joost N. H.; Kamer, Paul C. J.; van Leeuwen, Piet W. N. M.

    2001-05-18

    Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. These novel polymers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers, resulting in a rapid development of dendrimer chemistry. The position of the catalytic site(s) as well as the spatial separation of the catalysts appears to be of crucial importance. Dendrimers that are functionalized with transition metals in the core potentially can mimic the properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. This might yield superior catalysts with novel properties, that is, special reactivity or stability. Both the core and periphery strategies lead to catalysts that are sufficiently larger than most substrates and products, thus separation by modern membrane separation techniques can be applied. These novel homogeneous catalysts can be used in continuous membrane reactors, which will have major advantages particularly for reactions that benefit from low substrate concentrations or suffer from side reactions of the product. Here we review the recent progress and breakthroughs made with these promising novel transition metal functionalized dendrimers that are used as catalysts, and we will discuss the architectural concepts that have been applied.

  4. Dendrimers--revolutionary drugs for infectious diseases.

    PubMed

    Lazniewska, Joanna; Milowska, Katarzyna; Gabryelak, Teresa

    2012-01-01

    Over recent years innovative nanomolecules in a form of dendrimers have been gaining increasing interest. These compounds can be designed and modified in many ways giving a molecule which meets required expectations. For this reason dendrimers are the object of intensive studies in many fields of nanoscience including one of the most thriving--biomedicine. Numerous studies provide evidence that some dendrimers exhibit activities against many species/strains of viruses, bacteria, fungi, and prions. These types of dendritic nanostructures which are distinguished by antipathogenic properties and low cytotoxicity to eukaryotic cells may be potentially applied in medicine as novel drugs for various infectious diseases, especially those which are persistent, marked by high mortality rate, or untreatable. Dendrimers can exert their effect via different mechanisms of action, which are, in most cases, related to multivalency of the nanomolecule. The application of dendrimers is likely to be a breakthrough in prevention and treatment of infectious diseases which still beset humanity and may significantly improve the quality of people's life.

  5. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy

    PubMed Central

    Yang, Hu

    2015-01-01

    Dendrimers possess discrete highly compact nanostructures constituted of successive branched layers. Soon after the inception of dendrimers, recognition of their tunable structures and biologically favorable properties provoked a great enthusiasm in delving deeply into the utility of dendrimers for biomedical and pharmaceutical applications. One of the most important nanotechnology applications is the development of nanomedicines for targeted cancer therapies. Tremendous success in targeted therapies has been achieved with the use of dendrimer-based nanomedicines. This article provides a concise review on latest advances in the utility of dendrimers in immunotherapies and hormone therapies. PMID:26706410

  6. Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles.

    PubMed

    Zhou, Tao; Wang, Yijie; Dong, Yuanchen; Chen, Chun; Liu, Dongsheng; Yang, Zhongqiang

    2014-08-15

    DNA dendrimers have achieved increasing attention recently. Previously reported DNA dendrimers used Y-DNA as monomers. Tetrahedron DNA is a rigid tetrahedral cage made of DNA. Herein, we use tetrahedron DNA as monomers to prepare tetrahedron DNA dendrimers. The prepared tetrahedron DNA dendrimers have larger size compared with those made of Y-DNA. In addition, thanks to the central cavity of tetrahedron DNA monomers, some nanoscale structures (e.g., gold nanoparticles) can be encapsulated within tetrahedron DNA monomers. Tetrahedron DNA encapsulated with gold nanoparticles can be further assembled into dendrimers, guiding gold nanoparticles into clusters.

  7. A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector

    NASA Astrophysics Data System (ADS)

    Zeng, Xin; Pan, Shirong; Li, Jie; Wang, Chi; Wen, Yuting; Wu, Hongmei; Wang, Cuifeng; Wu, Chuanbin; Feng, Min

    2011-09-01

    Non-viral gene delivery systems based on cationic polymers have faced limitations related to their relative low gene transfer efficiency, cytotoxicity and system instability in vivo. In this paper, a flexible and pompon-like dendrimer composed of poly (amidoamine) (PAMAM) G4.0 as the inner core and poly (L-glutamic acid) grafted low-molecular-weight polyethylenimine (PLGE) as the surrounding multiple arms was synthesized (MGI dendrimer). The novel MGI dendrimer was designed to combine the merits of size-controlled PAMAM G4.0 and the low toxicity and flexible chains of PLGE. In phosphate-buffered saline dispersions the well-defined DNA/MGI complex above a N/P ratio of 30 showed good stability with particle sizes of approximately 200 nm and a comparatively low polydispersity index. However, the particle size of the DNA/25 kDa polyethylenimine (DNA/PEI 25K) complex was larger than 700 nm under the same salt conditions. The shielding of the compact amino groups at the periphery of flexible PAMAM and biocompatible PLGE chains in MGI resulted in a dramatic decrease of the cytotoxicity compared to native PAMAM G4.0 dendrimer. The in vitro transfection efficiency of DNA/MGI dendrimer complex was higher than that of PAMAM G4.0 dendrimer. Importantly, in serum-containing medium, DNA/MGI complexes at their optimal N/P ratio maintained the same high levels of transfection efficiency as in serum-free medium, while the transfection efficiency of native PAMAM G4.0, PEI 25K and Lipofectamine 2000 were sharply decreased. In vivo gene delivery of pVEGF165/MGI complex into balloon-injured rabbit carotid arteries resulted in significant inhibition of restenosis by increasing VEGF165 expression in local vessels. Therefore, the pompon-like MGI dendrimer may be a promising vector candidate for efficient gene delivery in vivo.

  8. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model

    PubMed Central

    Zhou, Kejin; Nguyen, Liem H.; Miller, Jason B.; Yan, Yunfeng; Kos, Petra; Xiong, Hu; Li, Lin; Hao, Jing; Minnig, Jonathan T.; Siegwart, Daniel J.

    2016-01-01

    RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an aggressive genetic cancer model. More than 1,500 dendrimers were synthesized using sequential, orthogonal reactions where ester degradability was systematically integrated with chemically diversified cores, peripheries, and generations. A lead dendrimer, 5A2-SC8, provided a broad therapeutic window: identified as potent [EC50 < 0.02 mg/kg siRNA against FVII (siFVII)] in dose–response experiments, and well tolerated in separate toxicity studies in chronically ill mice bearing MYC-driven tumors (>75 mg/kg dendrimer repeated dosing). Delivery of let-7g microRNA (miRNA) mimic inhibited tumor growth and dramatically extended survival. Efficacy stemmed from a combination of a small RNA with the dendrimer’s own negligible toxicity, therefore illuminating an underappreciated complication in treating cancer with RNA-based drugs. PMID:26729861

  9. Effects of solute-solute interactions on protein stability studied using various counterions and dendrimers.

    PubMed

    Schneider, Curtiss P; Shukla, Diwakar; Trout, Bernhardt L

    2011-01-01

    Much work has been performed on understanding the effects of additives on protein thermodynamics and degradation kinetics, in particular addressing the Hofmeister series and other broad empirical phenomena. Little attention, however, has been paid to the effect of additive-additive interactions on proteins. Our group and others have recently shown that such interactions can actually govern protein events, such as aggregation. Here we use dendrimers, which have the advantage that both size and surface chemical groups can be changed and therein studied independently. Dendrimers are a relatively new and broad class of materials which have been demonstrated useful in biological and therapeutic applications, such as drug delivery, perturbing amyloid formation, etc. Guanidinium modified dendrimers pose an interesting case given that guanidinium can form multiple attractive hydrogen bonds with either a protein surface or other components in solution, such as hydrogen bond accepting counterions. Here we present a study which shows that the behavior of such macromolecule species (modified PAMAM dendrimers) is governed by intra-solvent interactions. Attractive guanidinium-anion interactions seem to cause clustering in solution, which inhibits cooperative binding to the protein surface but at the same time, significantly suppresses nonnative aggregation.

  10. Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line.

    PubMed

    Lazniewska, Joanna; Milowska, Katarzyna; Katir, Nadia; El Kadib, Abdelkim; Bryszewska, Maria; Majoral, Jean-Pierre; Gabryelak, Teresa

    2013-09-01

    Dendrimers containing viologen (derivatives of 4,4'-bipyridyl) units in their structure have been demonstrated to exhibit antiviral activity against human immunodeficiency virus (HIV-1). It has also recently been revealed that novel dendrimers with both viologen units and phosphorus groups in their structure show different antimicrobial, cytotoxic and hemotoxic properties, and have the ability to influence the activity of cholinesterases and to inhibit α-synuclein fibrillation. Since the influence of viologen-phosphorus structures on basic cellular processes had not been investigated, we examined the impact of such macromolecules on the murine neuroblastoma cell line (N2a). We selected three water-soluble viologen-phosphorus (VPD) dendrimers, which differ in their core structure, number of viologen units and number and type of surface groups, and analyzed several aspects of the cellular response. These included cell viability, generation of reactive oxygen species (ROS), alterations in mitochondrial activity, morphological modifications, and the induction of apoptosis and necrosis. The MTT assay results suggest that all of the tested dendrimers are only slightly cytotoxic. Although some changes in ROS formation and mitochondrial function were detected, the three compounds did not induce apoptosis or necrosis. In light of these results, we can assume that the tested VPD are relatively safe for mouse neuroblastoma cells. Although more research on their safety is needed, VPD seem to be promising nanoparticles for further biomedical investigation.

  11. Quantitative interpretation of PAMAM dendrimers adsorption on silica surface.

    PubMed

    Tokarczyk, Karolina; Jachimska, Barbara

    2017-10-01

    Understanding the dendrimer-solid support interaction is of great importance for dendrimer-based drug delivery system design. The maximum surface coverage on a hydrophilic silica surface was determined using the quartz crystal microbalance with dissipation monitoring (QCM-D) and multi-parametric surface plasmon resonance (MP-SPR) methods: the adsorption process depends on ionic strength and pH of solutions. The effectiveness of G6 adsorption is mainly determined by the range of electrostatic inter-dendrimer interactions and dendrimer-silica surface interactions. Changes in ionic strength have a strong effect on the binding affinity of dendrimers to the surface. The trends in the binding affinity and the surface saturation amount correspond well with the degree of change of protonation of the adsorbed molecules. The development of new research techniques makes it possible to attain a more profound understanding of the self-assembling behaviour of dendrimers. The comparison of QCM-D and MP-SPR allowed the estimation that the dendrimer film contains approximately 70% water. These results indicate that 6th generation PAMAM dendrimers form very hydrated films on silica surfaces. In this case the number of water molecules associated per dendrimer molecule varied from 10,450 to 9,200. The hydration of dendrimer films seems to be a crucial aspect of their implementation. This data confirmed that dendrimers are very promising candidates for many biological applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nitric Oxide-Releasing Dendrimers as Antibacterial Agents

    PubMed Central

    Sun, Bin; Slomberg, Danielle L.; Chudasama, Shalini L.; Lu, Yuan

    2012-01-01

    The antibacterial activity of a series of nitric oxide (NO)-releasing poly(propylene imine) (PPI) dendrimers was evaluated against both Gram-positive and Gram-negative pathogenic bacteria, including methicillin-resistant Staphylococcus aureus. A direct comparison of the bactericidal efficacy between NO-releasing and control PPI dendrimers (i.e., non-NO-releasing) revealed both enhanced biocidal action of NO-releasing dendrimers and reduced toxicity against mammalian fibroblast cells. Antibacterial activity for the NO donor-functionalized PPI dendrimers was shown to be a function of both dendrimer size (molecular weight) and exterior functionality. In addition to minimal toxicity against fibroblasts, NO-releasing PPI dendrimers modified with styrene oxide exhibited the greatest biocidal activity (≥9.999% killing) against all bacterial strains tested. The N-diazeniumdiolate NO donor-functionalized PPI dendrimers presented in this study hold promise as effective NO-based therapeutics for combating bacterial infections. PMID:23013537

  13. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    PubMed

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a

  14. Solubilization of a dendrimer into a microemulsion.

    PubMed

    Nir, Ido; Aserin, Abraham; Libster, Dima; Garti, Nissim

    2010-12-23

    The present work investigates, for the first time, a system comprising a dendrimer incorporated into the water core of water-in-oil (W/O) microemulsion (ME). A second generation (G-2) poly(propyleneimine) dendrimer (PPI) was solubilized into W/O ME composed of AOT (sodium bis(2-ethylhexyl)sulfosuccinate), heptane, and water. Such a model system possessing the benefits of both dendrimers and ME, can potentially offer superior control of drug administration. The localization of PPI within the system, its specific interactions with the components of the carrier, and its effect on the ME structure was explored by SAXS, DSC, ATR-FTIR, and electrical conductivity measurements. Considerable water binding by PPI, accompanied by partial dehydration of AOT polar heads, was detected by ATR-FTIR and DSC analysis, suggesting that PPI acted as a "water pump". In addition, SAXS measurements showed periodicity increase and disordering of the droplets. Hence, localization of PPI within the core and interfacial regions of the droplets was assumed. Direct electrostatic interactions between PPI and the sulfonate group were not noticed, since the dendrimer molecules were mostly not protonated in the current basic environment at pH 12. However, slight hydrogen bonding between PPI and the S=O groups allowed the dendrimer to behave as a "spacer" between sodium and sulfonate ions. This affected the electrical conductivity behavior of the system, revealing that PPI favored the percolation process. Most likely, PPI decreased the rigidity of the interfacial layer, facilitating the diffusion of sodium ions through the channels. The characterized model system can be advantageously utilized to design specific delivery vehicles, allowing administration of dendrimers as a therapeutic agent from host MEs.

  15. Dendrimer based nanotherapeutics for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Kambhampati, Siva Pramodh

    PAMAM dendrimers are a class of well-defined, hyperbranched polymeric nanocarriers that are being investigated for ocular drug and gene delivery. Their favorable properties such as small size, multivalency and water solubility can provide significant opportunities for many biologically unstable drugs and allows potentially favorable ocular biodistribution. This work exploits hydroxyl terminated dendrimers (G4-OH) as drug/gene delivery vehicles that can target retinal microglia and pigment epithelium via systemic delivery with improved efficacy at much lower concentrations without any side effects. Two different drugs Triamcinolone acetonide (TA) and N-Acetyl Cysteine (NAC) conjugated to G4-OH dendrimers showed tailorable sustained release in physiological relevant solutions and were evaluated in-vitro and in-vivo. Dendrimer-TA conjugates enhanced the solubility of TA and were 100 fold more effective at lower concentrations than free TA in its anti-inflammatory activity in activated microglia and in suppressing VEGF production in hypoxic RPE cells. Dendrimers targeted activated microglia/macrophages and RPE and retained for a period of 21 days in I/R mice model. The relative retention of intravitreal and intravenous dendrimers was comparable, if a 30-fold intravenous dose is used; suggesting intravenous route targeting retinal diseases are possible with dendrimers. D-NAC when injected intravenously attenuated retinal and choroidal inflammation, significantly reduced (˜73%) CNV growth at early stage of AMD in rat model of CNV. A combination therapy of D-NAC + D-TA significantly suppressed microglial activation and promoted CNV regression in late stages of AMD without causing side-effects. G4-OH was modified with linker having minimal amine groups and incorporation of TA as a nuclear localization enhancer resulted in compact gene vectors with favorable safety profile and achieved high levels of transgene expression in hard to transfect human retinal pigment

  16. Multivalent supramolecular dendrimer-based drugs.

    PubMed

    Galeazzi, Simone; Hermans, Thomas M; Paolino, Marco; Anzini, Maurizio; Mennuni, Laura; Giordani, Antonio; Caselli, Gianfranco; Makovec, Francesco; Meijer, E W; Vomero, Salvatore; Cappelli, Andrea

    2010-01-11

    Supramolecular complexes consisting of a hydrophobic dendrimer host [DAB-dendr-(NHCONH-Ad)(64)] as well as solubilizing and bioactive guest molecules have been synthesized using a noncovalent approach. The guest-host supramolecular assembly is first preassembled in chloroform and transferred via the neat phase to aqueous solution. The bioactive guest molecules can bind to a natural (serotonin 5-HT(3)) receptor with nanomolar affinity as well as to the synthetic dendrimer receptor in aqueous solution, going toward a dynamic multivalent supramolecular construct capable of adapting itself to a multimeric receptor motif.

  17. New Dendrimers: Synthesis and Characterization of Popam – Pamam Hybrid Dendrimers

    PubMed Central

    Majoros, István J.; Williams, Christopher R.; Tomalia, Donald A.; Baker, James R.

    2010-01-01

    Recently developed multifunctional cancer therapeutic nano-device production is based on poly(amidoamine) PAMAM generation 5 (G5) dendrimer as a carrier 1-5. Scale up synthesis of this nano-device is limited because of long reaction sequence (12 reaction steps) and long and not easy work up of the products after each reaction step. Combination of poly(propyle-imine) and poly(amidoamine) synthesis can improve the production of the drug carrier. In this paper we give a general overview of the synthesis and characterization of a series of novel hybrid dendrimers which we coined as novel POMAM hybrid dendrimers, constructed from poly(propylene-imine) (PPI or POPAM) core and poly(amidoamine) PAMAM shells. The synthesis was accomplished by a divergent reiterating method involving repeating subsequent Michael addition and amidation reactions. Each generation of the newly synthesized dendrimer was characterized by using HPLC, GPC, NMR and AFM. PMID:21258604

  18. Generation 3 PAMAM dendrimer TAMRA conjugates containing precise dye/dendrimer ratios

    PubMed Central

    Manono, Janet; Dougherty, Casey A.; Jones, Kirsten; DeMuth, Joshua; Holl, Mark M. Banaszak; DiMaggio, Stassi

    2015-01-01

    The synthesis, isolation, and characterization of generation 3 poly(amidoamine) (G3 PAMAM) dendrimer containing precise ratios of 5-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dye (n = 1–3) per polymer particle are reported. Stochastic conjugation of TAMRA dye to the dendrimer was followed by separation into precise dye-polymer ratios using rp-HPLC. The isolated materials were characterized by rp-UPLC, MALDI-TOF-MS, and 1H NMR spectroscopy, UV–vis, and fluorescence spectroscopies. PMID:26549978

  19. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    PubMed

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OGn) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer (n = 4+), and a stochastic mixture (n = 4avg). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n (n = 3, 4+, 4avg) into RAW cells was significantly lower than G3-OG n (n = 1, 2). The uptake of G3-OG n (n = 3, 4+, 4avg) into HEK 293A cells was not significantly different from G3-OG1. Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  20. Practical computational toolkits for dendrimers and dendrons structure design.

    PubMed

    Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-15

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  1. Bidentate iminodiacetate modified dendrimer for bone imaging.

    PubMed

    Pes, Lara; Kim, Young; Tung, Ching-Hsuan

    2017-03-01

    A new dendrimer probe was designed for bone imaging. Bidentate iminodiacetate groups were introduced to the probe to obtain strong bind to bones. The assembled dendrimeric probe, with four iminodiacetate moieties and a fluorescent tag, displayed good selectivity to hydroxyapatite, calcium oxalate and calcium phosphate salts. In mice, the probe offered vivid skeletal details after intravenous delivery.

  2. Nature of the effective interaction between dendrimers

    SciTech Connect

    Mandal, Taraknath Dasgupta, Chandan Maiti, Prabal K.

    2014-10-14

    We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic [C. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation [I. Götze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian.

  3. Structure-activity relationship studies on a Trp dendrimer with dual activities against HIV and enterovirus A71. Modifications on the amino acid.

    PubMed

    Martínez-Gualda, Belén; Sun, Liang; Rivero-Buceta, Eva; Flores, Aida; Quesada, Ernesto; Balzarini, Jan; Noppen, Sam; Liekens, Sandra; Schols, Dominique; Neyts, Johan; Leyssen, Pieter; Mirabelli, Carmen; Camarasa, María-José; San-Félix, Ana

    2017-03-01

    We have recently described a new class of dendrimers with tryptophan (Trp) on the surface that show dual antiviral activities against HIV and EV71 enterovirus. The prototype compound of this family is a pentaerythritol derivative with 12 Trps on the periphery. Here we complete the structure-activity relationship studies of this family to identify key features that might be significant for the antiviral activity. With this aim, novel dendrimers containing different amino acids (aromatic and non-aromatic), tryptamine (a "decarboxylated" analogue of Trp) and N-methyl Trp on the periphery have been prepared. Dendrimer with N-Methyl Trp was the most active against HIV-1 and HIV-2 while dendrimer with tyrosine was endowed with the most potent antiviral activity against EV71. This tyrosine dendrimer proved to inhibit a large panel of EV71 clinical isolates (belonging to different clusters) in the low nanomolar/high picomolar range. In addition, a new synthetic procedure (convergent approach) has been developed for the synthesis of the prototype and some other dendrimers. This convergent approach proved more efficient (higher yields, easier purification) than the divergent approach previously reported.

  4. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.

    PubMed

    Alibolandi, Mona; Taghdisi, Seyed Mohammad; Ramezani, Pouria; Hosseini Shamili, Fazileh; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2017-03-15

    In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer.

  5. Transport and Biodistribution of Dendrimers Across Human Fetal Membranes: Implications for Intravaginal Administration of Dendrimers

    PubMed Central

    Menjoge, Anupa R.; Navath, Raghavendra S.; Asad, Abbas; Kannan, Sujatha; Kim, Chong Jai; Romero, Roberto; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly(amidoamine)) dendrimers, across human fetal membrane (using a side-by-side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size~ 400 Da) and fluorophore-tagged G4-PAMAM dendrimers (~ 16 kDa). The fluorophore-tagged G4-PAMAM dendrimers were synthesized and characterized using 1H NMR, MALDI TOF-MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a five hour period, the dendrimer transport across all the three membranes was less than < 3 %, whereas the transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 × 10-7 cm2/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 × 10-8 cm2/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5 to 4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of drugs conjugated to

  6. Hyperbranched polymer films and dendrimers: Their chemistry and applications

    NASA Astrophysics Data System (ADS)

    Zhao, Mingqi

    The research in this dissertation examines the chemistry and applications of dendritic polymers; specifically, hyperbranched polymer thin films and dendrimers. We examined hyperbranched, fluorinated and unfluorinated poly(acrylic acid) (PAA) films on gold substrates, poly(amidoamine) (PAMAM) dendrimer monolayers and dendrimer-alkanethiol mixed monolayers on gold substrates, PAMAM dendrimer/poly(anhydride) and poly(iminopropane-1,3-diyl) (Cascade) dendrimer/poly(anhydride) multilayer films on silicon, gold, and aluminum substrates, PAMAM dendrimer/metal-ion composites, and PAMAM dendrimer-encapsulated metal nanoclusters in solution and on electrode surfaces. Hyperbranched PAA films have pH-dependent blocking abilities: at low pH PAA films effectively passivate Au electrodes while at high pH they are open and permeable. Fluorinated PAA films are far less permeable at any pH. Dendrimers ranging from generation 4 to 8 (G4--G8) can form highly stable and nearly close-packed monolayers and mixed monolayers with hexadecanethiol (C16SH) on surfaces. Moreover, dendrimers embedded within C16SH can act as gates of molecular dimension that control intradendrimer mass transfer of ions. Dendrimer/poly(anhydride) multilayers on surfaces were synthesized and their permeability was investigated. These composite membranes exhibit fully reversible, pH-switchable permselectivity for both cationic and anionic probe molecules because of their pH-dependent electrostatic properties. After heating, such films become highly blocking over the pH range studied due to thermally induced interdendrimer imidization, and other reactions. Finally, we show that PAMAM dendrimers can act first as templates for the preparation of transition-metal nanoclusters, and subsequently as stabilizers. Dendrimers quantitatively complex many transition-metal ions, including Cu 2+, Pt2+, Pd2+, Ru3+, and Ni2+, within their interiors. Chemical reduction of such nanocomposites results in formation of dendrimer

  7. Carbosilane dendrimers affect the fibrillation of α-synuclein

    NASA Astrophysics Data System (ADS)

    Milowska, Katarzyna; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Gabryelak, Teresa; Bryszewska, Maria

    2015-12-01

    Participation of α-synuclein (ASN) in the pathogenesis of Parkinson's disease is undeniable. This protein is important for functioning of neurons. Conformational changes in ASN and its aggregation result in neurodegeneration. Therefore, the factors preventing aggregation need to be identified. The search for the potential agents preventing fibrillation of proteins in neurodegenerative diseases has also involved polymers such as dendrimers. The aim of this study was to examine the role of carbosilane dendrimers (CBS) in α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with carbosilane dendrimers were examined by measuring the zeta potential. The fibrillation and structural changes were examined using CD spectroscopy. The results obtained in this study suggest that carbosilane dendrimers can be potential inhibitors of ASN fibril formation. The fact that dendrimers can prevent ASN fibrillation in suspension is important for further research because it may lead to the design of effective pharmacological strategies.

  8. Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    DTIC Science & Technology

    2012-11-09

    REPORT Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: See attached...Prescribed by ANSI Std. Z39.18 - Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores Report Title ABSTRACT See...55012.570-LS-ICB Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores Lorenzo Albertazzi,†,‡,$ Frauke M. Mickler

  9. Synthesis of giant rigid pi-conjugated dendrimers.

    PubMed

    Jiang, Yang; Lu, Yi-Xuan; Cui, Yu-Xin; Zhou, Qi-Feng; Ma, Yuguo; Pei, Jian

    2007-10-25

    A novel family of giant pi-conjugated dendrimers (G0, G1, and G2) solely constructed by 5,5,10,10,15,15-hexahexyltruxene units has been developed in a convergent manner through a Suzuki cross-coupling reaction. The overall yields to such large rigid conjugated dendrimers are quite satisfying. The structures and purity of these nanosize rigid dendrimers are verified by 1H and 13C NMR, MALDI-TOF MS, and elemental analysis.

  10. Novel Aldehyde-Terminated Dendrimers; Synthesis and Cytotoxicity Assay

    PubMed Central

    Hamidi, Aliasghar; Sharifi, Simin; Davaran, Soodabeh; Ghasemi, Saeed; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2012-01-01

    Introduction Polyamidoamine (PAMAM) dendrimers are a unique family of dendritic polymers with numerous pharmaceutical and biomedical applications. One major problem with these polymers is their cytotoxicity. The purpose of this study was to synthesize novel dendrimers with aldehyde terminal groups and compare their cytotoxicity with that of dendri¬mers containing amine-terminated groups. Methods G1(first generation) and G2 (second generation) dendrimers with amine-terminated groups were synthesized by divergent method and then the amine-terminated groups were converted to the aldehyde groups using surface modification of the functional group inversion (FGI) method. The cytotoxicity of the novel G1 and G2 polyamidoaldehyde (PAMAL) dendrimers together with that of G1 and G2 PAMAM-NH2 dendrimers was investigated by MTT assay using MCF-7 cell line. Results The results showed that cytotoxicity of dendrimers with aldehyde-terminated groups is much lower than that of G1 and G2 PAMAM-NH2 dendri¬mers. Conclusion Dendrimers with aldehyde-terminated groups could be used as novel and convenient carriers for drug delivery with low cytotoxic effect compared with the amine-terminated dendrimers. The results revealed that the same generations of the dendri¬mers with aldehyde-terminated groups are far less toxic than the corresponding amine-terminated dendrimers. PMID:23678447

  11. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity.

    PubMed

    Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza

    2015-05-01

    HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice.

  12. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    NASA Astrophysics Data System (ADS)

    Pan, Bifeng; Cui, Daxiang; Xu, Ping; Ozkan, Cengiz; Feng, Gao; Ozkan, Mihri; Huang, Tuo; Chu, Bingfeng; Li, Qing; He, Rong; Hu, Guohan

    2009-03-01

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH2-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  13. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    PubMed Central

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues. PMID:22558341

  14. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

  15. Cell uptake mechanisms of PAMAM G4-FITC dendrimer in human myometrial cells

    NASA Astrophysics Data System (ADS)

    Oddone, Natalia; Zambrana, Ana I.; Tassano, Marcos; Porcal, Williams; Cabral, Pablo; Benech, Juan C.

    2013-07-01

    The high incidence and severity of diseases which involve smooth muscle dysfunction dictates the need of continued search for novel therapeutic strategies to treat these conditions. Dendrimers are branched macromolecules with multiple end-groups that can be functionalized for applications which include drug delivery. There is no data regarding the cellular uptake mechanisms used by dendrimers in smooth muscle human myometrial cells (HMC). Polyamidoamine G4 dendrimers were conjugated with fluorescein isothiocyanate (FITC) and the resulting conjugate (G4-FITC) was characterized using high-performance liquid chromatography, nuclear magnetic resonance, and atomic force microscopy. G4-FITC showed to have no significant effect on the primary culture HMC viability up to 48 h. HMC incubated with G4-FITC were analyzed by laser confocal microscopy. Peri-nuclear fluorescence distribution was observed at 5 h of incubation or more (24, 36, and 48 h). At 24 h, G4-FITC partially co-localized with lysotracker. Uptake of G4-FITC by HMC was slightly inhibited by filipin (8.0 ± 3.9 %) and significantly inhibited by chlorpromazine (63.5 ± 3.7 %). In non-electroporated HMC, G4-FITC was never observed inside the cell nucleus. Interestingly, we detected G4-FITC inside the nuclear domain of some electroporated cells. Thus, electroporation changed intracellular G4-FITC localization. Isolated nuclei of HMC incubated with G4-FITC showed fluorescence signal inside the nuclear domain. The results suggest that in HMC, G4-FITC is taken up by clathrin-mediated endocytosis with endosomal and lysosomal localization at 24 h. The combination of electroporation and dendrimers could be an interesting technology to electrotransfer drugs into smooth muscle cells cytosol and nuclei.

  16. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study

    PubMed Central

    Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M.

    2016-01-01

    Nearly all the cationic molecules tested so far have been shown to reversibly block K+ current through the cation-selective PA63 channels of anthrax toxin in a wide nM–mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH2, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH2/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in kon and a decrease of only about ten times in tres with G2-OH compared to G2-NH2. At the same time for both blockers, kon and tres increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH2. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH2, increasing with the cis-negative voltage increase

  17. Programmable Self-Assembly of DNA-Dendrimer and DNA-Fullerene Nanostructures

    DTIC Science & Technology

    2004-10-01

    OF PHOTO-REACTIVE PSORALEN -CONTAINING DENDRIMERS .........................................33 4.4. DNA-DENDRIMERS AND DNA-DENDRON CONJUGATES ON... Psoralen -Containing Dendrimers We report the synthesis and characterization of photo-reactive psoralen -containing dendrimers in order to develop...a novel labeling method for the detection of DNA. Psoralens are unique in their ability to detect hybridized DNA: planar psoralen molecules

  18. Synthesis and anticancer activity of bile acid dendrimers with triazole as bridging unit through click chemistry.

    PubMed

    Anandkumar, Devaraj; Rajakumar, Perumal

    2017-09-01

    Triazole-based novel dendrimers with bile acid surface groups have been synthesized through click chemistry by divergent approach and characterized by spectral data. All the dendrimers exhibit excellent anticancer activity. Higher-generation dendrimers exhibit better anticancer activity than the lower-generation dendrimers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. PAMAM dendrimers for the delivery of the antibacterial Triclosan.

    PubMed

    Gardiner, Jonathan; Freeman, Sally; Leach, Matthew; Green, Alison; Alcock, Jacqui; D'Emanuele, Antony

    2008-10-01

    Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest. Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM-5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes. End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through pi-pi stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.

  20. On the Possibility of Facilitated Diffusion of Dendrimers Along DNA.

    PubMed

    Ficici, Emel; Andricioaei, Ioan

    2015-06-11

    We investigate the electrostatics, energetics, and dynamics of dendrimer-DNA interactions that mimic protein-DNA complexes as a means to design facilitated mechanisms by which dendrimers can slide and search DNA for targets. By using all-atom molecular dynamics simulations, we calculated the free energy profiles of dendrimer-binding around the DNA via umbrella sampling. We also calculated electrostatic interaction maps in comparison to proteins, as well as the dynamical changes induced by DNA-dendrimer interactions via NMR-measurable order parameters. Our results show that for dendrimers to go around DNA, there is a free-energy barrier of 8.5 kcal/mol from the DNA major groove to DNA minor groove, with a minimum in the major groove. This barrier height makes it unlikely for an all-amine dendrimer to slide along DNA longitudinally, but following a helical path may be possible along the major groove. Comparison of the nonbonded interaction energy and the interaction free-energy profiles reveal a considerable entropic cost as the dendrimer binds to DNA. This is also supported by the mobility patterns obtained from NMR-measurable order parameter values, which show a decreased mobility of the dendrimer N-H bond vectors in the DNA-binding mode.

  1. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine

    NASA Astrophysics Data System (ADS)

    Taghavi Pourianazar, Negar; Mutlu, Pelin; Gunduz, Ufuk

    2014-04-01

    Poly(amidoamine) (PAMAM) dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides, and antibodies. Amine-terminated PAMAM dendrimers are able to solubilize different families of hydrophobic drugs, but the cationic charges on dendrimer surface may disturb the cell membrane. Therefore, surface modification by PEGylation, acetylation, glycosylation, and amino acid functionalization is a convenient strategy to neutralize the peripheral amine groups and improve dendrimer biocompatibility. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Biodegradability, non-toxicity, non-immunogenicity, and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers in biomedical fields as dendrimer-based nanomedicine.

  2. Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery

    PubMed Central

    Mustafa, Rania; Luo, Yu; Wu, Yilun; Guo, Rui; Shi, Xiangyang

    2015-01-01

    In this study, we synthesized dendrimer-functionalized laponite (LAP) nanodisks for loading and delivery of anticancer drug doxorubicin (DOX). Firstly, LAP was modified with silane coupling agents and succinic anhydride to render abundant carboxyl groups on the surface of LAP. Then, poly(amidoamine) (PAMAM) dendrimer of generation 2 (G2) were conjugated to form LM-G2 nanodisks. Anticancer drug DOX was then loaded on the LM-G2 with an impressively high drug loading efficiency of 98.4% and could be released in a pH-sensitive and sustained manner. Moreover, cell viability assay results indicate that LM-G2/DOX complexes could more effectively inhibit the proliferation of KB cells (a human epithelial carcinoma cell line) than free DOX at the same drug concentration. Flow cytometry analysis and confocal laser scanning microscope demonstrated that LM-G2/DOX could be uptaken by KB cells more effectively than free DOX. Considering the exceptional high drug loading efficiency and the abundant dendrimer amine groups on the surface that can be further modified, the developed LM-G2 nanodisks may hold a great promise to be used as a novel platform for anticancer drug delivery. PMID:28347091

  3. Modification of regenerated cellulose membrane based on thiol dendrimer.

    PubMed

    Vázquez, M Isabel; Algarra, Manuel; Benavente, Juana

    2015-10-20

    This work describes the modification of a highly swollen commercial regenerated cellulose (RC) membrane with a dendritic molecule (thiol DAB dendrimer of generation 3) by the dip coating method, and its possible use in electrochemical systems with saline solutions fluxes. Moreover, cellulosic membrane modification with dendrimer covered-CdSe quantum dot was also performed, since it allows dendrimer assortment by fluorescence. Changes in electrical, mechanical and diffusive membrane parameters were determined by impedance spectroscopy, elasticity curves and diffusional permeability measurements. The results indicate a reduction in the free volume of the RC chains in the original membrane associated with the thiol dendrimer inclusion, which reduces diffusive permeability. This demonstrates the possibility of using the thiol dendrimer-modified membrane in low/medium concentration level (0.001M/0.01M) devices with NaCl and PbCl2 solutions.

  4. Synthesis and Spectral Studies of CdTe-Dendrimer Conjugates

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Saha, Abhijit

    2009-08-01

    In order to couple high cellular uptake and target specificity of dendrimer molecule with excellent optical properties of semiconductor nanoparticles, the interaction of cysteine-capped CdTe quantum dots with dendrimer was investigated through spectroscopic techniques. NH2-terminated dendrimer molecule quenched the photoluminescence of CdTe quantum dots. The binding constants and binding capacity were calculated, and the nature of binding was found to be noncovalent. Significant decrease in luminescence intensity of CdTe quantum dots owing to noncovalent binding with dendrimer limits further utilization of these nanoassemblies. Hence, an attempt is made, for the first time, to synthesize stable, highly luminescent, covalently linked CdTe-Dendrimer conjugate in aqueous medium using glutaric dialdehyde (G) linker. Conjugate has been characterized through Fourier transform infrared spectroscopy and transmission electron microscopy. In this strategy, photoluminescence quantum efficiency of CdTe quantum dots with narrow emission bandwidths remained unaffected after formation of the conjugate.

  5. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery.

    PubMed

    Sharma, Ashok Kumar; Gothwal, Avinash; Kesharwani, Prashant; Alsaab, Hashem; Iyer, Arun K; Gupta, Umesh

    2017-02-01

    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.

  6. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    PubMed Central

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems

  7. Developmental toxicity of low generation PAMAM dendrimers in zebrafish

    SciTech Connect

    King Heiden, Tisha C.; Dengler, Emelyne; Kao, Weiyuan John; Heideman, Warren; Peterson, Richard E.

    2007-11-15

    Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices. While RGD-conjugated dendrimers are generally considered not to be cytotoxic, there currently exists little information on the risks that such materials pose to human health. In an effort to compliment and extend the knowledge gleaned from cell culture assays, we have used the zebrafish embryo as a rapid, medium throughput, cost-effective whole-animal model to provide a more comprehensive and predictive developmental toxicity screen for nanomaterials such as PAMAM dendrimers. Using the zebrafish embryo, we have assessed the developmental toxicity of low generation (G3.5 and G4) PAMAM dendrimers, as well as RGD-conjugated forms for comparison. Our results demonstrate that G4 dendrimers, which have amino functional groups, are toxic and attenuate growth and development of zebrafish embryos at sublethal concentrations; however, G3.5 dendrimers, with carboxylic acid terminal functional groups, are not toxic to zebrafish embryos. Furthermore, RGD-conjugated G4 dendrimers are less potent in causing embryo toxicity than G4 dendrimers. RGD-conjugated G3.5 dendrimers do not elicit toxicity at the highest concentrations tested and warrant further study for use as a drug delivery device.

  8. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers.

    PubMed

    Lopez, Analette I; Reins, Rose Y; McDermott, Alison M; Trautner, Barbara W; Cai, Chengzhi

    2009-10-01

    We have investigated the antibacterial activity and cytotoxicity of a series of amino-terminated poly(amidoamine) (PAMAM) dendrimers modified with poly(ethylene glycol) (PEG) groups. The antibacterial activity of the PAMAM dendrimers and their derivatives against the common ocular pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was evaluated by their minimum inhibitory concentrations (MICs). For the unmodified third and fifth generation (G3 and G5) amino-terminated dendrimers, the MICs against both P. aeruginosa and S. aureus were in the range of 6.3-12.5 microg mL(-1), comparable to that of the antimicrobial peptide LL-37 (1.3-12.5 microg mL(-1)) and within the wide range of 0.047-128 microg mL(-1) for the fluoroquinolone antibiotics. PEGylation of the dendrimers decreased their antibacterial activities, especially for the Gram-positive bacteria (S. aureus). The reduction in potency is likely due to the decrease in the number of protonated amino groups and shielding of the positive charges by the PEG chains, thus decreasing the electrostatic interactions of the dendrimers with the negatively-charged bacterial surface. Interestingly, localization of a greater number of amino groups on G5 vs. G3 dendrimers did not improve the potency. Significantly, even a low degree of PEGylation, e.g. 6% with EG(11) on G3 dendrimer, greatly reduced the cytotoxicity towards human corneal epithelial cells while maintaining a high potency against P. aeruginosa. The cytotoxicity of the PEGylated dendrimers to host cells is much lower than that reported for antimicrobial peptides. Furthermore, the MICs of these dendrimers against P. aeruginosa are more than two orders of magnitude lower than other antimicrobial polymers reported to date. These results motivate further exploration of the potential of cationic dendrimers as a new class of antimicrobial agents that may be less likely to induce bacterial resistance than standard antibiotics.

  9. Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study.

