Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R
2009-07-22
The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.
Kropp, Laura E.; Garg, Manish; Binder, Robert J.
2010-01-01
Cellular peptides generated by proteasomal degradation of proteins in the cytosol and destined for presentation by MHC I are associated with several chaperones. Hsp70, hsp90 and the TCP1-ring complex have been implicated as important cytosolic players for chaperoning these peptides. In this study we report that gp96 and calreticulin are essential for chaperoning peptides in the endoplasmic reticulum. Importantly we demonstrate that cellular peptides are transferred sequentially from gp96 to calreticulin and then to MHC I forming a relay line. Disruption of this relay line by removal of gp96 or calreticulin prevents the binding of peptides by MHC I and hence presentation of the MHC I-peptide complex on the cell surface. Our results are important for understanding how peptides are processed and trafficked within the endoplasmic reticulum before exiting in association with MHC I heavy chains and β2-microglobulin as a trimolecular complex. PMID:20410492
Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP
Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini
2015-01-01
The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867
A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization
Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.
2011-01-01
Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein. PMID:22022238
Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian
2017-01-01
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149
Combinatorial contextualization of peptidic epitopes for enhanced cellular immunity.
Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka
2014-01-01
Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our "motif-programming" approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment.
Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices
NASA Astrophysics Data System (ADS)
Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere
2017-07-01
We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.
Hawse, William F.; Gloor, Brian E.; Ayres, Cory M.; Kho, Kevin; Nuter, Elizabeth; Baker, Brian M.
2013-01-01
T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the “altered self” mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity. PMID:23836912
Nielsen, Morten; Connelley, Tim; Ternette, Nicola
2018-01-05
Peptide binding to MHC class I molecules is the single most selective step in antigen presentation and the strongest single correlate to peptide cellular immunogenicity. The cost of experimentally characterizing the rules of peptide presentation for a given MHC-I molecule is extensive, and predictors of peptide-MHC interactions constitute an attractive alternative. Recently, an increasing amount of MHC presented peptides identified by mass spectrometry (MS ligands) has been published. Handling and interpretation of MS ligand data is, in general, challenging due to the polyspecificity nature of the data. We here outline a general pipeline for dealing with this challenge and accurately annotate ligands to the relevant MHC-I molecule they were eluted from by use of GibbsClustering and binding motif information inferred from in silico models. We illustrate the approach here in the context of MHC-I molecules (BoLA) of cattle. Next, we demonstrate how such annotated BoLA MS ligand data can readily be integrated with in vitro binding affinity data in a prediction model with very high and unprecedented performance for identification of BoLA-I restricted T-cell epitopes. The prediction model is freely available at http://www.cbs.dtu.dk/services/NetMHCpan/NetBoLApan . The approach has here been applied to the BoLA-I system, but the pipeline is readily applicable to MHC systems in other species.
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-01-01
Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available. PMID:17608956
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-07-04
Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available.
T-cell Receptor Specificity Maintained by Altered Thermodynamics*
Madura, Florian; Rizkallah, Pierre J.; Miles, Kim M.; Holland, Christopher J.; Bulek, Anna M.; Fuller, Anna; Schauenburg, Andrea J. A.; Miles, John J.; Liddy, Nathaniel; Sami, Malkit; Li, Yi; Hossain, Moushumi; Baker, Brian M.; Jakobsen, Bent K.; Sewell, Andrew K.; Cole, David K.
2013-01-01
The T-cell receptor (TCR) recognizes peptides bound to major histocompatibility molecules (MHC) and allows T-cells to interrogate the cellular proteome for internal anomalies from the cell surface. The TCR contacts both MHC and peptide in an interaction characterized by weak affinity (KD = 100 nm to 270 μm). We used phage-display to produce a melanoma-specific TCR (α24β17) with a 30,000-fold enhanced binding affinity (KD = 0.6 nm) to aid our exploration of the molecular mechanisms utilized to maintain peptide specificity. Remarkably, although the enhanced affinity was mediated primarily through new TCR-MHC contacts, α24β17 remained acutely sensitive to modifications at every position along the peptide backbone, mimicking the specificity of the wild type TCR. Thermodynamic analyses revealed an important role for solvation in directing peptide specificity. These findings advance our understanding of the molecular mechanisms that can govern the exquisite peptide specificity characteristic of TCR recognition. PMID:23698002
Zhao, Y; Gran, B; Pinilla, C; Markovic-Plese, S; Hemmer, B; Tzou, A; Whitney, L W; Biddison, W E; Martin, R; Simon, R
2001-08-15
The interaction of TCRs with MHC peptide ligands can be highly flexible, so that many different peptides are recognized by the same TCR in the context of a single restriction element. We provide a quantitative description of such interactions, which allows the identification of T cell epitopes and molecular mimics. The response of T cell clones to positional scanning synthetic combinatorial libraries is analyzed with a mathematical approach that is based on a model of independent contribution of individual amino acids to peptide Ag recognition. This biometric analysis compares the information derived from these libraries composed of trillions of decapeptides with all the millions of decapeptides contained in a protein database to rank and predict the most stimulatory peptides for a given T cell clone. We demonstrate the predictive power of the novel strategy and show that, together with gene expression profiling by cDNA microarrays, it leads to the identification of novel candidate autoantigens in the inflammatory autoimmune disease, multiple sclerosis.
Bouvier, M; Wiley, D C
1996-01-01
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447
Methods for quantifying T cell receptor binding affinities and thermodynamics
Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868
Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten
2015-11-01
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
2017-01-01
Peptide binding to MHC class I molecules is the single most selective step in antigen presentation and the strongest single correlate to peptide cellular immunogenicity. The cost of experimentally characterizing the rules of peptide presentation for a given MHC-I molecule is extensive, and predictors of peptide–MHC interactions constitute an attractive alternative. Recently, an increasing amount of MHC presented peptides identified by mass spectrometry (MS ligands) has been published. Handling and interpretation of MS ligand data is, in general, challenging due to the polyspecificity nature of the data. We here outline a general pipeline for dealing with this challenge and accurately annotate ligands to the relevant MHC-I molecule they were eluted from by use of GibbsClustering and binding motif information inferred from in silico models. We illustrate the approach here in the context of MHC-I molecules (BoLA) of cattle. Next, we demonstrate how such annotated BoLA MS ligand data can readily be integrated with in vitro binding affinity data in a prediction model with very high and unprecedented performance for identification of BoLA-I restricted T-cell epitopes. The prediction model is freely available at http://www.cbs.dtu.dk/services/NetMHCpan/NetBoLApan. The approach has here been applied to the BoLA-I system, but the pipeline is readily applicable to MHC systems in other species. PMID:29115832
Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange
Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.
2017-01-01
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766
Properties of MHC Class I Presented Peptides That Enhance Immunogenicity
Calis, Jorg J. A.; Maybeno, Matt; Greenbaum, Jason A.; Weiskopf, Daniela; De Silva, Aruna D.; Sette, Alessandro; Keşmir, Can; Peters, Bjoern
2013-01-01
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses. PMID:24204222
Jørgensen, Kasper W; Rasmussen, Michael; Buus, Søren; Nielsen, Morten
2014-01-01
Major histocompatibility complex class I (MHC-I) molecules play an essential role in the cellular immune response, presenting peptides to cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize ongoing intracellular production of proteins. In the early 1990s, immunogenicity and stability of the peptide–MHC-I (pMHC-I) complex were shown to be correlated. At that time, measuring stability was cumbersome and time consuming and only small data sets were analysed. Here, we investigate this fairly unexplored area on a large scale compared with earlier studies. A recent small-scale study demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide–MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct stability predictors capable of predicting the half-life of the pMHC-I complex. These predictors were shown to predict T-cell epitopes and MHC ligands from SYFPEITHI and IEDB to form significantly more stable MHC-I complexes compared with affinity-matched non-epitopes. Combining the stability predictions with a state-of-the-art affinity predictions NetMHCcons significantly improved the performance for identification of T-cell epitopes and ligands. For the HLA alleles included in the study, we could identify distinct sub-motifs that differentiate between stable and unstable peptide binders and demonstrate that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at http://www.cbs.dtu.dk/services/NetMHCstab. PMID:23927693
Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton
2016-01-01
T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose–response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways. PMID:27702900
Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton; Dushek, Omer
2016-10-25
T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways.
Altomonte, M; Pucillo, C; Maio, M
1999-06-01
Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.
Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.
2015-01-01
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986
Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors.
Stewart, C Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A; Moretta, Alessandro; Sun, Peter D; Ugolini, Sophie; Vivier, Eric
2005-09-13
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.
Nielsen, Morten; Lundegaard, Claus; Blicher, Thomas; Lamberth, Kasper; Harndahl, Mikkel; Justesen, Sune; Røder, Gustav; Peters, Bjoern; Sette, Alessandro; Lund, Ole; Buus, Søren
2007-01-01
Background Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. Principal Findings Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. Conclusions Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan. PMID:17726526
Brucella melitensis T Cell Epitope Recognition in Humans with Brucellosis in Peru
Cannella, Anthony P.; Arlehamn, Cecilia S. Lindestam; Sidney, John; Patra, Kailash P.; Torres, Katherine; Tsolis, Renee M.; Liang, Li; Felgner, Philip L.; Saito, Mayuko; Gotuzzo, Eduardo; Gilman, Robert H.; Sette, Alessandro
2014-01-01
Brucella melitensis, one of the causative agents of human brucellosis, causes acute, chronic, and relapsing infection. While T cell immunity in brucellosis has been extensively studied in mice, no recognized human T cell epitopes that might provide new approaches to classifying and prognosticating B. melitensis infection have ever been delineated. Twenty-seven pools of 500 major histocompatibility complex class II (MHC-II) restricted peptides were created by computational prediction of promiscuous MHC-II CD4+ T cell derived from the top 50 proteins recognized by IgG in human sera on a genome level B. melitensis protein microarray. Gamma interferon (IFN-γ) and interleukin-5 (IL-5) enzyme-linked immunospot (ELISPOT) analyses were used to quantify and compare Th1 and Th2 responses of leukapheresis-obtained peripheral blood mononuclear cells from Peruvian subjects cured after acute infection (n = 9) and from patients who relapsed (n = 5). Four peptide epitopes derived from 3 B. melitensis proteins (BMEI 1330, a DegP/HtrA protease; BMEII 0029, type IV secretion system component VirB5; and BMEII 0691, a predicted periplasmic binding protein of a peptide transport system) were found repeatedly to produce significant IFN-γ ELISPOT responses in both acute-infection and relapsing patients; none of the peptides distinguished the patient groups. IL-5 responses against the panel of peptides were insignificant. These experiments are the first to systematically identify B. melitensis MHC-II-restricted CD4+ T cell epitopes recognized by the human immune response, with the potential for new approaches to brucellosis diagnostics and understanding the immunopathogenesis related to this intracellular pathogen. PMID:24126518
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.
Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H
2016-02-23
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...
2016-02-11
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.
Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less
A Signal Peptide Derived from hsp60 Binds HLA-E and Interferes with CD94/NKG2A Recognition
Michaëlsson, Jakob; Teixeira de Matos, Cristina; Achour, Adnane; Lanier, Lewis L.; Kärre, Klas; Söderström, Kalle
2002-01-01
Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule which presents a restricted set of nonameric peptides, derived mainly from the signal sequence of other MHC class I molecules. It interacts with CD94/NKG2 receptors expressed on the surface of natural killer (NK) cells and T cell subsets. Here we demonstrate that HLA-E also presents a peptide derived from the leader sequence of human heat shock protein 60 (hsp60). This peptide gains access to HLA-E intracellularly, resulting in up-regulated HLA-E/hsp60 signal peptide cell-surface levels on stressed cells. Notably, HLA-E molecules in complex with the hsp60 signal peptide are no longer recognized by CD94/NKG2A inhibitory receptors. Thus, during cellular stress an increased proportion of HLA-E molecules may bind the nonprotective hsp60 signal peptide, leading to a reduced capacity to inhibit a major NK cell population. Such stress induced peptide interference would gradually uncouple CD94/NKG2A inhibitory recognition and provide a mechanism for NK cells to detect stressed cells in a peptide-dependent manner. PMID:12461076
Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655
Ayres, Cory M; Corcelli, Steven A; Baker, Brian M
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-11-19
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-01-01
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. PMID:28952593
Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J
2002-03-01
Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules
NASA Astrophysics Data System (ADS)
Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao
2017-07-01
The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.
ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.
Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J
2007-05-15
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.
MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection
Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.
2018-01-01
Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515
The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire
Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.
2011-01-01
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607
Groll, Michael; Larionov, Oleg V.; Huber, Robert; de Meijere, Armin
2006-01-01
Most class I MHC ligands are generated from the vast majority of cellular proteins by proteolysis within the ubiquitin–proteasome pathway and are presented on the cell surface by MHC class I molecules. Here, we present the crystallographic analysis of yeast 20S proteasome in complex with the inhibitor homobelactosin C. The structure reveals a unique inhibitor-binding mode and provides information about the composition of proteasomal primed substrate-binding sites. IFN-γ inducible substitution of proteasomal constitutive subunits by immunosubunits modulates characteristics of generated peptides, thus producing fragments with higher preference for binding to MHC class I molecules. The structural data for the proteasome:homobelactosin C complex provide an explanation for involvement of immunosubunits in antigen generation and open perspectives for rational design of ligands, inhibiting exclusively constitutive proteasomes or immunoproteasomes. PMID:16537370
Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen
2013-01-01
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.
Selector function of MHC I molecules is determined by protein plasticity
NASA Astrophysics Data System (ADS)
Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim
2015-10-01
The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.
2010-01-01
Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173
Carrasco Pro, S; Zimic, M; Nielsen, M
2014-02-01
Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.; Huey-Tubman, K.E.; Dulac, C.
2006-10-06
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less
Semi-empirical quantum evaluation of peptide - MHC class II binding
NASA Astrophysics Data System (ADS)
González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.
2017-01-01
Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.
Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M
2010-09-01
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.
Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten
2017-11-01
Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.
Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.
2015-01-01
Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072
Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents
Goldberg, Burt; Bona, Constantin
2011-01-01
Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177
Lundegaard, Claus; Lund, Ole; Nielsen, Morten
2008-06-01
Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate binding affinity prediction of peptides of length 8, 10 and 11. The method gives the opportunity to predict peptides with a different length than nine for MHC alleles where no such peptides have been measured. As validation, the performance of this approach is compared to predictors trained on peptides of the peptide length in question. In this validation, the approximation method has an accuracy that is comparable to or better than methods trained on a peptide length identical to the predicted peptides. The algorithm has been implemented in the web-accessible servers NetMHC-3.0: http://www.cbs.dtu.dk/services/NetMHC-3.0, and NetMHCpan-1.1: http://www.cbs.dtu.dk/services/NetMHCpan-1.1
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor
NASA Astrophysics Data System (ADS)
Kumar, Amit; Delogu, Francesco
2017-02-01
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.
Antigen processing in vivo and the elicitation of primary CTL responses.
Restifo, N P; Bacík, I; Irvine, K R; Yewdell, J W; McCabe, B J; Anderson, R W; Eisenlohr, L C; Rosenberg, S A; Bennink, J R
1995-05-01
CD8+ T lymphocytes (TCD8+) play an important role in cellular immune responses. TCD8+ recognize MHC class I molecules complexed to peptides of 8 to 10 residues derived largely from cytosolic proteins. Proteins are generally thought to be fragmented in the cytoplasm and delivered to nascent class I molecules in the endoplasmic reticulum (ER) by a peptide transporter encoded by the MHC. To explore the extent to which TCD8+ induction in vivo is limited by proteolysis or peptide transport into the ER, mice were immunized with recombinant vaccinia viruses containing mini-genes encoding antigenic peptides (bypassing the need for proteolysis), or these peptides with a NH2-terminal ER insertion sequence (bypassing the requirements for both proteolysis and transport). Additionally, mice were immunized with recombinant vaccinia viruses encoding rapidly degraded fragments of proteins. We report that limitations in induction of TCD8+ responses vary among Ags: for some, full length proteins are as immunogenic as other forms tested; for others, maximal responses are induced by peptides or by peptides targeted to the ER. Most importantly, in every circumstance examined, targeting peptides to the ER never diminished, and in some cases greatly enhanced, the TCD8+ immune response and provide an important alternative strategy in the design of live viral or naked DNA vaccines for the treatment of cancer and infectious diseases.
Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.
2016-01-01
The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567
Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal
2018-01-01
Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418
Toseland, Christopher P; Clayton, Debra J; McSparron, Helen; Hemsley, Shelley L; Blythe, Martin J; Paine, Kelly; Doytchinova, Irini A; Guan, Pingping; Hattotuwagama, Channa K; Flower, Darren R
2005-01-01
AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: . PMID:16305757
Identities of P2 and P3 Residues of H-2Kb-Bound Peptides Determine Mouse Ly49C Recognition
Marquez, Elsa A.; Kane, Kevin P.
2015-01-01
Ly49 receptors can be peptide selective in their recognition of MHC-I-peptide complexes, affording them a level of discrimination beyond detecting the presence or absence of specific MHC-I allele products. Despite this ability, little is understood regarding the properties that enable some peptides, when bound to MHC-I molecules, to support Ly49 recognition, but not others. Using RMA-S target cells expressing MHC-I molecules loaded with individual peptides and effector cells expressing the ectodomain of the inhibitory Ly49C receptor, we found that two adjacent amino acid residues, P2 and P3, both buried in the peptide binding groove of H-2Kb, determine mouse Ly49C specificity. If both are aliphatic residues, this is supportive. Whereas, small amino acids at P2 and aromatic amino acids at the P3 auxiliary anchor residue are detrimental to Ly49C recognition. These results resemble those with a rat Ly49 where the identity of a peptide anchor residue determines recognition, suggesting that dependence on specific peptide residues buried in the MHC-I peptide-binding groove may be fundamental to Ly49 peptide selectivity and recognition. PMID:26147851
Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K
2013-01-01
Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.
Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors
Stewart, C. Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A.; Moretta, Alessandro; Sun, Peter D.; Ugolini, Sophie; Vivier, Eric
2005-01-01
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein–Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide–MHC class I complexes on Epstein–Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders. PMID:16141329
Rational design of class I MHC ligands
NASA Astrophysics Data System (ADS)
Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika
1995-04-01
From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.
Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter
2012-09-07
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Comber, Joseph D; Philip, Ramila
2014-05-01
Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.
Nielsen, Morten; Andreatta, Massimo
2016-03-30
Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells. Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space. We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0 .
BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng
2009-05-01
Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.
Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten
2008-07-01
NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.
Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne
2018-01-04
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Improved methods for predicting peptide binding affinity to MHC class II molecules.
Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2018-07-01
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.
New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.
Landais, Elise; Romagnoli, Pablo A; Corper, Adam L; Shires, John; Altman, John D; Wilson, Ian A; Garcia, K Christopher; Teyton, Luc
2009-12-15
Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.
A novel role of HLA class I in the pathology of medulloblastoma.
Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav
2009-07-12
MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. We investigated expression of four essential components of MHC class I (heavy chain, beta2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of beta2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or beta2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility.
A novel role of HLA class I in the pathology of medulloblastoma
Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav
2009-01-01
Background MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. Methods We investigated expression of four essential components of MHC class I (heavy chain, β2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. Results The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of β2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. Conclusion MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or β2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility. PMID:19594892
Neerincx, Andreas; Hermann, Clemens; Antrobus, Robin; van Hateren, Andy; Cao, Huan; Trautwein, Nico; Stevanović, Stefan; Elliott, Tim; Deane, Janet E; Boyle, Louise H
2017-01-01
Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex. DOI: http://dx.doi.org/10.7554/eLife.23049.001 PMID:28425917
van Hateren, Andy; Bailey, Alistair; Elliott, Tim
2017-01-01
We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193
Borbulevych, Oleg Y.; Piepenbrink, Kurt H.; Gloor, Brian E.; Scott, Daniel R.; Sommese, Ruth F.; Cole, David K.; Sewell, Andrew K.; Baker, Brian M.
2011-01-01
Summary Tell mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The αβ TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential “tuning” of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system. PMID:20064447
Scrutinizing MHC-I binding peptides and their limits of variation.
Koch, Christian P; Perna, Anna M; Pillong, Max; Todoroff, Nickolay K; Wrede, Paul; Folkers, Gerd; Hiss, Jan A; Schneider, Gisbert
2013-01-01
Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).