    PubMed

    Pramanik, Debabrata; Maiti, Prabal K

    2016-10-19

    Various unique physical, chemical, mechanical and electronic properties of carbon nanotubes (CNTs) make them very useful materials for diverse potential application in many fields. Experimentally synthesized CNTs are generally found in bundle geometry with a mixture of different chiralities and present a unique challenge to separate them. In this paper we have proposed the PAMAM dendrimer to be an ideal candidate for this separation. To estimate the efficiency of the dendrimer for the dispersion of CNTs from the bundle geometry, we have calculated potential of mean forces (PMF). Our PMF study of two dendrimer-wrapped CNTs shows lesser binding affinity compared to the two bare CNTs. PMF study shows that the binding affinity decreases for non-protonated dendrimer, and for the protonated case the interaction is fully repulsive in nature. For both the non-protonated as well as protonated cases, the PMF increases gradually with increasing dendrimer generations from 2 to 4 compared to the bare PMF. We have performed PMF calculations with (6,5) and (6,6) chirality to study the chirality dependence of PMF. Our study shows that the PMFs between two (6,5) and two (6,6) CNTs respectively are ∼-29 kcal mol(-1) and ∼-27 kcal mol(-1). Calculated PMF for protonated dendrimer-wrapped chiral CNTs is more compared to the protonated dendrimer-wrapped armchair CNTs for all the generations studied. However, for non-protonated dendrimer-wrapped CNTs, such chirality dependence is not very prominent. Our study suggests that the dispersion efficiency of the protonated dendrimer is more compared to the non-protonated dendrimer and can be used as an effective dispersing agent for the dispersion of CNTs from the bundle geometry.

  10. Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxic-ischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia.

    PubMed

    Nemeth, Christina L; Drummond, Gabrielle T; Mishra, Manoj K; Zhang, Fan; Carr, Patrice; Garcia, Maxine S; Doman, Sydney; Fatemi, Ali; Johnston, Michael V; Kannan, Rangaramanujam M; Kannan, Sujatha; Wilson, Mary Ann

    2017-10-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can result in neurodevelopmental disability, including cerebral palsy. The only treatment, hypothermia, provides incomplete neuroprotection. Hydroxyl polyamidoamine (PAMAM) dendrimers are being explored for targeted delivery of therapy for HIE. Understanding the biodistribution of dendrimer-conjugated drugs into microglia, neurons and astrocytes after brain injury is essential for optimizing drug delivery. We conjugated N-acetyl-L-cysteine to Cy5-labeled PAMAM dendrimer (Cy5-D-NAC) and used a mouse model of perinatal HIE to study effects of timing of administration, hypothermia, brain injury, and microglial activation on uptake. Dendrimer conjugation delivered therapy most effectively to activated microglia but also targeted some astrocytes and injured neurons. Cy5-D-NAC uptake was correlated with brain injury in all cell types and with activated morphology in microglia. Uptake was not inhibited by hypothermia, except in CD68+ microglia. Thus, dendrimer-conjugated drug delivery can target microglia, astrocytes and neurons and can be used in combination with hypothermia for treatment of HIE. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    PubMed

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-02

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.

  12. Cytotoxic activity of G3 PAMAM-NH₂ dendrimer-chlorambucil conjugate in human breast cancer cells.

    PubMed

    Bielawski, Krzysztof; Bielawska, Anna; Muszyńska, Anna; Popławska, Bożena; Czarnomysy, Robert

    2011-11-01

    Evaluation of the cytotoxicity of a novel G3 PAMAM-NH(2) dendrimer-chlorambucil conjugate employing a MTT assay and inhibition of [(3)H]thymidine incorporation into DNA in both MDA-MB-231 and MCF-7 breast cancer cells demonstrated that the conjugate was more potent antiproliferative agent than chlorambucil. It was found that dendrimer-chlorambucil conjugate was more active inhibitor of collagen biosynthesis than chlorambucil. Our experiments carried out with flow cytometry assessment of annexin V binding and fluorescent microscopy assay revealed that PAMAM-CH conjugate inhibited the proliferation of MCF-7 and MDA-231 malignant cells by increasing the number of apoptotic and necrotic cells. The apoptotic effect of PAMAM-CH conjugate was found to be stronger than that caused by chlorambucil. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation

    PubMed Central

    Nance, Elizabeth; Zhang, Fan; Mishra, Manoj K.; Zhang, Zhi; Kambhampati, Siva P.; Kannan, Rangaramanujam M.; Kannan, Sujatha

    2017-01-01

    Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies. PMID:27267631

  14. Nonlinear mechanics of thermoreversibly associating dendrimer glasses

    NASA Astrophysics Data System (ADS)

    Srikanth, Arvind; Hoy, Robert S.; Rinderspacher, Berend C.; Andzelm, Jan W.

    2013-10-01

    We model the mechanics of associating trivalent dendrimer network glasses with a focus on their energy dissipation properties. Various combinations of sticky bond (SB) strength and kinetics are employed. The toughness (work to fracture) of these systems displays a surprising deformation-protocol dependence; different association parameters optimize different properties. In particular, “strong, slow” SBs optimize strength, while “weak, fast” SBs optimize ductility via self-healing during deformation. We relate these observations to breaking, reformation, and partner switching of SBs during deformation. These studies point the way to creating associating-polymer network glasses with tailorable mechanical properties.

  15. Structural polymorphism of DNA-dendrimer complexes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R.

    2003-08-01

    DNA condensation in vivo relies on electrostatic complexation with small cations or large histones. We report a synchrotron x-ray study of the phase behavior of DNA complexed with synthetic cationic dendrimers of intermediate size and charge. We encounter unexpected structural transitions between columnar mesophases with in-plane square and hexagonal symmetries, as well as liquidlike disorder. The isoelectric point is a locus of structural instability. A simple model is proposed based on competing long-range electrostatic interactions and short-range entropic adhesion by counterion release.

  16. Dendrimer mediated transfer of engineered chromosomes.

    PubMed

    Katona, Robert L

    2011-01-01

    Gene therapy encounters important problems such as insertional mutagenesis caused by the integration of viral vectors. These problems could be circumvented by the use of mammalian artificial chromosomes (MACs) that are unique and high capacity gene delivery tools. MACs were delivered into various target cell lines including stem cells by microcell-mediated chromosome transfer (MMCT), microinjection, and cationic lipid and dendrimer mediated transfers. MACs were also cleansed to more than 95% purity before transfer with an expensive technology. We present here a method by which MACs can be delivered into murine embryonic stem (ES) cells with a nonexpensive, less tedious, but still efficient way.

  17. Phenylene bridged boron-nitrogen containing dendrimers.

    PubMed

    Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus

    2010-10-01

    The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.

  18. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017

  19. Continuous-time quantum walks on multilayer dendrimer networks

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Strunz, Walter T.

    2016-08-01

    We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues of the connectivity matrix, which even for very large structures allows a complete analytical solution for this particular choice of network. In the case of MDs we observe an interplay between strong localization effects, due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is enhanced by interconnecting more layers of dendrimers.

  20. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity

    PubMed Central

    Assadi, Artin; Najafabadi, Vahideh Sharifi; Shandiz, Seyed Ataollah Sadat; Boroujeni, Azadah Shayeq; Ashrafi, Sepehr; Vaziri, Ali Zaman; Ghoreishi, Seyedeh Masoumeh; Aghasadeghi, Mohammad Reza; Ebrahimi, Seyed Esmaeil Sadat; Pirali-Hamedani, Morteza; Ardestani, Mehdi Shafiee

    2016-01-01

    Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL) in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2). In the current study, the anticancer activity among three groups that include CBL, CBL–G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50) was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL–G2 dendrimer; P<0.05. In addition, CBL–G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL–G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and CBL alone (P<0.005). In vivo studies showed that tumor treatment by CBL–G2 dendrimer conjugate outstrips the efficacy of treatment compared with CBL alone. The evaluation was based on reduction in tumor volume and tumor growth inhibition of murine 4T1 mammary tumor cells. Tumor volume of 140%±8% was measured in the treatment with CBL–G2 dendrimer, whereas 152%±13.5% was calculated in the treatment with free CBL (P<0.05). However, there were no significant differences in histological assay among the three groups. In conclusion, tumor growth suppression potential of CBL–G2 dendrimer, which was assessed in both in vitro and in vivo

  1. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity.

    PubMed

    Assadi, Artin; Najafabadi, Vahideh Sharifi; Shandiz, Seyed Ataollah Sadat; Boroujeni, Azadah Shayeq; Ashrafi, Sepehr; Vaziri, Ali Zaman; Ghoreishi, Seyedeh Masoumeh; Aghasadeghi, Mohammad Reza; Ebrahimi, Seyed Esmaeil Sadat; Pirali-Hamedani, Morteza; Ardestani, Mehdi Shafiee

    2016-01-01

    Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL) in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2). In the current study, the anticancer activity among three groups that include CBL, CBL-G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50) was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL-G2 dendrimer; P<0.05. In addition, CBL-G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL-G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and CBL alone (P<0.005). In vivo studies showed that tumor treatment by CBL-G2 dendrimer conjugate outstrips the efficacy of treatment compared with CBL alone. The evaluation was based on reduction in tumor volume and tumor growth inhibition of murine 4T1 mammary tumor cells. Tumor volume of 140%±8% was measured in the treatment with CBL-G2 dendrimer, whereas 152%±13.5% was calculated in the treatment with free CBL (P<0.05). However, there were no significant differences in histological assay among the three groups. In conclusion, tumor growth suppression potential of CBL-G2 dendrimer, which was assessed in both in vitro and in vivo experiments

  2. Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals

    PubMed Central

    McNerny, Daniel Q.; Leroueil, Pascale R.; Baker, James R.

    2010-01-01

    Dendrimer conjugates for pharmaceutical development are capable of enhancing the local delivery of cytotoxic drugs. The ability to conjugate different targeting ligands to the dendrimer allows for the cytotoxic drug to be focused at the intended target cell while minimizing collateral damage in normal cells. Dendrimers offer several advantages over other polymer conjugates by creating a better defined, more monodisperse therapeutic scaffold. Toxicity from the dendrimer, targeted and nonspecific, is not only dependent upon the number of targeting and therapeutic ligands conjugated, but can be influenced by the repeating building blocks that grow the dendrimer, the dendrimer generation, as well as the surface termination. PMID:20166124

  3. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery.

    PubMed

    Hu, Jingjing; Su, Yunzhang; Zhang, Hongfeng; Xu, Tongwen; Cheng, Yiyun

    2011-12-01

    In this study, dendrimers was synthesized by introducing functional groups into the interior pockets of fully acetylated dendrimers. NMR techniques including COSY and 2D-NOESY revealed the molecular structures of the synthesized dendrimers and the encapsulation of guest molecule such as methotrexate within their interior pockets. The synthesized polymeric nanocarriers showed much lower cytotoxicity on two cell lines than cationic dendrimers, and exhibited better performance than fully acetylated dendrimers in the sustained release of methotrexate. The results provided a new strategy in the design of non-toxic dendrimers with high performance in the delivery of anti-cancer drugs for clinical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Dendrimer-entrapped metal colloids as imaging agents.

    PubMed

    Li, Du; Wen, Shihui; Shi, Xiangyang

    2015-01-01

    This review reports the recent advances in dendrimer-entrapped metal colloids as contrast agents for biomedical imaging applications. The versatile dendrimer scaffolds with 3-dimensional spherical shape, highly branched internal cavity, tunable surface conjugation chemistry, and excellent biocompatibility and nonimmunogenicity afford their uses as templates to create multifunctional dendrimer-entrapped metal colloids for mono- or multi- mode molecular imaging applications. In particular, multifunctional dendrimer-entrapped gold nanoparticles with different surface modifications have been used for fluorescence imaging, targeted tumor computed tomography (CT) imaging, enhanced blood pool CT imaging, dual mode CT/MR imaging, and tumor theranostics (combined CT imaging and chemotherapy) will be introduced and discussed in detail. © 2015 Wiley Periodicals, Inc.

  5. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    NASA Astrophysics Data System (ADS)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  6. Advances in Photofunctional Dendrimers for Solar Energy Conversion.

    PubMed

    Zhang, Xiaohui; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2014-07-03

    Dendrimers are regularly and hierarchically branched synthetic macromolecules with numerous chain ends all emanating from a single core, which makes them attractive candidates for energy conversion applications. During photosynthesis and photocatalysis, photoinduced electron transfer and energy transfer are the main processes involved. Studies on these processes in dendritic systems are critical for the future applications of dendrimers in photochemical energy conversion and other optoelectronic devices. In this Perspective, the recent advances of photofunctional dendrimers in energy conversion based on light-harvesting systems, solar cells, and photochemical production of hydrogen will be discussed. The electron-transfer and energy-transfer characteristics in light-harvesting photofunctional dendrimers and the regulation of the electron-transfer process and the stabilization of the charge separation state in hydrogen photoproduction are emphasized.

  7. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  8. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers.

    PubMed

    Sikwal, Dhiraj R; Kalhapure, Rahul S; Govender, Thirumala

    2017-01-15

    In recent years, a new class of dendrimer, known as Janus dendrimers (JDs), has attracted much attention due to their different structures and properties to the conventional symmetric forms. The broken symmetry of JDs offers the opportunity to form complex self-assembled materials, and presents new sets of properties that are presently inconceivable for homogeneous or symmetrical dendrimers. Due to their unique features, JDs have a promising future in pharmaceutical and biomedical fields, as seen from the recent interest in their application in conjugating multiple drugs and targeting moieties, forming supramolecular hydrogels, enabling micellar delivery systems, and preparing nano-vesicles, known as dendrimersomes, for drug encapsulation. The present paper is the first review, with an emphasis on various emerging applications of JDs, in the drug delivery and biomedical field reported so far. In addition, the paper describes different synthetic methods for producing JDs that can guide the design of new biocompatible forms with pharmacological activities, and that have the potential to be nano drug delivery vehicles. Furthermore, future studies to optimize the applications of JDs in drug delivery sciences and biomedical field to realize their potential to treat various disease conditions are identified and highlighted. Overall, this review identifies the current status of JDs in terms of their synthesis and applications, as well as the future research for their translation into macromolecules for clinical applications to solve health problems. It highlights the future combined efforts needed to be taken by dendrimer chemists, formulation scientist and microbiologists to develop novel antibacterials and nanomedicines from JDs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion

    PubMed Central

    Li, Jun; Liu, Jing; Li, Shengnan; Hao, Yanli; Chen, Lei; Zhang, Xiaoning

    2016-01-01

    The major obstacle to developing siRNA delivery is their extracellular and intracellular barriers. Herein, a humanized anti-EGFR monoclonal antibody h-R3 was developed to modify the self-assembled binary complexes (dendriplexes) of PAMAM and siRNA via electrostatic interactions, and two common ligands HSA and EGF were used as a control. Compared to dendriplexes, h-R3/EGF/HSA-dendriplexes showed increased particle size, decreased zeta potentials and lower cytotoxicity. Moreover, h-R3-dendriplexes presented greater cellular uptake and excellent endosomal escape ability in HepG2 cells. Ex vivo fluorescence imaging revealed that h-R3-dendriplexes showed higher targeted delivery and gene expression in the tumors than dendriplexes, HSA-dendriplexes and EGF-dendriplexes, which was in agreement with confocal results of cryosections. Furthermore, h-R3-dendriplexes for siPLK1 delivery indicated efficient gene silencing, potentiated cell growth inhibition and cell apoptosis, and suppressed cellular migration/invasion. These results indicate that h-R3-dendriplexes represent a great potential to be used as efficient targeted siRNA delivery carriers. PMID:26883109

  10. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation.

    PubMed

    Kulhari, Hitesh; Pooja, Deep; Singh, Mayank K; Chauhan, Abhay S

    2015-02-01

    Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.

  11. Disorder-enhanced exciton delocalization in an extended dendrimer

    NASA Astrophysics Data System (ADS)

    Pouthier, Vincent

    2014-08-01

    The exciton dynamics in a disordered extended dendrimer is investigated numerically. Because a homogeneous dendrimer exhibits few highly degenerate energy levels, a dynamical localization arises when the exciton is initially located on the periphery. However, it is shown that the disorder lifts the degeneracy and favors a delocalization-relocalization transition. Weak disorder enhances the delocalized nature of the exciton and improves any quantum communication, whereas strong disorder prevents the exciton from propagating in accordance with the well-known Anderson theory.

  12. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  13. Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery.

    PubMed

    Wong, Pamela T; Tang, Kenny; Coulter, Alexa; Tang, Shengzhuang; Baker, James R; Choi, Seok Ki

    2014-11-10

    Poly(amido amine) (PAMAM) dendrimers constitute an important class of nonviral, cationic vectors in gene delivery. Here we report on a new concept for dendrimer vector design based on the incorporation of dual binding motifs: DNA intercalation, and receptor recognition for targeted delivery. We prepared a series of dendrimer conjugates derived from a fifth generation (G5) PAMAM dendrimer, each conjugated with multiple folate (FA) or riboflavin (RF) ligands for cell receptor targeting, and with 3,8-diamino-6-phenylphenanthridinium ("DAPP")-derived ligands for anchoring a DNA payload. Polyplexes of each dendrimer with calf thymus dsDNA were made and characterized by surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurement. These studies provided evidence supporting polyplex formation based on the observation of tight DNA-dendrimer adhesion, and changes in particle size and surface charge upon coincubation. Further SPR studies to investigate the adhesion of the polyplex to a model surface immobilized with folate binding protein (FBP), demonstrated that the DNA payload has only a minimal effect on the receptor binding activity of the polyplex: KD = 0.22 nM for G5(FA)(DAPP) versus 0.98 nM for its polyplex. Finally, we performed in vitro transfection assays to determine the efficiency of conjugate mediated delivery of a luciferase-encoding plasmid into the KB cancer cell line and showed that RF-conjugated dendrimers were 1 to 2 orders of magnitude more effective in enhancing luciferase gene transfection than a plasmid only control. In summary, this study serves as a proof of concept for DNA-ligand intercalation as a motif in the design of multivalent dendrimer vectors for targeted gene delivery.

  14. Applications of dendrimers for brain delivery and cancer therapy.

    PubMed

    Somani, Sukrut; Dufès, Christine

    2014-10-01

    Dendrimers are emerging as potential nonviral vectors for the efficient delivery of drugs and nucleic acids to the brain and cancer cells. These polymers are highly branched, 3D macromolecules with modifiable surface functionalities and available internal cavities that make them attractive as delivery systems for drug and gene delivery applications. This article highlights the recent therapeutic advances resulting from the use of dendrimers for brain targeting and cancer treatment.

  15. Carbosilane dendrimers bearing globotriaoses: syntheses of globotrioasyl derivative and introduction into carbosilane dendrimers.

    PubMed

    Matsuoka, Koji; Terabatake, Mikiko; Umino, Atsushi; Esumi, Yasuaki; Hatano, Ken; Terunuma, Daiyo; Kuzuhara, Hiroyoshi

    2006-08-01

    As an application of a one-pot reaction involving Birch reduction and subsequent S(N)2 reaction in liquid ammonia, synthetic assembly of trisaccharidic moieties of globotriaosyl ceramide onto carbosilane dendrimers was accomplished using tris(3-bromopropyl)phenylsilane and tris[tris(3-bromopropyl)silylpropyl]phenylsilane as the core scaffolds. The common globotriaosyl derivative having benzylsulfide functionality at the terminal of the aglycon was efficiently prepared from d-galactose and d-lactose as starting materials. The glycosyl donor derived from galactose and the glycosyl acceptor derived from lactose were condensed in the presence of silver triflate as the best promoter to provide corresponding trisaccharide with newly formed alpha-1-4 linkages in 90% yield. Fully benzylated protection of the trisaccharide was deprotected under the Birch reduction condition followed by acetylation to give an acetate in which alkene was converted into benzyl sulfide by radical addition of alpha-toluenethiol in high yields. On the other hand, carbosilane dendrimers were prepared from appropriate chlorosilanes as starting materials by a combination of hydrosylation followed by alkenylation. The terminal C=C double bonds of the carbosilanes were converted into corresponding alcohols by means of the usual hydroboration reaction, and the alcohols underwent further chemical manipulation to give carbosilane dendrimers with peripheral bromine atoms.

  16. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    PubMed Central

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  17. Conformational Analysis of Triazine Dendrimers: Using NMR Spectroscopy To Probe the Choreography of a Dendrimer's Dance.

    PubMed

    Moreno, Karlos X; Simanek, Eric E

    2008-06-24

    One-dimensional (1D) and two-dimensional (2D) NMR studies are used to probe the conformation of a melamine dendrimer bearing unique NMR signals from the core to the periphery. Four conceptual anchors for dendrimer conformation emerge from these experiments. First, changes in isomer populations observed by (1)H NMR reveal the onset of globular structure. Second, NOE complexity emerges with globular structure: variable temperature NOESY studies show that the peripheral groups, BOC-protected aliphatic amines, fold back into the globular core of the macromolecule at 75 degrees C in DMSO-d(6). Third, variable temperature coefficients measured for NH protons suggest that solvent is largely excluded from the interior of the dendrimer: the carbamate NH groups of the periphery are most sensitive to temperature while the NHs nearest the core show little temperature dependence. Conformation is influenced by solvent choice: backfolding is observed in DMSO-d(6), but not in either CDCl(3) or CD(3)OD. Finally, relaxation studies show that peripheral groups are more dynamic than groups at the core. These anchors consolidate observations made by many groups on disparate systems within a common architecture.

  18. The interaction mechanism between lipopeptide (daptomycin) and polyamidoamine (PAMAM) dendrimers.

    PubMed

    Chanvorachote, Boontarika; Qiu, Jiang; Muangsiri, Walaisiri; Nimmannit, Ubonthip; Kirsch, Lee E

    2015-04-01

    The interaction mechanism of lipopeptide antibiotic daptomycin and polyamidoamine (PAMAM) dendrimers was studied using fluorescence spectroscopy. The fluorescence changes observed are associated with daptomycin-dendrimer interactions. The binding isotherms were constructed by plotting the fluorescence difference at 460 nm from kynurenine (Kyn-13) of daptomycin in the presence and absence of dendrimer. A one-site and two-site binding model were quantitatively generated to estimate binding capacity and affinity constants from the isotherms. The shape of the binding isotherm and the dependence of the estimated capacity constants on dendrimer sizes and solvent pH values provide meaningful insight into the mechanism of interactions. A one-site binding model adequately describes the binding isotherm obtained under a variety of experimental conditions with dendrimers of various sizes in the optimal binding pH region 3.5 to 4.5. Comparing the pH-dependent binding capacity with the ionization profiles of daptomycin and dendrimer, the ionized aspartic acid residue (Asp-9) of daptomycin primarily interact with PAMAM cationic surface amine.

  19. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  20. Dendrimer conjugated estramustine nanocrystalline 'Dendot': An effective inhibitor of DMBA-TPA induced papilloma formation in mouse.

    PubMed

    Patial, Vikram; Sharma, Supriya; Sk, Ugir Hossain

    2017-08-23

    Clinically approved anticancer drug estramustine mediates its function by impairing microtubule polymerization. However, the low aqueous solubility and high toxicity limit its anticancer activity via the oral route. Previously, efforts have been made to develop an enhanced water soluble form of estramustine as estramustine phosphate (EM) but acidic gastrointestinal pH breaks the phosphate derivative via oral administration. As an alternative approach, we have made an effort to enhance solubility and minimize toxicity in vivo by conjugating EM to a poly(amidoamine) (PAMAM) dendrimer, which generated the sustained release of dendrimer conjugate (DEM). To the best of our knowledge, for the first time, we report the direct proof of the nano-crystalline 'DenDot' of DEM on TEM image. The toxicity study showed that both EM and DEM were nontoxic up to 20mg/kg. A comparative anti-papilloma study was also performed with EM and dendrimer conjugates (DEM) using a two-stage mouse skin carcinogenesis model. We found that DEM was more effective in inhibiting skin tumor formation than EM. Histopathology and immunohistochemistry studies further indicated that DEM treatment increased cell apoptosis, and reduced epithelial hyperplasia, cell proliferation and inflammation in skin tissues of mice. In addition, the synthetic DEM conjugate inhibited skin tumor progression more effectively than EM. Copyright © 2017. Published by Elsevier B.V.

  1. Polyamidoamine dendrimers with a modified Pentaerythritol core having high efficiency and low cytotoxicity as gene carriers.

    PubMed

    Wang, Yanming; Kong, Weiling; Song, Yu; Duan, Yajun; Wang, Lianyong; Steinhoff, Gustav; Kong, Deling; Yu, Yaoting

    2009-03-09

    Polyamidoamine (PAMAM) dendrimers represent one of the most efficient polymeric gene carriers. This study describes a new family of PAMAM dendrimers that can be synthesized using a Pentaerythritol derivative (PD) as a core that possesses 12 branches. This new approach in the synthesis of divergent dendrimers provided a rapid increase in the number of branches, which made it easier to obtain dendrimers with high generation and large enough molecular size. The PD dendrimers of generations 3-5 synthesized in this study could efficiently condense DNA into nanoscale complexes with slightly positive charges. Their transfection efficiency was evaluated in different cell lines. These PD dendrimers were found to show higher transfection efficiency, but much lower cytotoxicity, than the commercial nonviral gene carriers polyethyleneimine (PEI), polylysine (PLL), and PAMAM dendrimers with an ethylenediamine core (generations 5 and 7). The results indicate that, with high transfection efficiency and low cytotoxicity, the PD dendrimers hold promise as novel nonviral gene carriers.

  2. DNA compaction by poly (amido amine) dendrimers of ammonia cored and ethylene diamine cored

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Al-Shawwa, J.

    2017-06-01

    The complexes build-up of DNA and soft particles poly amidoamine (PAMAM) dendrimers of ammonia cored of generations (G1-G6) and ethylenediamine cored of generations (G1-G10) have been studied, using a new theoretical model developed by Qamhieh and coworkers. The model describes the interaction between linear polyelectrolyte (LPE) chain and ion-penetrable spheres. Many factors affecting LPE/dendrimer complex have been investigated such as dendrimer generation, the Bjerrum length, salt concentration, and rigidity of the LPE chain represented by the persistence length. It is found that the wrapping chain length around dendrimer increases by increasing dendrimer`s generation, Bjerrum length, and salt concentration, while decreases by increasing the persistence length of the LPE chain. Also we can conclude that the wrapping length of LPE chain around ethylenediamine cored dendrimers is larger than its length around ammonia cored dendrimers.

  3. Factors affecting interactions between sulphonate-terminated dendrimers and proteins: A three case study.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2017-01-01

    This work proposes a deep study on the interactions between sulphonate-terminated carbosilane dendrimers and proteins. Three different proteins with different molecular weights and isoelectric points were employed and different pHs, dendrimer concentrations and generations were tested. Variations in fluorescence intensity and emission wavelength were used as protein-dendrimer interaction probes. Interaction between dendrimers and proteins greatly depended on the protein itself and pH. Other important issues were the dendrimer concentration and generation. Protein-dendrimer interactions were favored under acidic working conditions when proteins were positively charged. Moreover, in general, high dendrimer generations promoted these interactions. Modeling of protein-dendrimer interactions allowed to understand the different behaviors observed for every protein.

  4. Fluorescence quenching mechanism of a polyphenylene polyelectrolyte with other macromolecules: cytochrome c and dendrimers.

    PubMed

    Liu, Min; Kaur, Palwinder; Waldeck, D H; Xue, Cuihua; Liu, Haiying

    2005-03-01

    This study investigates the fluorescence quenching of a polyphenyl based polyelectrolyte by positively charged macromolecules (proteins and dendrimers). This work shows that the fluorescence quenching of the dendrimer materials does not involve energy transfer or electron transfer but is correlated to the overall charge on the dendrimer and its size. The quenching is hypothesized to result from conformational changes that occur upon binding the polyelectrolyte to the protein or dendrimer. This mechanism is qualitatively different from that invoked for small-molecule analytes.

  5. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  6. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen.

    PubMed

    Manikkath, Jyothsna; Hegde, Aswathi R; Kalthur, Guruprasad; Parekh, Harendra S; Mutalik, Srinivas

    2017-04-15

    The aim of this study was to determine the individual and combined effects of peptide dendrimers and low frequency ultrasound on the transdermal permeation of ketoprofen. Arginine terminated peptide dendrimers of varying charges (4(+), 8(+) and 16(+), named as A4. A8 and A16 respectively) were synthesized and characterized. Ketoprofen was subjected to passive, peptide dendrimer-assisted and sonophoretic permeation studies (with and without dendrimer application) across Swiss albino mouse skin, both in vitro and in vivo. The studies revealed that the synthesized peptide dendrimers considerably increased the transdermal permeation of ketoprofen and displayed enhancement ratios of up to 3.25 (with A16 dendrimer), compared to passive diffusion of drug alone in vitro. Moreover, the combination of peptide dendrimer treatment and ultrasound application worked in synergy and gave enhancement ratios of up to 1369.15 (with ketoprofen-A16 dendrimer complex). In vivo studies demonstrated that dendrimer and ultrasound-assisted permeation of drug achieved much higher plasma concentration of drug, compared to passive diffusion. Comparison of transdermal and oral absorption studies revealed that transdermal administration of ketoprofen with A8 dendrimer showed comparable absorption and plasma drug levels with oral route. The excised mouse skin after in vivo permeation study with dendrimers and ultrasound did not show major toxic reactions. This study demonstrates that arginine terminated peptide dendrimers combined with sonophoresis can effectively improve the transdermal permeation of ketoprofen.

  7. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  8. Synthesis and structural dependence of the functional properties of new green fluorescent poly(propyleneamine) dendrimers

    NASA Astrophysics Data System (ADS)

    Grabchev, Ivo; Mokreva, Pavlina; Gancheva, Valeria; Terlemezyan, Levon

    2013-04-01

    Two new green fluorescence poly(propyleneamine) dendrimers from second generation, comprising eight 1,8-naphthalimide signaling units in their periphery have been synthesized and investigated. Тheir photophysical characteristics have been determined in organic solvents of different polarity. Particular attention has been paid to the spectral characteristics of the solid dendrimer films. The photostability of the dendrimers has also been studied.

  9. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery.

    PubMed

    Lee, Sang Joon; Jeong, Young-Il; Park, Hyung-Kyu; Kang, Dae Hwan; Oh, Jong-Suk; Lee, Sam-Gyu; Lee, Hyun Chul

    2015-01-01

    Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol) (MPEG)-doxorubicin (DOX) conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting. Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP). Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP). Nanoparticles were then prepared using a dialysis procedure. The synthesized DendGDP was confirmed with (1)H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and revealed stronger fluorescence intensity than at other body sites while doxorubicin and DendDP nanoparticles showed strong fluorescence intensity in the various organs, indicating that DendGDP has cathepsin B sensitivity. DendGDP is sensitive to cathepsin B in tumor cells and can be used as a cathepsin B-responsive drug targeting strategy. We suggest that DendGDP is a promising vehicle for cancer cell targeting.

  10. Dendrimers Bind Antioxidant Polyphenols and cisPlatin Drug

    PubMed Central

    Abderrezak, Amine; Bourassa, Philippe; Mandeville, Jean-Sebastian; Sedaghat-Herati, Reza; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4) with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH2 groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 102 M−1 to 103 M−1. The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = −4.75 kcal/mol) than curcumin-PAMAM-G4 ((ΔG = −4.53 kcal/mol) and resveratrol-PAMAM-G4 ((ΔG = −4.39 kcal/mol). Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs. PMID:22427960

  11. Interaction of nucleic acids with carbon nanotubes and dendrimers.

    PubMed

    Nandy, Bidisha; Santosh, Mogurampelly; Maiti, Prabal K

    2012-07-01

    Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

  12. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

    PubMed Central

    Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L

    2014-01-01

    Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436

  13. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.

    PubMed

    Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen

    2012-05-01

    A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Transepithelial transport of PAMAM dendrimers across isolated intestinal tissue

    NASA Astrophysics Data System (ADS)

    Hubbard, Dallin A.

    Poly(amido amine) (PAMAM) dendrimers have shown potential to carry poorly absorbed drugs across the intestinal barrier and into systemic circulation, reducing the need for intravenous injections. Much of the in vitro transepithelial transport of PAMAM dendrimers to date has been investigated using Caco-2 monolayers which lack the microvilli morphology and enzymes present in isolated intestinal tissues. In addition, a challenge in predicting oral absorption is establishing a correlation between transport across rodent and human intestinal tissues. This dissertation focused on investigating the transepithelial transport of PAMAM dendrimers across rat and human isolated intestinal tissues. Permeability values in isolated tissues were compared with those across Caco-2 cell monolayers. Results indicate a difference in transport of PAMAM dendrimers, morphological changes and transepithelial electrical resistance between Caco-2 cell monolayers, rat and human intestinal tissue models. A relatively high transport rate across the tissues, given the macromolecular nature of PAMAM dendrimers, shows promise for use of these constructs for oral delivery in human.

  15. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  16. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    PubMed

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  17. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug

    PubMed Central

    Zolotarskaya, Olga Yu.; Xu, Leyuan; Valerie, Kristoffer; Yang, Hu

    2015-01-01

    In the present work we report on the click synthesis of a new camptothecin (CPT) prodrug based on anionic polyamidoamine (PAMAM) dendrimer intended for cancer therapy. We applied ‘click’ chemistry to improve polymer-drug coupling reaction efficiency. Specifically, CPT was functionalized with a spacer, 1-azido-3,6,9,12,15-pentaoxaoctadecan-18-oic acid (APO), via EDC/DMAP coupling reaction. In parallel, propargylamine (PPA) and methoxypoly(ethylene glycol) amine were conjugated to PAMAM dendrimer G4.5 in sequence using an effective coupling agent 4-(4,6-dimethoxy-(1,3,5)triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM). CPT-APO was then coupled to PEGylated PAMAM dendrimer G4.5-PPA via a click reaction using copper bromide/2,2’-bipyridine/ dimethyl sulfoxide (catalyst/ligand/solvent). Human glioma cells were exposed to the CPT-conjugate to determine toxicity and cell cycle effects using WST-1 assay and flow cytometry. The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 μM, a 185-fold increase relative to free CPT, presumably as a result of slow release. As expected, conjugated CPT resulted in G2/M arrest and cell death while the dendrimer itself had little to no toxicity. Altogether, highly efficient click chemistry allows for the synthesis of multifunctional dendrimers for sustained drug delivery. PMID:26640689

  18. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches

    PubMed Central

    Wang, Wei; Chen, Li-Jun; Wang, Xu-Qing; Sun, Bin; Li, Xiaopeng; Zhang, Yanyan; Shi, Jiameng; Yu, Yihua; Zhang, Li; Liu, Minghua; Yang, Hai-Bo

    2015-01-01

    Mechanically interlocked molecules, such as catenanes, rotaxanes, and knots, have applications in information storage, switching devices, and chemical catalysis. Rotaxanes are dumbbell-shaped molecules that are threaded through a large ring, and the relative motion of the two components along each other can respond to external stimuli. Multiple rotaxane units can amplify responsiveness, and repetitively branched molecules—dendrimers—can serve as vehicles for assembly of many rotaxanes on single, monodisperse compounds. Here, we report the synthesis of higher-generation rotaxane dendrimers by a divergent approach. Linkages were introduced as spacer elements to reduce crowding and to facilitate rotaxane motion, even at the congested periphery of the compounds up to the fourth generation. The structures were characterized by 1D multinuclear (1H, 13C, and 31P) and 2D NMR spectroscopy, MALDI-TOF-MS, gel permeation chromatography (GPC), and microscopy-based methods including atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM and TEM studies of rotaxane dendrimers vs. model dendrimers show that the rotaxane units enhance the rigidity and reduce the tendency of these assemblies to collapse by self-folding. Surface functionalization of the dendrimers with ferrocenes as termini produced electrochemically active assemblies. The preparation of dendrimers with a well-defined topological structure, enhanced rigidity, and diverse functional groups opens previously unidentified avenues for the application of these materials in molecular electronics and materials science. PMID:25902491

  19. Transepithelial Transport of PEGylated Anionic Poly(amidoamine) Dendrimers: Implications for Oral Drug Delivery

    PubMed Central

    Sweet, Deborah M.; Kolhatkar, Rohit B.; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-01-01

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired. PMID:19393702

  20. Design, Synthesis, and Biological Functionality of a Dendrimer-based Modular Drug Delivery Platform

    PubMed Central

    Mullen, Douglas G.; McNerny, Daniel Q.; Desai, Ankur; Cheng, Xue-min; DiMaggio, Stassi C.; Kotlyar, Alina; Zhong, Yueyang; Qin, Suyang; Kelly, Christopher V.; Thomas, Thommey P.; Majoros, Istvan; Orr, Bradford G.; Baker, James R.; Banaszak Holl, Mark M.

    2011-01-01

    A modular dendrimer-based drug delivery platform was designed to improve upon existing limitations in single dendrimer systems. Using this modular strategy, a biologically active platform containing receptor mediated targeting and fluorescence imaging modules was synthesized by coupling a folic acid (FA) conjugated dendrimer with a fluorescein isothiocyanate (FITC) conjugated dendrimer. The two different dendrimer modules were coupled via the 1,3-dipolar cycloaddition reaction (‘click’ chemistry) between an alkyne moiety on the surface of the first dendrimer and an azide moiety on the second dendrimer. Two simplified model systems were also synthesized to develop appropriate ‘click’ reaction conditions and aid in spectroscopic assignments. Conjugates were characterized by 1H NMR spectroscopy and NOESY. The FA-FITC modular platform was evaluated in vitro with a human epithelial cancer cell line (KB) and found to specifically target the over-expressed folic acid receptor. PMID:21425790

  1. Triazine-modified dendrimer for efficient TRAIL gene therapy in osteosarcoma.

    PubMed

    Wang, Yu; Li, Lei; Shao, Naimin; Hu, Zhiqi; Chen, Hui; Xu, Leqin; Wang, Changping; Cheng, Yiyun; Xiao, Jianru

    2015-04-01

    Osteosarcoma is a high-grade malignant bone tumor that usually develops in the teenagers. Despite improvement in therapy, the five-year survival rate is poor for patients not responding to treatment or with metastases. Tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) gene therapy is a new strategy in the treatment of cancers, however, the lack of efficient and low toxic vectors remains the major obstacle in TRAIL gene therapy. In this study, a triazine-modified dendrimer G5-DAT66 was synthesized and used as a vector for TRAIL gene therapy in vitro and in vivo. The material shows much higher transfection efficacy on osteosarcoma MG-63 cell line than commercial transfection reagents such as Lipofectamine 2000 and SuperFect. It effectively induces apoptosis in MG-63 cells and three-dimensional MG-63 cell cultures when delivering a TRAIL plasmid. In vivo studies further prove that G5-DAT66 efficiently transfects TRAIL plasmid in tumors and inhibits tumor growth in osteosarcoma-bearing mice. These results suggest that triazine-modified dendrimer has promising potential for TRAIL gene therapy in osteosarcoma. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Recent advances in click chemistry applied to dendrimer synthesis.

    PubMed

    Arseneault, Mathieu; Wafer, Caroline; Morin, Jean-François

    2015-05-20

    Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.

  3. The use of nanoscaffolds and dendrimers in tissue engineering.

    PubMed

    Gorain, Bapi; Tekade, Muktika; Kesharwani, Prashant; Iyer, Arun K; Kalia, Kiran; Tekade, Rakesh Kumar

    2017-02-20

    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.

  4. On Forgotten Topological Indices of Some Dendrimers Structure.

    PubMed

    Bashir, Yasir; Aslam, Adnan; Kamran, Muhammad; Qureshi, Muhammad Imran; Jahangir, Adnan; Rafiq, Muhammad; Bibi, Nargis; Muhammad, Nazeer

    2017-05-24

    A series of previously conducted experiments pertaining to various chemicals and drugs uncover a natural linkage between the molecular structures and the bio-medical and pharmacological characteristics. The forgotten topological index computed for the molecular structures of various chemical compounds and drugs has proven significant in medical and pharmaceutical fields by predicting biological features of new chemical compounds and drugs. A topological index can be considered as the transformation of chemical structure into a real number. Dendrimers are highly-branched star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper, we determine forgotten topological indices of poly(propyl) ether imine, porphyrin, and zinc-porphyrin dendrimers.

  5. Behavior of PPI-G2 Dendrimer in a Microemulsion.

    PubMed

    Rokach, Shifra; Ottaviani, Maria Francesca; Shames, Alexander I; Aserin, Abraham; Garti, Nissim

    2017-03-16

    Dendrimer nanostructures are of eminent interest in biomedical applications because of their uniform and well-defined molecular size and shape, and their ability to cross cell membranes and reduce the risk of premature clearance from the human body. Dendrimers perform as gene and drug carriers and have also shown significant therapeutic properties for treating cancer and neurodegenerative diseases. A complex drug delivery system, based on a dendrimer solubilized in the aqueous core of a water-in-oil (W/O) microemulsion (ME) along with the drug may combine the advantages of both dendrimers and MEs to provide better control of drug release. We propose a new microemulsion composed of drug-permitted surfactants and dendrimer that can be used as a potential controlled drug delivery nanosystem. The influence of second generation poly(propyleneimine) (PPI-G2) dendrimer; solubilized in (W/O) ME with a capacity of up to 25 wt% PPI-G2 at various pHs; and their interactions with the surfactant phosphatidylcholine (PC), cosurfactant (butanol), and water was studied. SAXS and EPR measurements indicated that increasing PPI-G2 concentration reduces droplet curvature and increases droplet size thus increasing macro-(SAXS) and micro-(EPR) order degree. Furthermore, SD-NMR and ATR-FTIR show stronger interactions between PPI-G2 and water molecules at the expense of PC and butanol headgroups hydration, which increases microviscosity (EPR). PPI-G2's effect is somewhat opposite to the increasing water phase effect, thus reducing the amount of free water (DSC) and slowing the mobility of all ME components (SD-NMR).

  6. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    PubMed Central

    Choudhary, Sonam; Gupta, Lokesh; Rani, Sarita; Dave, Kaushalkumar; Gupta, Umesh

    2017-01-01

    Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed. PMID:28559844

  7. Temperature echoes revisited to probe the vibrational behavior of dendrimers

    NASA Astrophysics Data System (ADS)

    Paulo, Pedro M. R.

    2010-03-01

    Temperature quench echoes were induced in molecular dynamics simulations of dendrimers. This phenomenon was used to probe the vibrational behavior of these molecules by comparing simulation results with harmonic model predictions. The echo depth for short time intervals between temperature quenches is well described by the harmonic approximation and the fluctuations observed are related to the vibrational density of states. The echo depth for long time intervals decays progressively revealing dephasing due to anharmonic interactions. The density of states was calculated from the temperature fluctuations after the first quench and high-frequency modes were assigned by comparison with vibrational spectra of similar dendrimers.

  8. Temperature echoes revisited to probe the vibrational behavior of dendrimers.

    PubMed

    Paulo, Pedro M R

    2010-03-21

    Temperature quench echoes were induced in molecular dynamics simulations of dendrimers. This phenomenon was used to probe the vibrational behavior of these molecules by comparing simulation results with harmonic model predictions. The echo depth for short time intervals between temperature quenches is well described by the harmonic approximation and the fluctuations observed are related to the vibrational density of states. The echo depth for long time intervals decays progressively revealing dephasing due to anharmonic interactions. The density of states was calculated from the temperature fluctuations after the first quench and high-frequency modes were assigned by comparison with vibrational spectra of similar dendrimers.

  9. Pattern formation in the Belousov-Zhabotinsky-PAMAM dendrimer system.

    PubMed

    Roncaglia, Diana I; Carballido-Landeira, Jorge; Muñuzuri, Alberto P

    2011-04-28

    The Belousov-Zhabotinsky reaction was studied under the influence of nanometric confinements induced by a complex polymer, the PAMAM-G4 dendrimers. They are well-defined in both molecular weight and architecture and are capable of molecular inclusion, making "unimolecular active micelles". The effect of such nanocompartments in the BZ reaction is analyzed by changing both the excitability and the concentration of the dendrimer, obtaining a wide range of behaviours, ranging from stationary Turing-like patterns to time dependent structures, such as jumping waves or packet waves.

  10. Inhibition of phosphoinositol 3 kinase contributes to nanoparticle-mediated exaggeration of endotoxin-induced leukocyte procoagulant activity

    PubMed Central

    Ilinskaya, Anna N; Man, Sonny; Patri, Anil K; Clogston, Jeffrey D; Crist, Rachael M; Cachau, Raul E; McNeil, Scott E; Dobrovolskaia, Marina A

    2014-01-01

    Aim Disseminated intravascular coagulation is an increasing concern for certain types of engineered nanomaterials. Recent studies have shed some light on the nanoparticle physicochemical properties contributing to this toxicity; however, the mechanisms are poorly understood. Leukocyte procoagulant activity (PCA) is a key factor contributing to the initiation of this toxicity. We have previously reported on the exaggeration of endotoxin-induced PCA by cationic dendrimers. Herein, we report an effort to discern the mechanism. Materials & methods Poly(amidoamine) dendrimers with various sizes and surface functionalities were studied in vitro by the recalcification test, flow cytometry and other relevant assays. Results & conclusion Cationic dendrimers exaggerated endotoxin-induced PCA, but their anionic or neutral counterparts did not; the cationic charge prompts this phenomenon, but different cationic surface chemistries do not influence it. Cationic dendrimers and endotoxin differentially affect the PCA complex. The inhibition of phosphoinositol 3 kinase by dendrimers contributes to the exaggeration of the endotoxin-induced PCA. PMID:24279459

  11. Electrochemiluminescent (ECL) [Ru(bpy)3](2+)/PAMAM dendrimer reactions: coreactant effect and 5-fluorouracil/dendrimer complex formation.

    PubMed

    Jimenez-Ruiz, Aila; Grueso, Elia; Perez-Tejeda, Pilar; Muriel-Delgado, Fernando; Torres-Marquez, Concepcion

    2016-10-01

    Electrogenerated chemiluminescence (ECL) reactions between tris(2,2'-bipyridine)ruthenium(II) and PAMAM dendrimers of the full (G1.0) and half (G1.5) generations were carried out in an aqueous medium at pH 6.1 and 10.0. In the absence of 5-fluoro-1H,3H-pyrimidine-2,4-dione (5-fluorouracil, 5-Fu) (coreactant effect study), the ECL efficiency trends as a function of [G1.0] and [G1.5] at pH 6.1 and 10.0 revealed that PAMAM dendrimers are about 100 (G1.5, pH 6.1), 60 (G1.5, pH 10.0), 26 (G1.0, pH 10.0) and 13 (G1.0, pH 6.1) times more efficient as ECL coreactants than oxalate anion is. Moreover, ECL reactions were done in the presence of several solutions of 5-Fu at a fixed concentration of the G1.0 and G1.5 dendrimers at pH 6.1 and 10.0 (binding study). The ECL efficiency trends as a function of [5-Fu] highlighted a dendrimer/5-Fu binding. Therefore, one of the most remarkable and novel findings of this work is the potential of PAMAM dendrimers to be used as both sensors and biosensors in an aqueous medium in the presence of a suitable sensitizer. Redox potentials of the [Ru(bpy)3](3+/2+) couple were also determined in the absence and presence of 5-Fu at both pHs. In the absence of 5-Fu the positive or negative shift of redox potentials showed the influence of the repulsive or attractive electrostatic long-range and short-range interactions between the charged dendrimer surface and the oxidized and reduced forms of the couple. In the presence of 5-Fu the trends of redox potentials highlighted the existence of a charged dendrimer/5-Fu species. Graphical Abstract ECL emission for the [Ru(bpy)3](2+)/ G1.0 dendrimer reaction in the presence of the 5-Fu at pH 6.1.

  12. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.

    PubMed

    Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M

    2015-02-18

    G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.

  13. Efficient siRNA Delivery Using a Polyamidoamine Dendrimer with a Modified Pentaerythritol Core

    PubMed Central

    Kwak, Kwang Joo; Wang, Xinmei; Yung, Bryant; Lee, L. James; Wang, Yanming; Wang, Peng George; Lee, Robert J.

    2015-01-01

    Purpose Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier. Methods Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated. Results Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell. Conclusions These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application. PMID:22274556

  14. Efficient siRNA delivery using a polyamidoamine dendrimer with a modified pentaerythritol core.

    PubMed

    Zhang, Yue; Zhou, Chenguang; Kwak, Kwang Joo; Wang, Xinmei; Yung, Bryant; Lee, L James; Wang, Yanming; Wang, Peng George; Lee, Robert J

    2012-06-01

    Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier. Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated. Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell. These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application.

  15. Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration

    PubMed Central

    Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo

    2012-01-01

    The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160

  16. Coarse-grained simulations of poly(propylene imine) dendrimers in solution

    NASA Astrophysics Data System (ADS)

    Smeijers, A. F.; Markvoort, A. J.; Pieterse, K.; Hilbers, P. A. J.

    2016-02-01

    The behavior of poly(propylene imine) (PPI) dendrimers in concentrated solutions has been investigated using molecular dynamics simulations containing up to a thousand PPI dendrimers of generation 4 or 5 in explicit water. To deal with large system sizes and time scales required to study the solutions over a wide range of dendrimer concentrations, a previously published coarse-grained model was applied. Simulation results on the radius of gyration, structure factor, intermolecular spacing, dendrimer interpenetration, and water penetration are compared with available experimental data, providing a clear concentration dependent molecular picture of PPI dendrimers. It is shown that with increasing concentration the dendrimer volume diminishes accompanied by a reduction of internalized water, ultimately resulting in solvent filled cavities between stacked dendrimers. Concurrently dendrimer interpenetration increases only slightly, leaving each dendrimer a separate entity also at high concentrations. Moreover, we compare apparent structure factors, as calculated in experimental studies relying on the decoupling approximation and the constant atomic form factor assumption, with directly computed structure factors. We demonstrate that these already diverge at rather low concentrations, not because of small changes in form factor, but rather because the decoupling approximation fails as monomer positions of separate dendrimers become correlated at concentrations well below the overlap concentration.

  17. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide.

    PubMed

    Singh, Mayank Kumar; Pooja, Deep; Kulhari, Hitesh; Jain, Sanjay Kumar; Sistla, Ramakrishna; Chauhan, Abhay Singh

    2017-01-01

    We present a dendrimer-based hybrid formulation strategy to explore the potential of poly (amidoamine) PAMAM dendrimers to be used as drug carriers for combination therapy of an anti-hypertensive drug ramipril (RAPL) and a diuretic hydrochlorothiazide (HCTZ). The drug-dendrimer complexes were prepared by phase-equilibration method. The results showed that the solubility of RAPL and HCTZ was dependent on dendrimer concentration and pH of dendrimer solution. The solubility profile of both RAPL and HCTZ dendrimer complexes illustrated a non-linear relationship with dendrimer concentration. At 0.8% (w/v) dendrimer concentration, solubility of RAPL was increased 4.91 folds with amine-terminated while for HCTZ, solubility enhancement was highest (3.72 folds) with carboxy-terminated. The complexes were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis and high performance liquid chromatography. In-vitro drug dissolution performance of pure drugs, individual drug loaded dendrimer formulations and hybrid formulations was studied in USP dissolution medium (pH7.0) and in simulated gastric fluid (pH1.2). Dendrimer mediated formulations showed faster and complete dissolution compared to pure RAPL or HCTZ. Surprisingly, similar pattern of dissolution profile was established with hybrid formulations as compared to individual drug loaded dendrimers. The dendrimer-based hybrid formulations were found to be stable at dark and refrigerated conditions up to 5weeks. Conclusively, the proposed formulation strategy establishes a novel multitasking platform using dendrimer for simultaneous loading and delivery of multiple drugs for pharmaceutical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of Electron Donating Groups on Polyphenol-based Antioxidant Dendrimers

    PubMed Central

    Lee, Choon Young; Nanah, Cyprien; Held, Rich; Clark, Amanda; Huynh, Uyen; Maraskine, Marina C.; Uzarski, Rebecca L.; McCracken, John; Sharma, Ajit

    2015-01-01

    Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-D-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals

  19. Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition.

    PubMed

    Carino, Emily V; Crooks, Richard M

    2011-04-05

    Dendrimer-encapsulated nanoparticles (DENs) containing averages of 55, 147, and 225 Pt atoms immobilized on glassy carbon electrodes served as the electroactive surface for the underpotential deposition (UPD) of a Cu monolayer. This results in formation of core@shell (Pt@Cu) DENs. Evidence for this conclusion comes from cyclic voltammetry, which shows that the Pt core DENs catalyze the hydrogen evolution reaction before Cu UPD, but that after Cu UPD this reaction is inhibited. Results obtained by in situ electrochemical X-ray absorption spectroscopy (XAS) confirm this finding.

  20. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy.

    PubMed

    Zhang, Chengyuan; Pan, Dayi; Li, Jin; Hu, Jiani; Bains, Ashika; Guys, Nicholas; Zhu, Hongyan; Li, Xiaohui; Luo, Kui; Gong, Qiyong; Guc, Zhongwei

    2017-03-01

    Stimuli-responsive peptide dendrimer-drug conjugates have presented significant potential for cancer therapy. To develop an effective nanoscale chemotherapeutic prodrug, we developed a novel enzyme-responsive PEGylated lysine peptide dendrimer-gemcitabine conjugate (Dendrimer-GEM) based nanoparticle via the highly efficient click reaction. Owing to the glycylphenylalanylleucylglycine tetra-peptide (GFLG) as an enzyme-cleavable linker to conjugate gemcitabine (GEM), the prepared nanoparticles were able to release drug significantly faster in the tumor cellular environments, which specifically contains secreted Cathepsin B, quantifiably more than 80% GEM was released with Cathepsin B compared to the condition without Cathepsin B at 24h. This nanoparticle demonstrated enhanced antitumor efficacy in a 4T1 murine breast cancer model without obvious systemic toxicity, resulting in significantly suppressed relative tumor volumes (86.17 ± 38.27%) and a 2-fold higher value of tumor growth inhibition (~90%) than GEM∙HCl treatment. These results suggest that the PEGylated peptide dendrimer-gemcitabine conjugate can be an effective antitumor agent for breast cancer therapy. Statement of significance We found that the functionalized dendrimer based nanoscale drug delivery vehicles exhibited enhanced therapeutic indexes and reduced toxicity as compared to the free drug gemcitabine. Compared with current nanoparticles, such as dendritic anticancer drug delivery systems, the new design was capable of self-assembling into nanoscale particles with sizes of about 80-110 nm, which is suitable as antitumor drug delivery vehicle due to the potential longer intravascular half-life and higher accumulation in tumor tissue via EPR effect. Owing to the optimized architecture, the system was given the enzyme-responsive drug release feature, and showed excellent antitumor activity on the 4T1 breast tumor model due to the evidences from tumor growth curves, immunohistochemical analysis and

  1. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  2. Dendrimers and methods of preparing same through proportionate branching

    DOEpatents

    Yu, Yihua; Yue, Xuyi

    2015-09-15

    The present invention provides for monodispersed dendrimers having a core, branches and periphery ends, wherein the number of branches increases exponentially from the core to the periphery end and the length of the branches increases exponentially from the periphery end to the core, thereby providing for attachment of chemical species at the periphery ends without exhibiting steric hindrance.

  3. Click hybridization of immune cells and polyamidoamine dendrimers.

    PubMed

    Xu, Leyuan; Zolotarskaya, Olga Yu; Yeudall, W Andrew; Yang, Hu

    2014-09-01

    Immobilizing highly branched polyamidoamine (PAMAM) dendrimers to the cell surface represents an innovative method of enhancing cell surface loading capacity to deliver therapeutic and imaging agents. In this work, hybridized immune cells, that is, macrophage RAW264.7 (RAW), with PAMAM dendrimer G4.0 (DEN) on the basis of bioorthogonal chemistry are clicked. Efficient and selective cell surface immobilization of dendrimers is confirmed by confocal microscopy. Viability and motility of RAW-DEN hybrids remain the same as untreated RAW cells according to WST-1 assay and wound closure assay. Furthermore, Western blot analysis reveals that there are no significant alterations in the expression levels of signaling molecules AKT, p38, and NFκB (p65) and their corresponding activated (phosphorylated) forms in RAW cells treated with azido sugar and dendrimer, indicating that the hybridization process neither induced cell stress response nor altered normal signaling pathways. Taken together, this work shows the feasibility of applying bioorthogonal chemistry to create cell-nanoparticle hybrids and demonstrates the noninvasiveness of this cell surface engineering approach.

  4. Designing Dendrimers to Offer Micelle-Type Nanocontainers

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The properties of a dendrimer with hydrophobic and hydrophilic substituents on an orthogonal plane is synthesized and studied. The resulting polymer contains one of the substituents in its concave interior and the other at the convex surface and the design promotes micelle-like behavior in polar solvent and inverted micelle arrangement in…

  5. Designing Dendrimers to Offer Micelle-Type Nanocontainers

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The properties of a dendrimer with hydrophobic and hydrophilic substituents on an orthogonal plane is synthesized and studied. The resulting polymer contains one of the substituents in its concave interior and the other at the convex surface and the design promotes micelle-like behavior in polar solvent and inverted micelle arrangement in…

  6. FTIR spectroscopy and DFT studies of carbosilane dendrimers.

    PubMed

    Furer, V L; Vandukova, I I; Tatarinova, E A; Muzafarov, A M; Kovalenko, V I

    2008-08-01

    The FTIR spectra of G(3), G(4), and G(9) generations of polybutylcarbosilane dendrimers have been recorded and analyzed. The structural optimization and normal mode analysis were performed for G(1) generation on the basis of density functional theory (DFT). This calculation gave vibrational frequencies and infrared intensities for the t,t- and g,-g-conformers of the butyl terminal groups, attached to the same silicon atom. The g,-g-conformer is 5.83 kcal/mol less stable compared to t,t-conformer. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers. The dependence of band full width at half height in the IR spectra on generation number is established. The IR spectra of carbosilane dendrimers at higher temperatures at the ambient air and isolated from atmosphere air were studied. At temperature 180 degrees C all studied carbosilane dendrimers are stable when contact with atmosphere is absent, in the air they oxidize and thus CO and SiO groups appear.

  7. Low-Bandgap Thiophene Dendrimers for Improved Light Harvesting

    SciTech Connect

    Rupert, B. L.; Mitchell, W. J.; Ferguson, A. J.; Kose, M. E.; Rance, W. L.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E.; Kopidakis, N.

    2009-01-01

    This article follows our previous work on the synthesis and characterization of pi-conjugated dendrimers for use in organic solar cells. Here we discuss five new thiophene-based dendrimers that were synthesized in order to study the relationship between their chemical structures and electronic properties. Three of these dendrimers incorporate acetylene spacers, included to relieve steric strain, between the thiophene arms and phenyl cores used in previous studies. Only a small effect on the electronic properties is observed upon inclusion of the acetylene spacer in the three-arm dendrimer, 3G1-2S-Ac. In contrast, a decrease in the bandgap is observed for the four-arm dendrimer, 4G1-2S-Ac, due to a reduction of interactions between the arms in the more sterically congested 1,2,4,5-arrangement around the phenyl core, resulting in delocalization of the exciton through the phenyl core. Incorporation of electron-withdrawing cyano groups on the phenyl core of the three-arm dendrimer, 3G1-2S-CN, resulted in a very large ({approx}0.5 eV) decrease in the bandgap, due to stabilization of the lowest unoccupied molecular orbital, and the low energy absorption band in this material is attributed to a transition with significant intramolecular charge-transfer character. The electronic properties of three- and four-arm dendrimers with electron-donating dibutylaniline moieties attached to the end of the thiophene dendron, 3G1-2S-N and 4G1-2S-N respectively, are almost identical, indicating that they are dominated by the arms, with no through-core communication allowed, even for the para-linked arms of 4G1-2S-N. However, there is a significant increase in the molar absorptivity of these materials, concomitant with significant broadening of the absorption spectrum, which is an important attribute in light-harvesting applications.

  8. In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates.

    PubMed

    Najlah, Mohammad; Freeman, Sally; Khoder, Mouhamad; Attwood, David; D'Emanuele, Antony

    2017-10-04

    The present study compares the use of high generation G3 and low generation G0 Polyamidoamine (PAMAM) dendrimers as drug carriers of naproxen (NAP), a poorly water soluble drug. Naproxen was conjugated to G3 in different ratios and to G0 in a 1:1 ratio via a diethylene glycol linker. A lauroyl chain (L), a lipophilic permeability enhancer, was attached to G3 and G0 prodrugs. The G3 and G0 conjugates were more hydrophilic than naproxen as evaluated by the measurement of partitioning between 1-octanol and a phosphate buffer at pH 7.4 and pH 1.2. The unmodified surface PAMAM-NAP conjugates showed significant solubility enhancements of NAP at pH 1.2; however, with the number of NAP conjugated to G3, this was limited to 10 molecules. The lactate dehydrogenase (LDH) assay indicated that the G3 dendrimer conjugates had a concentration dependent toxicity towards Caco-2 cells. Attaching naproxen to the surface of the dendrimer increased the IC50 of the resulting prodrugs towards Caco-2 cells. The lauroyl G3 conjugates showed the highest toxicity amongst the PAMAM dendrimer conjugates investigated and were significantly more toxic than the lauroyl-G0-naproxen conjugates. The permeability of naproxen across monolayers of Caco-2 cells was significantly increased by its conjugation to either G3 or G0 PAMAM dendrimers. Lauroyl-G0 conjugates displayed considerably lower cytotoxicity than G3 conjugates and may be preferable for use as a drug carrier for low soluble drugs such as naproxen.

  9. A Foldamer-Dendrimer Conjugate Neutralizes Synaptotoxic β-Amyloid Oligomers

    PubMed Central

    Fülöp, Lívia; Mándity, István M.; Juhász, Gábor; Szegedi, Viktor; Hetényi, Anasztázia; Wéber, Edit; Bozsó, Zsolt; Simon, Dóra; Benkő, Mária; Király, Zoltán; Martinek, Tamás A.

    2012-01-01

    Background and Aims Unnatural self-organizing biomimetic polymers (foldamers) emerged as promising materials for biomolecule recognition and inhibition. Our goal was to construct multivalent foldamer-dendrimer conjugates which wrap the synaptotoxic β-amyloid (Aβ) oligomers with high affinity through their helical foldamer tentacles. Oligomeric Aβ species play pivotal role in Alzheimer's disease, therefore recognition and direct inhibition of this undruggable target is a great current challenge. Methods and Results Short helical β-peptide foldamers with designed secondary structures and side chain chemistry patterns were applied as potential recognition segments and their binding to the target was tested with NMR methods (saturation transfer difference and transferred-nuclear Overhauser effect). Helices exhibiting binding in the µM region were coupled to a tetravalent G0-PAMAM dendrimer. In vitro biophysical (isothermal titration calorimetry, dynamic light scattering, transmission electron microscopy and size-exclusion chromatography) and biochemical tests (ELISA and dot blot) indicated the tight binding between the foldamer conjugates and the Aβ oligomers. Moreover, a selective low nM interaction with the low molecular weight fraction of the Aβ oligomers was found. Ex vivo electrophysiological experiments revealed that the new material rescues the long-term potentiation from the toxic Aβ oligomers in mouse hippocampal slices at submicromolar concentration. Conclusions The combination of the foldamer methodology, the fragment-based approach and the multivalent design offers a pathway to unnatural protein mimetics that are capable of specific molecular recognition, and has already resulted in an inhibitor for an extremely difficult target. PMID:22859942

  10. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    NASA Astrophysics Data System (ADS)

    Jayamurugan, G.; Vasu, K. S.; Rajesh, Y. B. R. D.; Kumar, S.; Vasumathi, V.; Maiti, P. K.; Sood, A. K.; Jayaraman, N.

    2011-03-01

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.

  11. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases

    PubMed Central

    Mintzer, Meredith A.; Dane, Eric L.; O’Toole, George A.; Grinstaff, Mark W.

    2013-01-01

    The emergence and re-emergence of bacterial strains that are resistant to current antibiotics reveals the clinical need for new agents that possess broad-spectrum antibacterial activity. Furthermore, bacteriophobic coatings that repel bacteria are important for medical devices, as the lifetime, reliability, and performance of implant devices are hindered by bacterial adhesion and infection. Dendrimers, a specific class of monodisperse macromolecules, have recently shown potential to function as both antibacterial agents as well as antimicrobial surface coatings. This review discusses the limitations with currently used antibacterial agents and describes how various classes of dendrimers, including glycodendrimers, cationic dendrimers, anionic dendrimers, and peptide dendrimers, have the potential to improve upon or replace certain antibiotics. Furthermore, the unexplored areas in this field of research will be mentioned to present opportunities for additional studies regarding the use of dendrimers as antimicrobial agents. PMID:22126461

  12. Structural characterization of poly(amino)ester dendrimers and related impurities by electrospray tandem mass spectrometry.

    PubMed

    Tintaru, Aura; Monnier, Valérie; Bouillon, Camille; Giordanengo, Rémi; Quéléver, Gilles; Peng, Ling; Charles, Laurence

    2010-08-15

    An acid-terminated poly(amino)ester dendrimer was studied by electrospray ionization tandem mass spectrometry to establish its fragmentation pathways, with the aim of using them to investigate the structure of any defective molecules generated during the dendrimer synthesis. This poly(amino)ester dendrimer could be ionized in both polarities but the most structurally relevant dissociation pathways were found from the deprotonated molecule in negative ion mode. The dissociation pattern of this dendrimer is fully described and supported by accurate mass measurements. The main dissociation reactions of the negatively charged polyacidic dendrimer were shown to consist of (i) the release of carbon dioxide and ethene within a branch, which proceeds as many times as intact neutral branches are available; and (ii) the elimination of an entire dendrimer arm. Monitoring the occurrence of these reactions together with any deviation from these two main routes allowed six major dendritic impurities to be structurally characterized.

  13. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    SciTech Connect

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.; Vasu, K. S.; Kumar, S.; Sood, A. K.; Vasumathi, V.; Maiti, P. K.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.

  14. pH controlled gating of toxic protein pores by dendrimers

    NASA Astrophysics Data System (ADS)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  15. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides

    NASA Astrophysics Data System (ADS)

    Briz, Verónica; Sepúlveda-Crespo, Daniel; Diniz, Ana Rita; Borrego, Pedro; Rodes, Berta; de La Mata, Francisco Javier; Gómez, Rafael; Taveira, Nuno; Muñoz-Fernández, Mª Ángeles

    2015-08-01

    The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.

  16. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.

    PubMed

    Xu, Leyuan; Yeudall, W Andrew; Yang, Hu

    2017-07-15

    The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR

  17. Interactions between DNA and poly(amido amine) dendrimers on silica surfaces.

    PubMed

    Ainalem, Marie-Louise; Campbell, Richard A; Nylander, Tommy

    2010-06-01

    This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer-DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer-DNA-dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica-dendrimer and dendrimer-DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.

  18. Diffusion of Alexa Fluor 488-conjugated dendrimers in rat aortic tissue.

    PubMed

    Cho, Brenda S; Roelofs, Karen J; Majoros, Istvan J; Baker, James R; Stanley, James C; Henke, Peter K; Upchurch, Gilbert R

    2006-11-01

    In this study, the distribution of labeled dendrimers in native and aneurysmal rat aortic tissue was examined. Adult male rats underwent infrarenal aorta perfusion with generation 5 (G5) acetylated Alexa Fluor 488-conjugated dendrimers for varying lengths of time. In a second set of experiments, rats underwent aortic elastase perfusion followed by aortic dendrimer perfusion 7 days later. Aortic diameters were measured prior to and postelastase perfusion, and again on the day of harvest. Aortas were harvested 0, 12, or 24 h postperfusion, fixed, and mounted. Native aortas were harvested and viewed as negative controls. Aortic cross-sections were viewed and imaged using confocal microscopy. Dendrimers were quantified (counts/high-powered field). Results were evaluated by repeated measures ANOVA and Student's t-test. We found that in native aortas, dendrimers penetrated the aortic wall in all groups. For all perfusion times, fewer dendrimers were present as time between dendrimer perfusion and aortic harvest increased. Longer perfusion times resulted in increased diffusion of dendrimers throughout the aortic wall. By 24 h, the majority of the dendrimers were through the wall. Dendrimers in aneurysmal aortas, on day 0 postdendrimer perfusion, diffused farther into the aortic wall than controls. In conclusion, this study documents labeled dendrimers delivered intra-arterially to native rat aortas in vivo, and the temporal diffusion of these molecules within the aortic wall. Increasing perfusion time and length of time prior to harvest resulted in continued dendrimer diffusion into the aortic wall. These preliminary data provide a novel mechanism whereby local inhibitory therapy may be delivered locally to aortic tissue.

  19. Synthesis, photophysical studies and ¹O₂ generation of carboxylate-terminated zinc phthalocyanine dendrimers.

    PubMed

    Setaro, Francesca; Ruiz-González, Rubén; Nonell, Santi; Hahn, Uwe; Torres, Tomás

    2014-07-01

    Highly water-soluble dendrimers have been prepared consisting of a central zinc phthalocyanine moiety and dendritic wedges with terminal carboxylate groups. The biggest polyelectrolyte comprises 32 negative charges at the dendrimer surface. The photophysical studies reveal a strong correlation between the degree of dendritic environment, the extent of aggregation, and the ability to generate singlet oxygen in aqueous media. Compared to dendrimers having an axial derivatization the functionalization on the outer rim also significantly improves the phthalocyanine's ability to photosensitize singlet oxygen.

  20. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications.

    PubMed

    Sun, Wenjie; Mignani, Serge; Shen, Mingwu; Shi, Xiangyang

    2016-12-01

    Magnetic iron oxide nanoparticles (MIO NPs) bearing different appropriate surface modifications can be prepared using diverse physical and chemical methods. As an ideal macromolecule, dendrimers have attracted considerable attention because of their unique properties, including their three 3D architecture, monodispersity, highly branched macromolecular characteristics, and tunable terminal functionalities. These properties make dendrimers a powerful nanoplatform for the creation of functional organic and/or inorganic hybrid NPs, in particular dendrimer-based MIO NPs. Here, we report on recent advances in the preparation of dendrimer-based MIO NPs for different biomedical applications, such as magnetic resonance (MR) imaging, drug and gene delivery, and protein immobilization.

  1. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    PubMed

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  2. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications.

    PubMed

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1-10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific "architecture" and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases.

  3. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY

    PubMed Central

    Sadekar, S.; Ghandehari, H.

    2011-01-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer – drug conjugates, as a function of physicochemical properties will further need to be assessed. PMID:21983078

  4. Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2009-01-19

    Recent advances in molecular dynamics simulation methodologies and computational power have allowed accurate predictions of dendrimer size, shape, and interactions with bilayers and polyelectrolytes with modest computational effort. Atomistic and coarse-grained (CG) models show strong interactions of cationic dendrimers with lipid bilayers. The CG simulations with explicit lipid and water capture bilayer penetration and pore formation, showing that pore formation is enhanced at high dendrimer concentration, but suppressed at low temperature and high salt concentration, in agreement with experiments. Cationic linear polymers have also been simulated, but do not perforate membranes, evidently because by deforming into a pancake, the charges on a linear polymer achieve intimate contact with a single bilayer leaflet. The relatively rigid dendrimers, on the other hand, penetrate the bilayer, because only by interacting with both leaflets can they achieve a similar degree of contact between charged groups. Also, a "dendrimer-filled vesicle" structure for the dendrimer-membrane interaction is predicted by mesoscale thermodynamic simulations, in agreement with a picture derived from experimental observations. In simulations of complexes of dendrimer and polyelectrolyte, anionic linear chains wrap around the cationic dendrimer and penetrate inside it. Overall, these new results indicate that simulations can now provide predictions in excellent agreement with experimental observations, and provide atomic-scale insights into dendrimer structure and dynamics.

  5. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review

    PubMed Central

    Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying

    2012-01-01

    Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics. PMID:23741608

  6. Quaternized and Thiazole-Functionalized Free Radical-Generating Organometallic Dendrimers as Antimicrobial Platform against Multidrug-Resistant Microorganisms.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Bissessur, Rabin; Overy, David; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2017-03-31

    New macromolecules such as dendrimers are increasingly needed to drive breakthroughs in diverse areas, for example, healthcare. Here, the authors report hybrid antimicrobial dendrimers synthesized by functionalizing organometallic dendrimers with quaternary ammonium groups or 2-mercaptobenzothiazole. The functionalization tunes the glass transition temperature and antimicrobial activities of the dendrimers. Electron paramagnetic resonance spectroscopy reveals that the dendrimers form free radicals, which have significant implications for catalysis and biology. In vitro antimicrobial assays indicate that the dendrimers are potent antimicrobial agents with activity against multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium as well as other microorganisms. The functionalization increases the activity, especially in the quaternary ammonium group-functionalized dendrimers. Importantly, the activities are selective because human epidermal keratinocytes cells and BJ fibroblast cells exposed to the dendrimers are viable after 24 h.

  7. Near-Infrared-Triggered Photodynamic Therapy toward Breast Cancer Cells Using Dendrimer-Functionalized Upconversion Nanoparticles.

    PubMed

    Wang, Bing-Yen; Liao, Ming-Liang; Hong, Guan-Ci; Chang, Wen-Wei; Chu, Chih-Chien

    2017-09-11

    Water-soluble upconversion nanoparticles (UCNPs) that exhibit significant ultraviolet, blue, and red emissions under 980-nm laser excitation were successfully synthesized for performing near infrared (NIR)-triggered photodynamic therapy (PDT). The lanthanide-doped UCNPs bearing oleate ligands were first exchanged by citrates to generate polyanionic surfaces and then sequentially encapsulated with NH₂-terminated poly(amido amine) (PAMAM) dendrimers (G4) and chlorine6 (Ce6) using a layer-by-layer (LBL) absorption strategy. Transmission electron microscopy and X-ray diffraction analysis confirm that the hybrid UCNPs possess a polygonal morphology with an average dimension of 16.0 ± 2.1 nm and α-phase crystallinity. A simple calculation derived through thermogravimetric analysis revealed that one polycationic G4 dendrimer could be firmly accommodated by approximately 150 polyanionic citrates through multivalent interactions. Moreover, zeta potential measurements indicated that the LBL fabrication results in the hybrid nanoparticles with positively charged surfaces originated from these dendrimers, which assist the cellular uptake in biological specimens. The cytotoxic singlet oxygen based on the photosensitization of the adsorbed Ce6 through the upconversion emissions can be readily accumulated by increasing the irradiation time of the incident lasers. Compared with that of 660-nm lasers, NIR-laser excitation exhibits optimized in vitro PDT effects toward human breast cancer MCF-7 cells cultured in the tumorspheres, and less than 40% of cells survived under a low Ce6 dosage of 2.5 × 10(-7) M. Fluorescence microscopy analysis indicated that the NIR-driven PDT causes more effective destruction of the cells located inside spheres that exhibit significant cancer stem cell or progenitor cell properties. Moreover, an in vivo assessment based on immunohistochemical analysis for a 4T1 tumor-bearing mouse model confirmed the effective inhibition of cancer cell

  8. Highly Efficient and Safe Delivery of VEGF siRNA by Bioreducible Fluorinated Peptide Dendrimers for Cancer Therapy.

    PubMed

    Cai, Xiaojun; Zhu, Haofang; Zhang, Yanmei; Gu, Zhongwei

    2017-03-22

    RNA interference (RNAi) has a great promise in treating various acquired and hereditary diseases. However, it remains highly desirable to develop new delivery system to circumvent complex extra- and intracellular barriers for successful clinical translation. Here, we report on a versatile polymeric vector, bioreducible fluorinated peptide dendrimers (BFPD), for efficient and safe small interfering RNA (siRNA) delivery. In virtue of skillfully integrating all of the unique advantages of reversible cross-linking, fluorination, and peptide dendrimers, this novel vector can surmount almost all extra- and intracellular barriers associated with local siRNA delivery through highly improved physiological stability and serum resistance, significantly increased intratumoral enrichment, cellular internalization, successful facilitation of endosomal escape, and cytosolic siRNA release. BFPD polyplexes, carrying small interfering vascular endothelial growth factor (siVEGF), demonstrated excellent VEGF silencing efficacy (∼65%) and a strong capability for inhibiting HeLa cell proliferation. More importantly, these polyplexes showed superior performance in long-term enrichment in the tumor sites and had a high level of tumor growth inhibition. Furthermore, these polyplexes not only exhibited excellent in vivo antitumor efficacy but also demonstrated superior biocompatibility, compared with LPF2000, both in vivo and in vitro. These findings indicate that BFPD is an efficient and safe siRNA delivery system and has remarkable potential for RNAi-based cancer treatment.

  9. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  10. In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers?

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Ramesh, Muthusamy; Kalhapure, Rahul; Suleman, Nadia; Govender, Thirumala

    2016-04-01

    We have shown that novel silver salts of poly (propyl ether) imine (PETIM) dendron and dendrimers developed in our group exhibit preferential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus. This led us to examine whether molecular modeling methods could be used to identify the key structural design principles for a bioactive lead molecule, explore the mechanism of binding with biological targets, and explain their preferential antibacterial activity. The current article reports the conformational landscape as well as mechanism of binding of generation 1 PETIM dendron and dendrimers to penicillin-binding proteins (PBPs) in order to understand the antibacterial activity profiles of their silver salts. Molecular dynamics at different simulation protocols and conformational analysis were performed to elaborate on the conformational features of the studied dendrimers, as well as to create the initial structure for further binding studies. The results showed that for all compounds, there were no significant conformational changes due to variation in simulation conditions. Molecular docking calculations were performed to investigate the binding theme between the studied dendrimers and PBPs. Interestingly, in significant accordance with the experimental data, dendron and dendrimer with aliphatic cores were found to show higher activity against S. aureus than the dendrimer with an aromatic core. The latter showed higher activity against MRSA. The findings from this computational and molecular modeling report together with the experimental results serve as a road map toward designing more potent antibacterial dendrimers against resistant bacterial strains.

  11. Design, synthesis, characterization and drug release kinetics of PAMAM dendrimer based drug formulations

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Yunus Emre

    The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen conjugate to understand the effect of architecture and linker on drug release. Ibuprofen was directly conjugated to NH2 -terminated dendrimer by an amide bond and OH-terminated dendrimer by an ester bond. A tetra-peptide linked dendrimer conjugate and a linear mPEG-ibuprofen conjugate were also studied for comparison to direct linked dendrimer conjugates. It is demonstrated that the 3-D nanoscale architecture of PAMAM dendrimer-drug conjugates, along with linking chemistry govern the drug release mechanisms as well as kinetics. Understanding these structural effects on their drug release characteristics is crucial for design of dendrimer conjugates with high efficacy such as poly(amidoamine) dendrimer-N-Acetylcysteine conjugates with disulfide linkages. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. A poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. FITC-labeled conjugates showed that they enter cells rapidly and localize in the cytoplasm of lipopolysaccharide (LPS)-activated microglial cells. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells using reactive oxygen species (ROS) assays. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.

  12. Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(amidoamine) Dendrimers in Biomembranes

    PubMed Central

    Smith, Pieter E. S.; Brender, Jeffrey R.; Dürr, Ulrich H. N.; Xu, Jiadi; Mullen, Douglas G.; Banaszak Holl, Mark M.; Ramamoorthy, Ayyalusamy

    2010-01-01

    Poly(amidoamine) (PAMAM) dendrimer nanobiotechnology shows great promise in targeted drug delivery and gene therapy. Because of the involvement of cell membrane lipids with the pharmacological activity of dendrimer nanomedicines, the interactions between dendrimers and lipids are of particular relevance to the pharmaceutical applications of dendrimers. In this study, solid-state NMR was used to obtain a molecular image of the complex of generation 5 PAMAM dendrimer with the lipid bilayer. Using 1H radio frequency driven dipolar recoupling (RFDR) and 1H magic angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) techniques, we show that dendrimers are thermodynamically stable when inserted into zwitterionic lipid bilayers. 14N and 31P NMR experiments on static samples and measurements of the mobility of C–H bonds using a 2D proton detected local field protocol under MAS corroborate these results. The localization of dendrimers in the hydrophobic core of lipid bilayers restricts the motion of bilayer lipid tails, with the smaller G5 dendrimer having more of an effect than the larger G7 dendrimer. Fragmentation of the membrane does not occur at low dendrimer concentrations in zwitterionic membranes. Because these results show that the amphipathic dendrimer molecule can be stably incorporated in the interior of the bilayer (as opposed to electrostatic binding at the surface), they are expected to be useful in the design of dendrimer-based nanobiotechnologies. PMID:20481633

  13. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  14. Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials.

    PubMed

    García-Gallego, Sandra; Franci, Gianluigi; Falanga, Annarita; Gómez, Rafael; Folliero, Veronica; Galdiero, Stefania; de la Mata, Francisco Javier; Galdiero, Massimiliano

    2017-09-21

    In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.

  15. Sodium sensing in neurons with a dendrimer-based nanoprobe.

    PubMed

    Lamy, Christophe M; Sallin, Olivier; Loussert, Céline; Chatton, Jean-Yves

    2012-02-28

    Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.