Nielsen, Morten; Justesen, Sune; Lund, Ole; Lundegaard, Claus; Buus, Søren
2010-11-13
Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi
Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances themore » flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.« less
Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94.
Cheent, Kuldeep S; Jamil, Khaleel M; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H J; Purbhoo, Marco A; Khakoo, Salim I
2013-10-15
Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94-NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor-ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A(+) NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR(+) and NKG2A(+) NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I-bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.
Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94
Cheent, Kuldeep S.; Jamil, Khaleel M.; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H. J.; Purbhoo, Marco A.; Khakoo, Salim I.
2013-01-01
Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94–NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor–ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A+ NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR+ and NKG2A+ NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I–bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I. PMID:24082146
Wu, Yanan; Wang, Junya; Fan, Shuhua; Chen, Rong; Liu, Yanjie; Zhang, Jianhua; Yuan, Hongyu; Liang, Ruiying
2017-01-01
ABSTRACT A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I. PMID:28490583
Wu, Yanan; Wang, Junya; Fan, Shuhua; Chen, Rong; Liu, Yanjie; Zhang, Jianhua; Yuan, Hongyu; Liang, Ruiying; Zhang, Nianzhi; Xia, Chun
2017-07-15
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I ( Anpl -UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl -UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys 95 and Cys 112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl -UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl -UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl -UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl -UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (p Anpl -UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl -UAA*01 binding to IAV peptides. Anpl -UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl -UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I. Copyright © 2017 Wu et al.
de Almeida, José Roberto Fogaça; Jannuzzi, Grasielle Pereira; Kaihami, Gilberto Hideo; Breda, Leandro Carvalho Dantas; Ferreira, Karen Spadari; de Almeida, Sandro Rogério
2018-03-08
Sporothrix brasiliensis is the most virulent fungus of the Sporothrix complex and is the main species recovered in the sporotrichosis zoonotic hyperendemic area in Rio de Janeiro. A vaccine against S. brasiliensis could improve the current sporotrichosis situation. Here, we show 3 peptides from S. brasiliensis immunogenic proteins that have a higher likelihood for engaging MHC-class II molecules. We investigated the efficiency of the peptides as vaccines for preventing subcutaneous sporotrichosis. In this study, we observed a decrease in lesion diameters in peptide-immunized mice, showing that the peptides could induce a protective immune response against subcutaneous sporotrichosis. ZR8 peptide is from the GP70 protein, the main antigen of the Sporothrix complex, and was the best potential vaccine candidate by increasing CD4 + T cells and higher levels of IFN-γ, IL-17A and IL-1β characterizing a strong cellular immune response. This immune environment induced a higher number of neutrophils in lesions that are associated with fungus clearance. These results indicated that the ZR8 peptide induces a protective immune response against subcutaneous sporotrichosis and is a vaccine candidate against S. brasiliensis infection.
NASA Astrophysics Data System (ADS)
Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren
1996-03-01
Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.
Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.
Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M
2015-11-01
The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Hayes, B K; Esquivel, F; Bennink, J R; Yewdell, J W; Varki, A
1995-10-15
Class I molecules are N-linked glycoproteins encoded by the MHC. They carry cytosolic protein-derived peptides to the cell surface, displaying them to enable immune surveillance of cellular processes. Peptides are delivered to class I molecules by the transporter associated with Ag processing (TAP). Peptide association is known to occur before exposure of class I molecules to the medial Golgi-processing enzyme alpha-mannosidase II, but there is limited information regarding the location or timing of peptide binding within the earlier regions of the endoplasmic reticulum (ER)-Golgi pathway. A reported association of newly synthesized class I molecules with the ER chaperonin calnexin raises the possibility of persistence of the monoglycosylated N-linked oligosaccharide (NLO) Glc1Man8GlcNAc2, known to be recognized by this lectin. To explore these matters, we determined the structure of the NLOs on the subset of newly synthesized class I molecules awaiting the loading of peptide. We pulse-labeled murine MHC H-2Db class I molecules in RMA/S cells, which lack one of the TAP subunits, causing the great majority of the molecules to be retained for prolonged periods in an early secretory compartment, awaiting peptide binding. MHC molecules pulse-labeled with [3H]glucosamine were isolated, the NLOs specifically released and structurally analyzed by a variety of techniques. Within the chosen window of biosynthetic time, most Db molecules from parental RMA cells carried mature NLOs of the biantennary complex-type, with one to two sialic acid residues. In RMA/S cells, such chains were in the minority, the majority consisting of the precursor forms Man8GlcNAc2 and Man9GlcNAc2. No glucosylated forms were detected, nor were the later processing intermediates Man5-7GlcNAc2 or GlcNAc1Man4-5GlcNAc2. Thus, most Db molecules in TAP-deficient cells are retained in an early compartment of the secretory pathway, before the point of first access to the Golgi alpha-mannosidase I, which trims alpha 1-2 linked mannose residues, but beyond the point where the alpha 1-3-linked glucose residue is finally removed by the ER glucosidase II. Thus, structural analysis of NLOs on class I molecules within a defined biosynthetic window has established a biochemical measure of the timing of peptide association.
Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar.
Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F Javier
2010-12-01
Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
Han, Youngmahn; Kim, Dongsup
2017-12-28
Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc . We developed a novel method for peptide-HLA-I binding predictions using DCNN trained on ILA data that encode peptide binding data and demonstrated the reliable performance of the DCNN in nonapeptide binding predictions through the independent evaluation on the latest IEDB benchmark datasets. Our approaches can be applied to characterize locally-clustered patterns in molecular interactions, such as protein/DNA, protein/RNA, and drug/protein interactions.
Jappe, Emma Christine; Kringelum, Jens; Trolle, Thomas; Nielsen, Morten
2018-02-15
Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots. © 2018 John Wiley & Sons Ltd.
Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.
Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert
2010-01-12
Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes
NASA Astrophysics Data System (ADS)
Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran
2018-03-01
T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.
Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.
Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun
2017-01-01
Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.
αβ T cell receptors as predictors of health and disease
Attaf, Meriem; Huseby, Eric; Sewell, Andrew K
2015-01-01
The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR ‘signatures' raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome. PMID:25619506
Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard
2009-08-15
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.
2002-01-01
The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078
KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif
Colantonio, Arnaud D.; Bimber, Benjamin N.; Neidermyer, William J.; Reeves, R. Keith; Alter, Galit; Altfeld, Marcus; Johnson, R. Paul; Carrington, Mary; O'Connor, David H.; Evans, David T.
2011-01-01
Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets. PMID:21423672
Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M
2009-11-01
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.
Insights into MHC class I peptide loading from the structure of the tapasin/ERp57 heterodimer
Dong, Gang; Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter; Reinisch, Karin M.
2009-01-01
SUMMARY Tapasin is a glycoprotein critical for loading Major Histocompatibility Complex (MHC) class I molecules with high affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here we present the 2.6 Å resolution structure of the tapasin/ERp57 core of the PLC. The structure reveals the basis for the stable dimerization of tapasin and ERp57 and provides the first example of a protein disulfide isomerase family member interacting with a substrate. Mutational analysis identified a conserved surface on tapasin that interacts with MHC class I molecules and is critical for the peptide loading and editing function of the tapasin-ERp57 heterodimer. By combining the tapasin/ERp57 structure with those of other defined PLC components we present a molecular model that illuminates the processes involved in MHC class I peptide loading. PMID:19119025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwun, Hyun Jin; Ramos da Silva, Suzane; Department of Pathology, Botucatu School of Medicine at Sao Paulo State University, Sao Paulo
KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER.more » By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.« less
Rödström, Karin E J; Elbing, Karin; Lindkvist-Petersson, Karin
2014-08-15
Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells. Copyright © 2014 by The American Association of Immunologists, Inc.
Analysis of MHC class I folding: novel insights into intermediate forms
Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.
2012-01-01
Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842
Open conformers: the hidden face of MHC-I molecules.
Arosa, Fernando A; Santos, Susana G; Powis, Simon J
2007-03-01
A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.
Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo1
Kawahara, Masahiro; York, Ian A.; Hearn, Arron; Farfan, Diego; Rock, Kenneth L.
2015-01-01
Previous experiments using enzyme inhibitors and RNAi in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I antigen presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals. In these mice, the expression level of TPPII was reduced by >90% compared to wild-type mice. Thymocytes from TPPII gene-trapped mice displayed more MHC class I on the cell surface, suggesting that TPPII normally limits antigen presentation by destroying peptides overall. TPPII gene-trapped mice responded as well as did wild-type mice to four epitopes from lymphocytic choriomeningitis virus (LCMV). The processing and presentation of peptide precursors with long N-terminal extensions in TPPII gene-trapped embryonic fibroblasts was modestly reduced, but in vivo immunization with recombinant lentiviral or vaccinia virus vectors revealed that such peptide precursors induced an equivalent CD8 T cell response in wild type and TPPII-deficient mice. These data indicate while TPPII contributes to the trimming of peptides with very long N-terminal extensions, TPPII is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several antigens in vivo. PMID:19841172
Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules
Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim
2016-01-01
Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762
Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning
2017-01-01
The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously established TCR discovery platform using 2D TCR affinity and sequence test would allow for selection of TCRs specific to any given antigen with the desirable attributes of high TCR affinity, CD8 co-receptor independence and functional superiority. Utilizing TCRs with less CD8 contribution could be beneficial for adoptive cell transfer immunotherapies using naturally occurring or genetically engineered T cells against viral or cancer-associated antigens. PMID:28804489
HLA-A11-mediated protection from NK cell-mediated lysis: role of HLA-A11-presented peptides.
Gavioli, R; Zhang, Q J; Masucci, M G
1996-08-01
The capacity of MHC class I to protect target cells from NK is well established, but the mechanism by which these molecules influence NK recognition and the physical properties associated with this function remain poorly defined. We have examined this issue using as a model the HLA-A11 allele. HLA-A11 expression correlated with reduced susceptibility to NK and interferon-activated cytotoxicity in transfected sublines of the A11-defective Burkitt's lymphoma WW2-BL and the HLA class I A,B-null C1R cell line. Protection was also achieved by transfection of HLA-A11 in the peptide processing mutant T2 cells line (T2/A11), despite a very low expression of the transfected product at the cell surface. Induction of surface HLA-A11 by culture of T2/A11 cells at 26 degrees C or in the presence of beta 2m did not affect lysis, whereas NK sensitivity was restored by culture in the presence of HLA-All-binding synthetic peptides derived from viral or cellular proteins. Acid treatment rendered T2/A11 and C1R/A11 cells sensitive to lysis, but protection was restored after preincubation with peptide preparations derived from surface stripping of T2/A11 cells. Similar peptide preparations from T2 cells had no effect. The results suggest that NK protection is mediated by HLA-A11 molecules carrying a particular set of peptides that are translocated to the site of MHC class I assembly in the ER in a TAP-independent fashion.
2010-01-01
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections. PMID:20663125
Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.
Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less
Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E
Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...
2016-02-12
Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less
NASA Astrophysics Data System (ADS)
Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong
2014-02-01
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.
Follin, Elna; Karlsson, Maria; Lundegaard, Claus; Nielsen, Morten; Wallin, Stefan; Paulsson, Kajsa; Westerdahl, Helena
2013-04-01
The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.
Chakrabarti, Saikat; Roy, Syamal
2016-01-01
Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of the peptide. Furthermore, liposomal delivery of cholesterol in I-MΦ restored its normal antigen presenting function. This observation brings strength to our previous observation on host directed therapeutic application of liposomal cholesterol in experimental visceral leishmaniasis. PMID:27214205
Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A
2017-10-01
Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Róisín M.; University of Oxford, Roosevelt Drive, Oxford OX3 7BN; Friis, Lone
The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Å resolution. The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Å resolution. HLA-A3 is a predisposing allele for multiple sclerosis (MS), an autoimmune disease of the central nervous system. The KLIETYFSK peptide is a naturally processed epitope of proteolipid protein, a myelin protein and candidate target for immune-mediated myelin destruction in MS.more » Comparison of the structure of HLA-A3 with that of HLA-A2, an MHC class I molecule which is protective against MS, indicates that both MHC class I molecules present very similar faces for T-cell receptor recognition whilst differing in the specificity of their peptide-binding grooves. These characteristics may underlie the opposing (predisposing versus protective) associations that they exhibit both in humans and in mouse models of MS-like disease. Furthermore, subtle alterations within the peptide-binding groove of HLA-A3 and other A3-like MHC class I molecules, members of the so-called A3 superfamily, may be sufficient to alter their presentation of autoantigen peptides such as KLIETYFSK. This in turn may modulate their contribution to the associated risk of autoimmune disease.« less
Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.
2006-01-01
The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963
Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim
2015-01-01
Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507
Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile
2015-01-01
Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.
Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile
2015-01-01
Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339
Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A
2012-07-11
Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less
Recovery of known T-cell epitopes by computational scanning of a viral genome
NASA Astrophysics Data System (ADS)
Logean, Antoine; Rognan, Didier
2002-04-01
A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.
Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach.
Andreatta, Massimo; Lund, Ole; Nielsen, Morten
2013-01-01
Proteins recognizing short peptide fragments play a central role in cellular signaling. As a result of high-throughput technologies, peptide-binding protein specificities can be studied using large peptide libraries at dramatically lower cost and time. Interpretation of such large peptide datasets, however, is a complex task, especially when the data contain multiple receptor binding motifs, and/or the motifs are found at different locations within distinct peptides. The algorithm presented in this article, based on Gibbs sampling, identifies multiple specificities in peptide data by performing two essential tasks simultaneously: alignment and clustering of peptide data. We apply the method to de-convolute binding motifs in a panel of peptide datasets with different degrees of complexity spanning from the simplest case of pre-aligned fixed-length peptides to cases of unaligned peptide datasets of variable length. Example applications described in this article include mixtures of binders to different MHC class I and class II alleles, distinct classes of ligands for SH3 domains and sub-specificities of the HLA-A*02:01 molecule. The Gibbs clustering method is available online as a web server at http://www.cbs.dtu.dk/services/GibbsCluster.
Stephen, Tom Li; Wilson, Bridget S; Laufer, Terri M
2012-05-08
Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.
Unusual antigen presentation offers new insight into HIV vaccine design.
McMichael, Andrew J; Picker, Louis J
2017-06-01
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jenkins, Marc K; Chu, H Hamlet; McLachlan, James B; Moon, James J
2010-01-01
Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.
[Planar molecular arrangements aid the design of MHC class II binding peptides].
Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L
2017-01-01
The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.
CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.
Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie
2013-02-01
CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.
Amore, Alessia; Wals, Kim; Koekoek, Evelyn; Hoppes, Rieuwert; Toebes, Mireille; Schumacher, Ton N M; Rodenko, Boris; Ovaa, Huib
2013-01-01
Incorporation of cleavable linkers into peptides and proteins is of particular value in the study of biological processes. Here we describe the synthesis of a cleavable linker that is hypersensitive to oxidative cleavage as the result of the periodate reactivity of a vicinal amino alcohol moiety. Two strategies directed towards the synthesis of a building block suitable for solid-phase peptide synthesis were developed: a chemoenzymatic route, involving l-threonine aldolase, and an enantioselective chemical route; these led to α,γ-diamino-β-hydroxybutanoic acids in diastereoisomerically mixed and enantiopure forms, respectively. Incorporation of the 1,2-amino alcohol linker into the backbone of a peptide generated a conditional peptide that was rapidly cleaved at very low concentrations of sodium periodate. This cleavable peptide ligand was applied in the generation of MHC exchange reagents for the detection of antigen-specific T cells in peripheral blood cells. The extremely low concentration of periodate required to trigger MHC peptide exchange allowed the co-oxidation of methionine and disulfide residues to be avoided. Conditional MHC reagents hypersensitive to periodate can now be applied without limitations when UV irradiation is undesired or less practical. PMID:23280887
Xia, Zhen; Chen, Huabiao; Kang, Seung-gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong
2014-01-01
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function. PMID:24522437
An MHC class I immune evasion gene of Marek׳s disease virus.
Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A
2015-01-15
Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.
Brandt, Artur M L; Batista, Paulo Ricardo; Souza-Silva, Franklin; Alves, Carlos Roberto; Caffarena, Ernesto Raul
2016-04-01
New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å. © 2016 Wiley Periodicals, Inc.
Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris
2015-01-01
Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003
Antipas, Georgios S E; Germenis, Anastasios E
2015-06-01
The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC) and a T cell receptor (TCR) is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1) peptide along with three artificially altered variants, all of which were presented by the (Class I) HLA-A201 protein in complexation with the human (CD8(+)) A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist) and peptide pair distribution function (PDF). In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT) datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3 (+)) terminal group while antagonist peptides are not.
Ma, Wenbin; Zhang, Yi; Vigneron, Nathalie; Stroobant, Vincent; Thielemans, Kris; van der Bruggen, Pierre; Van den Eynde, Benoît J
2016-02-15
Cross-presentation enables dendritic cells to present on their MHC class I molecules antigenic peptides derived from exogenous material, through a mechanism that remains partly unclear. It is particularly efficient with long peptides, which are used in cancer vaccines. We studied the mechanism of long-peptide cross-presentation using human dendritic cells and specific CTL clones against melanoma Ags gp100 and Melan-A/MART1. We found that cross-presentation of those long peptides does not depend on the proteasome or the transporter associated with Ag processing, and therefore follows a vacuolar pathway. We also observed that it makes use of newly synthesized MHC class I molecules, through peptide exchange in vesicles distinct from the endoplasmic reticulum and classical secretory pathway, in an SEC22b- and CD74-independent manner. Our results indicate a nonclassical secretion pathway followed by nascent HLA-I molecules that are used for cross-presentation of those long melanoma peptides in the vacuolar pathway. Our results may have implications for the development of vaccines based on long peptides. Copyright © 2016 by The American Association of Immunologists, Inc.
MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.
Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba
2011-04-15
Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.
Goel, Meenal; Verma, Abhishek; Gupta, Shalini
2018-07-15
Microarray technology to isolate living cells using external fields is a facile way to do phenotypic analysis at the cellular level. We have used alternating current dielectrophoresis (AC-DEP) to drive the assembly of live pathogenic Salmonella typhi (S.typhi) and Escherichia coli (E.coli) bacteria into miniaturized single cell microarrays. The effects of voltage and frequency were optimized to identify the conditions for maximum cell capture which gave an entrapment efficiency of 90% in 60 min. The chip was used for calibration-free estimation of cellular loads in binary mixtures and further applied for rapid and enhanced testing of cell viability in the presence of drug via impedance spectroscopy. Our results using a model antimicrobial sushi peptide showed that the cell viability could be tested down to 5 μg/mL drug concentration under an hour, thus establishing the utility of our system for ultrafast and sensitive detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Mantegazza, Adriana R.; Guttentag, Susan H.; El-Benna, Jamel; Sasai, Miwa; Iwasaki, Akiko; Shen, Hao; Laufer, Terri M.; Marks, Michael S.
2012-01-01
SUMMARY Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores. PMID:22560444
USDA-ARS?s Scientific Manuscript database
The binding of peptides to classical major histocompatibility complex (MHC) class-I proteins is the single most selective step in antigen presentation. However, the peptide binding specificity of cattle MHC (bovine leucocyte antigen, BoLA) class I (BoLA-I) molecules remains poorly characterized. Her...
Mohammed, Fiyaz; Cobbold, Mark; Zarling, Angela L.; Salim, Mahboob; Barrett-Wilt, Gregory A.; Shabanowitz, Jeffrey; Hunt, Donald F.; Engelhard, Victor H.; Willcox, Benjamin E.
2008-01-01
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex (MHC) class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphorylated peptides on cancer cells provides an immunological signature of “transformed self”. Here, we demonstrate that phosphorylation can radically increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide–HLA-A2 complexes. These revealed a novel peptide binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting MHC binding, or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy. PMID:18836451
The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation.