  16. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells.

    PubMed

    Zhu, Jingyi; Fu, Fanfan; Xiong, Zhijuan; Shen, Mingwu; Shi, Xiangyang

    2015-09-01

    We report here the synthesis of multifunctional dendrimer-entrapped gold nanoparticles (Au DENPs) modified with alpha-tocopheryl succinate (α-TOS) and arginine-glycine-aspartic acid (RGD) peptide for targeted chemotherapy and computed tomography (CT) imaging of cancer cells. In this work, generation 5 poly(amidoamine) dendrimers pre-conjugated with fluorescein isothiocyanate (FI), RGD peptide via a polyethylene glycol (PEG) spacer, and PEG-linked α-TOS were used as templates to synthesize AuNPs. Followed by acetylation of the remaining dendrimer terminal amines, multifunctional Au DENPs with an Au core size of 4.0nm were generated. The formed multifunctional Au DENPs were characterized via different techniques. We show that the multifunctional Au DENPs are stable at different pH (5-8) and temperature (4-50°C) conditions and display enhanced efficacy in the generation of reactive oxygen species, which is associated with their increased ability to induce apoptosis. Thanks to the role played by RGD-mediated targeting, the multifunctional Au DENPs are able to target cancer cells overexpressing αvβ3 integrin and specifically inhibit the growth of the cancer cells. Likewise, the existence of AuNPs enabled the multifunctional Au DENPs to have a better X-ray attenuation property than clinically used iodinated CT contrast agents (e.g., Omnipaque) and the use of them as a nanoprobe for targeted CT imaging of cancer cells in vitro. The formed multifunctional Au DENPs may hold great promise to be used as a theranostic platform for cancer theranostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dendrimers Based on [1,3,5]-Triazines

    PubMed Central

    STEFFENSEN, MACKAY B.; HOLLINK, EMILY; KUSCHEL, FRANK; BAUER, MONIKA; SIMANEK, ERIC E.

    2009-01-01

    A comprehensive and chronological account of dendrimers based on [1,3,5]-triazines is provided. Synthetic strategies to install the triazine through cycloaddition, cyclotrimerization, and nucleophilic aromatic substitution of cyanuric chloride are discussed. Motivations and applications of these architectures are surveyed, including the preparation of supra-molecular assemblies in the solution and solid states and their use in medicines, advanced materials, and separations when anchored to solid supports. PMID:19953202

  18. Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents

    DTIC Science & Technology

    2001-01-01

    especially important in the topical antibacterial treatment of burn wounds, where transient bacteremia is commonly cited.1 Silver sulfonamides, par...In this test, dendrimer- silver compounds were examined for diffusible antimicrobial activity by placing a 10 µL sample of each solution onto a 6 mm...compound, it does not have visible absorption over 300 nm wavelength. Absorption at longer wavelength is caused by the silver nanoparticles . Spec

  19. Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers.

    PubMed

    Degoricija, Lovorka; Bansal, Prashant N; Söntjens, Serge H M; Joshi, Neel S; Takahashi, Masaya; Snyder, Brian; Grinstaff, Mark W

    2008-10-01

    First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.

  20. Efficient orthogonal bioconjugation of dendrimers for synthesis of bioactive nanoparticles.

    PubMed

    Gaertner, Hubert F; Cerini, Fabrice; Kamath, Arun; Rochat, Anne-Françoise; Siegrist, Claire-Anne; Menin, Laure; Hartley, Oliver

    2011-06-15

    Nanoparticles carrying biologically active functional sets (e.g., targeting moiety, payload, tracer) have potential use in a wide range of clinical applications. Though complex, such constructions should, as far as possible, have a defined molecular architecture and be monodisperse. However, the existing methods to achieve this goal are unsuitable for the incorporation of peptides and proteins, and those that provide for orthogonal introduction of two different types of functional element are incompatible with the use of commercially available materials. In this study, we have developed approaches for the production of nanoparticles based on commercially available polyamidoamine (PAMAM) dendrimers. First, we identified an optimized oxime conjugation strategy under which complex dendrimers can be fully decorated not only with model peptides, but also with recombinant proteins (insulin was taken as an example). Second, we developed a strategy based on a two-chain covalent heterodendrimer (a "diblock") based on cystamine core PAMAM dendrimers and used it to generate heterodendrimers, into which a peptide array and a mannose array were orthogonally introduced. Finally, by incorporating a functionalized linker into the diblock architecture we were able to site-specifically introduce a third functional element into the nanoparticle. We exemplified this approach using fluorescein, a mannose array, and a peptide array as the three functionalities. We showed that incorporation of a mannose array into a nanoparticle strongly and specifically enhances uptake by sentinel cells of the immune system, an important property for vaccine delivery applications. These PAMAM dendrimer-based approaches represent a robust and versatile platform for the development of bioactive nanoparticles.

  1. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin.

    PubMed

    Diaz, Carola; Guzmán, José L; Jiménez, Verónica A; Alderete, Joel B

    2017-04-03

    PEGylated PAMAM-G4 dendrimers with substitution percentages of 50% and intermediate size PEG chains (0.55 and 2.0 kDa) were synthesized and evaluated as solubility enhancers and potential supramolecular carriers for the poorly soluble drug Silybin (SIL). Aqueous solubility profiles revealed that the PEGylated system with 2.0 kDa chains induced a five-fold solubility increase for SIL and the largest drug-loading capacity within the systems under study with an average complex stoichiometry of 71:1 according to the Higuchi-Connors formulation for multiple binding sites. The supramolecular interaction between SIL and PEGylated PAMAM-G4 dendrimers was confirmed by 2D-NOESY experiments, which evidenced the simultaneous complexation of the drug in both PAMAM-G4 branches and outermost PEG chains. In vitro release studies showed that 2.0 kDa PEG chains induced a more extended release time compared to 0.5 kDa PEG chains. This result was attributed to the enhancement of PEG-assistance to SIL complexation in systems with longer PEG chains, which are able to self-penetrate into dendrimer cavities and cooperate in the stabilization of SIL complexes, thus delaying the release of SIL from the supramolecular host. These results are valuable for the future design and development of novel PAMAM-based systems for SIL complexation and delivery.

  2. Isolation and Characterization of Precise Dye/Dendrimer Ratios

    PubMed Central

    Dougherty, Casey A.; Furgal, Joseph C.; van Dongen, Mallory A.; Goodson, Theodore; Banaszak Holl, Mark M.; Manono, Janet; DiMaggio, Stassi

    2014-01-01

    Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne `click' ligand, separation into sample containing precisely defined `click' ligand/particle ratios using reverse-phase high performance liquid chromatography (rp-HPLC), followed by reaction with excess azide-functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using rp-HPLC. These materials were characterized using 1H and 19F NMR, rp-HPLC, UV-Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. PMID:24604830

  3. Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents.

    PubMed

    Huang, Ching-Hui; Nwe, Kido; Al Zaki, Ajlan; Brechbiel, Martin W; Tsourkas, Andrew

    2012-11-27

    Gadolinium-conjugated dendrimer nanoclusters (DNCs) are a promising platform for the early detection of disease; however, their clinical utility is potentially limited due to safety concerns related to nephrogenic systemic fibrosis (NSF). In this paper, biodegradable DNCs were prepared with polydisulfide linkages between the individual dendrimers to facilitate excretion. Further, DNCs were labeled with premetalated Gd chelates to eliminate the risk of free Gd becoming entrapped in dendrimer cavities. The biodegradable polydisulfide DNCs possessed a circulation half-life of >1.6 h in mice and produced significant contrast enhancement in the abdominal aorta and kidneys for as long as 4 h. The DNCs were reduced in circulation as a result of thiol-disulfide exchange, and the degradation products were rapidly excreted via renal filtration. These agents demonstrated effective and prolonged in vivo contrast enhancement and yet minimized Gd tissue retention. Biodegradable polydisulfide DNCs represent a promising biodegradable macromolecular MRI contrast agent for magnetic resonance angiography and can potentially be further developed into target-specific MRI contrast agents.

  4. A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control.

    PubMed

    Liu, Xiaoxia; He, Bicheng; Xu, Zejun; Yin, Meizhen; Yang, Wantai; Zhang, Huaijiang; Cao, Jingjun; Shen, Jie

    2015-01-14

    We report the delivery of a hydrophobic pesticide, thiamethoxam, by water-soluble nanosized cationic dendrimers that contain hydrophobic dendritic polyesters and peripheral amines, demonstrated by DLS, spectral analysis and ITC. The dendrimer-based nanocarrier can efficiently deliver the pesticide into the live cells and largely increase the cytotoxicity of the drug.

  5. Dendrimer nanofluids in the concentrated regime: from polymer melts to soft spheres.

    PubMed

    Pilkington, Georgia A; Pedersen, Jan S; Briscoe, Wuge H

    2015-03-24

    Understanding dendrimer structures and their interactions in concentrated solutions is important to a wide range of applications, such as drug delivery and lubrication. However, controversy has persisted concerning whether, when confined to proximity, dendrimers would entangle as observed for polymer systems, or act as deformable spheres. Furthermore, how such behavior may be related to their size-dependent molecular architecture remains unclear. Using small-angle X-ray scattering (SAXS), the intermolecular interactions and structures in aqueous nanofluids containing three generations of carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers (G0.5, Rg = 9.3 Å; G3.5, Rg = 22.6 Å; G5.5, Rg = 39.9 Å, where Rg is the radius of gyration) over a mass fraction range 0.005 ≤ x ≤ 0.316 have been studied. In the highly concentrated regime (x ≥ 0.157), we observe that the solution properties depend on the dendrimer generation. Our results suggest that the smaller G0.5 dendrimers form a highly entangled polymer melt, while the larger dendrimers, G3.5 and G5.5, form densely packed and ordered structures, in which the individual dendrimers exhibit some degree of mutual overlap or deformation. Our results demonstrate the tunability of interdendrimer interactions via their molecular architecture, which in turn may be harnessed to control and tailor the physical properties of dendrimer nanofluids.

  6. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  7. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    PubMed Central

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  8. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    PubMed

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications

    NASA Astrophysics Data System (ADS)

    Shen, Mingwu; Shi, Xiangyang

    2010-09-01

    This review reports some recent advances on the synthesis, self-assembly, and biofunctionalization of various dendrimer-based organic/inorganic hybrid nanoparticles (NPs) for various biomedical applications, including but not limited to protein immobilization, gene delivery, and molecular diagnosis. In particular, targeted molecular imaging of cancer using dendrimer-based organic/inorganic hybrid NPs will be introduced in detail.

  10. Quantitative evaluation of the effect of poly(amidoamine) dendrimers on the porosity of epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ling; Khanafer, Khalil; El-Sayed, Mohamed E. H.

    2010-05-01

    Poly(amidoamine) (PAMAM) dendrimers are a family of water-soluble polymers with a characteristic tree-like branching architecture and a large number of surface groups, which have been used to immobilize a variety of therapeutic molecules for targeted drug delivery. Earlier studies showed that small cationic PAMAM-NH2 and selected anionic PAMAM-COOH dendrimers permeate across in vitro models of the small intestinal epithelium by paracellular and transcellular transport mechanisms. The focus of this research is to mathematically calculate the effect of cationic, anionic, and neutral PAMAM dendrimers on the porosity of epithelial tight junctions as a function of dendrimers concentration, incubation time, generation number, and charge density. Results show that the increase in the concentration, incubation time and generation number of cationic G0-G2 PAMAM-NH2 and anionic G2.5 and G3.5 PAMAM-COOH dendrimers caused a corresponding increase in the porosity of Caco-2 cell monolayers. Neutral G2-G4 PAMAM-OH dendrimers had no effect on the porosity of intestinal cells. These results provide quantitative evidence that the observed increase in permeability of PAMAM dendrimers across Caco-2 cell monolayers is due to their effect on the organization of the tight junctions and the associated increase in membrane porosity. Furthermore, these results emphasize the potential of cationic PAMAM-NH2 and anionic PAMAM-COOH dendrimers to function as carriers for controlled oral drug delivery.

  11. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  12. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    PubMed Central

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS. PMID:26604753

  13. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors.

    PubMed

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-11-21

    We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.

  14. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  15. Orientational mobility and relaxation spectra of dendrimers: Theory and computer simulation.

    PubMed

    Markelov, Denis A; Lyulin, Sergey V; Gotlib, Yuli Y; Lyulin, Alexey V; Matveev, Vladimir V; Lahderanta, Erkki; Darinskii, Anatolij A

    2009-01-28

    The developed theory of the orientational mobility of individual segments of a perfectly branched dendrimer is used to calculate the relaxation spectrum of a dendrimer. Frequency dependences of NMR relaxation 1/T(1) and of the nuclear Overhauser effect have been theoretically calculated from the Brownian dynamics simulation data. The dendrimer segmental orientational mobility is governed by three main relaxation processes: (i) the rotation of the dendrimer as a whole, (ii) the rotation of the dendrimer's branch originated from a given segment, and (iii) the local reorientation of the segment. The internal orientational mobility of an individual dendrimer segment depends only on the topological distance between this segment and the terminal shell of the dendrimer. Characteristic relaxation times of all processes and their contributions to the segmental mobility have been calculated. The influence of the number of generations and the number of the generation shell on the relaxation times has been studied. The correlation between the characteristic times and the calculated relaxation spectrum of the dendrimer has been established.

  16. Spectrophotometric titration of bimetallic metal cation binding in polyamido(amine) dendrimer templates.

    PubMed

    Marvin, Katherine A; Johnson, Justin A; Rodenbusch, Stacia E; Gong, Lucy; Vanden Bout, David A; Stevenson, Keith J

    2012-06-05

    Spectrophotometric titration and a binding isotherm were used to accurately assess the loading capacity of generation four polyamido(amine) (PAMAM) dendrimer templates with terminal alcohol groups (G4-OH). Preparation of bimetallic G4-OH dendrimer-encapsulated metal nanoclusters (DENs) necessitates knowledge of the precise metal-ion binding capacity. The binding of metal ions such as Pt(2+) and Pd(2+) has proven difficult to assess via UV-vis spectroscopy because the absorbance shifts associated with metal-ion binding within the dendrimer template are masked by the absorbance of the PAMAM dendrimer itself. In contrast, the binding of Cu(2+) to G4-OH PAMAM dendrimer results in a strong, distinct absorption band at 300 nm, making UV-vis spectrophotometric titration with copper straightforward. Here we use copper binding as a means to assess the number of binding sites remaining within the PAMAM G4-OH dendrimer after the complexation of a specified molar excess of Pd(2+) or Pt(2+). In addition, we use a binding isotherm to mathematically estimate the loading capacity of the dendrimer in each case. The loading capacities for M(2+) in the G4-OH dendrimer were found to be ∼16 for copper alone, ∼21 for copper combined with palladium, and ∼25 for copper combined with platinum.

  17. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  18. Formation of a "Hollow" Interior in the Fourth-Generation Dendrimer with Attached Oligomeric Terminal Segments.

    PubMed

    Markelov, Denis A; Polotsky, Alexey A; Birshtein, Tatiana M

    2014-12-26

    By using the Scheutjens-Fleer self-consistent field approach, the structure of the fourth-generation dendrimer with attached terminal chemically different oligomeric segments is studied theoretically. It is demonstrated that an incompatibility of terminal segments with inner dendrimer units leads to formation of a "hollow" core with reduced polymer density in the dendrimer center. This effect is enhanced with a deterioration in the solvent quality for terminal segments. This observation is in accordance with experimental results and molecular dynamics simulation data for an analogous system. It is established that the main factor determining the hollow core formation is the segregation between inner and terminal units because the main driving force for the effect is the localization of the terminal segments at the dendrimer periphery. The influence of structural parameters of dendrimer such as the number of generations and length of the terminal chain on this effect is also studied.

  19. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer.

    PubMed

    Albrecht, Ken; Hirabayashi, Yuki; Otake, Masaya; Mendori, Shin; Tobari, Yuta; Azuma, Yasuo; Majima, Yutaka; Yamamoto, Kimihisa

    2016-12-01

    The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl2) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers.

  20. Poly(Propylene Imine) Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents.

    PubMed

    Wrońska, Natalia; Felczak, Aleksandra; Zawadzka, Katarzyna; Poszepczyńska, Martyna; Różalska, Sylwia; Bryszewska, Maria; Appelhans, Dietmar; Lisowska, Katarzyna

    2015-10-23

    Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

  1. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer

    PubMed Central

    Albrecht, Ken; Hirabayashi, Yuki; Otake, Masaya; Mendori, Shin; Tobari, Yuta; Azuma, Yasuo; Majima, Yutaka; Yamamoto, Kimihisa

    2016-01-01

    The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl2) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers. PMID:27957538

  2. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-09

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.

  3. Quasi-elastic light scattering of platinum dendrimer-encapsulated nanoparticles.

    PubMed

    Wales, Christina H; Berger, Jacob; Blass, Samuel; Crooks, Richard M; Asherie, Neer

    2011-04-05

    Platinum dendrimer-encapsulated nanoparticles (DENs) containing an average 147 atoms were prepared within sixth-generation, hydroxyl-terminated poly(amidoamine) dendrimers (G6-OH). The hydrodynamic radii (R(h)) of the dendrimer/nanoparticle composites (DNCs) were determined by quasi-elastic light scattering (QLS) at high (pH ∼10) and neutral pH for various salt concentrations and identities. At high pH, the size of the DNC (R(h) ∼4 nm) is close to that of the empty dendrimer. At neutral pH, the size of the DNC approximately doubles (R(h) ∼8 nm) whereas that of the empty dendrimer remains unchanged. Changes in ionic strength also alter the size of the DNCs. The increase in size of the DNC is likely due to electrostatic interactions involving the metal nanoparticle.

  4. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  5. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives.

    PubMed

    Rodríguez Villanueva, Javier; Navarro, Manuel Guzmán; Rodríguez Villanueva, Laura

    2016-09-10

    Dendrimers have called the attention of scientists in the area of drug and gene delivery over the last two decades for their versatility, complexity and multibranching properties. Some strategies for optimizing drug pharmacokinetics and site-specific targeting using dendrimers have been proposed. Among them, those related to treating and managing ocular diseases are of special interest. Ocular therapies suffer from significant disadvantages, including frequent administration, poor penetration and/or rapid elimination. This review provides an overview of the recent and promising progress in the dendrimers field, focusing on both the anterior and posterior segments of the eye ocular targets, the use of dendrimers as a strategy for overcoming obstacles to the traditional treatment of ocular diseases and an outlook on future directions. Finally, a first approach to ocular safety with dendrimers is intended that accounts for the state-of-the-art science to date.

  6. Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers.

    PubMed

    Dabrzalska, Monika; Benseny-Cases, Nuria; Barnadas-Rodríguez, Ramon; Mignani, Serge; Zablocka, Maria; Majoral, Jean-Pierre; Bryszewska, Maria; Klajnert-Maculewicz, Barbara; Cladera, Josep

    2016-01-01

    The systemic or local administration of a photosensitizer for photodynamic therapy is highly limited by poor selectivity, rapid deactivation and long-lasting skin toxicity due to unfavorable biodistribution. Drug delivery systems based on nanocarriers may help specific and effective delivery of photosensitizers. In the present paper, the interaction of two photosensitizers, methylene blue and rose bengal, with phosphorous cationic and anionic dendrimers as potential nanocarriers, has been characterized. A novel method is presented based on the analysis of the infrared spectra of mixtures of photosensitizer and dendrimer. The capacity of dendrimers to bind the photosensitizers has been evaluated by obtaining the corresponding binding curves. It is shown that methylene blue interacts with both cationic and anionic dendrimers, whereas rose bengal only binds to the cationic ones. Dendrimers are shown to be potential nanocarriers for a specific delivery of both photosensitizers.

  7. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes.

    PubMed

    Wen, Shihui; Liu, Hui; Cai, Hongdong; Shen, Mingwu; Shi, Xiangyang

    2013-09-01

    We report the use of multifunctional dendrimer-modified multi-walled carbon nanotubes (MWCNTs) for targeted and pH-responsive delivery of doxorubicin (DOX) into cancer cells. In this study, amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers modified with fluorescein isothiocyanate (FI) and folic acid (FA) were covalently linked to acid-treated MWCNTs, followed by acetylation of the remaining dendrimer terminal amines to neutralize the positive surface potential. The formed multifunctional MWCNTs (MWCNT/G5.NHAc-FI-FA) were characterized via different techniques. Then, the MWCNT/G5.NHAc-FI-FA was used to load DOX for targeted and pH-responsive delivery to cancer cells overexpressing high-affinity folic acid receptors (FAR). We showed that the MWCNT/G5.NHAc-FI-FA enabled a high drug payload and encapsulation efficiency both up to 97.8% and the formed DOX/MWCNT/G5.NHAc-FI-FA complexes displayed a pH-responsive release property with fast DOX release under acidic environment and slow release at physiological pH conditions. Importantly, the DOX/MWCNT/G5.NHAc-FI-FA complexes displayed effective therapeutic efficacy, similar to that of free DOX, and were able to target to cancer cells overexpressing high-affinity FAR and effectively inhibit the growth of the cancer cells. The synthesized multifunctional dendrimer-modified MWCNTs may be used as a targeted and pH-responsive delivery system for targeting therapy of different types of cancer cells.

  8. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats.

    PubMed

    Kaminskas, Lisa M; McLeod, Victoria M; Ascher, David B; Ryan, Gemma M; Jones, Seth; Haynes, John M; Trevaskis, Natalie L; Chan, Linda J; Sloan, Erica K; Finnin, Benjamin A; Williamson, Mark; Velkov, Tony; Williams, Elizabeth D; Kelly, Brian D; Owen, David J; Porter, Christopher J H

    2015-02-02

    The current study sought to explore whether the subcutaneous administration of lymph targeted dendrimers, conjugated with a model chemotherapeutic (methotrexate, MTX), was able to enhance anticancer activity against lymph node metastases. The lymphatic pharmacokinetics and antitumor activity of PEGylated polylysine dendrimers conjugated to MTX [D-MTX(OH)] via a tumor-labile hexapeptide linker was examined in rats and compared to a similar system where MTX was α-carboxyl O-tert-butylated [D-MTX(OtBu)]. The latter has previously been shown to exhibit longer plasma circulation times. D-MTX(OtBu) was well absorbed from the subcutaneous injection site via the lymph, and 3 to 4%/g of the dose was retained by sentinel lymph nodes. In contrast, D-MTX(OH) showed limited absorption from the subcutaneous injection site, but absorption was almost exclusively via the lymph. The retention of D-MTX(OH) by sentinel lymph nodes was also significantly elevated (approximately 30% dose/g). MTX alone was not absorbed into the lymph. All dendrimers displayed lower lymph node targeting after intravenous administration. Despite significant differences in the lymph node retention of D-MTX(OH) and D-MTX(OtBu) after subcutaneous and intravenous administration, the growth of lymph node metastases was similarly inhibited. In contrast, the administration of MTX alone did not significantly reduce lymph node tumor growth. Subcutaneous administration of drug-conjugated dendrimers therefore provides an opportunity to improve drug deposition in downstream tumor-burdened lymph nodes. In this case, however, increased lymph node biodistribution did not correlate well with antitumor activity, possibly suggesting constrained drug release at the site of action.

  9. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase.

    PubMed

    Li, Xue; Zhu, Lusheng; Zhou, Yunlei; Yin, Huanshun; Ai, Shiyun

    2017-02-21

    A novel photoelectrochemical (PEC) assay is developed for sensitive detection of protein kinase A (PKA) activity based on PKA-catalyzed phosphorylation reaction in solution and signal amplification strategy triggered by PAMAM dendrimer and alkaline phosphatase (ALP). In this strategy, it is noteworthy at this point that PKA phosphorylation was achieved in solution instead of on the surface of the electrode, which has advantages of the good contact in reactants and simple experimental procedure. For immobilizing the phosphorylated peptide (P-peptide) on electrode surface, graphite-like carbon nitride (g-C3N4) and titanium dioxide (TiO2) complex is synthesized and characterized, which plays a significant role for TiO2 conjugating phosphate groups and g-C3N4 providing PEC signal. Subsequently, PAMAM dendrimer and ALP can be captured on P-peptide and TiO2/g-C3N4 modified ITO electrode via interaction between the -COOH groups on the surface of PAMAM dendrimer and the -NH2 groups of peptide and ALP, which can lead to the increase of ALP amount on the modified electrode surface assisted with the PAMAM dendrimer. As a result, the amount of ALP catalyzes of L-ascorbic acid 2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting in an increased photocurrent. The proposed detection assay displays high selectivity and low detection limit of 0.048 U/mL (S/N = 3) for PKA activity. This biosensor can also be applied for the evaluation of PKA inhibition and PKA activity assay in cell samples. Therefore, the fabricated PEC biosensor is potentionally well in PKA activity detection and inhibitor screening.

  10. The Role of Ganglioside GM1 in Cellular Internalization Mechanisms of Poly(amidoamine) Dendrimers

    PubMed Central

    Hong, Seungpyo; Rattan, Rahul; Majoros, István J.; Mullen, Douglas G.; Peters, Jennifer L.; Shi, Xiangyang; Bielinska, Anna U.; Blanco, Luz; Orr, Bradford G.; Baker, James R.; Holl, Mark M. Banaszak

    2015-01-01

    Generation 7 (G7) poly(amidoamine) (PAMAM) dendrimers with amine, acetamide, and carboxylate end groups were prepared to investigate polymer/cell membrane interactions in vitro. G7 PAMAM dendrimers were used in this study because higher generation of dendrimers are more effective in permeabilization of cell plasma membranes and in the formation of nanoscale holes in supported lipid bilayers than smaller, lower generation dendrimers. Dendrimer-based conjugates were characterized by 1H NMR, UV/Vis spectroscopy, GPC, HPLC, and CE. Positively charged amine-terminated G7 dendrimers (G7-NH2) were observed to internalize into KB, Rat2 and C6 cells at a 200 nM concentration. By way of contrast, neither negatively charged G7 carboxylate-terminated dendrimers (G7-COOH) nor neutral acetamide-terminated G7 dendrimers (G7-Ac) associated with the cell plasma membrane or internalized under similar conditions. A series of in vitro experiments employing endocytic markers cholera toxin subunit B (CTB), transferrin, and GM1-pyrene were performed to further investigate mechanisms of dendrimer internalization into cells. G7-NH2 dendrimers co-localized with CTB, however, experiments with C6 cells indicated that internalization of G7-NH2 was not ganglioside GM1 dependent. The G7/CTB co-localization was thus ascribed to an artifact of direct interaction between the two species. The presence of GM1 in the membrane also had no effect upon XTT assays of cell viability or lactate dehydrogenase (LDH) assays of membrane permeability. PMID:19583240

  11. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions

    NASA Astrophysics Data System (ADS)

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-01

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  12. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions.

    PubMed

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-28

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  13. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting.

    PubMed

    Luong, Duy; Sau, Samaresh; Kesharwani, Prashant; Iyer, Arun K

    2017-04-10

    The low therapeutic index of conventional chemotherapy and poor prognosis of patients diagnosed with metastatic cancers are prompting clinicians to adopt newer strategies to simultaneously detect cancer lesions at an early stage and to precisely deliver anticancer drugs to tumor sites. In this study, we employed a novel strategy to engineer a polyvalent theranostic nanocarrier consisting of superparamagnetic iron oxide nanoparticle core (SPIONs) decorated with folic acid-polyamidoamine dendrimers surface (FA-PAMAM). In addition, a highly potent hydrophobic anticancer agent 3,4-difluorobenzylidene-curcumin (CDF) was coloaded in the FA-PAMAM dendrimer to increase its solubility and assess its therapeutic potentials. The resulting targeted nanoparticles (SPIONs@FA-PAMAM-CDF) exhibited high MR contrast. When tested on folate receptor overexpressing ovarian (SKOV3) and cervical (HeLa) cancer cells, the CDF loaded targeted nanoformulations showed higher accumulation with a better anticancer activity as compared to the nontargeted counterparts, possibly due to multivalent folate receptor binding interaction with cells overexpressing the target. The results were corroborated by observation of a larger population of cells undergoing apoptosis due to upregulation of tumor suppressor phosphatase and tensis homologue (PTEN), caspase 3, and inhibition of NF-κB in groups treated with the targeted formulations, which further confirmed the ability of the multivalent theranostic nanoparticles for simultaneous imaging and therapy of cancers.

  14. Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug-Based Nanoparticles for Enhanced Stability and Anticancer Efficacy.

    PubMed

    Li, Ning; Cai, Hao; Jiang, Lei; Hu, Jiani; Bains, Ashika; Hu, Jesse; Gong, Qiyong; Luo, Kui; Gu, Zhongwei

    2017-03-01

    In this study, we prepared a smart polymeric vehicle for the hydrophobic drug paclitaxel (PTX) that allowed a maximum steady-state circulation and a fast intracellular release in tumors. PTX was linked to the Janus PEGylated (PEG = poly(ethylene glycol)) peptide dendrimer via an enzyme-sensitive linker glycylphenylalanylleucylglycine tetrapeptide by efficient click reaction, resulting in Janus dendritic prodrug with 20.9% PTX content. The prodrug self-assembled into nanoscale particles with appropriate nanosizes, compact morphology, and negative surface charge. In addition to high stability during circulation, as demonstrated by protein adsorption assays and drug release studies in the cancer's intracellular environment, the nanoparticles were able to quickly release the drug intact in its original molecular structure, as verified via high-performance liquid chromatography and mass spectrometry analyses. Compared to free PTX, the enzyme-responsive feature of nanoparticles promoted higher cytotoxicity against 4T1 cancer cells and much lower cytotoxicity against normal cells. The nanoparticles accumulated in the tumor and were retained for an extended period of time, as confirmed by fluorescence imaging. Therefore, these nanoparticles exhibited significantly enhanced antitumor efficiency in the 4T1 breast cancer model as indicated by the observed inhibition of angiogenesis and proliferation as well as induction of apoptosis. Moreover, the nanoparticles reduced the occurrence of side effects, particularly dose-limited toxicities, as monitored by body weight and hematological features. Hence, our Janus PEGylated dendrimer-PTX prodrug-based nanoparticles may potentially serve as nanoscale vehicles for breast cancer therapy.

  15. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain.

    PubMed

    Zarebkohan, Amir; Najafi, Farhood; Moghimi, Hamid Reza; Hemmati, Mohammad; Deevband, Mohammad Reza; Kazemi, Bahram

    2015-10-12

    Blood-brain barrier inhibits most of drugs and genetic materials from reaching the brain. So, developing high efficiency carriers for gene and drug delivery to the brain, is the challenging area in pharmaceutical sciences. This investigation aimed to target DNA to brain using Serine-Arginine-Leucine (SRL) functionalized PAMAM dendrimers as a novel gene delivery system. The SRL peptide was linked on G4 PAMAM dendrimers using bifunctional PEG. DNA was then loaded in these functionalized nanoparticles and their physicochemical properties and cellular uptake/distribution evaluated by AFM, NMR, FTIR and fluorescence and confocal microscopy. Also, biodistribution and brain localization of nanoparticles were studied after IV injection of nanoparticles into rat tail. Unmodified nanoparticles were used as control in all evaluations. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy and low toxicity. Results also showed that SRL is a LRP ligand and SRL-modified nanoparticles internalized by clathrin/caveolin energy-dependent endocytosis to brain capillary endothelial cells. After intravenous administration, the SRL-modified nanoparticles were able to cross the blood-brain barrier and enter the brain parenchyma. Our result showed that, SRL-modified nanoparticles provide a safe and effective nanocarrier for brain gene delivery.

  16. Structure-activity relationship of dendrimers engineered with twenty common amino acids in gene delivery.

    PubMed

    Wang, Fei; Hu, Ke; Cheng, Yiyun

    2016-01-01

    Systematic explorations on the structure-activity relationship of surface-engineered dendrimers are essential to design high efficient and safe gene vectors. The chemical diversity of residues in naturally occurring amino acids allows us to generate a library of dendrimers with various surface properties. Here, we synthesized a total number of 40 dendrimers engineered with the twenty common amino acids and investigated their performances in gene delivery. The results show that gene transfection efficacy of the synthesized materials depends on both the type of amino acid and the conjugation ratio. Dendrimers engineered with cationic and hydrophobic amino acids possess relatively higher transfection efficacies. Engineering dendrimers with cationic amino acids such as arginine and lysine facilitates polyplex formation and cellular uptake, with histidine improves endosomal escape of the polyplexes, and with hydrophobic amino acids such as tyrosine and phenylalanine modulates the balance between hydrophobicity and hydrophilicity on dendrimer surface, which is beneficial for efficient cellular internalization. Dendrimers engineered with anionic or hydrophilic amino acids show limited transfection efficacy due to poor DNA binding capacity and/or limited cellular uptake. In the aspect of cytotoxicity, dendrimers engineered with arginine, lysine, tyrosine, phenylalanine and tryptophan show much higher cytotoxicity than other engineered dendrimers. These results are helpful for us to tailor the surface chemistry of dendrimers for efficient gene delivery. Cationic polymers such as dendrimers were widely used as gene vectors but are limited by relatively low delivery efficacy and high toxicity. To achieve efficient and low toxic gene delivery, the polymers were modified with various ligands. However, these ligand-modified polymers in gene delivery are reported by independent researchers using different polymer scaffolds and cell lines. It is hard to provide structure

  17. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.

    PubMed

    Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan

    2017-02-15

    Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins.

  18. Synthesis, Radiolabeling, and In Vivo Imaging of PEGylated High-Generation Polyester Dendrimers.

    PubMed

    McNelles, Stuart A; Knight, Spencer D; Janzen, Nancy; Valliant, John F; Adronov, Alex

    2015-09-14

    A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.

  19. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers

    PubMed Central

    Jose, Jobin; Charyulu, R Narayana

    2016-01-01

    Introduction: The potent antifungal agent amphotericin B (AmB) is not freely soluble in water. The clinical use of AmB is limited by nephrotoxicity and poor water solubility. Polyamidoamine (PAMAM) dendrimer offers an identical carrier for drug binding that has the capacity to attach and discharge drugs in numerous ways. Materials and methods: In this research work, we explored the potential of PAMAM dendrimers to improve the solubility of AmB. Results and discussion: The experimental results indicated that the solubility of AmB was greatly enhanced in the presence of PAMAM dendrimer solutions. Results indicated that the solubility of AmB enhanced with increase in dendrimer generations as well as concentration. In vitro release studies of AmB in the presence of the third generation of PAMAM dendrimers was performed by the dialysis method. Our research work revealed that binding of drug into dendrimers led to sustained release of AmB in vitro. Conclusion: Based on the stability studies, it was concluded that the drug dendrimer complex should be stored in a dark place at a cool temperature. PMID:27051632

  20. Rational design of dendrimer/lipid nanoassemblies in drug delivery for cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Sun, Qihang

    Nanocarriers can minimize the side effects and improve therapeutic efficacy of anticancer drugs. Although some success has been achieved via active or passive drug delivery to tumor cells, the known nanocarriers are far from satisfying therapeutic efficacy expectations. This is because they usually fail in one of the four crucial requirements, that is, to retain drug in blood circulation but release it reliably in tumor cells and to be stealthy in transport in circulation and tumor tissue but sticky upon arrival at the tumor cell. Therefore, the goal of this work is to fabricate nanoassemblies of dendrimers and lipids to address all these challenges. Particularly, nanoassemblies designed and prepared in this work are illustrated to improve the tumor tissue penetration. Examples of dendrimers synthesized in this work are water-insoluble, pH-dependent water-insoluble and water-soluble biodegradable polyester dendrimers. These dendrimers are shown to be encapsulated by commonly used fusogenic and long-circulating lipids to form reliable nanoassemblies. The dendrimer/lipid nanocarriers are used to demonstrate a cascade drug delivery. They are expected to be stable in circulation, due to their appropriately large size, but to release the drug-loaded dendrimers in tumor tissue. The released dendrimers carrying drugs are much smaller and hence expected to have a much deeper penetration throughout the tumor tissue.

  1. In vitro mammalian cytotoxicological study of PAMAM dendrimers - towards quantitative structure activity relationships.

    PubMed

    Mukherjee, Sourav Prasanna; Davoren, Maria; Byrne, Hugh J

    2010-02-01

    Dendritic polymer nanoparticles such as polyamidoamine dendrimers (PAMAM) show exciting potential for biomedical applications. While the potential commercial applications of such dendrimers have received considerable attention, little is known about their possible adverse effects on both humans and the environment. In this study, the in vitro cytotoxicocity of full generation PAMAM dendrimers to two mammalian cell lines was investigated. Generations G4, G5 and G6 were chosen. Metabolic, lysosomal and mitochondrial activities were evaluated after 24h exposure. Long term toxicity was evaluated using the clonogenic assay. Particle size and zeta potential were measured in all media. In culture medium, the particle size was largely unchanged from that observed in phosphate buffer. The zeta potential changed significantly, however, from positive in deionized water to negative in culture medium. A linear correlation was found between the change in zeta potential of the dendrimers in media and their surface area measured in phosphate buffer. The interaction of the dendrimer nanoparticles with 5% FBS supplemented media was also studied using UV/visible spectroscopy. The data suggest significant interaction of nanoparticles with FBS and other media components which increased with dendrimer generation. The toxicity also correlated linearly with the zeta potential and notably the change in zeta potential in the media, further pointing towards indirect toxic mechanisms. A trend of generation dependent toxic response and interaction of the dendrimers with the cell culture media was observed which may lay the basis of structure activity relationships.

  2. Shape-persistent and adaptive multivalency: rigid transgeden (TGD) and flexible PAMAM dendrimers for heparin binding.

    PubMed

    Bromfield, Stephen M; Posocco, Paola; Fermeglia, Maurizio; Tolosa, Juan; Herreros-López, Ana; Pricl, Sabrina; Rodríguez-López, Julián; Smith, David K

    2014-07-28

    This study investigates transgeden (TGD) dendrimers (polyamidoamine (PAMAM)-type dendrimers modified with rigid polyphenylenevinylene (PPV) cores) and compares their heparin-binding ability with commercially available PAMAM dendrimers. Although the peripheral ligands are near-identical between the two dendrimer families, their heparin binding is very different. At low generation (G1), TGD outperforms PAMAM, but at higher generation (G2 and G3), the PAMAMs are better. Heparin binding also depends strongly on the dendrimer/heparin ratio. We explain these effects using multiscale modelling. TGD dendrimers exhibit "shape-persistent multivalency"; the rigidity means that small clusters of surface amines are locally well optimised for target binding, but it prevents the overall nanoscale structure from rearranging to maximise its contacts with a single heparin chain. Conversely, PAMAM dendrimers exhibit "adaptive multivalency"; the flexibility means individual surface ligands are not so well optimised locally to bind heparin chains, but the nanostructure can adapt more easily and maximise its binding contacts. As such, this study exemplifies important new paradigms in multivalent biomolecular recognition.

  3. Evaluation of electrostatic binding of PAMAM dendrimers and charged phthalocyanines by fluorescence correlation spectroscopy.

    PubMed

    Garcia-Fernandez, Emilio; Paulo, Pedro M R; Costa, Sílvia M B

    2015-02-14

    We have assessed host-guest interactions between PAMAM dendrimers and charged phthalocyanine probes by Fluorescence Correlation Spectroscopy (FCS). Our results show strong binding in water at low ionic strength with an affinity that decreases from KB ∼ 10(9) to 10(8) M(-1) upon decreasing the phthalocyanine charge of z = -4, -2 and -1. The binding affinity also decreases significantly upon salt addition leading to KB values of ca. 10(5)-10(6) M(-1). The changes of binding affinity probed by varying the phthalocyanine charge, and by changing the ionic strength or pH conditions, allowed us to evaluate the electrostatic contribution (Kel) in dendrimer-phthalocyanine interactions. In particular, this approach afforded values of electrostatic potential for PAMAM dendrimers in water at low ionic strength and at dendrimer concentrations in the nanomolar range. The electrostatic potential of PAMAM generations 4 and 7 are around 50 mV in close agreement with theoretical estimates using the Poisson-Boltzmann cell model. Interestingly, the nonelectrostatic binding is significant and contributes even more than electrostatic binding to dendrimer-phthalocyanine interactions. The nonelectrostatic binding contributes to an affinity of KB above 10(5) M(-1), as measured under conditions of low dendrimer charge and high ionic strength, which makes these dendrimers promising hosts as drug carriers.