Reuben, Alexandre; Phénix, Mikaël; Santos, Manuela M; Lapointe, Réjean
2014-06-01
MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity
Wang, Evelyn W.; Kessler, Benedikt M.; Borodovsky, Anna; Cravatt, Benjamin F.; Bogyo, Matthew; Ploegh, Hidde L.; Glas, Rickard
2000-01-01
Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability. PMID:10954757
Baleeiro, Renato B; Rietscher, René; Diedrich, Andrea; Czaplewska, Justyna A; Lehr, Claus-Michael; Scherließ, Regina; Hanefeld, Andrea; Gottschaldt, Michael; Walden, Peter
2015-01-01
Cross-presentation is the process by which professional antigen presenting cells (APCs) (B cells, dendritic cells (DCs) and macrophages) present endocytosed antigens (Ags) via MHC-I to CD8+ T cells. This process is crucial for induction of adaptive immune responses against tumors and infected cells. The pathways and cellular compartments involved in cross-presentation are unresolved and controversial. Among the cells with cross-presenting capacity, DCs are the most efficient, which was proposed to depend on prevention of endosomal acidification to block degradation of the epitopes. Contrary to this view, we show in this report that some cargoes induce strong endosomal acidification following uptake by human DCs, while others not. Moreover, processing of the tumor-associated antigen HER2/neu delivered in nanoparticles (NP) for cross-presentation of the epitope HER2/neu369–377 on HLA-A2 depended on endosomal acidification and cathepsin activity as well as proteasomes, and newly synthesized HLA class I. However, the HLA-A*0201/HER2/neu369–377 complexes were not found in the endoplasmic reticulum (ER) nor in endolysosomes but in hitherto not described vesicles. The data thus indicate spatial separation of antigen processing and loading of MHC-I for cross-presentation: antigen processing occurs in the uptake compartment and the cytosol whereas MHC-I loading with peptide takes place in a distinct subcellular compartment. The findings further elucidate the cellular pathways involved in the cross-presentation of a full-length, clinically relevant tumor-associated antigen by human DCs, and the impact of the vaccine formulation on antigen processing and CD8+ T cell induction. PMID:26985398
Antunes, Dinler A; Rigo, Maurício M; Freitas, Martiela V; Mendes, Marcus F A; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E; Selin, Liisa K; Cornberg, Markus; Vieira, Gustavo F
2017-01-01
Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient's own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC "hot-spots" for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.
Brooks, Suzanne E; Bonney, Stephanie A; Lee, Cindy; Publicover, Amy; Khan, Ghazala; Smits, Evelien L; Sigurdardottir, Dagmar; Arno, Matthew; Li, Demin; Mills, Ken I; Pulford, Karen; Banham, Alison H; van Tendeloo, Viggo; Mufti, Ghulam J; Rammensee, Hans-Georg; Elliott, Tim J; Orchard, Kim H; Guinn, Barbara-ann
2015-01-01
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Ma, Jinxia; Trop, Stefanie; Baer, Samantha; Rakhmanaliev, Elian; Arany, Zita; Dumoulin, Peter; Zhang, Hao; Romano, Julia; Coppens, Isabelle; Levitsky, Victor; Levitskaya, Jelena
2013-01-01
Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver. PMID:24086507
ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors.
Cifaldi, Loredana; Romania, Paolo; Falco, Michela; Lorenzi, Silvia; Meazza, Raffaella; Petrini, Stefania; Andreani, Marco; Pende, Daniela; Locatelli, Franco; Fruci, Doriana
2015-03-01
The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by MHC class I (MHC-I) molecules. Herein, we demonstrate that genetic or pharmacological inhibition of ERAP1 on human tumor cell lines perturbs their ability to engage several classes of inhibitory receptors by their specific ligands, including killer cell Ig-like receptors (KIR) by classical MHC-I-peptide (pMHC-I) complexes and the lectin-like receptor CD94-NKG2A by nonclassical pMHC-I complexes, in each case leading to natural killer (NK) cell killing. The protective effect of pMHC-I complexes could be restored in ERAP1-deficient settings by the addition of known high-affinity peptides, suggesting that ERAP1 was needed to positively modify the affinity of natural ligands. Notably, ERAP1 inhibition enhanced the ability of NK cells to kill freshly established human lymphoblastoid cell lines from autologous or allogeneic sources, thereby promoting NK cytotoxic activity against target cells that would not be expected because of KIR-KIR ligand matching. Overall, our results identify ERAP1 as a modifier to leverage immune functions that may improve the efficacy of NK cell-based approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole
2004-06-12
Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
Automated benchmarking of peptide-MHC class I binding predictions.
Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-07-01
Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A community resource benchmarking predictions of peptide binding to MHC-I molecules.
Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro
2006-06-09
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.
Automated benchmarking of peptide-MHC class I binding predictions
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-01-01
Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196
Autophagy in the regulation of pathogen replication and adaptive immunity
Randow, Felix; Münz, Christian
2012-01-01
Autophagy is an evolutionary conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo-receptors autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for MHC presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example upon phagosomal damage, while pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy. PMID:22796170
The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.
Elliott, Tim; Williams, Anthony
2005-10-01
Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.
Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R
2017-10-01
Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides
Granados, Diana Paola; Sriranganadane, Dev; Daouda, Tariq; Zieger, Antoine; Laumont, Céline M.; Caron-Lizotte, Olivier; Boucher, Geneviève; Hardy, Marie-Pierre; Gendron, Patrick; Côté, Caroline; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude
2014-01-01
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). PMID:24714562
A T-Cell Receptor Breaks the Rules | Center for Cancer Research
Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their parents; and the antigen fragment, called a peptide epitope, is excised from one of thousands of possible proteins—originally part of an invading pathogen or a cancer cell—that T cells are capable of identifying and attacking. The framework of an MHC molecule holding a centrally displayed or “presented” peptide is what engages the TCR and triggers T-cell action. This role of MHC molecules presenting antigens to the TCR is a central tenet of immunology, with the fit between a TCR and the MHC framework actually “hardwired” into their three-dimensional structures.
Roshandel, Delnaz; Gubitosi-Klug, Rose; Bull, Shelley B; Canty, Angelo J; Pezzolesi, Marcus G; King, George L; Keenan, Hillary A; Snell-Bergeon, Janet K; Maahs, David M; Klein, Ronald; Klein, Barbara E K; Orchard, Trevor J; Costacou, Tina; Weedon, Michael N; Oram, Richard A; Paterson, Andrew D
2018-05-01
The aim of this study was to identify genetic variants associated with beta cell function in type 1 diabetes, as measured by serum C-peptide levels, through meta-genome-wide association studies (meta-GWAS). We performed a meta-GWAS to combine the results from five studies in type 1 diabetes with cross-sectionally measured stimulated, fasting or random C-peptide levels, including 3479 European participants. The p values across studies were combined, taking into account sample size and direction of effect. We also performed separate meta-GWAS for stimulated (n = 1303), fasting (n = 2019) and random (n = 1497) C-peptide levels. In the meta-GWAS for stimulated/fasting/random C-peptide levels, a SNP on chromosome 1, rs559047 (Chr1:238753916, T>A, minor allele frequency [MAF] 0.24-0.26), was associated with C-peptide (p = 4.13 × 10 -8 ), meeting the genome-wide significance threshold (p < 5 × 10 -8 ). In the same meta-GWAS, a locus in the MHC region (rs9260151) was close to the genome-wide significance threshold (Chr6:29911030, C>T, MAF 0.07-0.10, p = 8.43 × 10 -8 ). In the stimulated C-peptide meta-GWAS, rs61211515 (Chr6:30100975, T/-, MAF 0.17-0.19) in the MHC region was associated with stimulated C-peptide (β [SE] = - 0.39 [0.07], p = 9.72 × 10 -8 ). rs61211515 was also associated with the rate of stimulated C-peptide decline over time in a subset of individuals (n = 258) with annual repeated measures for up to 6 years (p = 0.02). In the meta-GWAS of random C-peptide, another MHC region, SNP rs3135002 (Chr6:32668439, C>A, MAF 0.02-0.06), was associated with C-peptide (p = 3.49 × 10 -8 ). Conditional analyses suggested that the three identified variants in the MHC region were independent of each other. rs9260151 and rs3135002 have been associated with type 1 diabetes, whereas rs559047 and rs61211515 have not been associated with a risk of developing type 1 diabetes. We identified a locus on chromosome 1 and multiple variants in the MHC region, at least some of which were distinct from type 1 diabetes risk loci, that were associated with C-peptide, suggesting partly non-overlapping mechanisms for the development and progression of type 1 diabetes. These associations need to be validated in independent populations. Further investigations could provide insights into mechanisms of beta cell loss and opportunities to preserve beta cell function.
Designing of interferon-gamma inducing MHC class-II binders
2013-01-01
Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai. PMID:24304645
Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D
2017-07-05
Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.
Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H
2015-11-27
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hydrophobicity as a driver of MHC class I antigen processing
Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C
2011-01-01
The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design. PMID:21378750
Hydrophobicity as a driver of MHC class I antigen processing.
Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C
2011-04-20
The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.
NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
Karosiene, Edita; Lundegaard, Claus; Lund, Ole; Nielsen, Morten
2012-03-01
A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods depends on the data available characterizing the binding specificity of the MHC molecules. It has, moreover, been demonstrated that consensus methods defined as combinations of two or more different methods led to improved prediction accuracy. This plethora of methods makes it very difficult for the non-expert user to choose the most suitable method for predicting binding to a given MHC molecule. In this study, we have therefore made an in-depth analysis of combinations of three state-of-the-art MHC-peptide binding prediction methods (NetMHC, NetMHCpan and PickPocket). We demonstrate that a simple combination of NetMHC and NetMHCpan gives the highest performance when the allele in question is included in the training and is characterized by at least 50 data points with at least ten binders. Otherwise, NetMHCpan is the best predictor. When an allele has not been characterized, the performance depends on the distance to the training data. NetMHCpan has the highest performance when close neighbours are present in the training set, while the combination of NetMHCpan and PickPocket outperforms either of the two methods for alleles with more remote neighbours. The final method, NetMHCcons, is publicly available at www.cbs.dtu.dk/services/NetMHCcons , and allows the user in an automatic manner to obtain the most accurate predictions for any given MHC molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brims, D.; Qian, J; Jarchum, I
2010-01-01
Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence ofmore » class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.« less
The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC I molecules
Cruz, Freidrich M.; Colbert, Jeff D.; Merino, Elena; Kriegsman, Barry A.; Rock, Kenneth L.
2017-01-01
To monitor the health of cells, the immune system tasks antigen presenting cells with gathering antigens from other cells and reporting them to CD8 T cells in the form of peptides bound to MHC I molecules. Most cells would be unable to perform this function because they use their MHC I molecules to exclusively present peptides derived from the cell’s own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC I through a process called cross-presentation (XPT). How this important task is accomplished, its role in health and disease and its potential for exploitation are the subject of this review. PMID:28125356
Mice completely lacking immunoproteasomes display major alterations in antigen presentation
Kincaid, Eleanor Z; Che, Jenny W; York, Ian; Escobar, Hernando; Reyes-Vargas, Eduardo; Delgado, Julio C.; Welsh, Raymond M; Karow, Margaret L.; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rock, Kenneth L
2011-01-01
The importance of immunoproteasomes to antigen presentation has been unclear because animals totally lacking immunoproteasomes have not been previously developed. Here we show that dendritic cells from mice lacking the three immunoproteasome catalytic subunits display defects in presenting multiple major histocompatability (MHC) class I epitopes. During viral infection in vivo, the presentation of a majority of MHC class I epitopes is markedly reduced in immunoproteasome-deficient animals, while presentation of MHC class II peptides is unaffected. By mass spectrometry the repertoire of MHC class I-presented peptides is ~50% different and these differences are sufficient to stimulate robust transplant rejection of wild type cells in mutant mice. These results indicate that immunoproteasomes play a much more important role in antigen presentation than previously thought. PMID:22197977
Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.
Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro
2017-05-01
Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.
Shen, Chuanlai; Xu, Tao; Wu, You; Li, Xiaoe; Xia, Lingzhi; Wang, Wei; Shahzad, Khawar Ali; Zhang, Lei; Wan, Xin; Qiu, Jie
2017-11-27
Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin 257-264 -specific CD8 + T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen 18-27 - and surface antigen 183-191 -specific CD8 + T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.
Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog
2008-01-01
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275
Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J
2012-02-17
The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.
Hearn, Arron; York, Ian A.; Bishop, Courtney; Rock, Kenneth L.
2010-01-01
Many MHC class I binding peptides are generated as N-extended precursors during protein degradation by the proteasome. These peptides can be subsequently trimmed by aminopeptidases in the cytosol and/or the ER to produce mature epitope. However, the contribution and specificity of each of these subcellular compartments in removing N-terminal amino acids for antigen presentation is not well defined. Here we investigate this issue for antigenic precursors that are expressed in the cytosol. By systematically varying the N-terminal flanking sequences of peptides we show that the amino acids upstream of an epitope precursor are a major determinant of the amount of antigen presentation. In many cases MHC class I binding peptides are produced through sequential trimming in both the cytosol and ER. Trimming of flanking residues in the cytosol contributes most to sequences that are poorly trimmed in the ER. Since N-terminal trimming has different specificity in the cytosol and ER, the cleavage of peptides in both of these compartments serves to broaden the repertoire of sequences that are presented. PMID:20351195
Solomon, Christopher; Southwood, Scott; Hoof, Ilka; Rudersdorf, Richard; Peters, Bjoern; Sidney, John; Pinilla, Clemencia; Marcondes, Maria Cecilia Garibaldi; Ling, Binhua; Marx, Preston; Sette, Alessandro
2010-01-01
Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0450-3) contains supplementary material, which is available to authorized users. PMID:20480161
Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-Hyung
2007-01-01
Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less
Das, Krishna; Eisel, David; Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram; Eichmüller, Stefan B
2017-01-01
In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.
Zarling, Angela L.; Willcox, Carrie R.; Shabanowitz, Jeffrey; Cummings, Kara L.; Hunt, Donald F.; Cobbold, Mark; Engelhard, Victor H.; Willcox, Benjamin E.
2017-01-01
Dysregulated post-translational modification provides a source of altered self-antigens that can stimulate immune responses in autoimmunity, inflammation, and cancer. In recent years, phosphorylated peptides have emerged as a group of tumour-associated antigens presented by MHC molecules and recognised by T cells, and represent promising candidates for cancer immunotherapy. However, the impact of phosphorylation on the antigenic identity of phosphopeptide epitopes is unclear. Here we examined this by determining structures of MHC-bound phosphopeptides bearing canonical position 4-phosphorylations in the presence and absence of their phosphate moiety, and examining phosphopeptide recognition by the T cell receptor (TCR). Strikingly, two peptides exhibited major conformational changes upon phosphorylation, involving a similar molecular mechanism, which focussed changes on the central peptide region most critical for T cell recognition. In contrast, a third epitope displayed little conformational alteration upon phosphorylation. In addition, binding studies demonstrated TCR interaction with an MHC-bound phosphopeptide was both epitope-specific and absolutely dependent upon phosphorylation status. These results highlight the critical influence of phosphorylation on the antigenic identity of naturally processed class I MHC epitopes. In doing so they provide a molecular framework for understanding phosphopeptide-specific immune responses, and have implications for the development of phosphopeptide antigen-specific cancer immunotherapy approaches. PMID:28903331
Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng
2016-01-01
Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular mechanisms of the action of AMPs. PMID:26902206
Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng
2016-06-01
Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular mechanisms of the action of AMPs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Design of Peptide Immunotherapies for MHC Class-II-Associated Autoimmune Disorders
2013-01-01
Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC) is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL), or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA) is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS) patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP) peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders. PMID:24324511
Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.
2010-01-01
Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923
Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.
2016-01-01
Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531
Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio
2005-03-01
Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, Boryana N.; Jackson, Bryan L.; Petit, Rebecca S.
2011-05-31
T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC contentmore » within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.« less
Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K
2018-04-01
Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.
Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system.
Baus-Loncar, Mirela; Schmid, Janinne; Lalani, El-Nasir; Rosewell, Ian; Goodlad, Robert A; Stamp, Gordon W H; Blin, Nikolaus; Kayademir, Tuncay
2005-01-01
The gastrointestinal trefoil factor family (TFF1, TFF2, TFF3) peptides are considered to play an important role in maintaining the integrity of the mucosa. The physiological role of TFF2 in the protection of the GI tract was investigated in TFF2 deficiency. TFF2-/- mice were generated and differential expression of various genes was assessed by using a mouse expression microarray, quantitative real time PCR, Northern blots or immunohistochemistry. On an mRNA level we found 128 differentially expressed genes. We observed modulation of a number of crucial genes involved in innate and adaptive immunity in the TFF2-/- mice. Expression of proteasomal subunits genes (LMP2, LMP7 and PSMB5) involved in the MHC class I presentation pathway were modulated indicating the formation of immunoproteasomes improving antigen presentation. Expression of one subunit of a transporter (TAP1) responsible for importing degraded antigens into ER was increased, similarly to the BAG2 gene that modulates chaperone activity in ER helping proper loading on MHC class I molecules. Several mouse defensin (cryptdin) genes coding important intestinal microbicidal proteins were up-regulated as a consequence of TFF2 deficiency. Normally moderate expression of TFF3 was highly increased in stomach. Copyright (c) 2005 S. Karger AG, Basel.
O'Herrin, Sean M.; Lebowitz, Michael S.; Bieler, Joan G.; al-Ramadi, Basel K.; Utz, Ursula; Bothwell, Alfred L.M.; Schneck, Jonathan P.
1997-01-01
Understanding the regulation of cell surface expression of specific peptide–major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide–MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR–Ig) that have high affinity for their cognate peptide–MHC ligands. The generality of this approach was demonstrated by specific staining of peptide-pulsed cells with two different TCR–Ig complexes: one specific for the murine alloantigen 2C, and one specific for a viral peptide from human T lymphocyte virus–1 presented by human histocompatibility leukocyte antigens–A2. Further, using 2C TCR– Ig, a more detailed analysis of the interaction with cognate peptide–MHC complexes revealed several interesting findings. Soluble divalent 2C TCR–Ig detected significant changes in the level of specific antigenic–peptide MHC cell surface expression in cells treated with γ-interferon (γ-IFN). Interestingly, the effects of γ-IFN on expression of specific peptide–MHC complexes recognized by 2C TCR–Ig were distinct from its effects on total H-2 Ld expression; thus, lower doses of γ-IFN were required to increase expression of cell surface class I MHC complexes than were required for upregulation of expression of specific peptide–MHC complexes. Analysis of the binding of 2C TCR–Ig for specific peptide–MHC ligands unexpectedly revealed that the affinity of the 2C TCR–Ig for the naturally occurring alloreactive, putatively, negatively selecting, complex, dEV-8–H-2 Kbm3, is very low, weaker than 71 μM. The affinity of the 2C TCR for the other naturally occurring, negatively selecting, alloreactive complex, p2Ca–H-2 Ld, is ∼1000-fold higher. Thus, negatively selecting peptide–MHC complexes do not necessarily have intrinsically high affinity for cognate TCR. These results, uniquely revealed by this analysis, indicate the importance of using high affinity biologically relevant cognates, such as soluble divalent TCR, in furthering our understanding of immune responses. PMID:9334373
Sibling rivalry: competition between MHC class II family members inhibits immunity.
Denzin, Lisa K; Cresswell, Peter
2013-01-01
Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.
Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.
2017-01-01
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627
Kim, Sungchul; Lee, Sanghyun; Shin, Jinwook; Kim, Youngkyun; Evnouchidou, Irini; Kim, Donghyun; Kim, Young-Kook; Kim, Young-Eui; Ahn, Jin-Hyun; Riddell, Stanley R.; Stratikos, Efstratios; Kim, V. Narry; Ahn, Kwangseog
2012-01-01
The major histocompatibility complex (MHC) class I molecules present peptides on the cell surface by CD8+ T cells, which is critical for killing of virally infected or transformed cells. Precursors of MHC class I-presented peptides are trimmed to mature epitopes by endoplasmic reticulum aminopeptidase 1 (ERAP1). The US2-US11 genomic region of human cytomegalovirus (HCMV) is dispensable for viral replication and harbors 3 microRNAs (miRNAs). We show here the HCMV miR-US4-1 specifically down-regulates ERAP1 expression during viral infection. Accordingly, the trimming of HCMV-derived peptides is inhibited, leading to reduced susceptibility of infected cells to HCMV-specific cytotoxic T lymphocytes (CTLs). Our findings reveal a novel viral miRNA-based CTL evasion mechanism that targets a key step in the MHC class I antigen-processing pathway. PMID:21892175
NASA Astrophysics Data System (ADS)
Parry, Christian S.; Gorski, Jack; Stern, Lawrence J.
2003-03-01
The stable binding of processed foreign peptide to a class II major histocompatibility (MHC) molecule and subsequent presentation to a T cell receptor is a central event in immune recognition and regulation. Polymorphic residues on the floor of the peptide binding site form pockets that anchor peptide side chains. These and other residues in the helical wall of the groove determine the specificity of each allele and define a motif. Allele specific motifs allow the prediction of epitopes from the sequence of pathogens. There are, however, known epitopes that do not satisfy these motifs: anchor motifs are not adequate for predicting epitopes as there are apparently major and minor motifs. We present crystallographic studies into the nature of the interactions that govern the binding of these so called nonconforming peptides. We would like to understand the role of the P10 pocket and find out whether the peptides that do not obey the consensus anchor motif bind in the canonical conformation observed in in prior structures of class II MHC-peptide complexes. HLA-DRB3*0101 complexed with peptide crystallized in unit cell 92.10 x 92.10 x 248.30 (90, 90, 90), P41212, and the diffraction data is reliable to 2.2ÅWe are complementing our studies with dynamical long time simulations to answer these questions, particularly the interplay of the anchor motifs in peptide binding, the range of protein and ligand conformations, and water hydration structures.
Usman Mirza, Muhammad; Rafique, Shazia; Ali, Amjad; Munir, Mobeen; Ikram, Nazia; Manan, Abdul; Salo-Ahen, Outi M H; Idrees, Muhammad
2016-12-09
The recent outbreak of Zika virus (ZIKV) infection in Brazil has developed to a global health concern due to its likely association with birth defects (primary microcephaly) and neurological complications. Consequently, there is an urgent need to develop a vaccine to prevent or a medicine to treat the infection. In this study, immunoinformatics approach was employed to predict antigenic epitopes of Zika viral proteins to aid in development of a peptide vaccine against ZIKV. Both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted for ZIKV Envelope (E), NS3 and NS5 proteins. We further investigated the binding interactions of altogether 15 antigenic CTL epitopes with three class I major histocompatibility complex (MHC I) proteins after docking the peptides to the binding groove of the MHC I proteins. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlight the limits of rigid-body docking methods. Some of the antigenic epitopes predicted and analyzed in this work might present a preliminary set of peptides for future vaccine development against ZIKV.
Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy
2014-01-01
Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065
Cancer Immunotherapy Utilized Bubble Liposomes and Ultrasound as Antigen Delivery System
NASA Astrophysics Data System (ADS)
Oda, Yusuke; Otake, Shota; Suzuki, Ryo; Otake, Shota; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Maruyama, Kazuo
2010-03-01
In dendritic cells (DCs)-based cancer immunotherapy, it is important to present the epitope peptide derived from tumor associated antigens (TAAs) on MHC class I in order to induce tumor specific cytotoxic T lymphocytes (CTLs). However, MHC class I molecules generally present the epitope peptides derived from endogenous antigens for DCs but not exogenous ones such as TAAs. Recently, we developed the novel liposomal bubbles (Bubble liposomes) encapsulating perfluoropropane nanobubbles. In this study, we attempted to establish the novel antigen delivery system to induce MHC class I presentation using the combination of ultrasound and Bubble liposomes. Using ovalbumin (OVA) as model antigen, the combination of Bubble liposomes and ultrasound exposure for the DC could induce MHC class I presentation. In addition, the viability of DCs was more than 80%. These results suggest that Bubble liposomes might be a novel ultrasound enhanced antigen delivery tool in DC-based cancer immunotherapy.
Andrade-Ochoa, S; García-Machorro, J; Bello, Martiniano; Rodríguez-Valdez, L M; Flores-Sandoval, C A; Correa-Basurto, J
2017-08-03
Human immunodeficiency virus type-1 (HIV-1) has infected more than 40 million people around the world. HIV-1 treatment still has several side effects, and the development of a vaccine, which is another potential option for decreasing human infections, has faced challenges. This work presents a computational study that includes a quantitative structure activity relationship(QSAR) using density functional theory(DFT) for reported peptides to identify the principal quantum mechanics descriptors related to peptide activity. In addition, the molecular recognition properties of these peptides are explored on major histocompatibility complex I (MHC-I) through docking and molecular dynamics (MD) simulations accompanied by the Molecular Mechanics Generalized Born Surface Area (MMGBSA) approach for correlating peptide activity reported elsewhere vs. theoretical peptide affinity. The results show that the carboxylic acid and hydroxyl groups are chemical moieties that have an inverse relationship with biological activity. The number of sulfides, pyrroles and imidazoles from the peptide structure are directly related to biological activity. In addition, the HOMO orbital energy values of the total absolute charge and the Ghose-Crippen molar refractivity of peptides are descriptors directly related to the activity and affinity on MHC-I. Docking and MD simulation studies accompanied by an MMGBSA analysis show that the binding free energy without considering the entropic contribution is energetically favorable for all the complexes. Furthermore, good peptide interaction with the most affinity is evaluated experimentally for three proteins. Overall, this study shows that the combination of quantum mechanics descriptors and molecular modeling studies could help describe the immunogenic properties of peptides from HIV-1.
Ross, Peter; Holmes, Jennifer C; Gojanovich, Gregory S; Hess, Paul R
2012-12-15
Identifying immunodominant CTL epitopes is essential for studying CD8+ T-cell responses in populations, but remains difficult, as peptides within antigens typically are too numerous for all to be synthesized and screened. Instead, to facilitate discovery, in silico scanning of proteins for sequences that match the motif, or binding preferences, of the restricting MHC class I allele - the largest determinant of immunodominance - can be used to predict likely candidates. The high false positive rate with this analysis ideally requires binding confirmation, which is obtained routinely by an assay using cell lines such as RMA-S that have defective transporter associated with antigen processing (TAP) machinery, and consequently, few surface class I molecules. The stabilization and resultant increased life-span of peptide-MHC complexes on the cell surface by the addition of true binders validates their identity. To determine whether a similar assay could be developed for dogs, we transfected a prevalent class I allele, DLA-88*50801, into RMA-S. In the BARC3 clone, the recombinant heavy chain was associated with murine β2-microglobulin, and importantly, could differentiate motif-matched and -mismatched peptides by surface MHC stabilization. This work demonstrates the potential to use RMA-S cells transfected with canine alleles as a tool for CTL epitope discovery in this species. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Honda; R Wang; W Kong
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chotiyarnwong, Pojchong; Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University; Stewart-Jones, Guillaume B.
Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101more » was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.« less
Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker
2016-10-01
Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, M.; Robinson, H.; Wang, R.
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
Rao, Mangala; Peachman, Kristina K; Alving, Carl R; Rothwell, Stephen W
2003-12-01
Cholesterol is a major constituent of plasma cell membranes and influences the functions of proteins residing in the membrane. To assess the role of cholesterol in phagocytosis and intracellular trafficking of liposomal antigen, macrophages were treated with inhibitors of cholesterol biosynthesis for various time periods and levels of cholesterol depletion were assessed by thin layer chromatography. In control macrophages, cholesterol was present in the plasma membrane and in intracellular stores, as visualised by staining with the cholesterol-binding compound filipin, whereas macrophages treated with cholesterol inhibitors failed to stain with filipin. However, these macrophages were still capable of phagocytosis as evidenced by their internalisation of fluorescent-labelled bacteria and liposome-encapsulated Texas red labelled-ovalbumin, L(TR-OVA). While fluorescent ovalbumin (OVA) was consistently transported to the Golgi in macrophages incubated with L(TR-OVA), in cells treated with cholesterol inhibitors, OVA remained spread diffusely throughout the cytoplasm. Even though the mean fluorescence intensity of MHC class I molecules on cholesterol inhibitor-treated macrophages was equivalent to that of the control macrophages, the amount of MHC class I-liposomal OVA-peptide complex detected on the cell surface of cholesterol inhibitor-treated macrophages, was only 45.6 +/- 7.4% (n = 4, mean +/- SEM) of control levels after intracellular processing of L(OVA). We conclude that cholesterol depletion does not eliminate phagocytosis or MHC class I surface expression, but does affect the trafficking and consequently the MHC class I antigen-processing pathway.
Ochi, Toshiki; Nakatsugawa, Munehide; Chamoto, Kenji; Tanaka, Shinya; Yamashita, Yuki; Guo, Tingxi; Fujiwara, Hiroshi; Yasukawa, Masaki; Butler, Marcus O; Hirano, Naoto
2015-09-01
Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1(235-243) (A24/WT1(235)) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1(235) and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs. ©2015 American Association for Cancer Research.
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.
Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne
2016-06-21
Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.
NASA Astrophysics Data System (ADS)
Li, Long; Xu, Guang-Kui; Song, Fan
2017-01-01
The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.
Casares, Sofia; Lin, Marvin; Zhang, Nan; Teijaro, John R; Stoica, Cristina; McEvoy, Robert; Farber, Donna L; Bona, Constantin; Brumeanu, Teodor D
2008-06-27
Transplantation of pancreatic islets showed a tremendous progress over the years as a promising, new therapeutic strategy in patients with type 1 diabetes. However, additional immunosuppressive drug therapy is required to prevent rejection of engrafted islets. The current immunosuppressive therapies showed limited success in maintaining long-term islet survival as required to achieve insulin independence in type 1 diabetes, and they induce severe adverse effects. Herein, we analyzed the effects of a soluble peptide-major histocompatibility complex (MHC) class II chimera aimed at devising an antigen-specific therapy for suppression of anti-islet T cell responses and to improve the survival of pancreatic islets transplants. Pancreatic islets from transgenic mice expressing the hemagglutinin antigen in the beta islets under the rat insulin promoter (RIP-HA) were grafted under the kidney capsule of diabetic, double transgenic mice expressing hemagglutinin in the pancreas and T cells specific for hemagglutinin (RIP-HA, TCR-HA). The recipient double transgenic mice were treated or not with the soluble peptide-MHC II chimera, and the progression of diabetes, graft survival, and T cell responses to the grafted islets were analyzed. The peptide-MHC II chimera protected syngeneic pancreatic islet transplants against the islet-reactive CD4 T cells, and prolonged the survival of transplanted islets. Protection of transplanted islets occurred by polarization of antigen-specific memory CD4 T cells toward a Th2 anti-inflammatory response. The peptide-MHC II chimera approach is an efficient and specific therapeutic approach to suppress anti-islet T cell responses and provides a long survival of pancreatic grafted islets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, W.A.; Satumtira, Nimman; Taurog, J.D.
1996-02-15
Rats transgenic for the human MHC molecule HLA-B27 were used to study the effect of two alleles, cim{sup a} and cim{sup b}, which are associated with peptide transport by the MHC-encoded Tap2 transporter, on the function of HLA-B27 as a restriction element for CTL recognition of the male H-Y minor H Ag and on the multisystem inflammatory disease characteristic of B27 transgenic rats. Anti-H-Y CTL generated in cim{sup a} B27 transgenic rats lysed male B27 cim{sup b/b} targets significantly less well than cim{sup a/a} or cim{sup a/b} targets. Addition of exogenous H-Y peptides to male B27 cim{sup b/b} targets increasedmore » susceptibility to lysis to the level of cim{sup a/a} targets sensitized with exogenous H-Y peptides. {sup 3}H-labeled peptides eluted from B27 molecules of lymphoblasts from rats of two cim{sup b} and three cim{sup a} RT1 haplotypes showed that the cim{sup b} peptide pool favors comparatively longer and/or more hydrophobic peptides. These results indicate that RT1-linked Tap2 polymorphism in the rat strongly influences peptide loading of HLA-B27. Nonetheless, the prevalence and severity of multisystem inflammatory lesions were comparable in backcross rats bearing either cim{sup a/b} or cim{sup b/b}. It thus appears either that binding of specific peptides to B27 is unimportant in the pathogenesis of B27-associated disease or that the critical peptides, unlike H-Y and many others, are not influenced by Tap transporter polymorphism. 42 refs., 6 figs., 3 tabs.« less
Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I
2017-11-01
T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.
Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.
2014-01-01
Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960
Moser, Sarah C.; Voerman, Jane S. A.; Buckley, Dennis L.; Winter, Georg E.; Schliehe, Christopher
2018-01-01
Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation. PMID:29358938
Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.
2016-01-01
Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648
Viral peptides-MHC interaction: Binding probability and distance from human peptides.
Santoni, Daniele
2018-05-23
Identification of peptides binding to MHC class I complex can play a crucial role in retrieving potential targets able to trigger an immune response. Affinity binding of viral peptides can be estimated through effective computational methods that in the most of cases are based on machine learning approach. Achieving a better insight into peptide features that impact on the affinity binding rate is a challenging issue. In the present work we focused on 9-mer peptides of Human immunodeficiency virus type 1 and Human herpes simplex virus 1, studying their binding to MHC class I. Viral 9-mers were partitioned into different classes, where each class is characterized by how far (in terms of mutation steps) the peptides belonging to that class are from human 9-mers. Viral 9-mers were partitioned in different classes, based on the number of mutation steps they are far from human 9-mers. We showed that the overall binding probability significantly differs among classes, and it typically increases as the distance, computed in terms of number of mutation steps from the human set of 9-mers, increases. The binding probability is particularly high when considering viral 9-mers that are far from all human 9-mers more than three mutation steps. A further evidence, providing significance to those special viral peptides and suggesting a potential role they can play, comes from the analysis of their distribution along viral genomes, as it revealed they are not randomly located, but they preferentially occur in specific genes. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, B P; Madrigal, A; Parham, P
1990-09-01
Human leukocytes were stimulated in vitro with peptides corresponding in sequence to the highly variable helix of the alpha 1 domain of various HLA-B and -C molecules. A CD4+ CD8- cytotoxic T cell line, CTL-AV, that is specific for the HLA-B7 peptide presented by HLA-DR11.1 was obtained. The HLA-DR11.2 molecule, which only differs at three residues from HLA-DR11.1, did not present the HLA-B7 peptide to CTL-AV. Peptides from the alpha 1 domain helix of other HLA-A and HLA-B molecules, but not HLA-C molecules, competed with the HLA-B7 peptide for binding to HLA-DR11.1. A cell line (WT50) that coexpresses HLA-B7 and HLA-DR11.1 was killed by CTL-AV in the absence of any added HLA-B7 peptide. The processing and presentation of HLA-B7 in these cells appears to be through the endogenous, and not the exogenous, pathway of antigen presentation. Thus, Brefeldin A inhibits presentation and chloroquine does not. Furthermore, introduction of purified HLA-B7 molecules into HLA-DR11.1+, HLA-B7- cells by cytoplasmic loading via osmotic lysis of pinosomes, but not by simple incubation, rendered them susceptible to CTL-AV killing. These results provide an example of class II major histocompatibility complex (MHC) presentation of a constitutively synthesized self protein that uses the endogenous pathway of antigen presentation. They also emphasize the capacity for presentation of MHC peptides by MHC molecules.
Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael
2018-07-01
Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.
McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun
2016-01-01
With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.
Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.
2015-01-01
Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549
Bristol, J A; Schlom, J; Abrams, S I
1999-05-25
Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell transfer was more obligatory than exogenous IL-2 treatment to sustain adoptively transferred T cells in vivo. Ag-specific T-cell responses were weak in mice that either received IL-2 alone or did not receive the cognate peptide boost after T-cell transfer. The T-cell clones were also monitored by flow cytometry or RT-PCR based on expression of the T-cell receptor Vbeta-chain, which was previously characterized. Ag-specific T cells were recovered from both spleens and lungs of recipient mice, demonstrating that the T-cell clones could localize to both lymphoid and nonlymphoid tissues. This study demonstrates that both uncultured and in vitro-cloned T lymphocytes can migrate to lymphoid tissues and nonlymphoid (e.g., lung) tissues in recipient hosts and that their functional activities can be maintained at these sites after transfer, if they are exposed to peptide Ag in vivo. Copyright 1999 Academic Press.
Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K
2011-08-30
It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
MHC class I loci of the Bar-Headed goose (Anser indicus)
2010-01-01
MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade. PMID:21637434
Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph
2010-10-01
Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.
High-throughput screening in two dimensions: binding intensity and off-rate on a peptide microarray.
Greving, Matthew P; Belcher, Paul E; Cox, Conor D; Daniel, Douglas; Diehnelt, Chris W; Woodbury, Neal W
2010-07-01
We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR). 2010 Elsevier Inc. All rights reserved.
HLA-F: A New Kid Licensed for Peptide Presentation.
Sim, Malcolm J W; Sun, Peter D
2017-06-20
HLA-F, a non-classical MHC molecule, is not known to present peptides. Dulberger et al. (2017) show that HLA-F contains a distinct peptide-binding groove and can present a diverse array of peptides. LIR1, however, recognized HLA-F away from bound peptide, leaving open whether peptide-HLA-F-specific T and NK receptors exist. Published by Elsevier Inc.
Imholte, Gregory; Gottardo, Raphael
2017-01-01
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097
NASA Astrophysics Data System (ADS)
Zaheer-ul-Haq; Khan, Waqasuddin
2011-01-01
Class II major histocompatibility complex (MHC II) molecules as expressed by antigen-presenting cells are heterodimeric cell-surface glycoprotein receptors that are fundamental in initiating and propagating an immune response by presenting tumor-associated antigenic peptides to CD4+/TH cells. The loading efficiency of such peptides can be improved by small organic compounds (MHC Loading Enhancers—MLEs), that convert the non-receptive peptide conformation of MHC II to a peptide-receptive conformation. In a reversible reaction, these compounds open up the binding site of MHC II molecules by specific interactions with a yet undefined pocket. Here, we performed molecular docking and molecular dynamics simulation studies of adamantyl compounds on the predicted cavity around the P1 pocket of 2 allelic variants of HLA-DRs. The purpose was to investigate the suitability of adamantyl compounds as MLEs at the dimorphic β86 position. Docking studies revealed that besides numerous molecular interactions formed by the adamantyl compounds, Asnβ82, Tyrβ83, and Thrβ90 are the crucial amino acid residues that are characterized as the "sensors" of peptide loading. Molecular dynamics simulation studies exposed the dynamical structural changes that HLA-DRs adopted as a response to binding of 3-(1-adamantyl)-5-hydrazidocarbonyl-1H-pyrazole (AdCaPy). The conformations of AdCaPy complexed with the Glyβ86 HLA-DR allelic variant are well correlated with the stabilized form of peptide-loaded HLA-DRs, further confirming the role of AdCaPy as a MLE. Hydrogen bonding interaction analysis clearly demonstrated that after making suitable contacts with AdCaPy, HLA-DR changes its local conformation. However, AdCaPy complexed with HLA-DR having Valβ86 at the dimorphic position did not accommodate AdCaPy as MLE due to steric hindrance caused by the valine.
Antunes, Dinler A.; Rigo, Maurício M.; Freitas, Martiela V.; Mendes, Marcus F. A.; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E.; Selin, Liisa K.; Cornberg, Markus; Vieira, Gustavo F.
2017-01-01
Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made. PMID:29046675
Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.
Kaufman, Jim
2018-04-26
The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.
NetCTLpan: pan-specific MHC class I pathway epitope predictions
Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten
2010-01-01
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0441-4) contains supplementary material, which is available to authorized users. PMID:20379710
A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b.
Zeng, Li; Sullivan, Lucy C; Vivian, Julian P; Walpole, Nicholas G; Harpur, Christopher M; Rossjohn, Jamie; Clements, Craig S; Brooks, Andrew G
2012-01-01
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.
Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich
2003-03-20
Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...
Peptide selection by class I molecules of the major histocompatibility complex.
Elliott, T; Smith, M; Driscoll, P; McMichael, A
1993-12-01
Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus.
Marsden, Catherine J.; Lord, J. Michael; Roberts, Lynne M.
2003-01-01
Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smith et al. J Immunol 2002; 169:99-107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression in E. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterized in vitro, via an N-glycosidase assay, and in vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass. PMID:12734560
The roles of MHC class II genes and post-translational modification in celiac disease.
Sollid, Ludvig M
2017-08-01
Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4 + T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies.
Direct antigen presentation and gap junction mediated cross-presentation during apoptosis.
Pang, Baoxu; Neijssen, Joost; Qiao, Xiaohang; Janssen, Lennert; Janssen, Hans; Lippuner, Christoph; Neefjes, Jacques
2009-07-15
MHC class I molecules present peptides from endogenous proteins. Ags can also be presented when derived from extracellular sources in the form of apoptotic bodies. Cross-presentation of such Ags by dendritic cells is required for proper CTL responses. The fate of Ags in cells initiated for apoptosis is unclear as is the mechanism of apoptosis-derived Ag transfer into dendritic cells. Here we show that novel Ags can be generated by caspases and be presented by MHC class I molecules of apoptotic cells. Since gap junctions function until apoptotic cells remodel to form apoptotic bodies, transfer and cross-presentation of apoptotic peptides by neighboring and dendritic cells occurs. We thus define a novel phase in classical Ag presentation and cross-presentation by MHC class I molecules: presentation of Ags created by caspase activities in cells in apoptosis.
Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.
Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi
2015-12-01
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Engelmann, Brett Warren
The Src homology 2 (SH2) domains evolved alongside protein tyrosine kinases (PTKs) and phosphatases (PTPs) in metazoans to recognize the phosphotyrosine (pY) post-translational modification. The human genome encodes 121 SH2 domains within 111 SH2 domain containing proteins that represent the primary mechanism for cellular signal transduction immediately downstream of PTKs. Despite pY recognition contributing to roughly half of the binding energy, SH2 domains possess substantial binding specificity, or affinity discrimination between phosphopeptide ligands. This specificity is largely imparted by amino acids (AAs) adjacent to the pY, typically from positions +1 to +4 C-terminal to the pY. Much experimental effort has been undertaken to construct preferred binding motifs for many SH2 domains. However, due to limitations in previous experimental methodologies these motifs do not account for the interplay between AAs. It was therefore not known how AAs within the context of individual peptides function to impart SH2 domain specificity. In this work we identified the critical role context plays in defining SH2 domain specificity for physiological ligands. We also constructed a high quality interactome using 50 SH2 domains and 192 physiological ligands. We next developed a quantitative high-throughput (Q-HTP) peptide microarray platform to assess the affinities four SH2 domains have for 124 physiological ligands. We demonstrated the superior characteristics of our platform relative to preceding approaches and validated our results using established biophysical techniques, literature corroboration, and predictive algorithms. The quantitative information provided by the arrays was leveraged to investigate SH2 domain binding distributions and identify points of binding overlap. Our microarray derived affinity estimates were integrated to produce quantitative interaction motifs capable of predicting interactions. Furthermore, our microarrays proved capable of resolving subtle contextual differences within motifs that modulate interaction affinities. We conclude that contextually informed specificity profiling of protein interaction domains using the methodologies developed in this study can inform efforts to understand the interconnectivity of signaling networks in normal and aberrant states. Three supplementary tables containing detailed lists of peptides, interactions, and sources of corroborative information are provided.
Rhesus Cytomegalovirus Contains Functional Homologues of US2, US3, US6, and US11
Pande, Nupur T.; Powers, Colin; Ahn, Kwangseog; Früh, Klaus
2005-01-01
Human cytomegalovirus (HCMV) is a paradigm for mechanisms subverting antigen presentation by major histocompatibility complex (MHC) molecules. Due to its limited host range, HCMV cannot be studied in animals. Thus, the in vivo importance of inhibiting antigen presentation for the establishment and maintenance of infection with HCMV is unknown. Rhesus cytomegalovirus (RhCMV) is an emerging animal model that shares many of the features of HCMV infection. The recent completion of the genomic sequence of RhCMV revealed a significant degree of homology to HCMV. Strikingly, RhCMV contains several genes with low homology to the HCMV US6 gene family of inhibitors of the MHC I antigen presentation pathway. Here, we examine whether the RhCMV US6 homologues (open reading frames Rh182, -184, -185, -186, -187, and -189) interfere with the MHC I antigen-processing pathway. We demonstrate that Rh182 and Rh189 function similarly to HCMV US2 and US11, respectively, mediating the proteasomal degradation of newly synthesized MHC I. The US3 homologue, Rh184, delayed MHC I maturation. Unlike US3, MHC I molecules eventually escaped retention by Rh184, so that steady-state surface levels of MHC I remained unchanged. Rh185 acted similarly to US6 and inhibited peptide transport by TAP and, consequently, peptide loading of MHC I molecules. Thus, despite relatively low sequence conservation, US6 family-related genes in RhCMV are functionally closely related to the conserved structural features of HCMV immunomodulators. The conservation of these mechanisms implies their importance for immune evasion in vivo, a question that can now be addressed experimentally. PMID:15827193
T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658
T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
HLA-F and MHC-I Open Conformers Cooperate in a MHC-I Antigen Cross-Presentation Pathway
Goodridge, Jodie P.; Lee, Ni; Burian, Aura; Pyo, Chul-Woo; Tykodi, Scott S.; Warren, Edus H.; Yee, Cassian; Riddell, Stanley R.
2013-01-01
Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense. PMID:23851683
Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.
Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E
2010-03-09
Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W.; Loos, M.; Maeurer, M.J.
1996-12-31
The ability to develop type II collagen (CII)-induced arthritis (CIA) in mice is associated with the major histocompatibility I-A gene and with as yet poorly defined regulatory molecules of the major histocompatibility complex (MHC) class II antigen processing and presentation pathway. H2-M molecules are thought to be involved in the loading of antigenic peptides into the MHC class II binding cleft. We sequenced H2-Ma, H2-Mb1, and H2-Mb2 genes from CIA-susceptible and -resistant mouse strains and identified four different Ma and Mb2 alleles, and three different Mb1 alleles defined by polymorphic residues within the predicted peptide binding groove. Most CIA-resistant mousemore » strains share common Ma, Mb1, and Mb2 alleles. In contrast, H2-M alleles designated Ma-III, Ma-IV, Mb1-III, and Mb2-IV could be exclusively identified in the CIA-susceptible H2{sup r} and H2{sup q} haplotypes, suggesting that allelic H2-M molecules may modulate the composition of different CII peptides loaded onto MHC class II molecules, presumably presenting {open_quotes}arthritogenic{close_quotes} epitopes to T lymphocytes. 42 refs., 4 figs., 3 tabs.« less
Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities
Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839
Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation
Lee, Seong-Ok; Cho, Kwangmin; Cho, Sunglim; Kim, Ilkwon; Oh, Changhoon; Ahn, Kwangseog
2010-01-01
The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3δ but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery. PMID:19942855
Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation.
Lee, Seong-Ok; Cho, Kwangmin; Cho, Sunglim; Kim, Ilkwon; Oh, Changhoon; Ahn, Kwangseog
2010-01-20
The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3delta but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery.
Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides
Schafer, Jamie L.; Ries, Moritz; Guha, Natasha; Connole, Michelle; Colantonio, Arnaud D.; Wiertz, Emmanuel J.; Wilson, Nancy A.; Kaur, Amitinder; Evans, David T.
2015-01-01
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses. PMID:26333068
Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R
2004-11-21
Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).
Structural basis of human β-cell killing by CD8+ T cells in Type 1 diabetes
Bulek, Anna M.; Cole, David K.; Skowera, Ania; Dolton, Garry; Gras, Stephanie; Madura, Florian; Fuller, Anna; Miles, John J.; Gostick, Emma; Price, David A.; Drijfhout, Jan W.; Knight, Robin R.; Huang, Guo C.; Lissin, Nikolai; Molloy, Peter E.; Wooldridge, Linda; Jakobsen, Bent K.; Rossjohn, Jamie; Peakman, Mark; Rizkallah, Pierre J.; Sewell, Andrew K.
2011-01-01
The structural characteristics of autoreactive-T cell receptor (TCR) engagement of major histocompatability (MHC) class II-restricted self-antigens is established, but how autoimmune-TCRs interact with self-MHC class I has been unclear. We examined how CD8+ T cells kill human islet β-cells, in Type-1 diabetes, via autoreactive-TCR (1E6) recognition of an HLA-A*0201-restricted glucose-sensitive preproinsulin peptide. Rigid ‘lock-and-key’ binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHCI-restricted TCRs. However, this interaction was extraordinarily weak, due to limited contacts with MHCI. TCR binding was highly peptide-centric, dominated by two CDR3-loop-encoded residues, acting as an ‘aromatic-cap’, over the peptide MHCI (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8+ T cell-mediated autoreactivity. PMID:22245737
Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L
2009-01-01
Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Fuliang; Graduate School, Chinese Academy of Sciences, Beijing; Lou, Zhiyong
2005-06-01
Crystallization of the first rhesus macaque MHC class I complex. Simian immunodeficiency virus (SIV) infection in rhesus macaques has been used as the best model for the study of human immunodeficiency virus (HIV) infection in humans, especially in the cytotoxic T-lymphocyte (CTL) response. However, the structure of rhesus macaque (or any other monkey model) major histocompatibility complex class I (MHC I) presenting a specific peptide (the ligand for CTL) has not yet been elucidated. Here, using in vitro refolding, the preparation of the complex of the rhesus macaque MHC I allele (Mamu-A*01) with human β{sub 2}m and an immunodominant peptide,more » CTPYDINQM (Gag-CM9), derived from SIV Gag protein is reported. The complex (45 kDa) was crystallized; the crystal belongs to space group I422, with unit-cell parameters a = b = 183.8, c = 155.2 Å. The crystal contains two molecules in the asymmetric unit and diffracts X-rays to 2.8 Å resolution. The structure is being solved by molecular replacement and this is the first attempt to determined the crystal structure of a peptide–nonhuman primate MHC complex.« less
Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min-Sun; Park, Sung Yong; Miller, Keith R.
2013-11-01
Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less
Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena
2017-06-26
The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical MHC-I genes, and that the evolutionary origin of these genes predate the split of the three investigated sparrow species 7 million years ago. Because only the classical MHC-I genes are involved in antigen presentation, the function of different MHC-I genes should be considered in future ecological and evolutionary studies of MHC-I in sparrows and other songbirds.
Duong, Ellen; Bracho-Sanchez, Edith; Rucevic, Marijana; Liebesny, Paul H.; Xu, Yang; Shimada, Mariko; Ghebremichael, Musie; Kavanagh, Daniel G.; Le Gall, Sylvie
2014-01-01
Dendritic cells (DCs), macrophages (MPs) and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous antigens preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum (ER) translocation, trimming and MHC-I presentation. Here we compared the capacity of DCs, MPs and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848 and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs and monocytes. Differences in antigen processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load. PMID:25230751
Koutsoni, Olga S; Routsias, John G; Kyriazis, Ioannis D; Barhoumi, Mourad; Guizani, Ikram; Tsakris, Athanassios; Dotsika, Eleni
2017-11-01
It is generally considered as imperative the ability to control leishmaniasis through the development of a protective vaccine capable of inducing long-lasting and protective cell-mediated immune responses. In this current study, we demonstrated potential epitopes that bind to H2 MHC class I and II molecules by conducting the in silico analysis of Leishmania infantum eukaryotic Initiation Factor (LieIF) protein, using online available algorithms. Moreover, we synthesized five peptides (16-18 amino acids long) which are part of the N-terminal portion of LieIF and contain promising MHC class I and II-restricted epitopes and afterwards, their predicted immunogenicity was evaluated in vitro by monitoring peptide-specific T-cell responses. Additionally, the immunomodulatory properties of these peptides were investigated in vitro by exploring their potential of inducing phenotypic maturation and functional differentiation of murine Bone-Marrow derived Dendritic Cells (BM-DCs). It was revealed by our data that all the synthetic peptides predicted for H2 alleles; present the property of immunogenicity. Among the synthetic peptides which contained T-cell epitopes, the peptide 52-68 aa (LieIF_2) exhibited immunomodulatory properties with the larger potential. LieIF_2-pulsed BM-DCs up-regulated the expression of the co-stimulatory surface molecules CD80 and CD86, as well as the production of the proinflammatory cytokine TNF-α and of the Th1-polarizing cytokines IL-12 and IFN-γ. The aforementioned data suggest that selected parts of LieIF could be used to develop innovative subunit protective vaccines able to induce effective immunity mediated by MHC class I-restricted as well as class II-restricted T-cell responses. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Viral Sequestration of Antigen Subverts Cross Presentation to CD8+ T Cells
Tewalt, Eric F.; Grant, Jean M.; Granger, Erica L.; Palmer, Douglas C.; Heuss, Neal D.; Gregerson, Dale S.; Restifo, Nicholas P.; Norbury, Christopher C.
2009-01-01
Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines. PMID:19478869
Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds.
Slade, J W G; Watson, M J; Kelly, T R; Gloor, G B; Bernards, M A; MacDougall-Shackleton, E A
2016-11-16
In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates. © 2016 The Author(s).
Ivarsson, Ylva; Arnold, Roland; McLaughlin, Megan; Nim, Satra; Joshi, Rakesh; Ray, Debashish; Liu, Bernard; Teyra, Joan; Pawson, Tony; Moffat, Jason; Li, Shawn Shun-Cheng; Sidhu, Sachdev S; Kim, Philip M
2014-02-18
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.
Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L
2014-03-06
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse
NASA Astrophysics Data System (ADS)
Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.
2014-03-01
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
Schut, Elske; Aguilar, Juan Rivero-de; Merino, Santiago; Magrath, Michael J L; Komdeur, Jan; Westerdahl, Helena
2011-08-01
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.
Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.
2015-01-01
Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081
Preta, G; Marescotti, D; Fortini, C; Carcoforo, P; Castelli, C; Masucci, M; Gavioli, R
2008-12-01
Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.
O-Charoen, Sirimon; Srivannavit, Onnop; Gulari, Erdogan
2008-01-01
Microfluidic microarrays have been developed for economical and rapid parallel synthesis of oligonucleotide and peptide libraries. For a synthesis system to be reproducible and uniform, it is crucial to have a uniform reagent delivery throughout the system. Computational fluid dynamics (CFD) is used to model and simulate the microfluidic microarrays to study geometrical effects on flow patterns. By proper design geometry, flow uniformity could be obtained in every microreactor in the microarrays. PMID:17480053
Endogenous antigen processing drives the primary CD4+ T cell response to influenza
Miller, Michael A.; Ganesan, Asha Purnima V.; Luckashenak, Nancy; Mendonca, Mark; Eisenlohr, Laurence C.
2015-01-01
By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with MHC class II molecules. Alternative pathways of epitope production have been identified but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome, and gamma-interferon inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses. PMID:26413780
Liu, Xue-lan; Shan, Wen-jie; Xu, Shan-shan; Zhang, Jin-jing; Xu, Fa-zhi; Xia, Sheng-lin; Dai, Yin
2015-09-01
The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
2006-11-01
reportable outcomes). Briefly, the T cell lymphoma EL4 and the immortalized fibroblast cell line DAP (both expressing ova) were used to measure...and Use Committee. Cells, transfections, and antibodies B16.BL6 8.2, A20, EL4 and EL4 /ova were cultured as described (20-22). NIH3T3 cells were...types can donate MHC class I molecules to DC. To determine if the levels of MHC class I on the donor cell affected the efficiency of transfer, EL4 /ova
Silva, A L; Rosalia, R A; Sazak, A; Carstens, M G; Ossendorp, F; Oostendorp, J; Jiskoot, W
2013-04-01
Overlapping synthetic long peptides (SLPs) hold great promise for immunotherapy of cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are being developed as delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation and release, using OVA24, a 24-residue long synthetic antigenic peptide covering a CTL epitope of ovalbumin (SIINFEKL), as a model antigen. Peptide-loaded PLGA NPs were prepared by a double emulsion/solvent evaporation technique. Using standard conditions (acidic inner aqueous phase), we observed that either encapsulation was very low (1-30%), or burst release extremely high (>70%) upon resuspension of NP in physiological buffers. By adjusting formulation and process parameters, we uncovered that the pH of the first emulsion was critical to efficient encapsulation and controlled release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP with approximately 40% encapsulation efficiency and low (<10%) burst release. These NP showed enhanced MHC class I restricted T cell activation in vitro when compared to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of the antigen is crucial to induce a potent cellular immune response. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douat-Casassus, Celine; Borbulevych, Oleg; Tarbe, Marion
2010-10-07
There is growing interest in using tumor associated antigens presented by class I major histocompatibility complex (MHC-I) proteins as cancer vaccines. As native peptides are poorly stable in biological fluids, researchers have sought to engineer synthetic peptidomimetics with greater biostability. Here, we demonstrate that antigenic peptidomimetics of the Melan-A/MART-1{sub 26(27L)-35} melanoma antigen adopt strikingly different conformations when bound to MHC-I, highlighting the degeneracy of T cell recognition and revealing the challenges associated with mimicking native peptide conformation.
Gowthaman, Uthaman; Rai, Pradeep K.; Zeng, Weiguang; Jackson, David C.; Agrewala, Javed N.
2013-01-01
Background & objectives: In spite of the fact that BCG is the most widely used vaccine, tuberculosis (TB) continues to be a major killer disease in TB-endemic regions. Recently, many emerging evidences from the published literature indicate the role of environmental mycobacteria in blocking the processing and presentation of BCG antigens and thereby impairing with suboptimal generation of protective T cells. To surmount this problem associated with BCG, we constructed a novel lipopeptide (L91) by conjugating a promiscuous peptide consisting of CD4+ T-helper epitope of sequence of 91-110 of 16 kDa antigen of Mycobacterium tuberculosis to Pam2Cys, an agonist of Toll-like receptor-2. Methods: Mice were immunized subcutaneously with 20 nmol of L91, followed by a booster with 10 nmol, after an interval of 21 days of primary immunization. Animals were sacrificed after seven days of post-booster immunization. L91 induced immune response was characterized by the expression of MHC-II and CD74 on the surface of dendritic cells (DCs) by flowcytometry. Cytokines (IL-4, IL-10, IFN-γ) secretion and anti-peptide antibodies were measured by ELISA. Results: Self-adjuvanting lipopeptide vaccine (L91) was directly bound to MHC-II molecules and without requiring extensive processing for its presentation to T cells. It stimulated and activated dendritic cells and augmented the expression of MHC-II molecules. Further, it activated effector CD4 T cells to mainly secrete interferon (IFN)-γ but not interleukin (IL)-4 and IL-10. L91 did not elicit anti-peptide antibodies. Interpretation & conclusions: The findings suggest that L91 evokes maturation and upregulation of MHC class II molecules and promotes better antigen presentation and, therefore, optimum activation of T cells. L91 mainly induces effector Th1 cells, as evidenced by predominant release of IFN-γ, consequently can mount favourable immune response against M. tuberculosis. As L91 does not provoke the generation of anti-peptide antibodies, there is no fear of the efficacy of the vaccine being neutralized by pre-existing anti-mycobacterial antibodies in TB-endemic population. In conclusion, L91 may be considered as a future potential candidate vaccine against TB. PMID:24434326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achyuthan, Komandoor E.; Wheeler, David R.
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Achyuthan, Komandoor E.; Wheeler, David R.
2015-08-27
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Gomase, Virendra S; Chitlange, Nikhilkumar R; Changbhale, Smruti S; Kale, Karbhari V
2013-08-01
Brugia malayi is a threadlike nematode cause's swelling of lymphatic organs, condition well known as lymphatic filariasis; till date no invention made to effectively address lymphatic filariasis. In this analysis we a have predicted suitable antigenic peptides from Brugia malayi antigen protein for peptide vaccine design against lymphatic filariasis based on cross protection phenomenon as, an ample immune response can be generated with a single protein subunit. We found MHC class II binding peptides of Brugia malayi antigen protein are important determinant against the diseased condition. The analysis shows Brugia malayi antigen protein having 505 amino acids, which shows 497 nonamers. In this assay, we have predicted MHC-I binding peptides for 8mer_H2_Db (optimal score- 15.966), 9mer_H2_Db (optimal score- 15.595), 10mer_H2_Db (optimal score- 19.405), 11mer_H2_Dballeles (optimal score- 23.801). We also predicted the SVM based MHCII-IAb nonamers, 51-FQQIDPLDA, 442-FAAIACLVH, 206-YLNPFGHQF, 167-WYVIMAACY, 367-YAMIVIRLL, 434- LVITTAANF, 176-LDSYCLWKP, 435-VITTAANFA, 364-WPGYAMIVI (optimal score- 13.963); MHCII-IAd nonamers, 52-QQIDPLDAE, 171-MAACYLDSY, 239-QWRSVILCN, 168-YVIMAACYL, 3-QYLSVHSLS, 322-EILLHAKVV, 417- LGIIASFVS, 396-KAIFLAHFG, 167-WYVIMAACY, 269-LALHCINVI, 93-FINKAAPKQ, 259-NCIIVLKAF, 79- QGVLLIIPR, 22-TILQRSQAI, 63-RGFVYGNVS, 109-NISSLAFET,(optimal score- 16.748); and MHCII-IAg7 nonamers 171-MAACYLDSY, 73-KIVNGAQGV, 259-NCIIVLKAF, 209-PFGHQFSFE, 102-SCDTLLKNI, 25-QRSQAIRIV, 444- AIACLVHLF, 88-SLVNGFINK, 252-FPRHQLLNC, 471-RFVLANDNE, 52-QQIDPLDAE, 469-HRRFVLAND, 457- SNRHYFLAD, 362-KSWPGYAMI, 476-NDNEGEDFE, 370-IVIRLLQAL (optimal score- 19.847) which represents potential binders from Brugia malayi antigen protein. The method integrates prediction of MHC class I binding proteasomal C-terminal cleavage peptides and Eighteen potential antigenic peptides at average propensity 1.063 having highest local hydrophilicity. Thus a small antigen fragment can induce immune response against whole antigen. This approach can be applied for designing subunit and synthetic peptide vaccines.