  4. Development of TREN dendrimers over mesoporous SBA-15 for CO 2 adsorption

    NASA Astrophysics Data System (ADS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-09-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 °C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 °C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  5. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    NASA Astrophysics Data System (ADS)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  6. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology.

    PubMed

    Pentek, Tyler; Newenhouse, Eric; O'Brien, Brennin; Chauhan, Abhay Singh

    2017-01-14

    Resveratrol (RSV) is well known for its anti-oxidant and anti-aging properties. However, resveratrol is insoluble in water and has stability issues. Recently, efforts were placed to prepare a resveratrol-based advanced anti-aging topical product but it contains harsh organic solvents and oils that could be harmful to the human body and the environment. Hence, we propose the use of a multifunctional dendrimer to solve the solubility and stability issues of resveratrol. A dendrimer-resveratrol complex was prepared, optimized and tested for solubility enhancement, stability in solution and cream dosage forms. We have also developed a high performance liquid chromatography method to measure the resveratrol within the final product. PAMAM dendrimers increased the solubility and stability of resveratrol in water and semisolid dosage forms. Therefore, this product would be water based 'green' formulation devoid of harsh organic solvents and oils and can be safely applied to the skin. Additionally, we have shown that the dendrimer helped to increase overall RSV loading and skin penetration of resveratrol. The dendrimer-RSV formulation was successfully scaled up towards commercialization. Dendrimer with RSV has led to an innovation in anti-aging cream and solutions that could be commercially marketed. Dendrimer-RSV complex could also be added to other product forms for additional purposes and applications.

  7. Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance.

    PubMed

    Ficici, Emel; Andricioaei, Ioan; Howorka, Stefan

    2015-07-08

    Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores.

  8. Interaction of a patterned amphiphilic polyphenylene dendrimer with a lipid monolayer: electrostatic interactions dominate.

    PubMed

    Okuno, Masanari; Mezger, Markus; Stangenberg, René; Baumgarten, Martin; Müllen, Klaus; Bonn, Mischa; Backus, Ellen H G

    2015-02-17

    Dendrimeric macromolecules with defined shape and size are promising candidates for delivering drug or DNA molecules into cells. In this work we study the influence of an amphiphilic polyphenylene dendrimer on a model cell membrane consisting of a condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. A small surface pressure decrease is observed when the dendrimer solution is injected into the aqueous phase below the monolayer. X-ray reflectivity measurements show that the surface monolayer remains intact. The molecular-scale picture is obtained with sum-frequency generation spectroscopy. With this technique, we observe that the tails of the surfactant molecules become less ordered upon interaction with the amphiphilic polyphenylene dendrimer. In contrast, the water molecules below the DPPC layer become more ordered. Our observations suggest that electrostatic interactions between the negative charge of the dendrimer and the positively charged part of the DPPC headgroup keep the dendrimer located below the headgroup. No evidence of dendrimer insertion into the membrane has been observed. Apparently before entering the cell membrane the dendrimer can stick at the hydrophilic part of the lipids.

  9. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxuan; Liu, Cheng; Zhou, Jiehua; Chen, Chao; Qu, Fanqi; Rossi, John J.; Rocchi, Palma; Peng, Ling

    2015-02-01

    RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate that decoration of the dendrimer surface with arginine residues is indeed a useful strategy to improve the delivery ability of dendrimers.

  10. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy.

    PubMed

    Palmerston Mendes, Livia; Pan, Jiayi; Torchilin, Vladimir P

    2017-08-23

    Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer's exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy.

  11. Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5'-triphosphates.

    PubMed

    Szulc, Aleksandra; Signorelli, Marco; Schiraldi, Alberto; Appelhans, Dietmar; Voit, Brigitte; Bryszewska, Maria; Klajnert-Maculewicz, Barbara; Fessas, Dimitrios

    2015-11-30

    Poly(propylene imine) (PPI) dendrimers contained surface maltose modification are proposed as drug carriers for nucleoside analog (NA) 5'-triphosphates. The aim of this study was to investigate the interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5'-triphosphate (CTP) by Isothermal Titration Calorimetry method. CTP was used as a model molecule of pyrimidine nucleoside analog-cytarabine (ara-CTP) commonly used in leukemia treatment. Complexes of PPI dendrimers with NAs may help to overcome severe limitations of NAs associated with their low solubility and stability or resistance in cancer cells. In the present work, we evaluated stoichiometry and a mechanism of forming complexes between dendrimers and the nucleotide. Moreover, we examined the efficiency of complex formation in relation to dendrimer generations, a type of dendrimer modification with maltose residues and a type of solvent. It was observed that PPI dendrimers create complexes with CTP with high efficiency that makes them promising candidates for a drug delivery system.

  12. Thermodynamic studies on PNA and PNA/DNA dendrimer formation.

    PubMed

    Moccia, Maria; Musumeci, Domenica; Valente, Margherita; Roviello, Giovanni N; Sapio, Roberto; Pedone, Carlo; Bucci, Enrico M

    2007-01-01

    In this work we report a kinetic and thermodynamic study relative to the formation of gel systems based on PNA and PNA/DNA dendrimers, useful for drug delivery or diagnostic applications. We realized two kinds of systems: a PNA-based monomolecular system formed by an autoassembling PNA tridendron (A) and a PNA/DNA bimolecular system based on a PNA tridendron with a mixed sequence and a DNA crosslinker (B). Both systems have the ability to form a three-dimensional network by means of specific W-C base pairing.

  13. "Lego" chemistry for the straightforward synthesis of dendrimers.

    PubMed

    Maraval, Valérie; Pyzowski, Jaroslaw; Caminade, Anne-Marie; Majoral, Jean-Pierre

    2003-07-25

    A new straightforward method of synthesis of dendrimers, using two branched monomers (CA(2) and DB(2)), is described. Each generation is obtained in a single quantitative step, with only N(2) or H(2)O as byproducts; generation 4 is obtained in only four steps. The end groups are alternatively phosphines and hydrazines; their versatile reactivity is illustrated by the reaction of generation 4 with a branched CD(5) monomer, which increases the number of end groups in a single step from 48 to 250.

  14. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane.

    PubMed

    Lombardo, Domenico; Calandra, Pietro; Bellocco, Ersilia; Laganà, Giuseppina; Barreca, Davide; Magazù, Salvatore; Wanderlingh, Ulderico; Kiselev, Mikhail A

    2016-11-01

    In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO(-) Na(+)) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhancement of muramyldipeptide (MDP) immunostimulatory activity by controlled multimerization on dendrimers.

    PubMed

    Sorensen, Nanna S; Boas, Ulrik; Heegaard, Peter M H

    2011-11-10

    Peptidoglycan is a widespread bacterial PAMP molecule and a powerful initiator of innate immune responses. It consists of repeating units of MDP, which as a monomer is only weakly immunostimulatory. Here, MDP-coupled dendrimers were prepared and investigated for stimulation of pig blood mononuclear cells. Compared to monomeric MDP, MDP-dendrimers induced a markedly enhanced production of IL-12 p40, IL-1β and IL-6 and completely down-regulated surface expression of B7 and MHC class II. These results suggest a possible novel strategy based on controlled multimerization of minimal PAMP motifs on dendrimers for preparing molecularly defined immunostimulators with predictable bioactivities.

  16. Photochemistry and aggregation behavior of triethylene glycol (TEG) terminated stilbene dendrimers.

    PubMed

    Sakurai, Hiroya; Maruyama, Takashi; Arai, Tatsuo

    2017-09-22

    The photochemical properties of stilbene cored amphiphilic dendrimers (G0-G3) in THF and water were investigated. The solvation dynamics in water depended on the generation, while the behavior is almost the same in THF. Dendrimers G1 and G2 form molecular assemblies and undergo photodimerization reaction in addition to photoisomerization. G3 has enough TEG groups on the surface to cover the hydrophobic moiety within a single molecule. These dendrimers have free space around the core to undergo mutual isomerization even in water. This type of surface functional group is important for the dendritic effect in water.

  17. Application of poly(amidoamine) dendrimers for use in bionanomotor systems.

    PubMed

    Kolli, Madhukar B; Day, B Scott; Takatsuki, Hideyo; Nalabotu, Siva K; Rice, Kevin M; Kohama, Kazuhiro; Gadde, Murali K; Kakarla, Sunil K; Katta, Anjaiah; Blough, Eric R

    2010-05-04

    The study and utilization of bionanomotors represents a rapid and progressing field of nanobiotechnology. Here, we demonstrate that poly(amidoamine) (PAMAM) dendrimers are capable of supporting heavy meromyosin dependent actin motility of similar quality to that observed using nitrocellulose, and that microcontact printing of PAMAM dendrimers can be exploited to produce tracks of active myosin motors leading to the restricted motion of actin filaments across a patterned surface. These data suggest that the use of dendrimer surfaces will increase the applicability of using protein biomolecular motors for nanotechnological applications.

  18. Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions.

    PubMed

    Astruc, Didier; Daniel, Marie-Christine; Ruiz, Jaime

    2004-12-07

    Dendrimers, alkylthiol-gold nanoparticles and gold-nanoparticle-cored dendrimers containing tethers terminated by a redox group (typically an iron sandwich) attached to a hydrogen-bonding group (amido, amino, silyl) are selective and efficient exo-receptors for the recognition, sensing and titration of oxo-anions, including ATP(2-), or halogens, mostly using cyclic voltammetry. Various positive dendritic effects were disclosed (in contrast to catalysis), and large gold-nanoparticle-cored redox dendrimers of this type that contain several hundred equivalent ferrocenyl groups readily adsorb on Pt electrodes, providing useful regenerable electrochemical sensors.

  19. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  20. Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research.

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Kalhapure, Rahul S; Govender, Thirumala

    2016-07-21

    Dendrimers have emerged as novel and efficient materials that can be used as therapeutic agents/drugs or as drug delivery carriers to enhance therapeutic outcomes. Molecular dendrimer interactions are central to their applications and realising their potential. The molecular interactions of dendrimers with drugs or other materials in drug delivery systems or drug conjugates have been extensively reported in the literature. However, despite the growing application of dendrimers as biologically active materials, research focusing on the mechanistic analysis of dendrimer interactions with therapeutic biological targets is currently lacking in the literature. This comprehensive review on dendrimers over the last 15 years therefore attempts to identify the reasons behind the apparent lack of dendrimer-receptor research and proposes approaches to address this issue. The structure, hierarchy and applications of dendrimers are briefly highlighted, followed by a review of their various applications, specifically as biologically active materials, with a focus on their interactions at the target site. It concludes with a technical guide to assist researchers on how to employ various molecular modelling and computational approaches for research on dendrimer interactions with biological targets at a molecular level. This review highlights the impact of a mechanistic analysis of dendrimer interactions on a molecular level, serves to guide and optimise their discovery as medicinal agents, and hopes to stimulate multidisciplinary research between scientific, experimental and molecular modelling research teams.

  1. Diaminobutane (DAB) dendrimers are potent binders of oral phosphate.

    PubMed

    Williams, Katie B; Barycka, Katarzyna; Zella, Julia B; DeLuca, Hector F

    2009-01-01

    Reduction of blood phosphorus is a critical component in the management of secondary hyperparathyroidism in chronic kidney disease patients. In addition to dialysis treatment and dietary phosphorus restriction, oral phosphate binders are often consumed with meals to reduce the availability of food phosphorus. Several oral phosphate binders are approved for use in chronic kidney disease patients, but all have practical limitations because of toxicity, poor efficacy, or high cost. Using an in vivo method to measure intestinal phosphate absorption in rats using radiolabeled phosphate, we found that first-, second-, third-, and fifth-generation diaminobutane dendrimer compounds, DAB-4-Cl, DAB-8-Cl, DAB-16-Cl, and DAB-64-Cl, respectively, drastically reduce the absorption of inorganic phosphate in a dose-dependent manner. To avoid complications of metabolic acidosis caused by hydrochloride salts, an acetate salt, DAB-9-AcOH, was prepared and shown to be equally effective at binding radiolabeled phosphate as DAB-8-Cl. DAB-8-AcOH was further shown to increase fecal phosphorus and decrease serum phosphorus in a dose-dependent manner when fed to rats. These data suggest that dendrimer compounds are of great potential use in the binding of food phosphate for the management of hyperparathyroidism secondary to chronic kidney disease.

  2. Energetic and conformational aspects of dendrimer overcharging by linear polyelectrolytes.

    PubMed

    Lyulin, Sergey V; Darinskii, Anatolij A; Lyulin, Alexey V

    2008-10-01

    Extensive Brownian dynamics simulations of conformational changes accompanying the overcharging of a dendrimer by an oppositely charged long linear polyelectrolyte (LPE) have been carried out. The simulated results have been compared with the predictions of the Nguen and Shklovskii correlation theory [Physica A 293, 324 (2001)] for impenetrable charged spherical macroion. Dendrimer overcharging is caused by the spatial correlations between the "excess" of the LPE charges adsorbed onto its surface. The simulated LPE-length dependence of the corresponding "correlation" energy is in agreement with the theoretical predictions. Maximum of the LPE adsorption occurs at some critical LPE length N{ch};{c} , and the first order phase transition from completely coiled conformation to the conformation with released tails takes place. The phase transition is accompanied by the drastic increase in the relative fluctuations of the polyelectrolyte size. Upon increasing the linear-chain length above N{ch};{c} , the one-long-tail conformation becomes energetically preferable; the exchange time between the long-tail conformation and the short-tail conformation is very large.

  3. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery.

    PubMed

    Lallana, Enrique; Fernandez-Trillo, Francisco; Sousa-Herves, Ana; Riguera, Ricardo; Fernandez-Megia, Eduardo

    2012-04-01

    During the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug delivery.

  4. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  5. Organometallic Silicon-Containing Dendrimers and Their Electrochemical Applications

    NASA Astrophysics Data System (ADS)

    Cuadrado, Isabel

    Dendrimers constitute a unique class of macromolecular architectures that differs from all other synthetic macromolecules in its perfectly branched topology, which is constructed from a multifunctional central core and expands to the periphery that becomes denser with increasing generation number (see Chapter 1) [1-5]. Since the pioneering works published in the late 1970s and the mid-1980s [6-8], the design and synthesis of these tree-like, well-defined molecules, which exhibit a unique combination of chemical and physical properties, is a field which has sustained dramatic growth and has generated enthusiastic studies at the frontiers of organic, inorganic, supramolecular and polymer chemistry, and more recently in the fields of nanoscience, biotechnology and medicine [1-5, 9, 10]. Whereas the initial interest in dendrimers was focused on the synthetic and structural characterization challenges that pose their fractal geometries, nanometer sizes and monodisperse nature, in the last decade the emphasis has been placed mainly on modification of the properties of dendritic molecules by their functionalization

  6. Comparative study of microtubule inhibitors--estramustine and natural podophyllotoxin conjugated PAMAM dendrimer on glioma cell proliferation.

    PubMed

    Sk, Ugir Hossain; Dixit, Deobrat; Sen, Ellora

    2013-10-01

    The synthetic estramustine (EM) and natural podophyllotoxin (PODO) anti-mitotic agents that inhibit tubulin polymerization are known anticancer agents. As low bioavailability limits their anticancer properties, we investigated whether conjugation with PAMAM dendrimer (D) could enhance the activity of D-EM and D-PODO by altering their release pattern. Release kinetics indicated synthesized conjugates to be stable against hydrolytic cleavage and showed sustained release characteristics. However, release of D-EM was slow compared to D-PODO conjugate. Antitumor effect of these conjugates on glioma cells revealed (i) increased cell death and cell cycle arrest (ii) decreased migration and (iii) increased tubulin depolymerization as compared to free drug. Importantly, the effects of natural PODO conjugate on glioma cell survival and migration is more pronounced than D-EM.

  7. Multivalency in the gas phase: H/D exchange reactions unravel the dynamic "rock 'n' roll" motion in dendrimer-dendrimer complexes.

    PubMed

    Qi, Zhenhui; Schlaich, Christoph; Schalley, Christoph A

    2013-10-25

    Noncovalent dendrimer-dendrimer complexes were successfully ionized by electrospray ionization of partly protonated amino-terminated polypropylene amine (POPAM) and POPAM dendrimers fully functionalized with benzo[21]crown-7 on all branches. Hydrogen/deuterium exchange (HDX) experiments conducted on dendrimer-dendrimer complexes in the high vacuum of a mass spectrometer give rise to a complete exchange of all labile NH hydrogen atoms. As crown ethers represent noncovalent protective groups against HDX reactions on the ammonium group to which they are coordinated, this result provides evidence for a very dynamic binding situation: each crown is mobile enough to move from one ammonium binding site to another. Schematically, one might compare this motion with two rock 'n' roll dancers that swirl around each other without completely losing all contact at any time. Although the multivalent attachment certainly increases the overall affinity, the "microdynamics" of individual site binding and dissociation remains fast. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential

    PubMed Central

    Vasile, E.; Serafim, A.; Petre, D.; Giol, D.; Dubruel, P.; Iovu, H.; Stancu, I. C.

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated. PMID:24600316

  9. Direct synthesis and morphological characterization of gold-dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.

    PubMed

    Vasile, E; Serafim, A; Petre, D; Giol, D; Dubruel, P; Iovu, H; Stancu, I C

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated.

  10. A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; He, Bicheng; Xu, Zejun; Yin, Meizhen; Yang, Wantai; Zhang, Huaijiang; Cao, Jingjun; Shen, Jie

    2014-12-01

    We report the delivery of a hydrophobic pesticide, thiamethoxam, by water-soluble nanosized cationic dendrimers that contain hydrophobic dendritic polyesters and peripheral amines, demonstrated by DLS, spectral analysis and ITC. The dendrimer-based nanocarrier can efficiently deliver the pesticide into the live cells and largely increase the cytotoxicity of the drug.We report the delivery of a hydrophobic pesticide, thiamethoxam, by water-soluble nanosized cationic dendrimers that contain hydrophobic dendritic polyesters and peripheral amines, demonstrated by DLS, spectral analysis and ITC. The dendrimer-based nanocarrier can efficiently deliver the pesticide into the live cells and largely increase the cytotoxicity of the drug. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05733c

  11. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    PubMed Central

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187

  12. Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform.

    PubMed

    Lesniak, Wojciech G; Oskolkov, Nikita; Song, Xiaolei; Lal, Bachchu; Yang, Xing; Pomper, Martin; Laterra, John; Nimmagadda, Sridhar; McMahon, Michael T

    2016-04-13

    Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is well suited for imaging, however, existing small molecule CEST agents suffer from low sensitivity. We have developed salicylic acid conjugated dendrimers as a versatile, high performance nanoplatform. In particular, we have prepared nanocarriers based on generation 5-poly(amidoamine) (PAMAM) dendrimers with salicylic acid covalently attached to their surface. The resulting conjugates produce strong CEST contrast 9.4 ppm from water with the proton exchange tunable from ∼1000 s(-1) to ∼4500 s(-1) making these dendrimers well suited for sensitive detection. Furthermore, we demonstrate that these conjugates can be used for monitoring convection enhanced delivery into U87 glioblastoma bearing mice, with the contrast produced by these nanoparticles persisting for over 1.5 h and distributed over ∼50% of the tumors. Our results demonstrate that SA modified dendrimers present a promising new nanoplatform for medical applications.

  13. Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells.

    PubMed

    Khatri, Samreen; Das, Nandita G; Das, Sudip K

    2014-10-01

    The aim of this work was to synthesize methotrexate (MTX)-polyamidoamine (PAMAM) dendritic nanoconjugates and to study their effect on cell viability in uterine sarcoma cells. The amide-bonded PAMAM dendrimer-MTX conjugates were prepared by conjugation between the amine-terminated G5 dendrimer and the carboxylic groups of the MTX using a dicyclohexylcarbodiimide coupling reaction. The formation of conjugates was evaluated by ultraviolet (UV) and (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy studies. The cell survival of MES-SA cells, a uterine sarcoma cell line, was evaluated in the presence of the dendrimer-MTX nanoconjugate, using appropriate controls. The UV and (1)H NMR study confirmed the formation of covalent bonds between the drug and the dendrimer. The cell viability study indicated that the nanoconjugates had significantly improved cell killing compared to the free MTX.

  14. Interfacial behavior of a series of amphiphilic block co-dendrimers.

    PubMed

    Bury, Izabela; Donnio, Bertrand; Gallani, Jean-Louis; Guillon, Daniel

    2007-01-16

    Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of amphiphiles. We have designed and synthesized three series of segmented amphiphilic block co-dendrimers (Janus-type) and studied their interfacial properties on the Langmuir trough. Various behaviors are observed with, as a rule, the lowest generation dendrimers behaving more or less like traditional amphiphiles while the larger molecules tend to exhibit more complicated isotherms, with a non-straightforward temperature dependence, one particular molecule seemingly forming supramolecular assemblies spontaneously. The results presented here, obtained on a series of molecules where many parameters have been varied systematically, show the limits that should be kept in mind when designing amphiphilic dendrimers.

  15. Encapsulating fluorescein using adipic acid self-assembly on the surface of PPI-3 dendrimer.

    PubMed

    Chai, Minghui; Holley, Aaron K; Kruskamp, Michael

    2007-01-14

    A water-soluble self-assembly has been formed by associating adipic acid molecules onto the surface of the third generation poly(propyleneimine) dendrimer and this system has been used to encapsulate fluorescein.

  16. Poly(amidoamine) Dendrimers with Carbonic Anhydrase Inhibitory Activity and Antiglaucoma Action.

    PubMed

    Carta, Fabrizio; Osman, Sameh M; Vullo, Daniela; Gullotto, Antonella; Winum, Jean-Yves; AlOthman, Zeid; Masini, Emanuela; Supuran, Claudiu T

    2015-05-14

    Four generations of poly(amidoamine) (PAMAM) dendrimers decorated with benzenesulfonamide moieties were prepared by derivatizing the amino groups of the dendrimer with 4-carboxy-benzenesulfonamide functionalities. Compounds incorporating 4, 8, 16, and 32 sulfonamide moieties were thus obtained, which showed an increasing carbonic anhydrase (CA, EC 4.2.1.1) inhibitory action with the increase of the number of sulfamoyl groups in the dendrimer. Best inhibitory activity (in the low nanomolar-subnanomolar range) was observed for isoforms CA II and XII, involved among others in glaucoma. In an animal model of this disease, the chronic administration of such dendrimers for 5 days led to a much more efficient drop of intraocular pressure compared to the standard drug dorzolamide.

  17. A covalent capillary coating of diazoresin and polyglycerol dendrimer for protein analysis using capillary electrophoresis.

    PubMed

    Yu, Bing; Wang, Minghong; Cong, Hailin; Li, Guoling

    2017-08-29

    Overcoming proteins adsorption on the inner surface of capillary has attracted increasing attention recently. By using the unique photochemistry reaction of diazoresin (DR), a new covalent capillary coating was prepared on the fused-silica capillary through layer-by-layer self-assembly of DR with polyglycerol (PG) dendrimer. The separation performance of covalently DR/PG-dendrimer coated capillary noticeably exceeded the bare capillary and the noncovalently linked DR/PG-dendrimer capillary. A baseline separation of lysozyme, myoglobin, bovine serum albumin, and ribonuclease A was achieved using CE within 20 min. Besides, the covalently linked DR/PG-dendrimer coating has the remarkable stability and reproducibility. Especially, compared with the traditional method which use highly toxic and moisture-sensitive silane coupling agent, this method seems to be a simple and environmental friendly way to prepare the covalently coated capillaries for CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.

    PubMed

    Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K

    2015-09-08

    Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.

  19. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-05-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  20. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  1. Dendrimers as vectors for genetic material delivery to the nervous system.

    PubMed

    Pérez-Martínez, F C; Ocaña, A V; Pérez-Carrión, M D; Ceña, V

    2012-01-01

    Transfection of genetic material into primary neuronal cultures remains a challenge because of the intrinsic difficulty in transfecting this type of cell. This review covers the recent developments in the use of dendrimers for siRNA and DNA transfection in both neuronal and glial cells. Crossing the blood brain barrier crossing represents a challenge for the effective use of dendrimer-mediated delivery of therapeutic agents to the central nervous system. We will discuss the effectiveness, both in vitro and in vivo, of various dendrimers in delivering genetic material to neural tissue and its ability to cross the blood-brain barrier. In addition, the use of dendrimers as a potential new therapy in the treatment of glioblastoma will be presented.

  2. Dendrimers: General Aspects, Applications and Structural Exploitations as Prodrug/ Drug-delivery Vehicles in Current Medicine.

    PubMed

    Mariyam, Merina; Ghosal, Kajal; George, Anne; Thomas, Sabu; Kalarikkal, Nandakumar; S Latha, Mahima

    2017-05-11

    Dendrimers are hyper branched macro molecules with well-defined structure and high degree of functionality on the surface. The dendrimer architecture allows control over properties such as shape, size, density, polarity, reactivity, solubility etc. This can be manipulated to design molecules with desired properties in biomedical applications. Recent advancement in correlating structure to biodegradability and invivo performance opens up new avenue for these molecules in biological applications like drug delivery and tissue engineering. The unique structure of dendrimers provides enough attachment sites for drugs in drug delivery applications. It is possible to tune the molecule in such a way as to encapsulate drug molecule outside target area and release in the local environment of targets. This review presents the general aspects of dendrimers and how these properties are exploited for drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Solubility enhancement of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers.

    PubMed

    Koç, Fatma Ebru; Senel, Mehmet

    2013-07-15

    The aim of the present study was to evaluate the aqueous solubility enhancement properties of polypropylene oxide cored PAMAM (PPO@PAMAM) dendrimers. The solubility of NSAIDs (Ketoprofen, Ibuprofen and Diflunisal) was investigated in the presence of PPO@PAMAM dendrimers at room temperature in buffer solution. The effects of dendrimer concentration, generation and core size on the solubility of NSAIDs have been investigated. The experimental results showed that the solubility of the NSAIDs was approximately proportional to dendrimer concentration and generation. In addition, the effect of core size on the solubility of NSAIDs in constant generation and concentration of PPO@PAMAM dendrimer was Ketoprofen>Diflunisal>Ibuprofen. Under optimized conditions, PPO@PAMAM dendrimers are highly effective solubility enhancer for NSAIDs due to its new polypropylene oxide core.

  4. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy.

    PubMed

    Riechers, Shawn; Zhong, Qian; Yin, Nai-Ning; Karsai, Arpad; da Rocha, Sandro R P; Liu, Gang-Yu

    2015-01-01

    Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG), whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM) and scanning tunneling microscopy (STM), this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles.

  5. Oral Absorption Enhancement of Probucol by PEGylated G5 PAMAM Dendrimer Modified Nanoliposomes

    PubMed Central

    Ma, Qian; Han, Yingchun; Chen, Cong; Cao, Yini; Wang, Siling; Shen, Wenwen; Zhang, Huayu; Li, Yanzhi; van Dongen, Mallory A.; He, Bing; Yu, Maomao; Xu, Lu; Banaszak Holl, Mark M.; Liu, George; Zhang, Qiang; Qi, Rong

    2016-01-01

    Probucol (PB), an antioxidant drug, is commonly used as a lipid concentration lowering drug to reduce blood plasma cholesterol levels in the clinic. However, the therapeutic effects of this drug are negatively impacted by its poor water solubility and low oral absorption efficiency. In this study, a PEGylated G5 PAMAM dendrimer (G5-PEG) modified nanoliposome was employed to increase water solubility, transepithelial transport, and oral absorption of PB. The uptake mechanism was explored in vitro in Caco-2 cells with the results suggesting that the absorption improvement of G5-PEG modified PB-liposome (PB-liposome/G5-PEG) was related to P-glycoprotein (P-gp) efflux pump, but was independent of caveolae endocytosis pathways. Additionally, plasma lipid concentration lowering effects of PB-liposome/G5-PEG were evaluated in vivo in a LDLR−/− hyperlipidemia mouse model. Compared with saline treated group, treatment with PB-liposome/G5-PEG significantly inhibited the increase of plasma total cholesterol (TC) and triglyceride (TG) of mice induced by a high fat diet. Moreover, its lipid concentration lowering effects and plasma drug concentration were greater than PB alone or commercial PB tablets. Our results demonstrated that PB-liposome/G5-PEG significantly increased the oral absorption of PB and therefore, significantly improved its pharmacodynamic effects. PMID:25587935

  6. Conjugated oligothienyl dendrimers based on a pyrazino[2,3-g]quinoxaline core.

    PubMed

    Mastalerz, Michael; Fischer, Viktor; Ma, Chang-Qi; Janssen, René A J; Bäuerle, Peter

    2009-10-15

    The synthesis of a new series of conjugated dendrimers based on an electron-accepting core is introduced. The compounds showed broad absorption bands over 300-700 nm and have reduced HOMO-LUMO gaps of 1.7-1.9 eV. Incorporation of these compounds in bulk heterojunction solar cells as electron-donating material along with PC61BM as electron acceptor gave power conversion efficiencies of up to 1.3% for the second-generation dendrimer.

  7. Surface Modification of Poly(amidoamine) (PAMAM) Dendrimer as Antimicrobial Agents.

    PubMed

    Charles, Shakira; Vasanthan, Nadarajah; Kwon, Dong; Sekosan, Gabriela; Ghosh, Subhas

    2012-12-05

    Poly(amidoamine) (PAMAM) (G3) dendrimer was modified into quaternary ammonium salts using tertiary amines with different chain lengths: dimethyldodecyl amine, dimethylhexyl amine, and dimethylbutyl amine using an efficient synthetic route. The antimicrobial activity of these dendrimer ammonium salts against Staphylococcus and E-coli bacteria was examined using the disc diffusion method. It was found that quaternary ammonium salt prepared with the dimethyldodecyl amine exhibits antimicrobial efficacy against Staphalococus and E.coli bacteria.

  8. Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

    PubMed

    La Ganga, Giuseppina; Nastasi, Francesco; Campagna, Sebastiano; Puntoriero, Fausto

    2009-12-07

    A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum.

  9. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.

    PubMed

    Wrobel, Dominika; Appelhans, Dietmar; Signorelli, Marco; Wiesner, Brigitte; Fessas, Dimitrios; Scheler, Ulrich; Voit, Brigitte; Maly, Jan

    2015-07-01

    The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between

  10. Magnetic properties of dendrimer structures with different coordination numbers: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-11-01

    We investigate the magnetic properties of Cayley trees of large molecules with dendrimer structure using Monte Carlo simulations. The thermal magnetization and magnetic susceptibility of a dendrimer structure are given with different coordination numbers, Z=3, 4, 5 and different generations g=3 and 2. The variation of magnetizations with the exchange interactions and crystal fields have been given of this system. The magnetic hysteresis cycles have been established.

  11. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides

    DTIC Science & Technology

    2014-08-01

    Std. Z39.18 Final Report Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms. Dendrimers Eduardo Arias...to pack and also the presence of a polar group. Figure 4. Summary of phase behavior. DENDRIMERS New Denrimers. The synthesis...purification and some spectral characteristics of the new dendrimers shown in Fig 5 were reported in AFOSR FA9550-11-1-0169, May, 2013. Further

  12. Encapsulation and Residency of a Hydrophobic Dye within the Water-Filled Interior of a PAMAM Dendrimer Molecule.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2017-03-02

    Tightly confined water within a small droplet behaves differently from bulk water. This notion is obtained on the basis of several reports showing unusual behaviors of water droplet residing at the core of a reverse micelle. In this study, we have shown a well-known hydrophobic dye, coumarin 153 (C153), which prefers to reside at the water-rich region inside the dendrimer molecule. Optical density (OD) measurement at the absorption peak of C153 shows that it is almost insoluble in bulk water but highly soluble in aqueous dendrimer solution. The OD of C153 increases several times in the latter case as compared to that in the former. We found the most interesting observation when we compared the data from fluorescence correlation spectroscopy (FCS) with the fluorescence anisotropy decay of C153 in aqueous dendrimer solution. The FCS measurement reveals a much slower translational diffusion time (τD) of C153 attached to a dendrimer molecule as compared to that of free C153 in bulk water in the absence of dendrimer. The slower τD in the former case is commensurate with the size of the dendrimer molecule. This is possible only when C153 is encapsulated by the dendrimer molecule. In contrast to the FCS study, the fluorescence anisotropy decay of C153 in water remains largely invariant after addition of the dendrimer. This can happen if a bulk-water-like environment at the C153 surroundings is preserved within the C153-dendrimer complex. This supports our institutive expectation that C153 resides within the water-rich peripheral cavities of the dendrimer molecule. A more expected binding of C153 to the hydrophobic core of dendrimer may not be possible here because of an inadequate size of the dendrimer core.

  13. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-04-06

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  14. In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage.

    PubMed

    Milowska, Katarzyna; Szwed, Aleksandra; Zablocka, Maria; Caminade, Anne-Marie; Majoral, Jean-Pierre; Mignani, Serge; Gabryelak, Teresa; Bryszewska, Maria

    2014-10-20

    We have investigated whether polyamidoamine (PAMAM), phosphorus (pd) and viologen-phosphorus (vpd) dendrimers can prevent damage to embryonic mouse hippocampal cells (mHippoE-18) caused by rotenone, which is used as a pesticide, insecticide, and as a nonselective piscicide, that works by interfering with the electron transport chain in mitochondria. Several basic aspects, such as cell viability, production of reactive oxygen species and changes in mitochondrial transmembrane potential, were analyzed. mHippoE-18 cells were treated with these structurally different dendrimers at 0.1μM. A 1h incubation with dendrimers was followed by the addition of rotenone at 1μM, and a further 24h incubation. PAMAM, phosphorus and viologen-phosphorus dendrimers all increased cell viability (reduced cell death-data need to be compared with untreated controls). A lower level of reactive oxygen species and a favorable effect on mitochondrial system were found with PAMAM and viologen-phosphorus dendrimers. These results indicate reduced toxicity in the presence of dendrimers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae

    PubMed Central

    Rewatkar, Prarthana V.; Parekh, Harendra S.; Parat, Marie-Odile

    2016-01-01

    Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i) expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii) dendrimer structure can be modified to promote endocytosis in caveola-forming cells. PMID:26788849

  16. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.

    PubMed

    Yemul, Omprakash; Imae, Toyoko

    2005-01-01

    Covalent-bonded immobilization of lipase from burkholderia cepacia onto two poly(phenylene sulfide) (PPS) dendrimers with different generations (two and three) was achieved using carbodiimide as a coupling reagent. The hydrolysis activity of olive oil to fatty acid was studied on enzyme-immobilized PPS dendrimers. Enzyme activity was proportional to the enzyme loading, and highest recovered activity was obtained at the medium enzyme loading for both G2 and G3 dendrimers. The immobilization improved the optimum pH and caused the temperature range to widen. Immobilization of enzyme has enhanced the thermal stability of enzyme activity in comparison with free enzyme. The immobilized enzyme as a biocatalyst for batch hydrolysis of olive oil retained 80 approximately 90% activity even after 20 times of recycling. This retention of activity after recycle is very valuable and powerful in enzyme technology. The present noteworthy and vital availability on enzyme reaction of the covalently bonded immobilized lipase on dendrimer came from the structure of dendrimer with a large number of functional terminal groups, which are easily available for immobilization of many lipases at the situation keeping reactive enzymes on the surface of dendrimer.

  17. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    PubMed

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  18. Dendrimer Nanoscaffolds for Potential Theranostics of Prostate Cancer with a Focus on Radiochemistry

    PubMed Central

    Lo, Su-Tang; Kumar, Amit; Hsieh, Jer-Tsong; Sun, Xiankai

    2013-01-01

    Dendrimers are a class of structurally defined macromolecules featured with a central core, a low-density interior formed by repetitive branching units, and a high-density exterior terminated with surface functional groups. In contrast to their polymeric counterparts, dendrimers are nano-sized and symmetrically shaped, which can be reproducibly synthesized in a large scale with monodispersity. These unique features have made dendrimers of increasing interest for drug delivery and other biomedical applications as a nanoscaffold system. Intended to address the potential use of dendrimers for the development of theranostic agents, which combines therapeutics and diagnostics in a single entity for personalized medicine, this review focuses on the reported methodologies of using dendrimer nanoscaffolds for targeted imaging and therapy of prostate cancer. Of particular interest, relevant chemistry strategies are discussed due to their important roles in the design and synthesis of diagnostic and therapeutic dendrimer-based nanoconjugates and potential theranostic agents, targeted or non-targeted. Given the developing status of nanoscaffolded theranostics, major challenges and potential hurdles are discussed along with the examples representing current advances. PMID:23294202

  19. Monolayers of poly(amido amine) dendrimers on mica - In situ streaming potential measurements.

    PubMed

    Michna, Aneta; Adamczyk, Zbigniew; Sofińska, Kamila; Matusik, Katarzyna

    2017-01-01

    The deposition of poly(amido amine) dendrimers on mica at various pHs was studied by the atomic force microscopy (AFM) and in situ streaming potential measurements. Bulk characteristics of dendrimers were acquired by using the dynamic light scattering (DLS) and the laser Doppler velocimetry (LDV). The hydrodynamic radius derived from DLS measurements was 5.2nm for the ionic strength of 10(-2)M and pH range 4-10. The electrophoretic mobility, the zeta potential and the number of electrokinetic charges per molecule were derived as a function of pH from the LDV measurements. It was revealed that the dendrimers are positively charged for pH up to 10. This promoted their deposition on negatively charged mica substrate whose kinetics was quantitatively evaluated by direct AFM imaging and streaming potential measurements interpreted in terms of the electrokinetic model. The desorption kinetics of dendrimers under flowing conditions from monolayers of various coverage was also studied. It was revealed that dendrimer deposition was partially reversible for pH above 5.8. The acid-base properties of the dendrimer monolayers deposited on mica were characterized.

  20. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles.

    PubMed

    Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel; Burdette, Joanna E; Hong, Seungpyo

    2014-10-10

    Nanoparticle (NP)-based drug delivery platforms have received a great deal of attention over the past two decades for their potential in targeted cancer therapies. Despite the promises, passive targeting approaches utilizing relatively larger NPs (typically 50-200nm in diameter) allow for passive tumor accumulation, but hinder efficient intratumoral penetration. Conversely, smaller, actively targeted NPs (<20nm in diameter) penetrate well into the tumor mass, but are limited by their rapid systemic elimination. To overcome these limitations, we have designed a multi-scale hybrid NP platform that loads smaller poly(amidoamine) (PAMAM) dendrimers (~5nm in diameter) into larger poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) NPs (~70nm). A biodistribution study in healthy mice revealed that the hybrid NPs circulated longer than free dendrimers and were mostly cleared by macrophages in the liver and spleen, similar to the in vivo behavior of PEG-PLA NPs. When injected intravenously into the BALB/c athymic nude mice bearing folate receptor (FR)-overexpressing KB xenograft, the targeted hybrid NPs encapsulating folate (FA)-targeted dendrimers achieved longer plasma circulation than free dendrimers and higher tumor concentrations than both free dendrimers and the empty PEG-PLA NPs. These results suggest that the hybrid NPs successfully combine the in vivo advantages of dendrimers and polymeric NPs, demonstrating their potential as a new, modular platform for drug delivery.

  1. Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers.

    PubMed

    de Jubera, Ana M Saenz; Gao, Yuan; Moore, Jeffrey S; Cahill, David G; Mariñas, Benito J

    2012-09-04

    The fully aromatic polyamide active layer of a commercial nanofiltration membrane was modified with three generations (G1, G2, and G3) of aramide dendrimers, all with oligoethylene glycol chains on their peripheries. Permeation experiments revealed that the rejection of Rhodamine WT, used as a surrogate for organic contaminants, improved 1-2 orders of magnitude for membranes modified with G2 and G3 dendrimers at loadings of 0.7-3.5 μg/cm(2) (dendrimer layer thicknesses of ~1-6 nm) compared to the performance of unmodified membranes. In contrast, the corresponding water permeability of dendrimer-modified membranes decreased by only ~30%. Although an enhancement in the rejection of H(3)AsO(3), NaCl, and BaCl(2) was also observed for dendritic membranes, the effect was less pronounced than that for rhodamine WT. Characterization of membranes modified with 3.5 μg/cm(2) dendrimers G2 and G3 by Rutherford backscattering spectrometry with the aid of heavy ion probes (Ag(+) and Ba(2+)) revealed that accessibility of the larger Ba(2+) probe to carboxylate groups on the active layer decreased for the membranes modified with dendrimers.