The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.
Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng
2010-12-10
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.
Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren; Nielsen, Morten
2017-01-01
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.
Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren
2017-01-01
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436
Du, Yushen; Zhang, Tian-Hao; Dai, Lei; Zheng, Xiaojuan; Gorin, Aleksandr M; Oishi, John; Wu, Ting-Ting; Yoshizawa, Janice M; Li, Xinmin; Yang, Otto O; Martinez-Maza, Otoniel; Detels, Roger; Sun, Ren
2017-11-28
Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8 + cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. Copyright © 2017 Du et al.
Valés-Gómez, M; Reyburn, H T; Erskine, R A; López-Botet, M; Strominger, J L
1999-01-01
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells. PMID:10428963
Flad, Thomas; Mueller, Ludmila; Dihazi, Hassan; Grigorova, Veneta; Bogumil, Ralf; Beck, Alexander; Thedieck, Cornelia; Mueller, Gerhard A; Kalbacher, Hubert; Mueller, Claudia A
2006-01-01
In this study, we describe a differential mass spectrometric technique for the immuno-proteomic analysis of the major histocompatibility complex (MHC) peptides of a renal cell carcinoma (RCC) biopsy compared with the healthy kidney tissue of the same patient after nephrectomy. Using a stable isotope labeling approach, we could directly compare and relatively quantify 43 MHC-peptide pairs, most of which were present in similar proportions on both normal kidney and tumor. Significantly, two dominant peptides of monoisotopic masses ([M+H](+)) 973.43 u and 967.59 u, respectively, were found exclusively in the tumor sample. One of these was identified as originating from heme oxygenase-1 (HO-1), a protein involved in induction of apoptosis resistance, immuno-suppression and neoangiogenesis and reported to be up-regulated in various cancer types. Moreover, the corresponding synthetic HO-1-derived peptide was shown to be immunogenic in vitro by generation of CD8+ T cell lines with peptide-specific cytolytic activity. Thus, this peptide is an example of a differentially identified T cell epitope that could be considered as a target for immunotherapy.
POPISK: T-cell reactivity prediction using support vector machines and string kernels
2011-01-01
Background Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition positions were based on small-scale analyses using only a few peptides and concluded different recognition positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide's T-cell reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-cell reactivity will provide insights into the underlying mechanism of immunogenicity. Results This work establishes a large dataset by collecting immunogenicity data from three major immunology databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles. Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-peptide-TCR interaction. Conclusions A computational method POPISK is proposed to predict immunogenicity with scores which are useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is freely available at http://iclab.life.nctu.edu.tw/POPISK. PMID:22085524
POPISK: T-cell reactivity prediction using support vector machines and string kernels.
Tung, Chun-Wei; Ziehm, Matthias; Kämper, Andreas; Kohlbacher, Oliver; Ho, Shinn-Ying
2011-11-15
Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition positions were based on small-scale analyses using only a few peptides and concluded different recognition positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide's T-cell reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-cell reactivity will provide insights into the underlying mechanism of immunogenicity. This work establishes a large dataset by collecting immunogenicity data from three major immunology databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles. Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-peptide-TCR interaction. A computational method POPISK is proposed to predict immunogenicity with scores which are useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is freely available at http://iclab.life.nctu.edu.tw/POPISK.
Application of Immunosignatures for Diagnosis of Valley Fever
Navalkar, Krupa Arun; Johnston, Stephen Albert; Woodbury, Neal; Galgiani, John N.; Magee, D. Mitchell; Chicacz, Zbigniew
2014-01-01
Valley fever (VF) is difficult to diagnose, partly because the symptoms of VF are confounded with those of other community-acquired pneumonias. Confirmatory diagnostics detect IgM and IgG antibodies against coccidioidal antigens via immunodiffusion (ID). The false-negative rate can be as high as 50% to 70%, with 5% of symptomatic patients never showing detectable antibody levels. In this study, we tested whether the immunosignature diagnostic can resolve VF false negatives. An immunosignature is the pattern of antibody binding to random-sequence peptides on a peptide microarray. A 10,000-peptide microarray was first used to determine whether valley fever patients can be distinguished from 3 other cohorts with similar infections. After determining the VF-specific peptides, a small 96-peptide diagnostic array was created and tested. The performances of the 10,000-peptide array and the 96-peptide diagnostic array were compared to that of the ID diagnostic standard. The 10,000-peptide microarray classified the VF samples from the other 3 infections with 98% accuracy. It also classified VF false-negative patients with 100% sensitivity in a blinded test set versus 28% sensitivity for ID. The immunosignature microarray has potential for simultaneously distinguishing valley fever patients from those with other fungal or bacterial infections. The same 10,000-peptide array can diagnose VF false-negative patients with 100% sensitivity. The smaller 96-peptide diagnostic array was less specific for diagnosing false negatives. We conclude that the performance of the immunosignature diagnostic exceeds that of the existing standard, and the immunosignature can distinguish related infections and might be used in lieu of existing diagnostics. PMID:24964807
Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M
1997-03-01
Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway.
Ullrich, H J; Beatty, W L; Russell, D G
2000-12-01
Pathogenic mycobacteria infect macrophages where they replicate in phagosomes that minimize contact with late endosomal/lysosomal compartments. Loading of Ags to MHC class II molecules occurs in specialized compartments with late endosomal characteristics. This points to a sequestration of mycobacteria-containing phagosomes from the sites where Ags meet MHC class II molecules. Indeed, in resting macrophages MHC class II levels decreased strongly in phagosomes containing M. avium during a 4-day infection. Phagosomal MHC class II of early (4 h) infections was partly surface-derived and associated with peptide. Activation of host macrophages led to the appearance of H2-M, a chaperon of Ag loading, and to a strong increase in MHC class II molecules in phagosomes of acute (1 day) infections. Comparison with the kinetics of MHC class II acquisition by IgG-coated bead-containing phagosomes suggests that the arrest in phagosome maturation by mycobacteria limits the intersection of mycobacteria-containing phagosomes with the intracellular trafficking pathways of Ag-presenting molecules.
No evidence for the effect of MHC on male mating success in the brown bear.
Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek
2014-01-01
Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.
Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...
2014-11-14
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less
Maciel, Milton; Kellathur, Srinivasan N; Chikhlikar, Pryia; Dhalia, Rafael; Sidney, John; Sette, Alessandro; August, Thomas J; Marques, Ernesto T A
2008-08-15
Immunomics research uses in silico epitope prediction, as well as in vivo and in vitro approaches. We inoculated BALB/c (H2d) mice with 17DD yellow fever vaccine to investigate the correlations between approaches used for epitope discovery: ELISPOT assays, binding assays, and prediction software. Our results showed a good agreement between ELISPOT and binding assays, which seemed to correlate with the protein immunogenicity. PREDBALB/c prediction software partially agreed with the ELISPOT and binding assay results, but presented low specificity. The use of prediction software to exclude peptides containing no epitopes, followed by high throughput screening of the remaining peptides by ELISPOT, and the use of MHC-biding assays to characterize the MHC restrictions demonstrated to be an efficient strategy. The results allowed the characterization of 2 MHC class I and 17 class II epitopes in the envelope protein of the YF virus in BALB/c (H2d) mice.
Rosendahl Huber, S. K.; Camps, M. G. M.; Jacobi, R. H. J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J.
2015-01-01
Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks. PMID:26046664
1992-01-01
To investigate the structural and genetic basis of the T cell response to defined peptide/major histocompatibility (MHC) class II complexes in humans, we established a large panel of T cell clones (61) from donors of different HLA-DR haplotypes and reactive with a tetanus toxin- derived peptide (tt830-844) recognized in association with most DR molecules (universal peptide). By using a bacterial enterotoxin-based proliferation assay and cDNA sequencing, we found preferential use of a particular V beta region gene segment, V beta 2.1, in three of the individuals studied (64%, n = 58), irrespective of whether the peptide was presented by the DR6wcI, DR4w4, or DRw11.1 and DRw11.2 alleles, demonstrating that shared MHC class II antigens are not required for shared V beta gene use by T cell receptors (TCRs) specific for this peptide. V alpha gene use was more heterogeneous, with at least seven different V alpha segments derived from five distinct families encoding alpha chains able to pair with V beta 2.1 chains to form a tt830-844/DR- specific binding site. Several cases were found of clones restricted to different DR alleles that expressed identical V beta and (or very closely related) V alpha gene segments and that differed only in their junctional sequences. Thus, changes in the putative complementary determining region 3 (CDR3) of the TCR may, in certain cases, alter MHC specificity and maintain peptide reactivity. Finally, in contrast to what has been observed in other defined peptide/MHC systems, a striking heterogeneity was found in the junctional regions of both alpha and beta chains, even for TCRs with identical V alpha and/or V beta gene segments and the same restriction. Among 14 anti-tt830-844 clones using the V beta 2.1 gene segment, 14 unique V beta-D-J beta junctions were found, with no evident conservation in length and/or amino acid composition. One interpretation for this apparent lack of coselection of specific junctional sequences in the context of a common V element, V beta 2.1, is that this V region plays a dominant role in the recognition of the tt830-844/DR complex. PMID:1371303
Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena
2011-10-01
The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.
A motif detection and classification method for peptide sequences using genetic programming.
Tomita, Yasuyuki; Kato, Ryuji; Okochi, Mina; Honda, Hiroyuki
2008-08-01
An exploration of common rules (property motifs) in amino acid sequences has been required for the design of novel sequences and elucidation of the interactions between molecules controlled by the structural or physical environment. In the present study, we developed a new method to search property motifs that are common in peptide sequence data. Our method comprises the following two characteristics: (i) the automatic determination of the position and length of common property motifs by calculating the physicochemical similarity of amino acids, and (ii) the quick and effective exploration of motif candidates that discriminates the positives and negatives by the introduction of genetic programming (GP). Our method was evaluated by two types of model data sets. First, the intentionally buried property motifs were searched in the artificially derived peptide data containing intentionally buried property motifs. As a result, the expected property motifs were correctly extracted by our algorithm. Second, the peptide data that interact with MHC class II molecules were analyzed as one of the models of biologically active peptides with buried motifs in various lengths. Twofold MHC class II binding peptides were identified with the rule using our method, compared to the existing scoring matrix method. In conclusion, our GP based motif searching approach enabled to obtain knowledge of functional aspects of the peptides without any prior knowledge.
Praest, P; Luteijn, R D; Brak-Boer, I G J; Lanfermeijer, J; Hoelen, H; Ijgosse, L; Costa, A I; Gorham, R D; Lebbink, R J; Wiertz, E J H J
2018-06-04
Herpesviruses encode numerous immune evasion molecules that interfere with the immune system, particularly with certain stages in the MHC class I antigen presentation pathway. In this pathway, the transporter associated with antigen processing (TAP) is a frequent target of viral immune evasion strategies. This ER-resident transporter is composed of the proteins TAP1 and TAP2, and plays a crucial role in the loading of viral peptides onto MHC class I molecules. Several variants of TAP1 and TAP2 occur in the human population, some of which are linked to autoimmune disorders and susceptibility to infections. Here, we assessed the influence of naturally occurring TAP variants on peptide transport and MHC class I expression. In addition, we tested the inhibitory capacity of three viral immune evasion proteins, the TAP inhibitors US6 from human cytomegalovirus, ICP47 from herpes simplex virus type 1 and BNLF2a from Epstein-Barr virus, for a series of TAP1 and TAP2 variants. Our results suggest that these TAP polymorphisms have no or limited effect on peptide transport or MHC class I expression. Furthermore, our study indicates that the herpesvirus-encoded TAP inhibitors target a broad spectrum of TAP variants; inhibition of TAP is not affected by the naturally occurring polymorphisms of TAP tested in this study. Our findings suggest that the long-term coevolution of herpesviruses and their host did not result in selection of inhibitor-resistant TAP variants in the human population. Copyright © 2018. Published by Elsevier Ltd.
An ontology for major histocompatibility restriction.
Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern
2016-01-01
MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.
The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation
Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng
2011-01-01
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598
Vanneste, Y; Thome, A N; Vandersmissen, E; Charlet, C; Franchimont, D; Martens, H; Lhiaubet, A M; Schimpff, R M; Rostène, W; Geenen, V
1997-06-01
This study shows the expression at the cell surface of human thymic epithelial cells (TEC) of a neurotensin (NT)-like immunoreactivity. NT radio-immunoassay (RIA) revealed that cultured human TEC contain +/-5 ng immunoreactive (ir) NT/10(6) cells, of which 5% is associated with plasma cell membranes. HPLC analysis of NT-ir present in human TEC showed a major peak of NT-ir corresponding to NT1-13. NT-ir was not detected in the supernatant of human TEC cultures. Using an affinity column prepared with a anti-MHC class I monoclonal antibody, NT-ir-related peptides were retained on the column and eluted together with MHC class I-related proteins. According to the elution time on HPLC of these peptides, they correspond to intact NT1-13, as well as to smaller fragments of NT1-13.
Quantitating protein synthesis, degradation, and endogenous antigen processing.
Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W
2003-03-01
Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.
Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.
2009-01-01
T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124
Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S
2013-03-01
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kashyap, Manju; Jaiswal, Varun; Farooq, Umar
2017-09-01
Visceral leishmaniasis is a dreadful infectious disease and caused by the intracellular protozoan parasites, Leishmania donovani and Leishmania infantum. Despite extensive efforts for developing effective prophylactic vaccine, still no vaccine is available against leishmaniasis. However, advancement in immunoinformatics methods generated new dimension in peptide based vaccine development. The present study was aimed to identify T-cell epitopes from the vaccine candidate antigens like Lipophosphogylcan-3(LPG-3) and Nucleoside hydrolase (NH) from the L. donovani using in silico methods. Available best tools were used for the identification of promiscuous peptides for MHC class-II alleles. A total of 34 promiscuous peptides from LPG-3, 3 from NH were identified on the basis of their 100% binding affinity towards all six HLA alleles, taken in this study. These peptides were further checked computationally to know their IFN-γ and IL4 inducing potential and nine peptides were identified. Peptide binding interactions with predominant HLA alleles were done by docking. Out of nine docked promiscuous peptides, only two peptides (QESRILRVIKKKLVR, RILRVIKKKLVRKTL), from LPG-3 and one peptide (FDKFWCLVIDALKRI) from NH showed lowest binding energy with all six alleles. These promiscuous T-cell epitopes were predicted on the basis of their antigenicity, hydrophobicity, potential immune response and docking scores. The immunogenicity of predicted promiscuous peptides might be used for subunit vaccine development with immune-modulating adjuvants. Copyright © 2017 Elsevier B.V. All rights reserved.
1994-01-01
Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869
Zhang, Fan; Briones, Andrea; Soloviev, Mikhail
2016-01-01
This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform
Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.
2017-01-01
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072
Davis, Zachary B; Cogswell, Andrew; Scott, Hamish; Mertsching, Amanda; Boucau, Julie; Wambua, Daniel; Le Gall, Sylvie; Planelles, Vicente; Campbell, Kerry S; Barker, Edward
2016-02-01
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94(+) NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94(+) NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL(+) CD56(dim) NK cells, in contrast to the efficient responses by CD56(bright) NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94(+) KIR2DL(-) NK cells may be uniquely beneficial.
A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers
Drake, Lisa A.; Drake, James R.
2016-01-01
MHC class II molecules present antigen-derived peptides to CD4 T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4 T cells. Motif 1 (M1) paired I-Ak class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2 mAb selectively binds M1 paired I-Ak class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2 mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2 mAb recognition of the M1 paired I-Ak class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition. PMID:27148821
Davis, Zachary B.; Cogswell, Andrew; Scott, Hamish; Mertsching, Amanda; Boucau, Julie; Wambua, Daniel; Le Gall, Sylvie; Planelles, Vicente; Campbell, Kerry S.; Barker, Edward
2016-01-01
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial. PMID:26828202
ABC transporters and immunity: mechanism of self-defense.
Hinz, Andreas; Tampé, Robert
2012-06-26
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Smith, Carol-Anne M; de la Fuente, Jesus; Pelaz, Beatriz; Furlani, Edward P; Mullin, Margaret; Berry, Catherine C
2010-05-01
Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Specificity of Trimming of MHC Class I-Presented Peptides in the Endoplasmic Reticulum1
Hearn, Arron; York, Ian A.; Rock, Kenneth L.
2010-01-01
Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell responses. By systematically varying the N-terminal flanking sequences of peptides in a cell free biochemical system and in intact cells, we elucidated the specificity of ERAP1 and of ER trimming overall. ERAP1 can cleave after many amino acids on the N-terminus of epitope precursors but does so at markedly different rates. The specificity seen with purified ERAP1 is similar to that observed for trimming and presentation of epitopes in the ER of intact cells. We define N-terminal sequences that are favorable or unfavorable for antigen presentation in ways that are independent from the epitopes core sequence. When databases of known presented peptides were analyzed, the residues that were preferred for the trimming of model peptide precursors were found to be overrepresented in N-terminal flanking sequences of epitopes generally. These data define key determinants in the specificity of antigen processing. PMID:19828632
Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity
Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.
2016-01-01
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389
Rojas, José Manuel; McArdle, Stephanie E B; Horton, Roger B V; Bell, Matthew; Mian, Shahid; Li, Geng; Ali, Selman A; Rees, Robert C
2005-03-01
Because of the central role of CD4(+) T cells in antitumour immunity, the identification of the MHC class II-restricted peptides to which CD4(+) T cells respond has become a priority of tumour immunologists. Here, we describe a strategy permitting us to rapidly determine the immunogenicity of candidate HLA-DR-restricted peptides using peptide immunisation of HLA-DR-transgenic mice, followed by assessment of the response in vitro. This strategy was successfully applied to the reported haemaglutinin influenza peptide HA(307-319), and then extended to three candidate HLA-DR-restricted p53 peptides predicted by the evidence-based algorithm SYFPEITHI to bind to HLA-DRbeta1*0101 (HLA-DR1) and HLA-DRbeta1*0401 (HLA-DR4) molecules. One of these peptides, p53(108-122), consistently induced responses in HLA-DR1- and in HLA-DR4-transgenic mice. Moreover, this peptide was naturally processed by dendritic cells (DCs), and induced specific proliferation in the splenocytes of mice immunised with p53 cDNA, demonstrating that immune responses could be naturally mounted to the peptide. Furthermore, p53(108-122) peptide was also immunogenic in HLA-DR1 and HLA-DR4 healthy donors. Thus, the use of this transgenic model permitted the identification of a novel HLA-DR-restricted epitope from p53 and constitutes an attractive approach for the rapid identification of novel immunogenic MHC class II-restricted peptides from tumour antigens, which can ultimately be incorporated in immunotherapeutic protocols.
Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng
2015-01-01
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
Carmona, Santiago J.; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C.; Campetella, Oscar; Buscaglia, Carlos A.; Agüero, Fernán
2015-01-01
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. PMID:25922409
Carmona, Santiago J; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C; Campetella, Oscar; Buscaglia, Carlos A; Agüero, Fernán
2015-07-01
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15 mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15 mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼ threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
Cathepsin S is a lysosomal cysteine endopeptidase of the papain family. This enzyme digests the invariant chain molecules so that antigenic peptides are able to load on the class II-associated invariant chain peptide of MHC. The complexes can subsequently be presented to the CD4 cell surface. In ...
Coevolution of T-cell receptors with MHC and non-MHC ligands
Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.
2015-01-01
Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470
Zvi, Anat; Rotem, Shahar; Zauberman, Ayelet; Elia, Uri; Aftalion, Moshe; Bar-Haim, Erez; Mamroud, Emanuelle; Cohen, Ofer
2017-10-20
The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to attest their protective potential, and hence their contribution to a future potent subunit vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferrante, Andrea; Anderson, Matthew W; Klug, Candice S; Gorski, Jack
2008-01-01
HLA-DM (DM) mediates exchange of peptides bound to MHC class II (MHCII) during the epitope selection process. Although DM has been shown to have two activities, peptide release and MHC class II refolding, a clear characterization of the mechanism by which DM facilitates peptide exchange has remained elusive. We have previously demonstrated that peptide binding to and dissociation from MHCII in the absence of DM are cooperative processes, likely related to conformational changes in the peptide-MHCII complex. Here we show that DM promotes peptide release by a non-cooperative process, whereas it enhances cooperative folding of the exchange peptide. Through electron paramagnetic resonance (EPR) and fluorescence polarization (FP) we show that DM releases prebound peptide very poorly in the absence of a candidate peptide for the exchange process. The affinity and concentration of the candidate peptide are also important for the release of the prebound peptide. Increased fluorescence energy transfer between the prebound and exchange peptides in the presence of DM is evidence for a tetramolecular complex which resolves in favor of the peptide that has superior folding properties. This study shows that both the peptide releasing activity on loaded MHCII and the facilitating of MHCII binding by a candidate exchange peptide are integral to DM mediated epitope selection. The exchange process is initiated only in the presence of candidate peptides, avoiding possible release of a prebound peptide and loss of a potential epitope. In a tetramolecular transitional complex, the candidate peptides are checked for their ability to replace the pre-bound peptide with a geometry that allows the rebinding of the original peptide. Thus, DM promotes a "compare-exchange" sorting algorithm on an available peptide pool. Such a "third party"-mediated mechanism may be generally applicable for diverse ligand recognition in other biological systems.
NASA Astrophysics Data System (ADS)
Doytchinova, Irini A.; Walshe, Valerie; Borrow, Persephone; Flower, Darren R.
2005-03-01
The affinities of 177 nonameric peptides binding to the HLA-A*0201 molecule were measured using a FACS-based MHC stabilisation assay and analysed using chemometrics. Their structures were described by global and local descriptors, QSAR models were derived by genetic algorithm, stepwise regression and PLS. The global molecular descriptors included molecular connectivity χ indices, κ shape indices, E-state indices, molecular properties like molecular weight and log P, and three-dimensional descriptors like polarizability, surface area and volume. The local descriptors were of two types. The first used a binary string to indicate the presence of each amino acid type at each position of the peptide. The second was also position-dependent but used five z-scales to describe the main physicochemical properties of the amino acids forming the peptides. The models were developed using a representative training set of 131 peptides and validated using an independent test set of 46 peptides. It was found that the global descriptors could not explain the variance in the training set nor predict the affinities of the test set accurately. Both types of local descriptors gave QSAR models with better explained variance and predictive ability. The results suggest that, in their interactions with the MHC molecule, the peptide acts as a complicated ensemble of multiple amino acids mutually potentiating each other.
Ciudad, M Teresa; Sorvillo, Nicoletta; van Alphen, Floris P; Catalán, Diego; Meijer, Alexander B; Voorberg, Jan; Jaraquemada, Dolores
2017-01-01
Dendritic cells (DCs) are the major professional APCs of the immune system; however, their MHC-II-associated peptide repertoires have been hard to analyze, mostly because of their scarce presence in blood and tissues. In vitro matured human monocyte-derived DCs (MoDCs) are widely used as professional APCs in experimental systems. In this work, we have applied mass spectrometry to identify the HLA-DR-associated self-peptide repertoires from small numbers of mature MoDCs (∼5 × 10 6 cells), derived from 7 different donors. Repertoires of 9 different HLA-DR alleles were defined from analysis of 1319 peptides, showing the expected characteristics of MHC-II-associated peptides. Most peptides identified were predicted high binders for their respective allele, formed nested sets, and belonged to endo-lysosomal pathway-degraded proteins. Approximately 20% of the peptides were derived from cytosolic and nuclear proteins, a recurrent finding in HLA-DR peptide repertoires. Of interest, most of these peptides corresponded to single sequences, did not form nested sets, and were located at the C terminus of the parental protein, which suggested alternative processing. Analysis of cleavage patterns for terminal peptides predominantly showed aspartic acid before the cleavage site of both C- and N-terminal peptides and proline immediately after the cleavage site in C-terminal peptides. Proline was also frequent next to the cut sites of internal peptides. These data provide new insights into the Ag processing capabilities of DCs. The relevance of these processing pathways and their contribution to response to infection, tolerance induction, or autoimmunity deserve further analysis. © Society for Leukocyte Biology.
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2015-10-01
including antigens preferentially expressed by breast cancer stem cells. We will identify both MHC-I- and MHC-II- restricted antigens driving both CD8...even two of them were exclusively targeted by T cells in chronic lymphocytic leukemia ( CLL ) patients (3). This analysis demonstrated both that...lymphocytic leukemia ( CLL ) 7 positive CLLs (23%) 3 Table 1. Immunogenic peptides that have been eluted from the cell surface of breast carcinoma cells
Kim, Taehyung; Tyndel, Marc S; Huang, Haiming; Sidhu, Sachdev S; Bader, Gary D; Gfeller, David; Kim, Philip M
2012-03-01
Peptide recognition domains and transcription factors play crucial roles in cellular signaling. They bind linear stretches of amino acids or nucleotides, respectively, with high specificity. Experimental techniques that assess the binding specificity of these domains, such as microarrays or phage display, can retrieve thousands of distinct ligands, providing detailed insight into binding specificity. In particular, the advent of next-generation sequencing has recently increased the throughput of such methods by several orders of magnitude. These advances have helped reveal the presence of distinct binding specificity classes that co-exist within a set of ligands interacting with the same target. Here, we introduce a software system called MUSI that can rapidly analyze very large data sets of binding sequences to determine the relevant binding specificity patterns. Our pipeline provides two major advances. First, it can detect previously unrecognized multiple specificity patterns in any data set. Second, it offers integrated processing of very large data sets from next-generation sequencing machines. The results are visualized as multiple sequence logos describing the different binding preferences of the protein under investigation. We demonstrate the performance of MUSI by analyzing recent phage display data for human SH3 domains as well as microarray data for mouse transcription factors.
Lin, Jing; Bruni, Francesca M.; Fu, Zhiyan; Maloney, Jennifer; Bardina, Ludmilla; Boner, Attilio L.; Gimenez, Gustavo; Sampson, Hugh A.
2013-01-01
Background Peanut allergy is relatively common, typically permanent, and often severe. Double-blind, placebo-controlled food challenge is considered the gold standard for the diagnosis of food allergy–related disorders. However, the complexity and potential of double-blind, placebo-controlled food challenge to cause life-threatening allergic reactions affects its clinical application. A laboratory test that could accurately diagnose symptomatic peanut allergy would greatly facilitate clinical practice. Objective We sought to develop an allergy diagnostic method that could correctly predict symptomatic peanut allergy by using peptide microarray immunoassays and bioinformatic methods. Methods Microarray immunoassays were performed by using the sera from 62 patients (31 with symptomatic peanut allergy and 31 who had outgrown their peanut allergy or were sensitized but were clinically tolerant to peanut). Specific IgE and IgG4 binding to 419 overlapping peptides (15 mers, 3 offset) covering the amino acid sequences of Ara h 1, Ara h 2, and Ara h 3 were measured by using a peptide microarray immunoassay. Bioinformatic methods were applied for data analysis. Results Individuals with peanut allergy showed significantly greater IgE binding and broader epitope diversity than did peanut-tolerant individuals. No significant difference in IgG4 binding was found between groups. By using machine learning methods, 4 peptide biomarkers were identified and prediction models that can predict the outcome of double-blind, placebo-controlled food challenges with high accuracy were developed by using a combination of the biomarkers. Conclusions In this study, we developed a novel diagnostic approach that can predict peanut allergy with high accuracy by combining the results of a peptide microarray immunoassay and bioinformatic methods. Further studies are needed to validate the efficacy of this assay in clinical practice. PMID:22444503
Hunzeker, John T.; Elftman, Michael D.; Mellinger, Jennifer C.; Princiotta, Michael F.; Bonneau, Robert H.; Truckenmiller, Mary E.; Norbury, Christopher C.
2013-01-01
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8+ T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8+ T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA257–264-specific T cells. Using a murine model of psychological stress and OVA-loaded β2-microglobulin knockout “donor” cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b−CD24+CD8α+ DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b−CD24+CD8α− DC precursors were increased, suggesting a block in development of CD8α+ DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice. PMID:21098225
The nature of selection on the major histocompatibility complex.
Apanius, V; Penn, D; Slev, P R; Ruff, L R; Potts, W K
1997-01-01
Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.
NASA Astrophysics Data System (ADS)
Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv
2014-02-01
Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.
Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F
2014-08-01
Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Valentini, Davide; Ferrara, Giovanni; Advani, Reza; Hallander, Hans O; Maeurer, Markus J
2015-07-01
Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n=10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n=3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p<0.05), DTPa2 and DT (p<0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in epitope signature responses and may help to guide rational vaccine development by the objective description of a clinically relevant immune response that confers protection against infectious pathogens.
Mechanosensing drives acuity of αβ T-cell recognition
Feng, Yinnian; Brazin, Kristine N.; Kobayashi, Eiji; Mallis, Robert J.; Reinherz, Ellis L.; Lang, Matthew J.
2017-01-01
T lymphocytes use surface αβ T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction (∼10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via ∼8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers. PMID:28811364
An overview on the identification of MAIT cell antigens.
Kjer-Nielsen, Lars; Corbett, Alexandra J; Chen, Zhenjun; Liu, Ligong; Mak, Jeffrey Y W; Godfrey, Dale I; Rossjohn, Jamie; Fairlie, David P; McCluskey, James; Eckle, Sidonia B G
2018-04-14
Mucosal Associated Invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and chemistry, we discovered MAIT cell ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin (6-FP) generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T cell receptors, and here we recount this discovery. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail
Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.
2004-01-01
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716
Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng
2015-01-01
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9–20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients. PMID:26536470
Ahmad, Murrium; Rees, Robert C; McArdle, Stephanie E; Li, Geng; Mian, Shahid; Entwisle, Claire; Loudon, Peter; Ali, Selman A
2005-07-20
Direct intratumour injection of the disabled infectious single-cycle-herpes simplex virus-encoding murine granulocyte/macrophage colony-stimulating factor (DISC-HSV-mGM-CSF) into established colon carcinoma CT26 tumours induced complete tumour rejection in up to 70% of treated animals (regressors), while the remaining mice developed progressive tumours (progressors). This murine Balb/c model was used to dissect the cellular mechanisms involved in tumour regression or progression following immunotherapy. CTLs were generated by coculturing lymphocytes and parenchymal cells from the same spleens of individual regressor or progressor animals in the presence of the relevant AH-1 peptide derived from the gp70 tumour-associated antigens expressed by CT26 tumours. Tumour regression was correlated with potent CTL responses, spleen weight and cytokine (IFN-gamma) production. Conversely, progressor splenocytes exhibited weak to no CTL activity and poor IFN-gamma production, concomitant with the presence of a suppressor cell population in the progressor splenic parenchymal cell fraction. Further fractionation of this parenchymal subpopulation demonstrated that cells inhibitory to the activation of AH-1-specific CTLs, restimulated in vitro with peptide, were present in the nonadherent parenchymal fraction. In vitro depletion of progressor parenchymal CD3+/CD4+ T cells restored the CTL response of the cocultured splenocytes (regressor lymphocytes and progressor parenchymal cells) and decreased the production of IL-10, suggesting that CD3+CD4+ T lymphocytes present in the parenchymal fraction regulated the CTL response to AH-1. We examined the cellular responses associated with tumour rejection and progression, identifying regulatory pathways associated with failure to respond to immunotherapy. Copyright 2005 Wiley-Liss, Inc.
A new functional membrane protein microarray based on tethered phospholipid bilayers.
Chadli, Meriem; Maniti, Ofelia; Marquette, Christophe; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès
2018-04-30
A new prototype of a membrane protein biochip is presented in this article. This biochip was created by the combination of novel technologies of peptide-tethered bilayer lipid membrane (pep-tBLM) formation and solid support micropatterning. Pep-tBLMs integrating a membrane protein were obtained in the form of microarrays on a gold chip. The formation of the microspots was visualized in real-time by surface plasmon resonance imaging (SPRi) and the functionality of a GPCR (CXCR4), reinserted locally into microwells, was assessed by ligand binding studies. In brief, to achieve micropatterning, P19-4H, a 4 histidine-possessing peptide spacer, was spotted inside microwells obtained on polystyrene-coated gold, and Ni-chelating proteoliposomes were injected into the reaction chamber. Proteoliposome binding to the peptide was based on metal-chelate interaction. The peptide-tethered lipid bilayer was finally obtained by addition of a fusogenic peptide (AH peptide) to promote proteoliposome fusion. The CXCR4 pep-tBLM microarray was characterized by surface plasmon resonance imaging (SPRi) throughout the building-up process. This new generation of membrane protein biochip represents a promising method of developing a screening tool for drug discovery.
Engelmann, Brett W
2017-01-01
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.
Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore
2016-03-01
A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Immunotherapeutic Vaccine as an Alternative Treatment to Overcome Drug-Resistant Ovarian Cancer
2012-07-01
2.7. Fractionation of SCX purified peptides by C-18 chromatography TheSCXpurified iTRAQ labeledpeptidemixturewas fractionated by a Dionex C-18 RP... chromatography as described above for the MHC peptides. All the iTRAQ labeled synthetic peptides were analyzed by a Dionex 3000 nano ultimate HPLC (Sunnyvale CA... chromatography and LC-MS/MS. Proteomics 7:4292-302. 15. Pachuk CJ, Ciccarelli RB, Samuel M, Bayer ME, Troutman RD, Zurawski DV, Schauer JI, Higgins TJ
Šimková, Andrea; Civáňová, Kristína; Gettová, Lenka; Gilles, André
2013-01-01
Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic factors may contribute to MHC variation on a short time scale. PMID:23824831
Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.
2009-01-01
Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991
Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.
2017-01-01
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844
Strand, Tanja; Westerdahl, Helena; Höglund, Jacob; V Alatalo, Rauno; Siitari, Heli
2007-09-01
We found that the Black grouse (Tetrao tetrix) possess low numbers of Mhc class II B (BLB) and Y (YLB) genes with variable diversity and expression. We have therefore shown, for the first time, that another bird species (in this case, a wild lek-breeding galliform) shares several features of the simple Mhc of the domestic chicken (Gallus gallus). The Black grouse BLB genes showed the same level of polymorphism that has been reported in chicken, and we also found indications of balancing selection in the peptide-binding regions. The YLB genes were less variable than the BLB genes, also in accordance with earlier studies in chicken, although their functional significance still remains obscure. We hypothesize that the YLB genes could have been under purifying selection, just as the mammal Mhc-E gene cluster.
Rouhani, Sherin J; Eccles, Jacob D; Riccardi, Priscila; Peske, J David; Tewalt, Eric F; Cohen, Jarish N; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H
2015-04-10
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.
Rouhani, Sherin J.; Eccles, Jacob D.; Riccardi, Priscila; Peske, J. David; Tewalt, Eric F.; Cohen, Jarish N.; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H.
2015-01-01
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. PMID:25857745
Brondz, B D; Kazansky, D B; Chernyshova, A D; Ivanov, V S
1995-01-01
Six individual peptides of the major histocompatibility complex (MHC) class I molecule H-2Kb were synthesized. Intravenous injection of peptide 6 into mice prolonged the survival of Kb (BL/6 or B10.MBR) skin grafts on allogeneic R101 and B10.AKM mice, respectively. This was specific, as control skin grafts from Kk (B10.BR) or Kd (DBA/2) donors, respectively, were rejected at the same time in both control and peptide-treated mice. The optimal doses for peptide 6, which is from the alpha 2 domain, were defined. The test system was the inhibition of proliferation in vitro of naive lymph node cells by syngeneic mitomycin c-treated spleen cells from R101 mice preimmunized with irradiated stimulator splenocytes of Kb (BL/6) origin. Down-regulation was specific, as proliferation in response to third-party allogeneic stimulator Kk (B10.BR) splenocytes was not inhibited. Of the six peptides of H-2Kb tested, potent down-regulatory cells were induced by peptides 2 (alpha 1 domain) and 5 and 6 (alpha 2 domain). The greatest down-regulatory activity was obtained by giving peptide 2 to mice that had already been immunized against H-2Kb by injecting EL4 cells. Under the same conditions, injecting peptide 2 did not induce any cytotoxic T cells. In contrast, specific cytotoxic lymphocytes (CTL) were induced when cells from primed mice were incubated for 4 days with heated stimulator cells from BL/6 mice. The data suggest that peptides from MHC class I molecules activate precursors of down-regulatory T cells, but not of CTL, and this may explain their ability to prolong skin allograft survival. PMID:7490121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated bymore » T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.« less
Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro
McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan
2010-01-01
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197
Mutated cancer autoantigen implicated cause of paraneoplastic myasthenia gravis.
Zekeridou, Anastasia; Griesmann, Guy E; Lennon, Vanda A
2018-05-09
Anti-tumor immune responses are postulated to initiate paraneoplastic neurological disorders when proteins normally restricted to neural cells are expressed as oncoproteins. Mutated oncopeptides could bypass self-tolerant T-cells to activate cytotoxic effector T-lymphocytes and requisite helper T-lymphocytes to stimulate autoantibody production by B-lymphocytes. We investigated muscle-type nicotinic acetylcholine receptor (AChR) antigen expression at transcriptional and protein levels in a small-cell lung cancer line (SCLC) established from a patient with AChR-IgG-positive myasthenia gravis. I We identified mRNA transcripts encoding the two AChR α1-subunit isoforms, and seven alternative-splicing products, three yielding premature stop codons. Despite detecting native muscle-type AChR pentamers in the tumor, we did not identify mutant α1-peptides. However, we found α1-subunit-derived peptides bound to tumor MHC1-protein. In a control SCLC from an ANNA-1(anti-Hu)-IgG-positive patient, we identified MHC1-complexed Hu protein-derived peptides, but not AChR peptides. Our findings support onconeural protein products as pertinent immunogens initiating paraneoplastic neurological autoimmunity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Heal, K G; Sheikh, N A; Hollingdale, M R; Morrow, W J; Taylor-Robinson, A W
2001-07-20
We have recently demonstrated that the novel glycoalkaloid tomatine, derived from leaves of the wild tomato Lycopersicon pimpinellifolium, can act as a powerful adjuvant for the elicitation of antigen-specific CD8+ T cell responses. Here, we have extended our previous investigation with the model antigen ovalbumin to an established malaria infection system in mice and evaluated the cellular immune response to a major preerythrocytic stage malaria vaccine candidate antigen when administered with tomatine. The defined MHC H-2kd class I-binding 9-mer peptide (amino acids 252-260) from Plasmodium berghei circumsporozoite (CS) protein was prepared with tomatine to form a molecular aggregate formulation and this used to immunise BALB/c (H-2kd) mice. Antigen-specific IFN-gamma secretion and cytotoxic T lymphocyte activity in vitro were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunised control mice. Moreover, when challenged with P. berghei sporozoites, mice immunised with the CS 9-mer-tomatine preparation had a significantly delayed onset of erythrocytic infection compared to controls. The data presented validate the use of tomatine to potentiate a cellular immune response to antigenic stimulus by testing in an important biologically relevant system. Specifically, the processing of the P. berghei CS 9-mer as an exogenous antigen and its presentation via MHC class I molecules to CD8+ T cells led to an immune response that is an in vitro correlate of protection against preerythrocytic malaria. This was confirmed by the protective capacity of the 9-mer-tomatine combination upon in vivo immunisation. These findings merit further work to optimise the use of tomatine as an adjuvant in malaria vaccine development.