  2. Optimization and in vitro toxicity evaluation of G4 PAMAM dendrimer-risperidone complexes.

    PubMed

    Prieto, María Jimena; Temprana, Carlos Facundo; del Río Zabala, Nahuel Eduardo; Marotta, Cristian Hernán; Alonso, Silvia del Valle

    2011-03-01

    Risperidone is an approved antipsychotic drug belonging to the chemical class of benzisoxazole. This drug has low solubility in aqueous medium and poor bioavailability due to extensive first-pass metabolism and high protein binding (>90%). As new strategies to improve treatments efficiency are needed, we have studied cationic G4 PAMAM dendrimers' performance to act as efficient nanocarriers for this therapeutic drug. In this respect, we explored dendrimer-risperidone complexation dependence on solvent, temperature, pH and salt concentration, as well as in vitro cytotoxicity measured on L929 cell line and human red blood cells. The best dendrimer-risperidone incorporation was achieved when a mixture of 70:30 and 90:10 v/v chloroform:methanol was used, obtaining 17 and 32 risperidone molecules per dendrimer, respectively. No cytotoxicity on L929 cells was found when dendrimer concentration was below 3 × 10(-2) μM and risperidone concentration below 5.1 μM. Also, no significant hemolysis or morphological changes were observed on human red blood cells. Finally, attempting to obtain an efficient drug delivery system for risperidone, incorporation in G4 PAMAM dendrimers was optimized, improving drug solubility with low cytotoxicity.

  3. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy

    PubMed Central

    Mendes, Livia Palmerston; Pan, Jiayi; Torchilin, Vladimir P.

    2017-01-01

    Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer’s exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy. PMID:28832535

  4. Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers.

    PubMed

    Haque, Shadabul; McLeod, Victoria M; Jones, Seth; Fung, Sandy; Whittaker, Michael; McIntosh, Michelle; Pouton, Colin; Owen, David J; Porter, Christopher J H; Kaminskas, Lisa M

    2017-10-01

    PEGylated polylysine dendrimers are attractive and well tolerated inhalable drug delivery platforms that have the potential to control the release, absorption kinetics and lung retention time of conjugated drugs. The clinical application of these systems though, would likely require partial substitution of surface PEG groups with drug molecules that are anticipated to alter their lung clearance kinetics and clearance pathways. In the current study, we therefore evaluated the impact of increased surface hydrophobicity via substitution of 50% surface PEG groups with a model hydrophobic drug (α-carboxyl OtButylated methotrexate) on the lung clearance of a Generation 5 PEGylated polylysine dendrimer in rats. PEG substitution with OtBu-methotrexate accelerated lung clearance of the dendrimer by increasing polylysine scaffold catabolism, improving systemic absorption of the intact dendrimer and low molecular weight products of scaffold catabolism, and enhancing mucociliary clearance. These results suggest that the conjugation of hydrophobic drug on the surface of a PEGylated dendrimer is likely to accelerate lung clearance when compared to a fully PEGylated dendrimer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy.

    PubMed

    Kojima, Chie; Toi, Yoko; Harada, Atsushi; Kono, Kenji

    2007-01-01

    Photodynamic therapy (PDT) is a noninvasive treatment of some diseases including cancer. We have developed poly(ethylene glycol) (PEG)-attached dendrimers as a drug-carrier candidate. In this study, we prepared nanocapsules of photosensitizers using PEG-attached dendrimers for application to PDT. Two PEG-attached dendrimers derived from poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) dendrimers (PEG-PAMAM and PEG-PPI) were synthesized, and rose bengal (RB) and protoporphyrin IX (PpIX) were used as photosensitizers. Results showed that fewer PpIX molecules were encapsulated by both PEG-attached dendrimers than RB, but the complexes were more stable under physiological conditions. Furthermore, we demonstrated that PEG-PPI held photosensitizers in a more stable manner than PEG-PAMAM because of their inner hydrophobicity. We described the cytotoxicity of the complexes of photosensitizers induced by light irradiation in vitro. The complex of PpIX with PEG-PPI exhibited efficient cytotoxicity, compared with free PpIX. It was suggested that the cytotoxicity was caused by the high level of singlet oxygen production and the efficient delivery to mitochondria. Our results suggest that these PEG-attached dendrimers are a promising vehicle for PDT.

  6. New surface hydroxylated and internally quaternised poly(propylene imine) dendrimers as efficient biocompatible drug carriers of norfloxacin.

    PubMed

    Murugan, Egambaram; Geetha Rani, D P; Srinivasan, K; Muthumary, J

    2013-10-01

    This study intended to describe the development of two novel, biocompatible and potential surface hydroxylated quaternary ammonium chloride based poly(propylene imine) (PPI) dendrimers for effective delivery of the drug Norfloxacin (NFN). The synthetic pathway involved the hydroxylation and methylation of generation 2 and 3 PPI dendrimers and thus produced surface hydroxylated and internally quaternised PPI dendrimers viz., QPPI-OH (G2) and QPPI-OH (G3), respectively. The potential of these dendrimers were examined as drug carrier for NFN, by carrying out solubility, in vitro release, cytotoxicity and anti-bacterial studies. It was observed that the QPPI-OH (G2)/QPPI-OH (G3) dendrimers have excellent solubilising potential/drug loading abilities of NFN in aqueous medium and can also sustain delivery of NFN. The effective complexation of NFN with QPPI-OH (G2) and QPPI-OH (G3) increased the solubility of NFN and thus elevates the NFN drug from Class 4 to Class 3 (according to BCS). These dendrimers increase the biocompatibility and increase the tolerance concentration during drug-dendrimer formulations. Anti-bacterial studies showed that the efficacy of the drug was increased in the presence of dendrimer carriers. These results indicate that the QPPI-OH (G2) and QPPI-OH (G3) dendrimers might be considered as potential biocompatible drug carriers of fluoroquinolines under suitable conditions.

  7. Principal physicochemical methods used to characterize dendrimer molecule complexes used as genetic therapy agents, nanovaccines or drug carriers.

    PubMed

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Jonathan, Fragoso Vázquez Manuel; José, Correa Basurto

    2017-02-20

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic acid-dendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Original Multivalent Gold (III) and Dual Gold(III)-Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents.

    PubMed

    Mignani, Serge M; El Brahmi, Nabil; El Kazzouli, Saïd; Laurent, Regis; Ladeira, Sonia; Caminade, Anne-Marie; Pedziwiatr-Werbicka, Elzbieta; Szewcyk, Eligia M; Bryszewska, Maria; Bousmina, Mosto M; Cresteil, Thierry; Majoral, Jean Pierre

    2017-09-29

    Original metallo phosphorus dendrimers (generation 3, 48 terminal groups) have been prepared via the complexation of phosphorus dendrimers bearing imino-pyridino end groups with Au(III) or both with Au(III) and Cu(II) The complexation of the dendrimer with Au(III), leading to 1G3-[Au48] [AuCl4]48, strongly increased the anti-proliferative activities against both KB and HL-60 tumoral cell lines, showing IC50's in the low nanomolar range. It can be noticed also that this gold conjugated phosphorus dendrimer displayed low activity on the quiescent cell line EPC versus its potent antiproliferative activity against actively dividing cells. In order to evaluate the potential synergistic effect between Au(III) and Cu(II) and the influence of the number of Au(III) moieties on the surface of dendrimer against the proliferative activities, nine other original dendrimers with several surface modifications have been prepared. Whatever the number of Au(III) moieties introduced on the surface of dendrimers, all the dendrimers prepared displayed similar potency (nanomolar range) to 1G3-[Au48] [AuCl4]48 against KB and HL60. In marked contrast synergistic effect on the antimicrobial activity of some of these phosphorus dendrimers are observed when both Au (III) and Cu(II) are present on the dendritic structure.

  9. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model.

    PubMed

    Zhang, Fan; Trent Magruder, J; Lin, Yi-An; Crawford, Todd C; Grimm, Joshua C; Sciortino, Christopher M; Wilson, Mary Ann; Blue, Mary E; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2017-03-10

    Hypothermic circulatory arrest (HCA) provides neuroprotection during cardiac surgery but entails an ischemic period that can lead to excitotoxicity, neuroinflammation, and subsequent neurologic injury. Hydroxyl polyamidoamine (PAMAM) dendrimers target activated microglia and damaged neurons in the injured brain, and deliver therapeutics in small and large animal models. We investigated the effect of dendrimer size on brain uptake and explored the pharmacokinetics in a clinically-relevant canine model of HCA-induced brain injury. Generation 6 (G6, ~6.7nm) dendrimers showed extended blood circulation times and increased accumulation in the injured brain compared to generation 4 dendrimers (G4, ~4.3nm), which were undetectable in the brain by 48h after final administration. High levels of G6 dendrimers were found in cerebrospinal fluid (CSF) of injured animals with a CSF/serum ratio of ~20% at peak, a ratio higher than that of many neurologic pharmacotherapies already in clinical use. Brain penetration (measured by drug CSF/serum level) of G6 dendrimers correlated with the severity of neuroinflammation observed. G6 dendrimers also showed decreased renal clearance rate, slightly increased liver and spleen uptake compared to G4 dendrimers. These results, in a large animal model, may offer insights into the potential clinical translation of dendrimers.

  10. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation.

    PubMed

    Yandrapu, Sarath K; Kanujia, Parijat; Chalasani, Kishore B; Mangamoori, Lakshminarasu; Kolapalli, Ramanamurthy V; Chauhan, Abhay

    2013-05-01

    In the present study we report the development of novel thiolated dendrimers for mucoadhesive drug delivery. The thiolated dendrimers were synthesized by conjugating PAMAM dendrimer (G3.5)with cysteamine at two different molar ratios, i.e. 1:30 (DCys1) and 1:60 (DCys2). The thiolated dendrimers were further encapsulated with acyclovir (DCys1Ac and DCys2Ac) and the conjugates were characterized for thiol content, drug loading, drug release, and mucoadhesive behavior. The thiolated dendrimer conjugates showed thiol content of 10.56 ± 0.34 and 68.21 ± 1.84 μM/mg of the conjugate for DCys1 and DCys2, respectively. The acyclovir loading was observed to be highest in dendrimer drug conjugate (DAc) compared to other DCys1Ac and DCys2Ac conjugates. The thiolated dendrimers showed sustained release of acyclovir and showed higher mucoadhesion. The in vitro mucoadhesive activity of DCys2Ac was 1.53 and 2.89 fold higher mucoadhesion compared to DCys1Ac and DAc, respectively. These results demonstrated the usefulness of thiolated dendrimers as a mucoadhesive carrier and represent a novel platform for drug delivery. This study demonstrates the utility of thiolated dendrimers as mucoadhesive carriers as reported in an acyclovir delivery model system. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations

    PubMed Central

    2013-01-01

    Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure–activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6–10-fold over commercial reagents under their respective optimal conditions. Emerging structure–activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity. PMID:23682947

  12. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.

    PubMed

    Ye, Rong; Zhukhovitskiy, Aleksandr V; Deraedt, Christophe V; Toste, F Dean; Somorjai, Gabor A

    2017-08-15

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have

  13. Controlled doping by self-assembled dendrimer-like macromolecules.

    PubMed

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 10(17) cm(-3). Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  14. Dendrimer light-harvesting: intramolecular electrodynamics and mechanisms.

    PubMed

    Andrews, David L; Bradshaw, David S; Jenkins, Robert D; Rodríguez, Justo

    2009-12-07

    In the development of highly efficient materials for harvesting solar energy, there is an increasing focus on purpose-built dendrimers and allied multi-chromophore systems. A proliferation of antenna chromophores is not the only factor determining the sought light-harvesting efficiency; the internal geometry and photophysics of these molecules are also crucially important. In particular, the mechanisms by means of which radiant energy is ultimately trapped depends on an intricate interplay of electronic, structural, energetic and symmetry properties. To better understand these processes a sound theoretical representation of the intramolecular electrodynamics is required. A suitable formalism, based on quantum electrodynamics, readily delivers physical insights into the necessary excitation channelling processes, and it affords a rigorous basis for modelling the intramolecular flow of energy.

  15. Thiophene dendrimer-based low donor content solar cells

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Dani M.; Ma, Chang-Qi; Nagiri, Ravi C. R.; Clulow, Andrew J.; Bäuerle, Peter; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul

    2016-09-01

    Low donor content solar cells containing polymeric and non-polymeric donors blended with fullerenes have been reported to give rise to efficient devices. In this letter, we report that a dendrimeric donor can also be used in solution-processed low donor content devices when blended with a fullerene. A third generation dendrimer containing 42 thiophene units (42T) was found to give power conversion efficiencies of up to 3.5% when blended with PC70BM in optimized devices. The best efficiency was measured with 10 mole percent (mol. %) of 42T in PC70BM and X-ray reflectometry showed that the blends were uniform. Importantly, while 42T comprised 10 mol. % of the film, it made up 31% of the film by volume. Finally, it was found that solvent annealing was required to achieve the largest open circuit voltage and highest device efficiencies.

  16. Controlled doping by self-assembled dendrimer-like macromolecules

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm‑3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  17. Controlled doping by self-assembled dendrimer-like macromolecules

    PubMed Central

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-01-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm−3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon. PMID:28145485

  18. The in vitro effects of new D186 dendrimer on virulence factors of Candida albicans.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Zielińska, Paulina; Urbańczyk-Lipkowska, Zofia

    2014-06-01

    The emergence of drug-resistant Candida albicans strains necessitates identifying new antimycotics along with studying their modes of action. The influence of a new rationally designed dendrimer D186 containing N,N-dioctyl tail and four tryptophane residues on inhibition of planktonic cells, aspartic protease SAP5 expression and adhesion to epithelial cells was investigated. In vitro anti-Candida activities were determined against wild types, Δsap mutants and morphogenesis mutants: Δefg1, Δcph1 and Δcph1/Δefg1. MICs of D186 determined with M27-A3 protocol were in the range 2-16 μg ml(-1). Adherence assay of C. albicans to Caco-2 was performed in 24-well plate. Group I (MIC=8 μg ml(-1), inhibition=82.05-100%) was the most frequent followed by Group II (MIC=4 μg ml(-1), inhibition=99.64-100%) and Group III (MIC=2 μg ml(-1), inhibition=96.47-96.98%). SAP5 expression was analyzed using RT-PCR; relative quantification was normalized against ACT1 in cells after 18-h growth on Caco-2 cell line. D186 exhibited more potent inhibition activity (statistically significant P⩽0.05) against Δsap10 and Δsap9/Δsap10 (MIC=2 μg ml(-1)) than the remaining strains tested. Pretreating cells with D186 significantly inhibited adhesion of all Candida strains compared with their non-treated counterparts (P⩽0.05). D186 affected SAP5 expression of all strains suggesting that this gene is controlled by environmental conditions. A hypothesis can be formulated that the hydrophobicity of D186 and presence of four Trp residues favors its accumulation in the membrane causing membrane disruption, especially facilitated in mutants perturbed in the cell wall compositions. The D186 mode of action was attributed to reduced virulence in terms of adhesiveness and pathogenic potential related to SAP5 expression and morphogenesis.

  19. Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions

    NASA Astrophysics Data System (ADS)

    Perisé-Barrios, Ana J.; Gómez, Rafael; Corbí, Angel L.; de La Mata, Javier; Domínguez-Soto, Angeles; Muñoz-Fernandez, María A.

    2015-02-01

    Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM.Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM

  20. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they

  1. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin; Kannan, Rangaramanujam M.

    2015-02-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE

  2. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections.

    PubMed

    Sepúlveda-Crespo, Daniel; Ceña-Díez, Rafael; Jiménez, José Luis; Ángeles Muñoz-Fernández, Ma

    2017-01-01

    This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.

  3. Dendrimer Probes for Enhanced Photostability and Localization in Fluorescence Imaging

    PubMed Central

    Kim, Younghoon; Kim, Sung Hoon; Tanyeri, Melikhan; Katzenellenbogen, John A.; Schroeder, Charles M.

    2013-01-01

    Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability. PMID:23561533

  4. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine.

  5. Synthesis and Characterization of Photocurable Polyamidoamine Dendrimer Hydrogels as a Versatile Platform for Tissue Engineering and Drug Delivery

    PubMed Central

    Desai, Pooja N.; Yuan, Quan; Yang, Hu

    2010-01-01

    In this work, we describe a novel polyamidoamine (PAMAM) dendrimer hydrogel (DH) platform with potential for tissue engineering and drug delivery. With PAMAM dendrimer G3.0 being the underlying carrier, polyethylene glycol (PEG) chains of various lengths (MW=1500, 6000, or 12000 gmol−1) were coupled to the dendrimer to different extents, and the resulting PEGylated PAMAM dendrimers were further coupled with acrylate groups to yield photoreactive dendrimer macromonomers for gel formation. It was found that gelation based on photoreactive PAMAM G3.0 macromonomers was restricted by the degree of PEGylation, PEG chain length, and the distribution of acrylate groups on the dendrimer surface. Further, the architecture of the photoreactive macromonomers affects the structural stability and swelling of the resultant networks. A completely crosslinked network (DH-G3.0–12000H) with a high water swelling ratio was created by UV-curing of PAMAM dendrimer G3.0 coupled with 28 PEG 12000 chains in the presence of the eosin Y-based photoinitiating system. The disintegration of DH-G3.0–12000H was pH-insensitive. DH-G3.0–12000H was found to have similar cytocompatibility to uncrosslinked G3.0–12000H but have a significantly lower cellular uptake by macrophages. With PAMAM dendrimer G3.5 being the underlying carrier, the dendrimer modified with 43 PEG 1500 chains was able to form a completely crosslinked network (DH-G3.50–1500H) by UV-curing in the presence of the eosin Y-based photoinitiating system. DH-G3.50–1500H exhibited pH-dependent disintegration. Its disintegration ratio increased with pH. PAMAM dendrimer hydrogels uniquely express the structural characteristics of both PEG hydrogel and PAMAM dendrimer and have potential for various applications in tissue engineering and drug delivery. PMID:20108892

  6. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.

    PubMed

    Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry

    2017-03-21

    A multivalent phosphorus dendrimer 1G3 and its corresponding Cu-complex, 1G3-Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway.

  7. Cyclam-cored dendrimers appended with four dendrons of two different types: intradendrimer energy transfer.

    PubMed

    Bergamini, Giacomo; Sottilotta, Angela; Maestri, Mauro; Ceroni, Paola; Vögtle, Fritz

    2010-08-02

    We have synthesized two cyclam-cored dendrimers appended with dendrons of two different types by proper protection/deprotection of the cyclam unit. The resulting dendrimers contain six naphthyl and two dansyl units (N6 D2) or two dansyl and six naphthyl units (N2 D6) at the periphery. Their photophysical properties have been compared to those of a dendrimer containing 8 dansyl units (D8) and a previously investigated dendrimer containing 8 naphthyl units (N8). The absorption spectra are those expected on the basis of the number of chromophores, demonstrating that no ground state interaction takes place. The emission spectra of N2 D6 and N6 D2 show naphthalene localized and naphthalene excimer emission similar to those observed in the case of N8, together with a much stronger dansyl emission with maximum at 525 nm. Addition of CF(3)SO(3)H to dendrimer solutions in CH(3)CN/CH(2)Cl(2) 1:1 (v/v) leads to protonation of the aliphatic amine units of the cyclam core at first and then of the aromatic amine of each dansyl chromophores. Cyclam can be diprotonated and this affects dansyl absorption and, most significantly, emission bands by a charge perturbation effect. Each dansyl unit is independently protonated in both dendrimers. The most interesting photophysical feature of these heterofunctionalized cyclam-cored dendrimers is the occurrence of an intradendrimer photoinduced energy transfer from naphthyl to dansyl chromophores of two different dendrons (interdendron mechanism). The efficiency of this process is 50 % for N6 D2 and it can be increased up to 75 % upon protonation of the cyclam core and formation of N6 D2(2H(+)). This arises from the fact that protonation of the amine units of the cyclam prevents formation of exciplexes upon naphthyl excitation, thus shutting down one of the deactivation processes of the fluorescent naphthyl excited state.

  8. Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimersomes.

    PubMed

    Xiao, Qi; Rubien, Jack D; Wang, Zhichun; Reed, Ellen H; Hammer, Daniel A; Sahoo, Dipankar; Heiney, Paul A; Yadavalli, Srujana S; Goulian, Mark; Wilner, Samantha E; Baumgart, Tobias; Vinogradov, Sergei A; Klein, Michael L; Percec, Virgil

    2016-09-28

    The modular synthesis of a library containing seven self-assembling amphiphilic Janus dendrimers is reported. Three of these molecules contain environmentally friendly chiral-racemic fluorinated dendrons in their hydrophobic part (RF), one contains achiral hydrogenated dendrons (RH), while one denoted hybrid Janus dendrimer, contains a combination of chiral-racemic fluorinated and achiral hydrogenated dendrons (RHF) in its hydrophobic part. Two Janus dendrimers contain either chiral-racemic fluorinated dendrons and a green fluorescent dye conjugated to its hydrophilic part (RF-NBD) or achiral hydrogenated and a red fluorescent dye in its hydrophilic part (RH-RhB). These RF, RH, and RHF Janus dendrimers self-assembled into unilamellar or onion-like soft vesicular dendrimersomes (DSs), with similar thicknesses to biological membranes by simple injection from ethanol solution into water or buffer. Since RF and RH dendrons are not miscible, RF-NBD and RH-RhB were employed to investigate by fluorescence microscopy the self-sorting and coassembly of RF and RH as well as of phospholipids into hybrid DSs mediated by the hybrid hydrogenated-fluorinated RHF Janus dendrimer. The hybrid RHF Janus dendrimer coassembled with both RF and RH. Three-component hybrid DSs containing RH, RF, and RHF were formed when the proportion of RHF was higher than 40%. With low concentration of RHF and in its absence, RH and RF self-sorted into individual RH or RF DSs. Phospholipids were also coassembled with hybrid RHF Janus dendrimers. The simple synthesis and self-assembly of DSs and hybrid DSs, their similar thickness with biological membranes and their imaging by fluorescence and (19)F-MRI make them important tools for synthetic biology.

  9. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  10. Hyperbranched-dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly(propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency

    NASA Astrophysics Data System (ADS)

    Alavi, Seyyed Jamal; Gholami, Leila; Askarian, Saeedeh; Darroudi, Majid; Massoudi, Abdolhossein; Rezaee, Mehdi; Kazemi Oskuee, Reza

    2017-02-01

    The applications of dendrimer-based vectors seem to be promising in non-viral gene delivery because of their potential for addressing the problems with viral vectors. In this study, generation 3 poly(propyleneimine) (G3-PPI) dendrimers with 1, 4-diaminobutane as a core initiator was synthesized using a divergent growth approach. To increase the hydrophobicity and reduce toxicity, 10% of primary amines of G3-PPI dendrimers were replaced with bromoalkylcarboxylates with different chain lengths (6-bromohexanoic and 10-bromodecanoic). Then, to retain the overall buffering capacity and enhance transfection, the alkylcarboxylate-PPIs were conjugated to 10 kDa branched polyethylenimine (PEI). The results showed that the modified PPI was able to form complexes with the diameter of less than 60 nm with net-positive surface charge around 20 mV. No significant toxicity was observed in modified PPIs; however, the hexanoate conjugated PPI-PEI (PPI-HEX-10% PEI) and the decanoate conjugated PPI-PEI (PPI-DEC-10%-PEI) showed the best transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, even PPI-HEX-10%-PEI showed transfection efficiency equal to standard PEI 25 kDa with reduced toxicity. This study suggested a new series of hyperbranched (PEI)-dendrimer (PPI) architectural copolymers as non-viral gene delivery vectors with high transfection efficiency and low toxicity.

  11. Fluorescence and Förster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes.

    PubMed

    Alajangi, Hema Kumari; Santhiya, Deenan

    2015-04-14

    Considering the importance of short oligonucleotide packing in dendriplex-mediated gene delivery, a direct insight into the 14-mer oligonucleotide and dendrimer interactions using fluorescence and FRET techniques is the focus of this study. Fluorometric titrations of various fluorophore-tagged oligonucleotides with the first three PAMAM dendrimer generations showed a decrease in the fluorescence intensity with two break points, namely Z and Z, for each titration. The first break point for each dendrimer was identical to the neutralization point observed by basic biophysical studies for the corresponding dendrimer generations. Additionally, FRET studies on dual tagged oligonucleotide (DFT) molecules revealed a third break point at the charge ratio (Z) where there was the highest fluorescence energy transfer from the donor to the acceptor fluorophores. Altogether, dendriplex formation was considered to take place via three steps with an increase in the dendrimer concentration, where initially there was monomeric complexation at the neutralization point (Z) followed by loosely held molecular aggregation of the dendrimer (Z). In the final step, dendrimer molecular aggregates were held tightly together for the closest possible packing of the oligonucleotide molecules onto their surface. The effective molecular packing is identified by the highest FRET intensity for the dendrimer of generation 2 at a charge ratio of 0.34 (Z±).

  12. Transfer of PAMAM Dendrimers across Human Placenta: Prospects of Its Use as Drug Carrier During Pregnancy

    PubMed Central

    Menjoge, Anupa R.; Rinderknecht, Amber; Navath, Raghavendra S.; Faridnia, Masoud; Kim, Chong J.; Romero, Roberto; Miller, Richard K.; Kannan, Rangaramanujam M.

    2011-01-01

    Dendrimers offer significant potential as nanocarriers for targeted delivery of drugs and imaging agents. The objectives of this study were to evaluate the transplacental transport, kinetics and biodistribution of PAMAM dendrimers ex-vivo across the human placenta in comparison with antipyrine, a freely diffusible molecule, using dually perfused re-circulating term human placental lobules. The purpose of this study is to determine if dendrimers as drug carriers can be used to design drug delivery systems directed at selectively treating either the mother or the fetus. The transplacental transfers of fluorescently (Alexa 488) tagged PAMAM dendrimer (16 kDa) and antipyrine (188 Da) from maternal to fetal circulation were measured using HPLC/dual UV and fluorescent detector (sensitivity of 10 ng / mL for dendrimer and 100 ng /mL for antipyrine respectively). Cmax for the dendrimer-Alexa (DA) in maternal perfusate (Tmax = 15min) was 18 times higher than in the fetal perfusate and never equilibrated with the maternal perfusate during 5.5 hours of perfusion (n=4). DA exhibited a significant but low transplacental transport of ~2.26 ± 0.12 μg / mL during 5.5 hours, where the mean transplacental transfer was 0.84 ±0.11 % of the total maternal concentration and the feto-maternal ratio as percent was 0.073% ± 0.02. The biochemical and physiological analysis of the placentae perfused with DA demonstrated normal function throughout the perfusion. The immunofluorescence histochemistry confirmed that the biodistribution of DA in perfused placenta was sparsely dispersed, and when noted was principally seen in the inter-villous spaces and outer rim of the villous branches. In a few cases, DA was found internalized and localized in nuclei and cytoplasm of syncytiotrophoblast and inside the villous core; however, DA was mostly absent from the villous capillaries. In conclusion, the PAMAM dendrimers exhibited a low rate of transfer from maternal to the fetal side across the

  13. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    PubMed

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  14. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation.

  15. Supramolecular Assembly of Poly(propyleneimine) Dendrimers Driven By Simple Monovalent Counterions.

    PubMed

    Eghtesadi, Seyed Ali; Haso, Fadi; Kashfipour, Marjan Alsadat; Lillard, Robert Scott; Liu, Tianbo

    2015-12-14

    The self-assembly of semiglobular, positively charged poly(propyleneimine) (PPI) dendrimers with small monovalent counterions (e.g., Cl(-)) in water/acetone mixtures was investigated. We showed that PPI dendrimers can assemble into hollow, spherical, single-layered blackberry-type structures mediated by the presence of monovalent counterions. The effects on the assembly of changing the solvent polarity and adjusting the pH were further investigated to confirm the presence of electrostatic interactions and hydrogen bonding as the driving forces. Results showed that PPI dendrimers form stable, hollow spheres in 5-20% v/v acetone/water and that the size of the spheres decreases monotonically as the solvent polarity and/or the charge on the dendrimers (i.e., lower solution pH) increases. This is the first example to show that small monovalent counterions can trigger attraction among PPI dendrimers (or broadly defined polyelectrolytes) that is strong enough to bring them together to form large, stable supramolecular assemblies, which indicates that these organic macroions have similar solution behavior to more-well-defined inorganic molecular macroions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental and Theoretical Investigations in Stimuli Responsive Dendrimer-based Assemblies

    PubMed Central

    Molla, Mijanur Rahaman; Rangadurai, Poornima

    2014-01-01

    Stimuli-responsive macromolecular assemblies are of great interest in drug delivery applications, as it holds the promise to keep the drug molecules sequestered under one set of conditions and release them under another. The former set of conditions could represent circulation, while the latter could represent a disease location. Over the past two decades, sizeable contributions to this field have come from dendrimers, which along with their monodispersity, provide great scope for structural modifications at the molecular level. In this paper, we briefly discuss the various synthetic strategies that have been developed so far to obtain a range of functional dendrimers. We then discuss the design strategies utilized to introduce stimuli responsive elements within the dendritic architecture. The stimuli itself are broadly classified into two categories, viz. extrinsic and intrinsic. Extrinsic stimuli are externally induced such as temperature and light variations, while intrinsic stimuli involve physiological aberrations such as variations in pH, redox conditions, proteins and enzyme concentrations in pathological tissues. Furthermore, the unique support from molecular dynamics (MD) simulations has been highlighted. MD simulations have helped back many of the observations made from assembly formation properties to rationalized the mechanism of drug release and this has been illustrated with discussions on G4 PPI (Poly propylene imine) dendrimers and biaryl facially amphiphilic dendrimers. The synergy that exists between experimental and theoretical studies open new avenues for the use of dendrimers as versatile drug delivery systems. PMID:25260107

  17. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers.

    PubMed

    Márquez-Miranda, Valeria; Camarada, María Belén; Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.

  18. Synthesis of metal-carbonyl-dendrimer-antibody immunoconjugates: towards a new format for carbonyl metallo immunoassay.

    PubMed

    Fischer-Durand, Nathalie; Salmain, Michèle; Rudolf, Bogna; Vessières, Anne; Zakrzewski, Janusz; Jaouen, Gérard

    2004-04-02

    We report the preparation of metal-carbonyl-dendrimer-antibody conjugates. These metal-carbonyl-multilabeled antibodies are designed to be used in a new solid-phase-format carbonyl metallo immunoassay (CMIA). A fourth-generation polyamidoamine dendrimer was labeled with 10-25 (eta5-cyclopentadienyl)iron dicarbonyl (eta1-N-succinimidyl) entities. An antibody was chemically modified at its carbohydrate chains by a site-directed process used to preserve the antigen-antibody binding site. The antibody was then coupled with the dendrimer labeled with 10 metal carbonyl groups. An average of 1.4 labeled dendrimers were grafted per antibody molecule. These metal-carbonyl-dendrimer-antibody conjugates were used as new universal detection reagents that recognize their specific antigens. The antigens were spotted onto nitrocellulose membranes and detected by using the conjugates in combination with Fourier transform infrared spectroscopy. A detection level in the range 5-200 pmol per membrane was achieved. This approach opens the way to a new CMIA format.

  19. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    PubMed

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  20. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac

    PubMed Central

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett–Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm2 cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm2 cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm2. It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin. PMID:26229447

  1. Design, Synthesis and Study of Dendrimers as Nanoscaffolds for Solar Energy Harvest

    SciTech Connect

    Sankaran Thayumanavan

    2008-01-25

    Designing molecules in which the vectorial motions of charges can be controlled has been of significant research interest in the recent past. Covalent linear arrays of chromophores or other molecular assemblies such as liquid crystals, zeolites, polymers, peptides, and amphiphiles have all been used as components for this purpose. Significant amount of this effort also involved the use of dendrimers as the molecular architecture. The structural feature in which multiple functionalities are present in the periphery that decreases gradually as one moves towards the core renders dendrimers obvious candidates for light harvesting antenna. Most of the efforts reported in the literature are directed towards energy funneling from a chromophore in the periphery to another chromophore at the core of the dendrimer. There are relatively few reports that utilize the dendritic architecture for photoinduced charge separation, an important step in designing materials for photovoltaics. These reports focus mostly on conjugated molecular backbones. Since non-conjugated dendrimer backbones provide the possibility of independently tuning the electronic characteristics of the chromophore and the charge transfer unit and therefore carry out a systematic structure-property relationship study, we have designed and synthesized dendrimers.

  2. Multichromophoric polyphenylene dendrimers: toward brilliant light emitters with an increased number of fluorophores.

    PubMed

    Oesterling, Ingo; Müllen, Klaus

    2007-04-18

    Two routes for the introduction of highly fluorescent peryleneimide chromophores into the scaffolding of polyphenylene dendrimers via iterative Diels-Alder cycloadditions are presented. The key intermediates for the divergent dendrimer buildup were two cyclopentadienone branching units carrying two peryleneimides and two masked terminal alkynes. The difference between the two reagents is the mode of incorporation of the chromophores. In the first case, the chromophores were attached to the alpha-position of the tetraphenylcyclopentadienones. In the second case, peryleneimides are used as a "spacer" in the beta-position of the cyclopentadienones giving rise to dendrimers with extended molecular diameters (up to 12 nm) and 24 chromophores within their scaffold. Absorption and emission characteristics of the new multichromophoric nanoparticles were investigated and compared to those of the parent dyes. Additionally, an asymmetrically substituted first-generation dendrimer with six perylene diimide chromophores and one ester functionality is reported. The ester serves as a potential anchor group, and this nanoemitter paves the way to a multichromophoric fluorescence label. All dendrimers have good solubility in common organic solvents, high fluorescence quantum yields, and defined distances between the chromophores, making them attractive candidates for single-molecule spectroscopy.

  3. α-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors.

    PubMed

    Wan, Jingjing; Huang, Johnny X; Vetter, Irina; Mobli, Mehdi; Lawson, Joshua; Tae, Han-Shen; Abraham, Nikita; Paul, Blessy; Cooper, Matthew A; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2015-03-11

    Covalently attached peptide dendrimers can enhance binding affinity and functional activity. Homogenous di- and tetravalent dendrimers incorporating the α7-nicotinic receptor blocker α-conotoxin ImI (α-ImI) with polyethylene glycol spacers were designed and synthesized via a copper-catalyzed azide-alkyne cycloaddition of azide-modified α-ImI to an alkyne-modified polylysine dendron. NMR and CD structural analysis confirmed that each α-ImI moiety in the dendrimers had the same 3D structure as native α-ImI. The binding of the α-ImI dendrimers to binding protein Ac-AChBP was measured by surface plasmon resonance and revealed enhanced affinity. Quantitative electrophysiology showed that α-ImI dendrimers had ∼100-fold enhanced potency at hα7 nAChRs (IC50 = 4 nM) compared to native α-ImI (IC50 = 440 nM). In contrast, no significant potency enhancement was observed at heteromeric hα3β2 and hα9α10 nAChRs. These findings indicate that multimeric ligands can significantly enhance conotoxin potency and selectivity at homomeric nicotinic ion channels.

  4. Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies

    NASA Astrophysics Data System (ADS)

    Molla, Mijanur Rahaman; Rangadurai, Poornima; Pavan, Giovanni M.; Thayumanavan, S.

    2015-02-01

    Stimuli-responsive macromolecular assemblies are of great interest in drug delivery applications, as it holds the promise to keep the drug molecules sequestered under one set of conditions and release them under another. The former set of conditions could represent circulation, while the latter could represent a disease location. Over the past two decades, sizeable contributions to this field have come from dendrimers, which along with their monodispersity, provide great scope for structural modifications at the molecular level. In this paper, we briefly discuss the various synthetic strategies that have been developed so far to obtain a range of functional dendrimers. We then discuss the design strategies utilized to introduce stimuli responsive elements within the dendritic architecture. The stimuli itself are broadly classified into two categories, viz. extrinsic and intrinsic. Extrinsic stimuli are externally induced such as temperature and light variations, while intrinsic stimuli involve physiological aberrations such as variations in pH, redox conditions, proteins and enzyme concentrations in pathological tissues. Furthermore, the unique support from molecular dynamics (MD) simulations has been highlighted. MD simulations have helped back many of the observations made from assembly formation properties to rationalized the mechanism of drug release and this has been illustrated with discussions on G4 PPI (Poly propylene imine) dendrimers and biaryl facially amphiphilic dendrimers. The synergy that exists between experimental and theoretical studies open new avenues for the use of dendrimers as versatile drug delivery systems.

  5. Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules.

    PubMed

    Sekar, Gajalakshmi; Florance, Ida; Sivakumar, A; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-12-01

    The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aggregation-controlled excimer emission from anthracene-containing polyamidoamine dendrimers.

    PubMed

    Lekha, P K; Prasad, Edamana

    2010-03-22

    Lower generations of polyamidoamine (PAMAM) dendrimers were peripherally modified with anthracene moieties, and excimer emission from anthracene chromophores was investigated in an acetonitrile-water mixture at acidic and basic pH values. Results from fluorescence spectroscopic experiments suggest that 1) the propensity of anthracene-modified PAMAM dendrimers to aggregate in acetonitrile is substantial in the presence of 15-20 vol % of water, and 2) aggregate formation in anthracene-modified PAMAM dendrimers leads to unique morphologies in the ground state, where the anthracene units are pre-arranged to form stable excimers upon photoexcitation. Three types of anthracene excimers are generated in the system, with face-to-face, angular, and T-shaped geometry. The formation of different types of anthracene excimers was confirmed by steady-state and time-resolved fluorescence spectroscopic experiments. Experimental results further suggest that it is feasible to alter the type of excimer formed by anthracene units attached to the PAMAM dendrimers through altering the propensity for ground-state aggregation. Most excitingly, increased pi conjugation in the molecular framework of anthracene-substituted PAMAM dendrimers leads to intense and exclusive excimer emission from anthracene at room temperature.

  7. Development of new GnRH-modified dendrimer platforms with direct antiproliferative and gonadotropin releasing activity.

    PubMed

    Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan

    2017-09-28

    Gonadotropin-releasing hormone (GnRH) agonists (e.g. triptorelin) are used for androgen suppression therapy. They possess improved stability compared to the native GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with/without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2 and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability, and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency in the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.

  8. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    PubMed Central

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  9. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene.

    PubMed

    Zhang, Zhida; Feng, Shengyu; Zhang, Jie

    2016-02-01

    A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  10. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers.

    PubMed

    Kolhe, Parag; Misra, Ekta; Kannan, Rangaramanujam M; Kannan, Sujatha; Lieh-Lai, Mary

    2003-06-18

    Highly branched, functionalized polymers have potential to act as efficient drug carrier systems. Dendrimers are ideal candidates among model hyperbranched polymers because of their well-defined structure and high density of functional groups. Using ibuprofen as a model drug, we studied the interaction between the drug and Polyamidoamine (PAMAM) dendrimers (generations 3 and 4 with --NH2 functionality) and Perstrop Polyol (generation 5, hyperbranched polyester with --OH functionality). FTIR and NMR studies suggest that ibuprofen predominantly forms a complex with PAMAM dendrimers because of the ionic interaction between the --NH2 end groups and the carboxyl group of ibuprofen. On an average, up to 78 molecules of ibuprofen could be incorporated into one molecule of PAMAM-G4-NH2 with 64 end groups. This complex is stable in deionized water and methanol. The in vitro release of ibuprofen from drug-dendrimer complex is appreciably slower compared to pure ibuprofen. The complexed drug enters A549 cells much more rapidly than pure drug suggesting that dendrimers may be able to carry the complexed drug inside cells efficiently. Hyperbranched Polyol (with 128 --OH end groups) appears to encapsulate approximately 24 drug molecules. Perhaps the lack of strong interactions between the --OH end groups and the drugs prevents complex formation.

  11. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats.

    PubMed

    Ciepluch, Karol; Ziemba, Barbara; Janaszewska, Anna; Appelhans, Dietmar; Klajnert, Barbara; Bryszewska, Maria; Fogel, Wiesława Agnieszka

    2012-09-01

    Biogenic amines and polyamines participate in all vital organism functions, their levels being important function determinants. Studies were performed to check whether repeated administration of poly(propylene imine) (PPI) dendrimers, synthetic macromolecules with diaminobutane core, and peripheral primary amine groups, may influence the endogenous level of amines, as represented by the two of them: spermidine, a natural derivative of diaminobutane, and histamine. The experiment was carried out on Wistar rats. Fourth generation PPI dendrimer, as well as maltotriose-modified fourth generation PPI dendrimers with (a) cationic open sugar shell and (b) neutral dense sugar shell that possess a higher biocompatibility, was used. Applying the combination of column chromatography on Cellex P and spectrofluorimetric assays of o-phthaldialdehyde, the final amine condensation products were employed to analyze tissue spermidine and histamine outside the central nervous system. Furthermore, radioenzymatic assay was used to measure histamine levels in the brain. The obtained results indicate that in some tissues, the endogenous concentrations of histamine and spermidine may be affected by dendrimers depending on their dose and type of dendrimers.

  12. Use of Poly (Amidoamine) Dendrimer for Dentinal Tubule Occlusion: A Preliminary Study

    PubMed Central

    Wang, Tianda; Yang, Sheng; Wang, Lei; Feng, Hailan

    2015-01-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms caused by dentin hypersensitivity, a significant health problem in dentistry and daily life. The in situ mineralization within dentinal tubules is a promising treatment for dentin hypersensitivity as it induces the formation of mineral on the sensitive regions and occludes the dentinal tubules. This study was carried out to evaluate the in vitro effect of a whole generation poly(amidoamine) (PAMAM) dendrimer (G3.0) on dentinal tubule occlusion by inducing mineralization within dentinal tubules. Dentin discs were treated with PAMAM dendrimers using two methods, followed by the in vitro characterization using Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). These results showed that G3.0 PAMAM dendrimers coated on dentin surface and infiltrated in dentinal tubules could induce hydroxyapatite formation and resulted in effective dentinal tubule occlusion. Moreover, crosslinked PAMAM dendrimers could induce the remineralization of demineralized dentin and thus had the potential in dentinal tubule occlusion. In this in vitro study, dentinal tubules occlusion could be achieved by using PAMAM dendrimers. This could lead to the development of a new therapeutic technique for the treatment of dentin hypersensitivity. PMID:25885090

  13. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers

    PubMed Central

    Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. PMID:26382062

  14. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells†

    PubMed Central

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin

    2016-01-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform. PMID:25213606

  15. The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers

    PubMed Central

    Wu, Wenbo; Wang, Can; Li, Qianqian; Ye, Cheng; Qin, Jingui; Li, Zhen

    2014-01-01

    With the aim to make the influence of pentafluorophenyl groups in the periphery of high generation dendrons and dendrimers on their NLO performance clearly, some NLO dendrons and dendrimers with different chromophore moieties or different end-capped groups were carefully designed and investigated in detail. The results demonstrated that some strong Ar-ArF interactions between the pentafluorophenyl groups in the periphery and the normal phenyl rings of the donors, could influence the topological structures of dendrons or dendrimers, and then affect their NLO performance. Furthermore, the optical transparency and the stability of the dendrons and dendrimers with pentafluorophenyl groups as end-capped moieties were all improved, in comparison with normal dendrons and dendrimers containing phenyl ones as the end-capped groups. PMID:25168867

  16. The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers.

    PubMed

    Wu, Wenbo; Wang, Can; Li, Qianqian; Ye, Cheng; Qin, Jingui; Li, Zhen

    2014-08-29

    With the aim to make the influence of pentafluorophenyl groups in the periphery of high generation dendrons and dendrimers on their NLO performance clearly, some NLO dendrons and dendrimers with different chromophore moieties or different end-capped groups were carefully designed and investigated in detail. The results demonstrated that some strong Ar-Ar(F) interactions between the pentafluorophenyl groups in the periphery and the normal phenyl rings of the donors, could influence the topological structures of dendrons or dendrimers, and then affect their NLO performance. Furthermore, the optical transparency and the stability of the dendrons and dendrimers with pentafluorophenyl groups as end-capped moieties were all improved, in comparison with normal dendrons and dendrimers containing phenyl ones as the end-capped groups.

  17. Simulations reveal that the HIV-1 gp120-CD4 complex dissociates via complex pathways and is a potential target of the polyamidoamine (PAMAM) dendrimer

    NASA Astrophysics Data System (ADS)

    Nandy, Bidisha; Bindu, D. Hima; Dixit, Narendra M.; Maiti, Prabal K.

    2013-07-01

    The polyamidoamine (PAMAM) dendrimer prevents HIV-1 entry into target cells in vitro. Its mechanism of action, however, remains unclear and precludes the design of potent dendrimers targeting HIV-1 entry. We employed steered molecular dynamics simulations to examine whether the HIV-1 gp120-CD4 complex is a target of PAMAM. Our simulations mimicked single molecule force spectroscopy studies of the unbinding of the gp120-CD4 complex under the influence of a controlled external force. We found that the complex dissociates via complex pathways and defies the standard classification of adhesion molecules as catch and slip bonds. When the force loading rate was large, the complex behaved as a slip bond, weakening gradually. When the loading rate was small, the complex initially strengthened, akin to a catch bond, but eventually dissociated over shorter separations than with large loading rates. PAMAM docked to gp120 and destabilized the gp120-CD4 complex. The rupture force of the complex was lowered by PAMAM. PAMAM disrupted salt bridges and hydrogen bonds across the gp120-CD4 interface and altered the hydration pattern of the hydrophobic cavity in the interface. In addition, intriguingly, PAMAM suppressed the distinction in the dissociation pathways of the complex between the small and large loading rate regimes. Taken together, our simulations reveal that PAMAM targets the gp120-CD4 complex at two levels: it weakens the complex and also alters its dissociation pathway, potentially inhibiting HIV-1 entry.

  18. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin-Constants and mechanisms.

    PubMed

    Shcharbin, Dzmitry; Pedziwiatr-Werbicka, Elzbieta; Vcherashniaya, Aliaksandra; Janaszewska, Anna; Marcinkowska, Monika; Goska, Piotr; Klajnert-Maculewicz, Barbara; Ionov, Maksim; Abashkin, Viktar; Ihnatsyeu-Kachan, Aliaksei; de la Mata, F Javier; Ortega, Paula; Gomez-Ramirez, Rafael; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-03-31

    Thrombin is an essential part of the blood coagulation system; it is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, and catalyzes many other coagulation-related reactions. Absorption at its surface of small nanoparticles can completely change the biological properties of thrombin. We have analyzed the influence on thrombin of 3 different kinds of small nanoparticles: dendrimers (phosphorus-based, carbosilane based and polyamidoamine) and 2 hybrid systems containing carbosilane, viologen and phosphorus dendritic scaffolds in one single molecule, bearing different flexibility, size and surface charge. There was significant alteration in the rigidity of the rigid dendrimers in contrast to flexible dendrimers. These differences in their action are important in understanding interactions taking place at a bio-nanointerface.

  19. Novel perfluorocyclobutane (PFCB)-containing polymers and dendrimers for photonic devices

    NASA Astrophysics Data System (ADS)

    Ma, Hong; Wong, Sharon; Kang, Seok H.; Luo, Jingdong; Haller, Marnie; Jen, Alex K. Y.; Barto, Richard R.; Frank, Curtis W.

    2002-11-01

    A wide variety of aromatic trifluorovinyl ether monomers and highly fluorinated crosslinkable dendrimers have been developed via novel synthetic strategies. Through the thermal dimerization of trifluorovinyl ether moieties on the monomers or on the periphery of dendrimers, these monomers or dendrimers can be melt or solution polymerized to form perfluorocyclobutane(PFCB)-containing prepolymers with good processability for optical waveguide fabrication. By further thermal crosslinking, the resulting thermoset materials possess low optical loss (0.3-0.4 dB/cm at 1310 nm with 1% of DR-1 or DCM doping), high thermal stability (Tg: 100-400 °C), good thermo-optic property, high solvent and humid resistance, and excellent mechanical flexibility. The combination of processability and performance in these PFCB-containing thermoset materials make them as ideal candidates for the fabrication of high-performance polymeric planar lightwave circuit components with the applications in the telecom and datacom optical networks.

  20. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  1. Thermal stability of second generation carbosilane dendrimers with peripheral ammonia groups

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Gómez, Rafael; de la Mata, Fco Javier; Rasines, Beatriz; Simionescu, Bogdan C.

    2013-10-01

    Thermal analysis has a wide range of applications in pharmaceutical industry, in designing new molecules, control of raw materials, stability, compatibility studies, and development of new formulations. This paper evaluates the thermodynamic properties of two second generation G2 carbosilane dendrimers with peripheral ammonia groups by differential scanning calorimetry and TG/FTIR coupled techniques. The physical transformations have been detected and their thermodynamic characteristics have been estimated and analyzed. Both dendrimers are stable up to 150 °C, have the Tg at 75 and 59 °C and melting temperatures at 113 and 128 °C, respectively. The decomposition process proved to be very complex and takes place in three steps in nitrogen atmosphere and four steps in air, for both types of dendrimers. IR spectroscopic analysis was used to observe the evolution of the gaseous products versus temperature.

  2. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    PubMed

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  3. Spectroscopic and molecular modeling studies of the interaction between morin and polyamidoamine dendrimer.

    PubMed

    Zhang, Hongmei; Cao, Jian; Wang, Yanqing

    2014-09-01

    Interactions between the polyamidoamine (PAMAM) dendrimer and drug molecules are of interest for their potential biomedical applications. The goal of this work is to examine the interaction of PAMAM-C12 25% dendrimer with morin. The ultraviolet-visible, fluorescence spectroscopic methods as well as molecular modeling were used to analyze drug-binding mode, binding constants and binding sites, etc. The experimental data showed that the binding constant of morin-PAMAM-C12 25% is about 10(5) L/mol. The interaction of morin with PAMAM-C12 25% is mainly driven by the hydrophobic, electrostatic, hydrogen bonds and van der Waals forces. There are mainly three classes of binding site of morin at the interface of PAMAM-C12 25%. These results provided some useful information for self-assembling and disassembling the PAMAM dendrimer as well as efficient drug delivery and therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.

  4. The key role of the scaffold on the efficiency of dendrimer nanodrugs

    PubMed Central

    Caminade, Anne-Marie; Fruchon, Séverine; Turrin, Cédric-Olivier; Poupot, Mary; Ouali, Armelle; Maraval, Alexandrine; Garzoni, Matteo; Maly, Marek; Furer, Victor; Kovalenko, Valeri; Majoral, Jean-Pierre; Pavan, Giovanni M.; Poupot, Rémy

    2015-01-01

    Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an ‘innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins. PMID:26169490

  5. The key role of the scaffold on the efficiency of dendrimer nanodrugs.

    PubMed

    Caminade, Anne-Marie; Fruchon, Séverine; Turrin, Cédric-Olivier; Poupot, Mary; Ouali, Armelle; Maraval, Alexandrine; Garzoni, Matteo; Maly, Marek; Furer, Victor; Kovalenko, Valeri; Majoral, Jean-Pierre; Pavan, Giovanni M; Poupot, Rémy

    2015-07-14

    Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an 'innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins.

  6. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels.

    PubMed

    Kaga, Sadik; Arslan, Mehmet; Sanyal, Rana; Sanyal, Amitav

    2016-04-15

    Hydrogels have emerged as a versatile class of polymeric materials with a wide range of applications in biomedical sciences. The judicious choice of hydrogel precursors allows one to introduce the necessary attributes to these materials that dictate their performance towards intended applications. Traditionally, hydrogels were fabricated using either polymerization of monomers or through crosslinking of polymers. In recent years, dendrimers and dendrons have been employed as well-defined building blocks in these materials. The multivalent and multifunctional nature of dendritic constructs offers advantages in either formulation or the physical and chemical properties of the obtained hydrogels. This review highlights various approaches utilized for the fabrication of hydrogels using well-defined dendrimers, dendrons and their polymeric conjugates. Examples from recent literature are chosen to illustrate the wide variety of hydrogels that have been designed using dendrimer- and dendron-based building blocks for applications, such as sensing, drug delivery and tissue engineering.

  7. Chromophoric and dendritic phosphoramidites enable construction of functional dendrimers with exceptional brightness and water solubility.

    PubMed

    Shaller, Andrew D; Wan, Wei; Zhao, Baoming; Li, Alexander D Q

    2014-09-15

    The fluorescence brightness of a molecular probe determines whether it can be effectively measured and its water solubility dictates if it can be applied in real-world biological systems. However, molecules brighter than the most efficient fluorescent dyes or particles brighter than quantum dots are hard to come by, especially when they must also be soluble in water. In this report, chromophoric phosphoramidites are used in a solid-state synthesis to construct functional dendrimers. When highly twisted chromophores are chosen and the proper spacers and dendrons are introduced, the resultant dendrimers emit exceptionally bright fluorescence. Chromophores, spacers, and dendrons are stitched together by efficient phosphoramidite reagents, which afford high-yield water-soluble phosphodiester linkages after deprotection. The resulting water-soluble dendrimers are exceptionally bright. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of catalyst introduction methods using PAMAM dendrimers on selective electroless nickel deposition on polyelectrolyte multilayers.

    PubMed

    Hendricks, Troy R; Dams, Erin E; Wensing, Steven T; Lee, Ilsoon

    2007-06-19

    We studied the effects of catalyst introduction methods using poly(amidoamine) (PAMAM) dendrimers on the nickel patterning of polyelectrolyte multilayer (PEM)-coated substrates. Three different approaches to palladium catalyst introduction using microcontact printing as the patterning technique were utilized and compared. The catalyst introduction methods are (1) direct catalyst stamping, (2) directed assembly using PAMAM dendrimer stamping, and (3) catalyst encapsulation and reduction to nanoparticles within PAMAM dendrimers before stamping. After patterning, the sample surfaces were placed in an electroless bath where nickel was selectively plated onto the patterns. The patterned surfaces were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The metal plating rates on different homogeneous surfaces that simulate the patterned surfaces were measured using a quartz crystal microbalance. In addition, the effect of PEM film thickness (i.e., number of bilayers) on the selectivity of nickel patterning was investigated.

  9. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    SciTech Connect

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.; Shu, G. W.; Yuan, C. T.; Shen, J. L.; Kao, C. W.; Yeh, J. M.; Chen-Yang, Y. W.

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  10. NMR relaxation of the orientation of single segments in semiflexible dendrimers

    SciTech Connect

    Markelov, Denis A. Gotlib, Yuli Ya.; Dolgushev, Maxim; Blumen, Alexander

    2014-06-28

    We study the orientational properties of labeled segments in semiflexible dendrimers making use of the viscoelastic approach of Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. We focus on the segmental orientational autocorrelation functions (ACFs), which are fundamental for the frequency-dependent spin-lattice relaxation times T{sub 1}(ω). We show that semiflexibility leads to an increase of the contribution of large-scale motions to the ACF. This fact influences the position of the maxima of the [1/T{sub 1}]-functions. Thus, going from outer to inner segments, the maxima shift to lower frequencies. Remarkably, this feature is not obtained in the classical bead-spring model of flexible dendrimers, although many experiments on dendrimers manifest such a behavior.

  11. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery

    PubMed Central

    Kesharwani, Prashant; Iyer, Arun K.

    2015-01-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  12. Two decades of dendrimers as versatile MRI agents: a tale with and without metals.

    PubMed

    McMahon, Michael T; Bulte, Jeff W M

    2017-09-11

    Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T1 , T2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated ((19) F) heteronuclear imaging agents. For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  13. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  14. Fluorescent hydroxylamine derived from the fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition.

    PubMed

    Wu, Te-Haw; Liu, Ching-Ping; Chien, Chih-Te; Lin, Shu-Yi

    2013-08-26

    Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off. The fluorescent hydroxylamine was selectively oxidised by OCl(-) to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl(-) in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl(-) with minimal interference from biological matrixes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials.

    PubMed

    Huang, Xinhua; Zheng, Sudan; Kim, Il

    2014-02-01

    This paper reviews the recent research and development of hyperbranched polymers (HPs) and dendrimers, and their use as templates for organic-inorganic hybrid nanomaterials. Hyperbranched polymers (HPs) are highly branched macromolecules with three-dimensional globular structures featuring unique properties such as low viscosity, high solubility, and a large number of terminal functional groups compared to their linear analogs. They are easily prepared by (1) condensation polymerization, (2) self-condensing vinyl copolymerization (SCVCP), and (3) ring-opening multibranch polymerization methods. Organic-inorganic hybrid nanomaterials are synthesized by a template approach using HPs/dendrimers. Monometallic, bimetallic (alloy and core/shell), semiconductor, and metal oxide nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticles but also as a stabilizer for the nanoparticles.

  16. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers.

    PubMed

    Dzhardimalieva, Gulzhian I; Uflyand, Igor E

    2017-08-08

    The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered. These compounds are subdivided into molecular, intracomplex, and macrocyclic types which in turn are classified depending on the nature of the donor atoms (N,N-, N,O-, N,S-, O,O-, O,S-, S,S-, P,P-chelates, etc.). Special attention is paid to the features of the preparation of metal chelate star polymers by "arm-first", "core-first" and click-to-chelate approaches. The main data on the synthesis, spatial structure and properties of the metal chelate hyperbranched polymers are summarized. The basic concepts and synthetic strategies leading to the different types of supramolecular metal chelate dendrimers are analyzed. The problems and future prospects of metal chelate dendrimers and star and hyperbranched polymers are outlined. The bibliography includes papers published after 2010.

  17. Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers

    PubMed Central

    Falanga, Annarita; Tarallo, Rossella; Carberry, Thomas; Galdiero, Massimiliano; Weck, Marcus; Galdiero, Stefania

    2014-01-01

    We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery. PMID:25423477

  18. Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells.

    PubMed

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Gabara, Barbara; Ionov, Maxim; Bryszewska, Maria

    2010-04-01

    We report the use of polyamidoamine (PAMAM-NH(2)) dendrimers along with other non-viral vehicles for the in vitro transfection of human bone marrow mesenchymal stem cells (hMSCs) and for engineering MSCs to secrete brain-derived neurotrophic factor (BDNF). Different generations of cationic polyamidoamine dendrimers (generations 3-6) were tested on HEK 293T cells. hMSCs were then transfected with PAMAM-NH(2) G4 dendrimers and Lipofectamine 2000, which elicited the expression of GFP reporter in around 6 and 20% of the cells, respectively. Both vehicles were then shown to elicit the expression of BDNF in MSCs from a bicistronic cassette. Non-virally induced neurotrophin expression may be a safe and easy method for adapting autologous stem cells for therapeutic treatment of diseases and neural system injuries.

  19. Controlling Cellular Uptake and Toxicity of Polyphenylene Dendrimers by Chemical Functionalization.

    PubMed

    Hammer, Brenton; Wu, Yuzhou; Fischer, Stephan; Liu, Weina; Weil, Tanja; Müllen, Klaus

    2017-02-21

    Polyphenylene dendrimers (PPDs) represent a unique class of macromolecules based on their monodisperse and shape-persistent nature. These characteristics have enabled the synthesis of a new genre of "patched" surface dendrimers where their exterior can be functionalized with a variety of polar and unpolar substituents to yield lipophilic binding sites in a site-specific way. While such materials have proven capable of complexing biologically relevant molecules, shown high cellular uptake in various cell lines, and low to no toxicity; there is minimal understanding of the driving forces to these characteristics. Therefore, the present work aims at investigating whether it is the specific chemical functionalities, relative quantities of each moiety, or the "patched" surface patterning on the dendrimers that more significantly influences their behavior in biological media.

  20. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  1. Mechanism of Cooperativity and Nonlinear Release Kinetics in Multivalent Dendrimer-Atropine Complexes.

    PubMed

    Mukherjee, Jhindan; Wong, Pamela T; Tang, Shengzhuang; Gam, Kristina; Coulter, Alexa; Baker, James R; Choi, Seok Ki

    2015-12-07

    Despite extensive studies on drug delivery using multivalent complexation systems, the biophysical basis for release kinetics remains poorly defined. The present study addresses this aspect involved in the complexation of a fifth generation poly(amidoamine) (PAMAM) dendrimer with atropine, an essential antidote used for treating organophosphate poisoning. First, we designed (1)H NMR titration studies for determining the molecular basis of the drug complexation with a glutarate-modified anionic dendrimer. These provide evidence pointing to a combination of electrostatic and hydrophobic interactions as the driving forces for dendrimer complexation with the alkaloid drug molecule. Second, using LC-MS/MS spectrometry, we determined the dissociation constants (KD) at steady state and also measured the drug release kinetics of atropine complexes with four negatively charged dendrimer types. Each of these dendrimers has a high payload capacity for up to ∼ 100 atropine molecules. However, the affinity of the atropine to the carrier was highly dependent on the drug to dendrimer ratio. Thus, a complex made at a lower loading ratio (≤ 0.1) displayed greater atropine affinity (KD ≈ μM) than other complexes prepared at higher ratios (>10), which showed only mM affinity. This negative cooperative variation in affinity is tightly associated with the nonlinear release kinetics observed for each complex in which drug release occurs more slowly at the later time phase at a lower loading ratio. In summary, the present study provides novel insights on the cooperativity as the mechanistic basis for nonlinear release kinetics observed in multivalent carrier systems.

  2. Manganese G8 Dendrimers Targeted to Oxidation-Specific Epitopes: In vivo MR imaging of Atherosclerosis

    PubMed Central

    Nguyen, Tuyen H.; Bryant, Henry; Shapsa, Ari; Street, Hannah; Mani, Venkatesh; Fayad, Zahi A.; Frank, Joseph A.; Tsimikas, Sotirios; Briley-Saebo, Karen C.

    2014-01-01

    Objective To determine if manganese (Mn) G8 dendrimers targeted to oxidation-specific epitopes (OSE) allow for in vivo detection of atherosclerotic lesions. Background OSE have been identified as key factors in atherosclerotic plaque progression and destabilization. Mn offers a potentially clinically translatable alternative to gadolinium-based agents when bioretention and potential toxicity of gadolinium is anticipated. However, to be effective, high payloads of Mn must accumulate intracellularly in macrophages. It was hypothesized that G8 dendrimers targeted to OSE may allow delivery of high Mn payloads, thereby enabling in vivo detection of macrophage rich plaques. Methods G8 dendrimers were modified to allow conjugation with MnDTPA (758 Mn ion) and the antibody MDA2 that is targeted to malondialdehyde (MDA)-lysine epitopes. Both the untargeted and targeted G8 dendrimers were characterized and their in vivo efficacy evaluated in apoE-/- mice over a 96-hour time period after bolus administration of a 0.05 mmol Mn/kg dose using a clinical MR system (3 Tesla). Results Significant enhancement (normalized enhancement >60%, p=0.0013) of atherosclerotic lesions was observed within a 72-hour time period following administration of the targeted dendrimers. The presence of Mn within atherosclerotic lesions was confirmed using spectroscopic methods (>8 μg Mn/g). Limited signal attenuation (<18%) and Mn deposition (< 1 μg Mn/g) was observed in the arterial wall following injection of the untargeted material. Conclusions This study demonstrates that manganese labeled dendrimers, allowing a high Mn payload, targeted to OSE may allow in vivo image of atherosclerotic lesions. PMID:24610640

  3. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid.

    PubMed

    Madaan, Kanika; Lather, Viney; Pandita, Deepti

    2016-01-01

    The aim of the present research work was to investigate the potential of polyamidoamine (PAMAM) dendrimers as oral drug delivery carriers for quercetin, a Biopharmaceutical Classification System (BCS) class II molecule. The aqueous solubility of quercetin was investigated in different generations of dendrimers, i.e. G0, G1, G2 and G3, with varying concentrations (0.1, 0.5, 1, 2 and 4 µM). Then, it was successfully incorporated in PAMAM dendrimers and they were characterized for incorporation efficacy, nature of nanoformulations, size, size distribution, surface morphology and stability. In vitro release characteristics of quercetin from all quercetin-PAMAM complexes were studied at 37 °C in phosphate buffer saline (PBS; pH 7.4). Furthermore, the efficacy of quercetin-loaded PAMAM dendrimer was assessed by pharmacodynamic experiment, namely, a carrageenan-induced paw edema model to evaluate the acute activity of this nanocarrier in response to inflammation. It was observed that both generation and the respective concentrations of PAMAM dendrimers showed potential positive effects on solubility enhancement of quercetin. All the quercetin-PAMAM complexes were found to be in nanometeric range (<100 nm) with narrow polydispersity index. In vitro study revealed a biphasic release pattern of quercetin which was characterized by an initial faster release followed by sustained release phase and pharmacodynamic study provided the preliminary proof of concept about the potential of quercetin-PAMAM complexes. The study concludes that the dendrimer-based drug delivery system for quercetin has enormous potential to resolve the drug delivery issues associated with it.

  4. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

    NASA Astrophysics Data System (ADS)

    Soni, Namrata; Jain, Keerti; Gupta, Umesh; Jain, N. K.

    2015-11-01

    The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff's reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC50 value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague-Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI.

  5. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications.

    PubMed

    Kannan, R M; Nance, E; Kannan, S; Tomalia, D A

    2014-12-01

    Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious

  6. EXAFS Characterization of Dendrimer-Derived Pt/γ-Al2O3

    NASA Astrophysics Data System (ADS)

    Siani, A.; Alexeev, O. S.; Williams, C. T.; Ploehn, H. J.; Amiridis, M. D.

    2007-02-01

    The various steps involved in the preparation of a Pt/γ-Al2O3 material using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, indicating the complexation of Pt with the dendrimer. This process was accompanied by a transfer of the electron density from the dendrimer to Pt, indicating that the former plays the role of a ligand. Following treatment of the H2PtCl6/G4OH and K2PtCl4/G4OH composites with NaBH4, no substantial changes were detecteded in the electronic or coordination environment of Pt, and no formation of metal nanoparticles was observed. However, when the reduction treatment was performed with H2, the formation of extremely small Pt clusters incorporating no more than 4 Pt atoms was observed. These Pt species remained strongly bonded to the dendrimer and their nuclearity depends on the length of the H2 treatment. Formation of Pt nanoparticles with an average diameter of approximately 10 Å was finally observed after the deposition of H2PtCl6/G4OH on γ-Al2O3 and drying, suggesting that their formation may be related to the collapse of the dendrimer structure. The Pt nanoparticles formed appear to have high mobility, since subsequent thermal treatment in O2/H2 led to further sintering.

  7. Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications.

    PubMed

    Bermejo, Jesus F; Ortega, Paula; Chonco, Louis; Eritja, Ramon; Samaniego, Rafael; Müllner, Matthias; de Jesus, Ernesto; de la Mata, F Javier; Flores, Juan Carlos; Gomez, Rafael; Muñoz-Fernandez, Angeles

    2007-01-01

    Novel amine- or ammonium-terminated carbosilane dendrimers of type nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe2)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe2}]x and nG-[Si{(CH2)3NH2}]x or nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe3 +I-)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe3 +I-}]x, and nG-[Si{(CH2)3NH3 +Cl-}]x have been synthesized and characterized up to the third generation by two strategies: 1) alcoholysis of Si--Cl bonds with amino alcohols and subsequent quaternization with MeI, and 2) hydrosilylation of allylamine with Si--H bonds of the dendritic systems and subsequent quaternization with HCl. Quaternized carbosilane dendrimers are soluble in water, although degradation is apparent due to hydrolysis of Si--O bonds. However, dendrimers containing Si--C bonds are water-stable. The biocompatibility of the second-generation dendrimers in primary cell cultures of peripheral blood mononuclear cells (PBMCs) and erythrocytes have been analyzed, and they show good toxicity profiles over extended periods. In addition, we describe a study on the interactions between the different carbosilane dendrimers and DNA oligodeoxynucleotides (ODNs) and plasmids along with a comparative analysis of their toxicity. They can form complexes with DNA ODNs and plasmids at biocompatible doses via electrostatic interaction. Also a preliminary transfection assay has been accomplished. These results demonstrate that the new ammonium-terminated carbosilane dendrimers are good base molecules to be considered for biomedical applications.

  8. Structural Phase Diagrams for Dendrimer:DNA Complexes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Pfohl, T.; Martin, A.; Safinya, C. R.

    2002-03-01

    Polypropylene imine (PPI) dendrimers become positively charged in aqueous solution and are consequently a useful tool for packaging DNA in gene delivery applications. Studies of PPI and DNA help to improve the efficiency of DNA delivery as well as model more complex biological systems such as histones. PPI is synthesized in a stepwise manner, and at each step the product is referred to as a generation (G1 through G5). We show structural phase diagrams based on synchrotron x-ray diffraction as a function of PPI/DNA charge ratio (P/D). At lower generations PPI bundling with DNA is similar to DNA condensation caused by small multivalent salts such as spermidine. Remarkably, for G4 and G5 distinct structural transitions are seen with increasing P/D. In particular, G4:DNA complexes show a salt-like bundling at low P/D, followed by both square and hexagonal lattices with addition of PPI. Optical microscopy and supporting size and charge measurements will also be shown. Funding provided by NIH GM59288 and NSF DMR-9972246.

  9. Dendrimer-like hybrid particles with tunable hierarchical pores

    NASA Astrophysics Data System (ADS)

    Du, Xin; Li, Xiaoyu; Huang, Hongwei; He, Junhui; Zhang, Xueji

    2015-03-01

    Dendrimer-like silica particles with a center-radial dendritic framework and a synergistic hierarchical porosity have attracted much attention due to their unique open three-dimensional superstructures with high accessibility to the internal surface areas; however, the delicate regulation of the hierarchical porosity has been difficult to achieve up to now. Herein, a series of dendrimer-like amino-functionalized silica particles with tunable hierarchical pores (HPSNs-NH2) were successfully fabricated by carefully regulating and optimizing the various experimental parameters in the ethyl ether emulsion systems via a one-pot sol-gel reaction. Interestingly, the simple adjustment of the stirring rate or reaction temperature was found to be an easy and effective route to achieve the controllable regulation towards center-radial large pore sizes from ca. 37-267 (148 +/- 45) nm to ca. 8-119 (36 +/- 21) nm for HPSNs-NH2 with particle sizes of 300-700 nm and from ca. 9-157 (52 +/- 28) nm to ca. 8-105 (30 +/- 16) nm for HPSNs-NH2 with particle sizes of 100-320 nm. To the best of our knowledge, this is the first successful regulation towards center-radial large pore sizes in such large ranges. The formation of HPSNs-NH2 may be attributed to the complex cross-coupling of two processes: the dynamic diffusion of ethyl ether molecules and the self-assembly of partially hydrolyzed TEOS species and CTAB molecules at the dynamic ethyl ether-water interface of uniform small quasi-emulsion droplets. Thus, these results regarding the elaborate regulation of center-radial large pores and particle sizes not only help us better understand the complicated self-assembly at the dynamic oil-water interface, but also provide a unique and ideal platform as carriers or supports for adsorption, separation, catalysis, biomedicine, and sensor.Dendrimer-like silica particles with a center-radial dendritic framework and a synergistic hierarchical porosity have attracted much attention due to their

  10. PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations.

    PubMed

    Yang, Lin; da Rocha, Sandro R P

    2014-05-05

    Poly(amido amine) (PAMAM) dendrimers are promising nanocarriers in a wide range of biomedical applications including gene and drug delivery and as imaging agents. They have unique structural properties and are characterized by high size uniformity, low polydispersity, and a large number of modifiable surface groups. Drug-dendrimer systems are usually further modified through the conjugation of ligands in order to confer the carriers' specific characteristics designed to enhance their efficacy. The chemistry and structure of the solvated ligand-conjugated dendrimer nanocarriers (DNCs) will dictate how they interact with the physiological environment and, therefore, their fate and function. Understanding the microstructures of ligand-conjugated DNCs is, therefore, of great relevance within the context of drug delivery applications. In this work, we investigate the effect of poly(ethylene glycol) (PEG) on the microstructure of solvated, NH2-terminated PAMAM DNCs using fully atomistic molecular dynamics simulations. Several variables including dendrimer generation (2-5), PEGylation density (0-50%), and PEG Mw (500 and 1000) were investigated. The results obtained showed a good match with available experimental results, including size as a function of dendrimer degeneration (G2NH2-G5NH2). No back-folding is observed for PAMAM dendrimers with generation lower than G5NH2. G2NH2 and G3NH2 showed a dense-packed, nonglobular structure, and G4NH2 and G5NH2 have a segmented, "open" structure. Our results help settle a long-standing debate with respect to "back-folding" as the microstructural information obtained here is reconciled with experimental results. PEGylation was found to influence the microstructure in a different way, including an expected increase in the overall size of the DNCs, while not affecting much the solvation of unmodified terminal (primary) amines. It also serves to expand the core of dendrimers, reduce the surface charge, and change solvation behavior of

  11. Photophysical properties of dendrimer phthalocyanine-functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; He, Dandan; Peng, Yiru; Ma, Dongdong; Wang, Yuhua

    2012-11-01

    The photophysical properties of a novel series dendrimer phthalocyanine-SWNTs nanoconjugates in which the dendrimer phthalocyanine was tetra-[3,5-di-(4-carboxylic benzyloxy)benzyloxy] zinc(Ⅱ) phthalocyanine covalently linked with SWNTs using ethylenediamine or hexamethylenediamine as space linkers were investigated in detailed by the fluorescent spectra and time-resolved spectroscopy. The photoindued intramolecular electron was transferred from phthalocyanine (donor) to carbon nanotubes (acceptor). Novel functionalized constituents in this work are fundamentally important due to the synergy effects of carbon nanotubes and dendritic zinc phthalocyanine, which may find potential applications in the drug delivery, biological labels and many other related fields.

  12. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  13. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  14. Interactions between dendrimers and ionic liquids revealed by pulsed field gradient and nuclear Overhauser effect NMR studies.

    PubMed

    Zhao, Libo; Li, Cai; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-06-21

    The host-guest interactions of cationic and anionic poly(amidoamine) (PAMAM) dendrimers with three ionic liquids including 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate ([BMIM][MDEGSO(4)]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]), and trihexyltetradecylphosphonium bis((trifluoromethyl)sulfonyl)imide ([THTDP][TFSI]) were investigated by several NMR techniques such as (1)H and (19)F NMR, pulsed field gradient (PFG) NMR, and 2D nuclear Overhauser enhancement spectroscopy (NOESY). Anionic PAMAM dendrimer interacts with the ionic liquids via ionic interactions. However, almost no interaction is observed between cationic PAMAM dendrimer and the ionic liquids without pH adjustment. Besides, no inclusion formation between the PAMAM dendrimers and the ionic liquids is observed on the basis of NOE NMR studies. The interactions between dendrimers and ionic liquids are very different from those between dendrimers and surfactants or amphiphilic drugs. The results obtained from PFG and NOE studies provide new insights into dendrimer-based host-guest systems.

  15. Encapsulation of anilinonaphthalenesulfonates in carboxylate-terminated PAMAM dendrimer at the polarized water|1,2-dichloroethane interface.

    PubMed

    Nagatani, Hirohisa; Sakamoto, Tsutomu; Torikai, Taishi; Sagara, Takamasa

    2010-11-16

    Molecular encapsulation of water-soluble anionic fluorescent dye molecules, 8-anilino-1-naphthalenesulfonic acid (ANS), and its bimolecular derivative (bis-ANS), in the generation 3.5 polyamidoamine (G3.5 PAMAM) dendrimer was investigated in the bulk aqueous phase and at the polarized water|1,2-dichloroethane interface. ANS(-) was electrostatically incorporated in the dendrimer, and the fluorescence enhancement with a blue shift of the emission maximum was observed at pH values <6, where the interior of the dendrimer was positively charged. The fluorescence enhancement of ANS was maximized around pH 3 and then decreased under more acidic conditions. The potential dependences of the molecular encapsulation and the interfacial mechanism were studied in detail by means of potential modulated fluorescence (PMF) spectroscopy. Under acidic conditions, the dendrimer incorporated ANS(-) at the positively polarized interface as well as in the aqueous phase. ANS(-) was released from the dendrimer at the intrinsic transfer potential and independently transferred across the interface. Bis-ANS exhibited relatively strong interaction with the dendrimer over a wide pH range (1 < pH < 8), and a negative shift of the transfer potential was observed under the corresponding pH condition. The PMF analysis clearly demonstrated that the interfacial mechanism of the dendrimer involves transfer and adsorption processes depending on the pH condition and the Galvani potential difference.

  16. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development.

    PubMed

    Elkin, Igor; Banquy, Xavier; Barrett, Christopher J; Hildgen, Patrice

    2017-09-06

    During the last three decades, dendrimers, nano-sized highly-branched fractal-like symmetrical macromolecules, have been intensively studied as promising candidates for application as drug-delivery carriers. Among other important characteristics arising from their unique and highly-controlled architecture, size and surface properties, the possibility of hosting guest molecules in internal voids represents a key advantage underlying the potential of dendrimers as non-covalent drug-encapsulating agents. The impressive amount of accumulating experimental results to date allows researchers to identify the most important and promising theoretical and practical aspects of the use of dendrimers for this purpose. This review covers the main factors, phenomena, and mechanisms involved in this drug-vectorization approach, including mechanisms of non-covalent dendrimer-drug association, dendrimer-dendrimer interactions, as well as biological properties relevant to the host dendrimers. A discussion is then provided to illustrate some successful existing formulation strategies as well as to propose some new possible ones to optimize further development of the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gradient shape-persistent pi-conjugated dendrimers for light-harvesting: synthesis, photophysical properties, and energy funneling.

    PubMed

    Wang, Jin-Liang; Yan, Jing; Tang, Zheng-Ming; Xiao, Qi; Ma, Yuguo; Pei, Jian

    2008-07-30

    A new class of pi-conjugated dendrimers G0, G1, and G2 was developed through a double-stage divergent/convergent growth approach, in which 5,5,10,10,15,15-hexahexyltruxene was employed as the node and oligo(thienylethynylene)s (OTEs) with different lengths as the branching moieties. The dendrimers were fully characterized by (1)H and (13)C NMR, elemental analysis, gel permeation chromatography, and MALDI-TOF MS. Also, by using atomic force microscopy, it was observed that dendrimer G2 laid nearly flat on the mica surface as a single molecule. Dynamic light scattering results showed that the molecule retained its relatively flat shape in solution. To our best knowledge, dendrimer G2, with a radius approaching 10 nm and a molecular weight of 27 072 Da, was the largest among reported second generation dendrimers. The energy gradient in G2 was constructed by linking OTEs of increasing effective conjugation lengths from the dendritic rim to the core. The intramolecular energy transfer process was studied using steady-state UV-vis absorption and photoluminescent spectroscopies, as well as time-resolved fluorescence spectroscopy. Our structurally extended dendrimers showed an excellent energy funneling ability (their energy transfer efficiencies were all over 95%). All results demonstrate that these dendrimers are promising candidates as light-harvesting materials for optoelectronic devices.

  18. Optimizing the Multivalent Binding of the Bacterial Lectin LecA by Glycopeptide Dendrimers for Therapeutic Purposes.

    PubMed

    Bouvier, Benjamin

    2016-06-27

    Bacterial lectins are nonenzymatic sugar-binding proteins involved in the formation of biofilms and the onset of virulence. The weakness of individual sugar-lectin interactions is compensated by the potentially large number of simultaneous copies of such contacts, resulting in high overall sugar-lectin affinities and marked specificities. Therapeutic compounds functionalized with sugar residues can compete with the host glycans for binding to lectins only if they are able to take advantage of this multivalent binding mechanism. Glycopeptide dendrimers, featuring treelike topologies with sugar moieties at their leaves, have already shown great promise in this regard. However, optimizing the dendrimers' amino acid sequence is necessary to match the dynamics of the lectin active sites with that of the multivalent ligands. This work combines long-time-scale coarse-grained simulations of dendrimers and lectins with a reasoned exploration of the dendrimer sequence space in an attempt to suggest sequences that could maximize multivalent binding to the galactose-specific bacterial lectin LecA. These candidates are validated by simulations of mixed dendrimer/lectin solutions, and the effects of the dendrimers on lectin dynamics are discussed. This approach is an attractive first step in the conception of therapeutic compounds based on the dendrimer scaffold and contributes to the understanding of the various classes of multivalency that underpin the ubiquitous "sugar code".

  19. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    SciTech Connect

    Chen, Chun-Yu; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Li, Xin; Liu, Emily; Liu, Yun; Smith, Gregory Scott; Wu, Bin; Yang, Jun; Do, Changwoo

    2011-01-01

    An experimental scheme using contrast variation small angle neutron scattering technique (SANS), is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers (PAMAM) solutions. The focus is placed on understanding the dependence of intra-dendrimer water and polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH value of solution. Assuming the spherical symmetry in the spatial arrangement of the constituent component of dendrimer, and the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside dendrimer, the intra-dendrimer water distribution along the radial direction can be determined based on the model of coherent scattering cross section developed in this work. Moreover, our result clearly reveals an outward relocation of the peripheral groups, as well as the enhanced intra-dendrimer hydration, upon increasing the molecular protonation and therefore allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  20. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer.

    PubMed

    Kojima, Chie; Umeda, Yasuhito; Ogawa, Mikako; Harada, Atsushi; Magata, Yasuhiro; Kono, Kenji

    2010-06-18

    Gold nanoparticles (Au NPs) are a potential x-ray computed tomography (CT) contrast agent. A biocompatible and bioinactive surface is necessary for application of gold nanoparticle to CT imaging. Polyethylene glycol (PEG)-attached dendrimers have been used as a drug carrier with long blood circulation. In this study, the Au NPs were grown in the PEGylated dendrimer to produce a CT contrast agent. The Au NPs were grown by adding gold ions and ascorbic acid at various equivalents to the Au NP-encapsulated dendrimer solution. Both size and surface plasmon absorption of the grown Au NPs increased with adding a large number of gold ions. The x-ray attenuation of the Au NPs also increased after the seeded growth. The Au NPs grown in the PEG-attached dendrimer at the maximum under our conditions exhibited a similar CT value to a commercial iodine agent, iopamidol, in vitro. The Au NP-loaded PEGylated dendrimer and iopamidol were injected into mice and CT images were obtained at different times. The Au NP-loaded PEGylated dendrimer achieved a blood pool imaging, which was greater than a commercial iodine agent. Even though iopamidol was excreted rapidly, the PEGylated dendrimer loading the grown Au NP was accumulated in the liver.

  1. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer

    PubMed Central

    Kulhari, Hitesh; Pooja, Deep; Shrivastava, Shweta; Kuncha, Madhusudana; Naidu, V. G. M.; Bansal, Vipul; Sistla, Ramakrishna; Adams, David J.

    2016-01-01

    Approximately 20% of breast cancer cases are human epidermal growth factor receptor 2 (HER2)-positive. This type of breast cancer is more aggressive and tends to reoccur more often than HER2-negative breast cancer. In this study, we synthesized trastuzumab (TZ)-grafted dendrimers to improve delivery of docetaxel (DTX) to HER2-positive breast cancer cells. Bioconjugation of TZ on the surface of dendrimers was performed using a heterocrosslinker, MAL-PEG-NHS. For imaging of cancer cells, dendrimers were also conjugated to fluorescein isothiocyanate. Comparative in vitro studies revealed that these targeted dendrimers were more selective, and had higher antiproliferation activity, towards HER2-positive MDA-MB-453 human breast cancer cells than HER2-negative MDA-MB-231 human breast cancer cells. When compared with unconjugated dendrimers, TZ-conjugated dendrimers also displayed higher cellular internalization and induction of apoptosis against MDA-MB-453 cells. Binding of TZ to the dendrimer surface could help site-specific delivery of DTX and reduce systemic toxicity resulting from its lack of specificity. In addition, in vivo studies revealed that the pharmacokinetic profile of DTX was significantly improved by the conjugated nanosystem. PMID:27052896

  2. Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles.

    PubMed

    Fruchon, Séverine; Poupot, Rémy

    2017-09-01

    Dendrimers are soft matter, hyperbranched, and multivalent nanoparticles whose synthesis theoretically affords monodisperse compounds. They are built from a core on which one or several successive series of branches are engrafted in an arborescent way. At the end of the synthesis, the tunable addition of surface groups gives birth to multivalent nano-objects which are generally intended for a specific use. For these reasons, dendrimers have received a lot of attention from biomedical researchers. In particular, some of us have demonstrated that dendrimers can be intrinsically drug-candidate for the treatment of inflammatory disorders, amongst others, using relevant preclinical animal models. These anti-inflammatory dendrimers are innovative in the pharmaceutical field. More recently, it has appeared that some dendrimers (even among those which have been described as anti-inflammatory) can promote inflammatory responses in non-diseased animals. The main corpus of this concise review is focused on the reports which describe anti-inflammatory properties of dendrimers in vivo, following which we review the few recent articles that show pro-inflammatory effects of our favorite molecules, to finally discuss this duality in immuno-modulation which has to be taken into account for the preclinical and clinical developments of dendrimers.

  3. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations.

    PubMed

    Chaudhary, Sonam; Gothwal, Avinash; Khan, Iliyas; Srivastava, Shubham; Malik, Ruchi; Gupta, Umesh

    2017-03-01

    Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH2) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH2). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2mM G5-PPI-NH2 concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH10.0, respectively (p<0.05). The solubility of the drug was increased to a greater extent with G5-PPI-NH2 dendrimers because it has more hydrophobic interior than G4-PAMAM-NH2 dendrimers. The release of BTZ from G5-PPI-NH2 complex was comparatively slower than G4-PAMAM-NH2. The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions.

  4. 64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque

    PubMed Central

    2015-01-01

    The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo plaque accumulation of monomeric [18F]FBA-LyP-1 was low (0.31 ± 0.05%ID/g). To increase the avidity of LyP-1 constructs to p32, we synthesized a dendritic form of LyP-1 on solid phase using lysine as the core structural element. Imaging probes (FAM or 6-BAT) were conjugated to a lysine or cysteine on the dendrimer for optical and PET studies. The N-terminus of the dendrimer was further modified with an aminooxy group in order to conjugate LyP-1 and ARAL peptides bearing a ketone. Oxime ligation of peptides to both dendrimers resulted in (LyP-1)4- and (ARAL)4-dendrimers with optical (FAM) and PET probes (6-BAT). For PET-CT studies, (LyP-1)4- and (ARAL)4-dendrimer-6-BAT were labeled with 64Cu (t1/2 = 12.7 h) and intravenously injected into the atherosclerotic (ApoE–/–) mice. After two hours of circulation, PET-CT coregistered images demonstrated greater uptake of the (LyP-1)4-dendrimer-64Cu than the (ARAL)4-dendrimer-64Cu in the aortic root and descending aorta. Ex vivo images and the biodistribution acquired at three hours after injection also demonstrated a significantly higher uptake of the (LyP-1)4-dendrimer-64Cu (1.1 ± 0.26%ID/g) than the (ARAL)4-dendrimer-64Cu (0.22 ± 0.05%ID/g) in the aorta. Similarly, subcutaneous injection of the LyP-1-dendrimeric carriers resulted in preferential accumulation in plaque-containing regions over 24 h. In the same model system, ex vivo fluorescence images within aortic plaque depict an increased accumulation and penetration of the (LyP-1)4-dendrimer-FAM as compared to the (ARAL)4-dendrimer-FAM. Taken together, the results suggest that the (LyP-1)4-dendrimer can be applied for in

  5. New dendrimers containing a single cobaltocenium unit covalently attached to the apical position of Newkome dendrons: electrochemistry and guest binding interactions with cucurbit[7]uril.

    PubMed

    Sobransingh, David; Kaifer, Angel E

    2006-12-05

    Two new dendrimer series were prepared and characterized. These dendrimers contain a single bis(cyclopentadienyl)cobalt(III) (cobaltocenium, Cob+) unit covalently attached to the apical (focal) position of Newkome-type dendrons, ranging in size from first to third generation. The dendrimers in the first series (1ECob+-3ECob+) are hydrophobic and have 3, 9, and 27 tert-butyl esters on their peripheries, whereas the dendrimers in the second series (1Cob+-3Cob+) are hydrophilic with 3, 9, and 27 carboxylic acid groups on their surfaces, respectively. In voltammetric experiments, all dendrimers showed the expected one-electron reversible reduction of the cobaltocenium center, and the heterogeneous rate of electron transfer decreased with generation in both dendrimer series. The host-guest binding interactions between water-soluble dendrimers 1Cob+-3Cob+ and the cucurbit[7]uril (CB7) host were investigated using 1H NMR spectroscopy, MALDI-TOF mass spectrometry, and electrochemical techniques. The association equilibrium constants (K) for all dendrimer guests were significantly lower than that measured for the inclusion complex between underivatized Cob+ and CB7 (K = 5.7 x 10(9) M(-1)). Nonetheless, among the three dendrimers surveyed, the second-generation dendrimer, 2Cob+, afforded optimum stabilization for the CB7 inclusion complex.

  6. New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility.

    PubMed

    Falconieri, Maria Cristina; Adamo, Mauro; Monasterolo, Claudio; Bergonzi, Maria Camilla; Coronnello, Marcella; Bilia, Anna Rita

    2017-03-01

    Curcumin, the main curcuminoid of the popular Indian spice turmeric, is a potent chemopreventive agent and useful in many different diseases. A major limitation of applicability of curcumin as a health promoting and medicinal agent is its extremely low bioavailability due to efficient first pass metabolism, poor gastrointestinal absorption, rapid elimination, and poor aqueous solubility. In the present study, nanotechnology was selected as a choice approach to enhance the bioavailability of the curcuminis. A new polyamidoamine dendrimer (G0.5) was synthesized, characterized, and tested for cytotoxicity in human breast cancer cells (MCF-7). No cytotoxicity of G0.5 was found in the range between 10(-3) and 3 × 10(-8) M. Consequently, G0.5 was used to prepare spherical nanoparticles of ca. 150 nm, which were loaded with curcumin [molar ratio G0.5/curcumin 1 : 1 (formulation 1) and 1 : 0.5 (formulation 2)]. Remarkably, the occurrence of a single population of nanoparticles having an excellent polydispersity index (< 0.20) was found in both formulations. Formulation 1 was selected to test in vitro drug release because it was superior in terms of encapsulation efficiency (62 %) and loading capacity (32 %). The solubility of curcumin was increased ca. 415 and 150 times with respect to the unformulated drug, respectively, for formulation 1 and formulation 2. The release of curcumin from the nanoparticles showed an interesting prolonged and sustained release profile.

  7. Fabrication of dendrimer porogen-capsulated mesoporous silica via sol-gel process of silatrane precursor.

    PubMed

    Tanglumlert, Walairat; Wongkasemjit, Sujitra; Imae, Toyoko

    2009-03-01

    Mesoporous silica materials with ordered structures were prepared from a silatrane precursor and a poly(amido amine) dendrimer porogen under the dilute acidic condition via the sol-gel process. With decreasing the concentration of the dendrimer and adding much water, the production of undesirable amorphous silica was diminished and spherical particles with smooth surface became in majority. Two kinds of crystal arrays were found to be produced in the silica particles. Although pore diameters were within sizes of shrank and extended dendrimers, center-to-center distance of template pores was different each other for two arrays, and the difference was close to a molecular length of silatrane. These results indicate that one molecule of silatrane constructed polysiloxane wall in the first array and origomeric silatranes formed wall in the second array. It was referred that the intrinsic (hydrogen bonding) character of hydroxyl groups in the hydrolyzed silatrane resulted in hydrogen bonded oligomers and reinforced the hydrogen bonding interaction with dendrimer porogen as well as electrostatic interaction, giving rise to two types of template arrays.

  8. Exciton migration in conjugated dendrimers: a joint experimental and theoretical study.

    PubMed

    Köse, Muhammet E; Graf, Peter; Kopidakis, Nikos; Shaheen, Sean E; Kim, Kwiseon; Rumbles, Garry

    2009-12-21

    We report a joint experimental and theoretical investigation of exciton diffusion in phenyl-cored thiophene dendrimers. Experimental exciton diffusion lengths of the dendrimers vary between 8 and 17 nm, increasing with the size of the dendrimer. A theoretical methodology is developed to estimate exciton diffusion lengths for conjugated small molecules in a simulated amorphous film. The theoretical approach exploits Fermi's Golden Rule to estimate the energy transfer rates for a large ensemble of bimolecular complexes in random relative orientations. Utilization of Poisson's equation in the evaluation of the Coulomb integral leads to very efficient calculation of excitonic couplings between the donor and the acceptor chromophores. Electronic coupling calculations with delocalized transition densities revealed efficient coupling pathways in the bulk of the material, but do not result in strong couplings between the chromophores which are calculated for more localized transition densities. The molecular structures of dendrimers seem to be playing a significant role in the magnitude of electronic coupling between chromophores. Simulated diffusion lengths correlate well with the experimental data. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors in determining the size of the exciton diffusion length in amorphous films of conjugated materials.

  9. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  10. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    SciTech Connect

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.

  11. Poly(amidoamine) Dendrimer-Drug Conjugates with Disulfide Linkages for Intracellular Drug Delivery

    PubMed Central

    Kurtoglu, Yunus E.; Navath, Raghavendra S.; Wang, Bing; Kannan, Sujatha; Romero, Robert; Kannan, Rangaramanujam M.

    2009-01-01

    Understanding and improving drug release kinetics from dendrimer-drug conjugates is a key step to improving their in vivo efficacy. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. There is a need for delivery of NAC which can enhance its efficacy, reduce dosage and prevent it from binding plasma proteins. For this purpose, a poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. The results indicate that the prepared conjugate can deliver ~60% of its NAC payload within 1 hour at intracellular GSH concentrations at physiological pH, whereas the conjugate did not release any drug at plasma GSH levels. The stability of the conjugate in the presence of bovine serum albumin at plasma concentrations was also demonstrated. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells (target cells in vivo) using the reactive oxygen species (ROS) assay. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy. PMID:19171376

  12. AS1411 Aptamer-Anionic Linear Globular Dendrimer G2-Iohexol Selective Nano-Theranostics.

    PubMed

    Mohammadzadeh, Pardis; Cohan, Reza Ahangari; Ghoreishi, Seyedeh Masoumeh; Bitarafan-Rajabi, Ahmad; Ardestani, Mehdi Shafiee

    2017-09-19

    Molecular theranostics is of the utmost interest for diagnosis as well as treatment of different malignancies. In the present study, anionic linear globular dendrimer G2 is employed as a suitable carrier for delivery and AS1411 aptamer is exploited as the targeting agent to carry Iohexol specifically to the human breast cancer cells (MCF-7). Dendrimer G2 was prepared and conjugation of dendrimer and aptamer was carried out thereafter. Based on the data yielded by AFM, morphology of smooth and spherical non-targeted dendrimer changed to the rough aspherical shape when it conjugated. Then, conjugation was confirmed using DLS, ELS and SLS methods. Toxicity on nucleolin positive MCF-7 cells and nucleolin negative HEK-293 cells was assessed by XTT and apoptosis/necrosis assays. In vitro uptake was determined using DAPI-FITC staining and ICP-MS methods. In vivo studies including in vivo CT imaging, pathology and blood tests were done to confirm the imaging ability, bio-safety and targeted nature of the Nano-Theranostics in vivo. In a nutshell, the prepared construction showed promising effects upon decreasing the toxicity of Iohexol on normal cells and accumulation of it in the cancer tumors as well as reducing the number of cancer cells.

  13. Synthesis and Relaxometric Studies of a Dendrimer-Based pH-Responsive MRI Contrast Agent

    PubMed Central

    Ali, M. Meser; Woods, Mark; Caravan, Peter; Opina, Ana C. L.; Spiller, Marga; Fettinger, James C.

    2009-01-01

    The design of effective pH responsive MRI contrast agents is a key goal in the development of new diagnostic methods for conditions such as kidney disease and cancer. A key factor determining the effectiveness of an agent is the difference between the relaxivity of the “on” state compared to that of the “off” state. In this paper, we demonstrate that it is possible to improve the pH-responsive action of a low molecular weight agent by conjugating it to a macromolecular construct. The synthesis of a bifunctional pH responsive agent is reported. As part of that synthetic pathway we examine the Ing–Manske reaction, identifying an undesirable by-product and establishing effective conditions for promoting a clean and effective reaction. Reaction of the bifunctional pH responsive agent with a G5-PAMAM dendrimer yielded a product with an average of 96 chelates per dendrimer. The relaxivity of the dendrimer conjugate rises from 10.8 mm−1 s−1 (pH 9) to 24.0 mm−1 s−1 (pH 6) per Gd3+ ion. This more than doubles the relaxivity pH response, Δr1, of our agent from just 51% for the original low molecular weight chelate to 122% for the dendrimer. PMID:18601236

  14. Optical coherence tomography to delineate the interactions of PAMAM dendrimers with the porcine skin surface

    NASA Astrophysics Data System (ADS)

    Judd, Amy M.; Moss, Gary P.; Heylings, Jon; Wan, Ka-Wai; Yang, Ying

    2013-02-01

    Polyamidoamine (PAMAM) dendrimers have been topically applied to the skin and utilised as a permeation enhancer for a range of therapeutic compounds. However, very little is known about the mechanism of enhancement. This study used optical coherence tomography (OCT) to investigate the influence of PAMAM dendrimers to alter surface refractive index (RI) in excised porcine skin. It is revealed that PAMAM dendrimers caused a sporadic disruption and disappearance of the white hyper-reflective band on the skin surface using OCT. Following the decontamination of the treated skin specimens, the entrance signal, resulting in the polarised light reflecting off the keratin of the upper skin strata, returned to normal. Further, PAMAM-induced changes in skin RI was benchmarked against glycerol, a known permeation enhancer and skin clearing agent. Changes in RI with PAMAM were only observed on the skin surface, suggesting that the dendrimer only modulates the outer layers of the stratum corneum. This is substantially different to the observed effect of glycerol, which permeated more deeply into the skin. The non-invasive and non-destructive OCT imaging technique may provide a convenient tool to investigate the mechanism of permeation enhancement and transdermal drug delivery.

  15. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells

    SciTech Connect

    Mukherjee, Sourav Prasanna; Lyng, Fiona M.; Garcia, Amaya; Davoren, Maria; Byrne, Hugh J.

    2010-11-01

    Poly(amidoamine) (PAMAM) dendrimer nanoparticles have been demonstrated to elicit a well defined cytotoxicological response from mammalian cell lines, the response increasing systematically with dendrimer generation and number of surface amino groups. In this work, using generation G4, G5, and G6 dendrimers, this systematic response is furthermore demonstrated for the generation of reactive oxygen species, lysosomal activity, and the onset of apoptosis and levels of DNA damage. The results are consistent with a pathway of localisation of PAMAM dendrimers in the mitochondria leading to ROS production causing oxidative stress, apoptosis and DNA damage. ROS production is co-located in the mitochondria, and both generated levels and timescales are systematically generation dependent (G4 < G5 < G6). Flow cytometry confirms that with increasing dose, the percentage of healthy and early apoptotic cells decreases, whereas the late apoptotic and necrotic cell populations increase. This process is again systematically generation dependent. DNA damage as measured using the TUNEL assay further demonstrates a systematic trend, G4, G5 and G6 showing 4.69%, 25.87% and 89.63% DNA breakage respectively. Increases in lysosomal activity at timescales of {approx} 24 h are observed in HaCaT but not SW480 cells upon low concentration PAMAM exposure. Overall, significant differences are observed between the responses of the dermal cell line, HaCaT, and the colon cell line, SW480, and it is suggested that these can be understood in terms of differing intrinsic antioxidant levels.

  16. Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2.

    PubMed

    Wang, Steven J; Brechbiel, Martin; Wiener, Erik C

    2003-10-01

    Dendrimer-based magnetic resonance imaging (MRI) contrast agents offer many advantages including high levels of amplification. The objective of this research was to test the adequacy and viability of a new family of dendrimers for use as MRI contrast agents in vitro and in vivo. Dendrimers based on 1,4-diaminobutane core polypropyleneimine (PPI) generation 2 and ammonia core polyamidoamine dendrimers had the free surface amines conjugated to a diethylenetriaminepentaacetic acid derivative followed by complex formation with gadolinium. Relaxivity measurements were made on an IBM Field Cycling Relaxometer. Biodistribution and pharmacokinetic studies were examined with the radiotracer 153Gd in rats and a counting window of 95 to 105 keV. MRI images were conducted at 4.7 T. The relaxivity of the PPI agent exceeded that of the corresponding generation polyamidoamine (PAMAM) agent. Uptake occurred in the liver, spleen, and kidney. Pharmacokinetic studies showed a biexponential decay with excretion half-lives of 3 hours and 33.6 days respectively. The agent increased the contrast enhancement, 1 hour after injection, of T1-weighted images by 52%. This PPI agent resulted in significant contrast signal enhancement. This family of agent may also provide a valuable contrast agent backbone.

  17. Structure-Dependent Photophysics of First-Generation; Phenyl-Cored Thiophene Dendrimers

    SciTech Connect

    Mitchell, W. J.; Ferguson, A. J.; Kose, M. E.; Rupert, B. L.; Ginley, D. S.; Rumbles, G.; Shaheen, S. E.; Kopidakis, N.

    2009-01-01

    We have prepared two series of first-generation thiophene-bridge dendrimers, with either three (3G1) or four (4G1) arms attached to a phenyl core, to elucidate their structure-property relationships. Optical properties were investigated with a combination of steady-state and time-resolved spectroscopic techniques. Steady-state spectroscopic data for the 3-arm dendrimers suggests that the exciton is delocalized over the {alpha}-conjugated thiophene segment and the phenyl core, but that the meta-linking of the dendrons prevents their electronic communication. In contrast, conjugation through the core to dendrons in the ortho and para positions is permitted in the 4-arm dendrimers, although the data suggest that the conjugation length does not extend over the full length of the {alpha}-conjugated sections of two coupled dendrons. This observation is due to steric interactions between neighboring arms, which forces the arms to twist and bend out of the plane of the phenyl core, and is particularly prevalent in disrupting the conjugation through the ortho positions. As expected, our results show that an increase in the bridge length results in an increase in the conjugation length for both dendrimers, and a subsequent red-shift of the absorption and emission. In addition, an increase in the dendron length results in an increase in the photoluminescence quantum yield and lifetime, suggesting that the ground and excited-state geometries are very similar and that the electronic transition is coupled to fewer vibrational modes.

  18. Click Co sandwich-terminated dendrimers as polyhydride reservoirs and micellar templates.

    PubMed

    Rapakousiou, Amalia; Belin, Colette; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2017-06-06

    Neutral click metallodendrimers with [Co(I)(η(4)-cyclopentadiene)(η(5)-cyclopentadienyl)] termini are synthesized by reduction of dendrimers with 9, 27 or 81 cobalticenium termini and serve as polyhydride reservoirs and reductants; for instance, they reduce proton sources to H2 and Au(III) to micellized capsules of gold nanoparticles.

  19. Thermodynamic Properties of Carbosilane Dendrimers of the Sixth Generation with Ethylene Oxide Terminal Groups.

    PubMed

    Sologubov, Semen S; Markin, Alexey V; Smirnova, Natalia N; Novozhilova, Natalia A; Tatarinova, Elena A; Muzafarov, Aziz M

    2015-11-12

    The temperature dependences of heat capacities of carbosilane dendrimers of the sixth generation with ethyleneoxide terminal groups, denoted as G6[(OCH2CH2)1OCH3]256 and G6[(OCH2CH2)3OCH3]256, were measured in the temperature range from T = (6 to 520) K by precision adiabatic calorimetry and differential scanning calorimetry (DSC). In the above temperature range the physical transformations, such as glass transition and high-temperature relaxation transition, were detected. The standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The standard thermodynamic functions, namely, heat capacity Cp°(T), enthalpy H°(T) - H°(0), entropy S°(T) - S°(0), and Gibbs energy G°(T) - H°(0) for the range from T → 0 to 520 K, and the standard entropies of formation ΔfS° of the investigated dendrimers in the devitrified state at T = 298.15 K, were calculated per corresponding moles of the notional structural units. The standard thermodynamic properties of dendrimers under study were discussed and compared with literature data for carbosilane dendrimers with different functional terminal groups.

  20. Understanding AuNP interaction with low-generation PAMAM dendrimers: a CIELab and deconvolution study

    NASA Astrophysics Data System (ADS)

    Jimenez-Ruiz, A.; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R.

    2017-01-01

    Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer's uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters' evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.

  1. The solution structure of stilbenoid dendrimers: a small-angle scattering study.

    PubMed

    Rosenfeldt, Sabine; Karpuk, Elena; Lehmann, Matthias; Meier, Herbert; Lindner, Peter; Harnau, Ludger; Ballauff, Matthias

    2006-10-13

    The spatial structure of a stilbenoid dendrimer is investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in dilute solution. All measurements are performed in toluene. The dendrimer consists of a stilbenoid scaffold with appended hexyloxy chains. SAXS is mainly sensitive to the dendrimer scaffold whereas SANS intensity, measured in fully deuterated toluene, derives from the solute molecules. The resulting SAXS and SANS intensities are analyzed by comparison with various models. It is found that the model of a circular disk gives the best description of the data. SAXS data demonstrate that the stilbenoid scaffold is flat as expected for benzene rings conjugated through vinylene units. Thus, it can be described by a circular disk with a radius of 1.6 nm and a thickness of 0.7 nm. SANS, on the other hand, shows that the hexyloxy chains are not confined in the plane defined by the core. This is derived from modeling the SANS data with a much thicker circular disk (radius: 2.4 nm, thickness: 1.8 nm). The structure factor S(q), describing the interaction of the dendrimers at higher concentrations, is modeled quantitatively with the "polymer reference interaction site model" (PRISM) integral equation formalism for hard plates such as particles. Here the structural data obtained from the analysis of the SANS data are used so that no new adjustable parameter is necessary for this description.

  2. Dendrimer-Based Postnatal Therapy for Neuroinflammation and Cerebral Palsy in a Rabbit Model

    PubMed Central

    Kannan, Sujatha; Dai, Hui; Navath, Raghavendra S.; Balakrishnan, Bindu; Jyoti, Amar; Janisse, James; Romero, Roberto; Kannan, Rangaramanujam M.

    2012-01-01

    Cerebral palsy (CP) is a chronic childhood disorder with no effective cure. Neuroinflammation, caused by activated microglia and astrocytes, plays a key role in the pathogenesis of CP and disorders such as Alzheimer’s disease and multiple sclerosis. Targeting neuroinflammation can be a potent therapeutic strategy. However, delivering drugs across the blood-brain-barrier to the target cells for treating diffuse brain injury is a major challenge. Here, we show that systemically administered polyamidoamine dendrimers localize in activated microglia and astrocytes in the brain of newborn rabbits with CP, but not healthy controls. We further demonstrate that dendrimer-based N-acetyl-L-cysteine (NAC) therapy for brain injury suppresses neuroinflammation and leads to a dramatic improvement in motor function in the CP kits. The well known and safe clinical profile for NAC when combined with dendrimer-based targeting, provides opportunities for clinical translation in the treatment of neuroinflammatory disorders in humans. The effectiveness of the dendrimer-NAC treatment, administered in the postnatal period for a prenatal insult, suggests a window of opportunity for treatment of CP in humans after birth. PMID:22517883

  3. Modification of wool protein fiber with plasma and dendrimer: Effects on dyeing with cochineal.

    PubMed

    Sajed, Toktam; Haji, Aminoddin; Mehrizi, Mohammad Khajeh; Nasiri Boroumand, Majid

    2017-09-14

    In this study, plasma treatment and a poly(propylene imine) dendrimer were employed to improve the dyeability of wool fibers with cochineal natural dye. FESEM, EDX, AFM and FTIR techniques were employed to investigate the effects of these treatments on chemical and physical properties of wool fibers. The etching of the surface layer of wool fibers and increased roughness after plasma treatment was confirmed by FESEM and AFM images. EDX and FTIR analyses confirmed the creation of oxygen-containing groups and attachment of dendrimer molecules on wool fibers after plasma and dendrimer treatments respectively. The effects of different dyeing parameters on dye absorption and the applicability of different isotherm and kinetic models on the dyeing process were investigated. The results showed that the kinetics of absorption of cochineal on raw, plasma-treated and dendrimer-treated fibers was best fitted with the pseudo-second-order model and the isotherms of the dyeing processes followed the Freundlich model. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Chang, Jun Hyuk; Kim, Younghoon; Char, Kookheon; Lee, Doh C; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2017-01-24

    We present multifunctional dendrimer ligands that serve as the charge injection controlling layer as well as the adhesive layer at the interfaces between quantum dots (QDs) and the electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs). Specifically, we use primary amine-functionalized dendrimer ligands (e.g., a series of poly(amidoamine) dendrimers (PADs, also referred to PAMAM)) that bind to the surface of QDs by replacing the native ligands (oleic acids) and also to the surface of ZnO ETL. PAD ligands control the electron injection rate from ZnO ETL into QDs by altering the electronic energy levels of the surface of ZnO ETL and thereby improve the charge balance within QDs in devices, leading to the enhancement of the device efficiency. As an ultimate achievement, the device efficiency (peak external quantum efficiency) improves by a factor of 3 by replacing the native ligands (3.86%) with PAD ligands (11.36%). In addition, multibranched dendrimer ligands keep the QD emissive layer intact during subsequent solution processing, enabling us to accomplish solution-processed QLEDs. The approach and results in the present study emphasize the importance of controlling the ligands of QDs to enhance QLED performance and also offer simple yet effective chemical mean toward all-solution-processed QLEDs.

  5. Drug delivery investigations of quaternised poly(propylene imine) dendrimer using nimesulide as a model drug.

    PubMed

    Murugan, E; Geetha Rani, D P; Yogaraj, V

    2014-02-01

    This study describes the demonstration of quaternized poly(propylene imine) dendrimer of generation-3, QPPI (G3) as a drug carrier for poorly soluble drug nimesulide (NMD, an anti-inflammatory drug). QPPI (G3) was prepared by treating the surface amine groups of poly(propylene imine) dendrimer with glycidyltrimethyl ammonium chloride and it was characterized with FTIR, (1)H and (13)C NMR and MALDI-TOF mass spectral techniques. The drug carrying potential of QPPI (G3) was assessed by analyzing drug solubility, in vitro release and cytotoxicity studies. The observed results reveal that the aqueous solubility of NMD has been dramatically increased in the presence of QPPI (G3) and also can sustain the release of NMD. It is further noticed that the complexation of NMD with QPPI (G3) is responsible for increased solubility and sustained release. This complexation was evidenced through NMR ((1)H & 2D) and UV-vis spectral techniques, DSC and DLS studies. Cytotoxicity study through MTT assay on Vero and HBL-100 cell lines reveal that this dendrimer increase the biocompatibility and the tolerance concentration of NMD in drug-dendrimer formulations. The observed results prove that the QPPI (G3) is one of the new promising candidate for effective delivery of NMD.

  6. Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers.

    PubMed

    Miodek, A; Castillo, G; Hianik, T; Korri-Youssoufi, H

    2014-06-15

    This work consists of the development of an electrochemical aptasensor based on polyprrole modified with redox dendrimers, able to detect human cellular prions PrP(C) with high sensitivity. The gold surface was modified by conductive polypyrrole film coupled to polyamidoamine dendrimers of fourth generation (PAMAM G4) and ferrocenyl group as redox marker. The aptamers were immobilized on the surface via biotin/streptavidin chemistry. Electrochemical signal was detected by ferrocenyl group incorporated between dendrimers and aptamers layers. We demonstrated that the interaction between aptamer and prion protein led to variation in electrochemical signal of the ferrocenyl group. The kinetics parameters (diffusion coefficient D and heterogeneous constant transfer ket) calculated from electrochemical signals demonstrate that the variation in redox signal results from the lower diffusion process of ions during redox reaction after prion interaction due to bulk effect of larger protein. The association of redox dendrimers with conducting polypyrrole leads to high sensitivity of PrP(C) determination with detection limit of 0.8 pM, which is three orders of magnitude lower, compared to flat ferrocene-functionalized polypyrrole. Detection of PrP(C) in spiked blood plasma has been achieved and demonstrated a recovery up to 90%. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer

    NASA Astrophysics Data System (ADS)

    Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.

    2002-03-01

    The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.

  8. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors.

    PubMed

    Santos, José Luís; Oramas, Elena; Pêgo, Ana Paula; Granja, Pedro Lopes; Tomás, Helena

    2009-03-04

    This paper reports the use of different generations of polyamidoamine (PAMAM) dendrimers for the in vitro transfection of mesenchymal stem cells (MSCs). A systematic study was carried out on the transfection efficiency achieved by the PAMAM dendrimers using a beta-galactosidase reporter gene system. Transfection results were shown to be dependent upon the generation of dendrimers, the amine to phosphate group ratio and the cell passage number. In all cases, the transfection efficiency was very low. Nevertheless, it was hypothesized that a low transfection level could be sufficient to promote the in vitro differentiation of MSCs towards the osteoblastic lineage. To address this possibility, dendrimers carrying the human bone morphogenetic protein-2 (hBMP-2) gene-containing plasmid were used. All quantitative (alkaline phosphatase activity, osteocalcin secretion and calcium deposition) and qualitative (von Kossa staining) osteogenic markers were significantly stronger in transfected cells when compared to non-transfected ones. This study not only clearly demonstrates that a low transfection level can be sufficient for inducing in vitro differentiation of MSCs to the osteoblast phenotype but also highlights the importance of focusing research on the development of gene delivery vectors in the concrete application.

  9. Optimization and In Vivo Toxicity Evaluation of G4.5 Pamam Dendrimer-Risperidone Complexes

    PubMed Central

    Prieto, Maria Jimena; del Rio Zabala, Nahuel Eduardo; Marotta, Cristian Hernán; Carreño Gutierrez, Hector; Arévalo Arévalo, Rosario; Chiaramoni, Nadia Silvia; Alonso, Silvia del Valle

    2014-01-01

    Risperidone is an approved antipsychotic drug belonging to the chemical class of benzisoxazole. This drug has low solubility in aqueous medium and poor bioavailability due to extensive first-pass metabolism and high protein binding (>90%). Since new strategies to improve efficient treatments are needed, we studied the efficiency of anionic G4.5 PAMAM dendrimers as nanocarriers for this therapeutic drug. To this end, we explored dendrimer-risperidone complexation dependence on solvent concentration, pH and molar relationship. The best dendrimer-risperidone incorporation (46 risperidone molecules per dendrimer) was achieved with a mixture of chloroform:methanol 50∶50 v/v solution pH 3. In addition, to explore the possible effects of this complex, in vivo studies were carried out in the zebrafish model. Changes in the development of dopaminergic neurons and motoneurons were studied using tyrosine hydroxylase and calretinin, respectively. Physiological changes were studied through histological sections stained with hematoxylin-eosin to observe possible morphological brain changes. The most significant changes were observed when larvae were treated with free risperidone, and no changes were observed when larvae were treated with the complex. PMID:24587349

  10. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process

    SciTech Connect

    Zhou Zhuohua; Zhou, Ping-Le; Yang Shiping . E-mail: shipingy@shnu.edu.cn; Yu Xibin; Yang Liangzhun

    2007-09-04

    The morphology and size of hydroxyapatite Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} (denoted HAP) can be controlled under hydrothermal treatment assisted with different dendrimers, such as carboxylic terminated poly(amidoamine) (PAMAM) and polyhydroxy terminated PAMAM. The structure and morphology were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). IR spectra were also used to investigate the complexation of Ca{sup 2+} with PAMAM. The results revealed that the inner cores of the PAMAM dendrimers are hydrophilic and potentially open to calcium ions, since interior nitrogen moieties serve as complexation sites, especially in case of the polyhydroxy terminated PAMAM. And the reasonable mechanism of crystallization was proposed that it can be attributed to the localization of nucleation site: external or interior PAMAM. Additionally, the PAMAM dendrimer with carboxylic and polyhydroxy groups has an effective influence on the size and shape of hydroxyapatite (HAP) nanostructures. Different crystal morphology was accomplished by adsorption of different dendrimers onto specific faces of growing crystals, altering the relative growth rates of the different crystallographic faces and leading to different crystal habits.

  11. Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance

    PubMed Central

    Noiray, M.; Briand, E.; Woodward, A. M.; Argüeso, P.; Molina Martínez, I. T.; Herrero-Vanrell, R.; Ponchel, G.

    2013-01-01

    Purpose Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration. Methods The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM). Results While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)≫ CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %). Conclusions The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and den-drimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability. PMID:22565639

  12. Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers.

    PubMed

    Wilde, Marleen; Green, Rebecca J; Sanders, Michael R; Greco, Francesca

    2017-08-25

    Understanding how polymers interact with biological membranes is important for the development of polymer-based therapeutics and wider biomedical applications. Here, biophysical methods (surface pressure measurements, external reflection FTIR) have been used to investigate the interaction between PAMAM dendrimers (Generation 5 or 4.5) and anionic (DPPG) or zwitterionic (DPPC) model membranes. We observed a concentration-dependent binding behaviour of both PAMAM species to both model membranes; however, equivalent levels of penetration into DPPC monolayers required approximately 10-fold higher dendrimer concentrations than for penetration into DPPG monolayers. Overall, the anionic PAMAM G4.5 showed a slightly better penetration ability which could be caused by repulsive forces towards the lipid layers. In comparison, increasing concentration of cationic PAMAM G5 leads to saturation of adsorption at the anionic lipid surface before penetration into the lipid layer likely driven by electrostatic attraction. Our studies also showed that physiologically relevant concentrations of sodium chloride (144 mM) decreased PAMAM penetration into DPPG monolayers but did not significantly affect the dendrimer-DPPC interaction. These results provide an insight into the mechanism of interaction between charged dendritic polymers with a lipid interface and show that the nature of such interactions are affected by lipid headgroup, dendrimer charge and solution salinity.

  13. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  14. A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers.

    PubMed

    Bromfield, Stephen M; Posocco, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Rodríguez-López, Julián; Smith, David K

    2013-05-25

    We report a competition assay using our recently reported dye Mallard Blue, which allows us to identify synthetic heparin binders in competitive media, including human serum - using this we gain insight into the ability of PAMAM dendrimers to bind heparin, with the interesting result that low-generation G2-PAMAM is the preferred heparin binder.

  15. Anionic linear-globular dendrimers: biocompatible hybrid materials with potential uses in nanomedicine.

    PubMed

    Alavidjeh, Mohammad Shafiee; Haririan, Ismaeil; Khorramizadeh, Mohammad Reza; Ghane, Zohre Zarei; Ardestani, Mehdi Shafiee; Namazi, Hassan

    2010-04-01

    The use of dendrimers as nano-sized excipients/vectors in biological and pharmaceutical systems is dependent on the investigation of their toxicological profiles in biological media. In this study, a series of mechanistic in vitro structure-associated cell toxicity evaluations was performed on the two generations of an anionic linear-globular dendrimer G1 and G2 (where PEG is the core, and citric acid is the periphery) each of which has a different size, charge, and MW. In vitro cytotoxicity behavior of the dendrimers with the methods like crystal violet staining, methyl thiazolyl tetrazolium (MTT), and lactate dehydrogenase (LDH) assays was analyzed. The cell death mechanisms (apoptosis-necrosis) induced by the dendrimers were also evaluated in HT1080 cell line. The impact of the dendrimers on the release of the pro-inflammatory cytokines like TNF-alpha (tumor necrosis factor alpha) and IL1-beta (interleukin 1 beta) was assessed in THP-1 cell line. Hemolysis assay and coagulation studies such as PT (prothrombin time) and APTT (activated partial thromboplastin time) on human blood samples were conducted to examine the interactions of the dendrimers with such bio-environments. The results of cell cytotoxicity experiments and the amounts of IL1-beta and TNF-alpha secretions from THP-1 cell line were consistent with the hemoglobin release from the erythrocytes and the results gained from the coagulation studies. In fact, no significant harmful effect was observed for the dendrimers up to the concentration of 0.5 mg/ml. Both apoptosis and necrosis were ascribed to cell death. The G1 with more flexibility, less negative charge, and greater poly dispersity in size versus the G2 displayed more toxicity than the G2 at the concentration of 1 mg/ml and above in most of the experiments. As a whole, these results suggest a biocompatible range for these hybrid structures up to the concentration of 0.5 mg/ml. Therefore, the potentiality for these structures to be employed in the

  16. Oegylated and cross-linking carbazole dendrons and dendrimers: Synthesis, characterization, assembly and thin film fabrication

    NASA Astrophysics Data System (ADS)

    Felipe, Mary Jane Legaspi

    2011-12-01

    Dendrimers and dendrons (fractional dendrimers) are macromolecular structures that have well-defined molecular weights and precise number of functional groups. Tailoring these structures has provided designer molecules that can be used for various applications including drug delivery, sensors, and anti-biofouling surfaces. Overall, this dissertation provides novel protocols for the understanding of molecular design, synthesis, and structure-property relationship of OEGylated and conjugated carbazole dendrons and dendrimers. In this design, th