1992-01-01
Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384
2013-01-01
Background Classical major histocompatibility complex (MHC) class II molecules play an essential role in presenting peptide antigens to CD4+ T lymphocytes in the acquired immune system. The non-classical class II DM molecule, HLA-DM in the case of humans, possesses critical function in assisting the classical MHC class II molecules for proper peptide loading and is highly conserved in tetrapod species. Although the absence of DM-like genes in teleost fish has been speculated based on the results of homology searches, it has not been definitively clear whether the DM system is truly specific for tetrapods or not. To obtain a clear answer, we comprehensively searched class II genes in representative teleost fish genomes and analyzed those genes regarding the critical functional features required for the DM system. Results We discovered a novel ancient class II group (DE) in teleost fish and classified teleost fish class II genes into three major groups (DA, DB and DE). Based on several criteria, we investigated the classical/non-classical nature of various class II genes and showed that only one of three groups (DA) exhibits classical-type characteristics. Analyses of predicted class II molecules revealed that the critical tryptophan residue required for a classical class II molecule in the DM system could be found only in some non-classical but not in classical-type class II molecules of teleost fish. Conclusions Teleost fish, a major group of vertebrates, do not possess the DM system for the classical class II peptide-loading and this sophisticated system has specially evolved in the tetrapod lineage. PMID:24279922
Alcaide, Miguel; Liu, Mark
2013-01-01
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds. PMID:23781408
Natural Polymorphisms in Tap2 Influence Negative Selection and CD4∶CD8 Lineage Commitment in the Rat
Tuncel, Jonatan; Haag, Sabrina; Yau, Anthony C. Y.; Norin, Ulrika; Baud, Amelie; Lönnblom, Erik; Maratou, Klio; Ytterberg, A. Jimmy; Ekman, Diana; Thordardottir, Soley; Johannesson, Martina; Gillett, Alan; Stridh, Pernilla; Jagodic, Maja; Olsson, Tomas; Fernández-Teruel, Alberto; Zubarev, Roman A.; Mott, Richard; Aitman, Timothy J.; Flint, Jonathan; Holmdahl, Rikard
2014-01-01
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. PMID:24586191
Grob, B; Knapp, L A; Martin, R D; Anzenberger, G
1998-01-01
It has been known for decades that MHC genes play a critical role in the cellular immune response, but only recent research has provided a better understanding of how these molecules might affect mate choice. Original studies in inbred mouse strains revealed that mate choice was influenced by MHC dissimilarity. Detection of MHC differences between individuals in these experiments was related to olfactory cues, primarily in urine. Recent studies in humans have shown an analogous picture of MHC-based mating. Taken together, these findings could support either the hypothesis of MHC-based inbreeding avoidance or the hypothesis of MHC-related avoidance of reproductive failure, since studies in mice, humans and pigtailed macaques have shown that parental sharing of certain MHC alleles correlates with frequent spontaneous abortion or prolonged intergestational intervals. Data from many mammalian species clearly demonstrate that reproductive failure occurs as a result of inbreeding. Therefore, MHC similarity might serve as an indicator of genome-wide relatedness. In contrast, increased fitness due to the presence of individual MHC alleles in a pathogenic environment could explain MHC-based selection of currently good genes. Specifically, the physical condition of long-living animals depends on the ability to respond to immunological challenge and an individual's MHC alleles determine the response, since, unlike the T cell receptors, MHC alleles are not somatically recombined. Therefore, sexual selection of condition-dependent traits during mate choice could be used to select successful MHC alleles, thereby providing offspring with a higher relative immunity in their pathogenic environment.
Quantifying protein-protein interactions in high throughput using protein domain microarrays.
Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin
2010-04-01
Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.
Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi
2017-01-01
ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections. PMID:28077659
de Bellocq, J Goüy; Leirs, H
2009-09-01
Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.
Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J.
2007-01-01
A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan helper peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-γ-producing CD4+ helper and CD8+ cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced. PMID:17166639
Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J
2007-02-19
A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.
Reichstetter, S; Ettinger, R A; Liu, A W; Gebe, J A; Nepom, G T; Kwok, W W
2000-12-15
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne
2008-04-29
CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident withmore » an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.« less
Human cytomegalovirus inhibits antigen presentation by a sequential multistep process.
Ahn, K; Angulo, A; Ghazal, P; Peterson, P A; Yang, Y; Früh, K
1996-01-01
The human cytomegalovirus (HCMV) genomic unique short (US) region encodes a family of homologous genes essential for the inhibition of major histocompatibility complex (MHC) class I-mediated antigen presentation during viral infection. Here we show that US3, the only immediate early (IE) gene within the US region, encodes an endoplasmic reticulum-resident glycoprotein that prevents intracellular transport of MHC class I molecules. In contrast to the rapid degradation of newly synthesized MHC class I heavy chains mediated by the early gene product US11, we found that US3 retains stable MHC class I heterodimers in the endoplasmic reticulum that are loaded with peptides while retained in the ER. Consistent with the expression pattern of US3 and US11, MHC class I molecules are retained but not degraded during the IE period of infection. Our data identify the first nonregulatory role of an IE protein of HCMV and suggest that HCMV uses different T-cell escape strategies at different times during the infectious cycle. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8855296
MHC class II B diversity in blue tits: a preliminary study.
Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena
2013-07-01
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
MHC class II B diversity in blue tits: a preliminary study
Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena
2013-01-01
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Youjun; Graduate School, Chinese Academy of Sciences, Beijing; Qi, Jianxun
2006-01-01
X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffractsmore » X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.« less
Leichner, Theresa M; Satake, Atsushi; Kambayashi, Taku
2016-06-01
To maintain immune tolerance, regulatory T cell (Treg) numbers must be closely indexed to the number of conventional T cells (Tconvs) so that an adequate Treg:Tconv ratio can be maintained. Two factors important in this process are the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) stimulation by major histocompatibility complex class II (MHC-II). Here, we report that in addition to TCR stimulation of Tregs themselves, the maintenance of Tregs also requires TCR signaling by Tconvs. We found that Tconvs produce IL-2 in response to self-peptide-MHC-II complexes and that Tconvs possessing more highly self-reactive TCRs express more IL-2 at baseline. Furthermore, selective disruption of TCR signaling in Tconvs led to a trend toward decreased expression of IL-2 and attenuated their ability to maintain Treg numbers. These data suggest that in order to maintain an adequate Treg:Tconv ratio, Tregs are continuously indexed to self-peptide-MHC-II-induced TCR signaling of Tconvs. These results have implications in attempts to modulate immune tolerance, as Treg numbers adjust to the self-reactivity, and ultimately IL-2 production by the T cells around them.
Kamthania, Mohit; Sharma, D K
2015-12-01
Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.
Hu, Yinin; Petroni, Gina R; Olson, Walter C; Czarkowski, Andrea; Smolkin, Mark E; Grosh, William W; Chianese-Bullock, Kimberly A; Slingluff, Craig L
2014-08-01
Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4(+) T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8(+) T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund's adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4(+) and CD8(+) T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4(+) T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281-295 (49 %) and tyrosinase386-406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8(+) T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4(+) and CD8(+) T cell responses against melanoma antigens. CD4(+) T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8(+) T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Torsten B.; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215; Li, Amy
Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known,more » NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.« less
Tsang, Julia Yuen-Shan; Tanriver, Yakup; Jiang, Shuiping; Xue, Shao-An; Ratnasothy, Kulachelvy; Chen, Daxin; Stauss, Hans J.; Bucy, R. Pat; Lombardi, Giovanna; Lechler, Robert
2008-01-01
T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential. PMID:18846251
Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.
Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita
2016-09-01
Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).
Chattopadhyay, Pratip K.; Melenhorst, J. Joseph; Ladell, Kristin; Gostick, Emma; Scheinberg, Philip; Barrett, A. John; Wooldridge, Linda; Roederer, Mario; Sewell, Andrew K.; Price, David A.
2008-01-01
The ability to quantify and characterize antigen-specific CD8+ T cells irrespective of functional readouts using fluorochrome-conjugated tetrameric peptide-MHC class I (pMHCI) complexes in conjunction with flow cytometry has transformed our understanding of cellular immune responses over the past decade. In the case of prevalent CD8+ T cell populations that engage cognate pMHCI tetramers with high avidities, direct ex vivo identification and subsequent data interpretation is relatively straightforward. However, the accurate identification of low frequency antigen-specific CD8+ T cell populations can be complicated, especially in situations where TCR-mediated tetramer binding occurs at low avidities. Here, we highlight a few simple techniques that can be employed to improve the visual resolution, and hence the accurate quantification, of tetramer-binding CD8+ T cell populations by flow cytometry. These methodological modifications enhance signal intensity, especially in the case of specific CD8+ T cell populations that bind cognate antigen with low avidity, minimize background noise and enable improved discrimination of true pMHCI tetramer binding events from nonspecific uptake. PMID:18836993
Mizukami, Yoshiki; Kono, Koji; Daigo, Yataro; Takano, Atsushi; Tsunoda, Takuya; Kawaguchi, Yoshihiko; Nakamura, Yusuke; Fujii, Hideki
2008-07-01
We recently identified three HLA-A2402-restricted epitope peptides derived from cancer-testis antigens (CTA), TTK protein kinase (TTK), lymphocyte antigen 6 complex locus K (LY6K), and insulin-like growth factor (IGF)-II mRNA binding protein 3 (IMP-3) for the development of immunotherapies against esophageal squamous cell carcinoma (ESCC). In order to evaluate their immunotherapeutic potential in ESCC patients, we estimated by ELISPOT assay the TTK-, LY6K-, or IMP-3-specific T-cell immune responses in tumor-infiltrating lymphocytes (TIL), regional lymph node lymphocytes (RLNL), and peripheral blood lymphocytes (PBL) expanded from 20HLA-A2402 (+) ESCC patients, and correlated their immune activity with the expression levels of TTK, LY6K, and IMP-3, and MHC class I in the tumors. Induction of TTK-antigen specific T-cell response in TIL to the peptide-pulsed target cells was detected in 14 out of 20 (70%) cases, while LY6K or IMP-3 specific T-cell activity was observed in 11 of 20 (55%) or in eight of 20 (40%) cases, respectively. Furthermore, T-cell activity in RLNL and PBL was detectable in the similar proportion of the 20 ESCC patients. Interestingly, CTA-specific T-cell immune response was found in 13 of 14 (93%) TIL obtained from ESCC tumors with strong MHC class I expression, while it could be observed only in two of six (33%) TIL from ESCC tumors with weak MHC class I expression. These results strongly suggest the pre-existence of specific T-cell responses to HLA-A24-restricted epitope peptides from TTK, LY6K, and IMP-3 in ESCC patients. Monitoring antigen-specific T-cell responses, as well as the expression levels of MHC class I and epitope CTA in tumors, should be a selection index for application of cancer vaccine therapies to the patients who are likely to show good immune response.
Rondini, Elizabeth A; Bennink, Maurice R
2012-01-01
We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.
Presentation of lipid antigens to T cells.
Mori, Lucia; De Libero, Gennaro
2008-04-15
T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.
Spatial and Temporal Control of T Cell Activation Using a Photoactivatable Agonist.
Sanchez, Elisa; Huse, Morgan
2018-04-25
T lymphocytes engage in rapid, polarized signaling, occurring within minutes following TCR activation. This induces formation of the immunological synapse, a stereotyped cell-cell junction that regulates T cell activation and directionally targets effector responses. To study these processes effectively, an imaging approach that is tailored to capturing fast, polarized responses is necessary. This protocol describes such a system, which is based on a photoactivatable peptide-major histocompatibility complex (pMHC) that is non-stimulatory until it is exposed to ultraviolet light. Targeted decaging of this reagent during videomicroscopy experiments enables precise spatiotemporal control of TCR activation and high-resolution monitoring of subsequent cellular responses by total internal reflection (TIRF) imaging. This approach is also compatible with genetic and pharmacological perturbation strategies. This allows for the assembly of well-defined molecular pathways that link TCR signaling to the formation of the polarized cytoskeletal structures that underlie the immunological synapse.
2010-01-01
Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics. PMID:21067546
Uchtenhagen, Hannes; Abualrous, Esam T; Stahl, Evi; Allerbring, Eva B; Sluijter, Marjolein; Zacharias, Martin; Sandalova, Tatyana; van Hall, Thorbald; Springer, Sebastian; Nygren, Per-Åke; Achour, Adnane
2013-11-01
The immunogenicity of H-2D(b) (D(b)) restricted epitopes can be significantly increased by substituting peptide position 3 to a proline (p3P). The p3P modification enhances MHC stability without altering the conformation of the modified epitope allowing for T-cell cross-reactivity with the native peptide. The present study reveals how specific interactions between p3P and the highly conserved MHC heavy chain residue Y159 increase the stability of D(b) in complex with an optimized version of the melanoma-associated epitope gp10025-33 . Furthermore, the p3P modification directly increased the affinity of the D(b)/gp10025-33 -specific T-cell receptor (TCR) pMel. Surprisingly, the enhanced TCR binding was independent from the observed increased stability of the optimized D(b)/gp10025-33 complex and from the interactions formed between p3P and Y159, indicating a direct effect of the p3P modification on TCR recognition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian
2015-04-01
The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haug, Markus; Brede, Gaute; Håkerud, Monika; Nedberg, Anne Grete; Gederaas, Odrun A.; Flo, Trude H.; Edwards, Victoria T.; Selbo, Pål K.; Høgset, Anders; Halaas, Øyvind
2018-01-01
Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses. PMID:29670624
1992-01-01
The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-specific neutralizing epitope 71VAGLEK76. Mice immunized with peptide A8-VDI produced high-titered polyclonal IgG antibodies which recognized the VAGLEK-neutralizing epitope. Peptide A8-VDI primed A/J mice to produce high-titered serum-neutralizing antibodies in response to a secondary immunization with intact chlamydial elementary bodies (EBs). Peptide A8-VDI, but not peptide VDI alone, was immunogenic in six different inbred strains of mice disparate at H-2, indicating that the Th cell epitope(s) contained in the A8 portion of the chimera was recognized in the context of multiple major histocompatibility complex (MHC) haplotypes. An unexpected finding of this work was that different inbred strains of mice immunized with the chimeric peptide produced antibodies of differing fine specificities to the VDI portion of the chimera. Some mouse strains produced anti-VDI antibodies that did not recognize the VAGLEK-neutralizing epitope. The ability of mice to respond to the VAGLEK-neutralizing site was not dependent on MHC haplotype since mouse strains of the same H-2 haplotype produced anti-VDI antibodies of differing fine specificity. PMID:1370528
Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R
2007-01-01
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Advances in direct T-cell alloreactivity: function, avidity, biophysics and structure.
Smith, C; Miles, J J; Khanna, R
2012-01-01
Although T-cell-based adaptive immunity plays a crucial role in protection against infectious pathogens and uncontrolled outgrowth of malignant cells, a large portion of these T cells are also capable of responding to allogeneic HLA molecules, violating the paradigm of self-major histocompatibility complex (MHC) restriction. Recent studies have provided insights into the mechanisms by which these T cells recognize allogeneic targets. The role of antiviral T cells in direct alloreactivity through peptide-dependent molecular mimicry and alternate peptide-MHC docking modes has emerged as major models for the human alloresponse. Here, we review in depth recent advances in this field and discuss how molecular interactions between T cells and HLA molecules drive the activation of these effector cells and its potential implications for alloreactivity in human transplantation. ©Copyright 2011 American Society of Transplantation and the American Society of Transplant Surgeons.
A novel method to estimate the affinity of HLA-A∗0201 restricted CTL epitope
NASA Astrophysics Data System (ADS)
Xu, Yun-sheng; Lin, Yong; Zhu, Bo; Lin, Zhi-hua
2009-02-01
A set of 70 peptides with affinity for the class I MHC HLA-A∗0201 molecule was subjected to quantitative structure-affinity relationship studies based on the SCORE function with good results ( r2 = 0.6982, RMS = 0.280). Then the 'leave-one-out' cross-validation (LOO-CV) and an outer test set including 18 outer samples were used to validate the QSAR model. The results of the LOO-CV were q2 = 0.6188, RMS = 0.315, and the results of outer test set were r2 = 0.5633, RMS = 0.2292. All these show that the QSAR model has good predictability. Statistical analysis showed that the hydrophobic and hydrogen bond interaction played a significant role in peptide-MHC molecule binding. The study also provided useful information for structure modification of CTL epitope, and laid theoretical base for molecular design of therapeutic vaccine.
Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals
HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday
2012-01-01
In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466
NASA Astrophysics Data System (ADS)
Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N.; Matsoukas, Minos-Timotheos; Deraos, Spyros N.; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V.
2011-11-01
Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP1-11) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP1-11[4A]) or a tyrosine residue (Ac-MBP1-11[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-Au was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln3 residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-Au complex, has a different orientation in the mutated analogues especially in the Ac-MBP1-11[4A] peptide. In particular the side chain of Gln3 is not solvent exposed as for the native Ac-MBP1-11 and it is not available for interaction with the TCR.
Role of Endoplasmic Reticulum Aminopeptidases in Health and Disease: from Infection to Cancer
Cifaldi, Loredana; Romania, Paolo; Lorenzi, Silvia; Locatelli, Franco; Fruci, Doriana
2012-01-01
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are essential for the maturation of a wide spectrum of proteins involved in various biological processes. In the ER, these enzymes work in concert to trim peptides for presentation on MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of peptides presented by MHC class I molecules, critically affecting recognition of both NK and CD8+ T cells. In addition, these enzymes are involved in the modulation of inflammatory responses by promoting the shedding of several cytokine receptors, and in the regulation of both blood pressure and angiogenesis. Recent genome-wide association studies have identified common variants of ERAP1 and ERAP2 linked to several human diseases, ranging from viral infections to autoimmunity and cancer. More recently, inhibition of ER peptide trimming has been shown to play a key role in stimulating innate and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be exploited for the establishment of innovative therapeutic approaches against cancer. This review summarizes data currently available for ERAP enzymes in ER peptide trimming and in other immunological and non-immunological functions, paying attention to the emerging role played by these enzymes in human diseases. PMID:22942706
Ohta, Yuko; McKinney, E Churchill; Criscitiello, Michael F; Flajnik, Martin F
2002-01-15
Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.
Tracy, Karen E; Kiemnec-Tyburczy, Karen M; DeWoody, J Andrew; Parra-Olea, Gabriela; Zamudio, Kelly R
2015-06-01
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.
Weakly self-reactive T-cell clones can homeostatically expand when present at low numbers.
Vrisekoop, Nienke; Artusa, Patricio; Monteiro, Joao P; Mandl, Judith N
2017-01-01
T-cell division is central to maintaining a stable T-cell pool in adults. It also enables T-cell expansion in neonates, and after depletion by chemotherapy, bone marrow transplantation, or infection. The same signals required for T-cell survival in lymphoreplete settings, IL-7 and T-cell receptor (TCR) interactions with self-peptide MHC (pMHC), induce division when T-cell numbers are low. The strength of reactivity for self-pMHC has been shown to correlate with the capacity of T cells to undergo lymphopenia-induced proliferation (LIP), in that weakly self-reactive T cells are unable to divide, implying that T-cell reconstitution would significantly skew the TCR repertoire toward TCRs with greater self-reactivity and thus compromise T-cell diversity. Here, we show that while CD4 + T cells with low self-pMHC reactivity experience more intense competition, they are able to divide when present at low enough cell numbers. Thus, at physiological precursor frequencies CD4 + T cells with low self-pMHC reactivity are able to contribute to the reconstitution of the T-cell pool. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, Mason R; Tolbert, Stephanie V; Wen, Fei
2018-05-07
Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.
Spatiotemporal multistage consensus clustering in molecular dynamics studies of large proteins.
Kenn, Michael; Ribarics, Reiner; Ilieva, Nevena; Cibena, Michael; Karch, Rudolf; Schreiner, Wolfgang
2016-04-26
The aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments. For a given sub-segment, spatial clustering is repeatedly started from different random seeds, and we adopt the specific spatial clustering with minimum target function: the process described so far is stage 1 of MCC. Then, in stage 2, the results of spatial clustering are consolidated, to arrive at domains stable over the whole dataset. We found that MCC is robust regarding the choice of parameters and yields relevant information on functional domains of the major histocompatibility complex (MHC) studied in this paper: the α-helices and β-floor of the protein (MHC) proved to be most flexible and did not contribute to clusters of significant size. Three alleles of the MHC, each in complex with ABCD3 peptide and LC13 T-cell receptor (TCR), yielded different patterns of motion. Those alleles causing immunological allo-reactions showed distinct correlations of motion between parts of the peptide, the binding cleft and the complementary determining regions (CDR)-loops of the TCR. Multistage consensus clustering reflected functional differences between MHC alleles and yields a methodological basis to increase sensitivity of functional analyses of bio-molecules. Due to the generality of approach, MCC is prone to lend itself as a potent tool also for the analysis of other kinds of big data.
Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M
2017-04-01
Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4 + T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4 + T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4 + T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections. Copyright © 2017 American Society for Microbiology.
Hinz, Andreas; Jedamzick, Johanna; Herbring, Valentina; Fischbach, Hanna; Hartmann, Jessica; Parcej, David; Koch, Joachim; Tampé, Robert
2014-11-28
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
MHC class I-associated peptides derive from selective regions of the human genome.
Pearson, Hillary; Daouda, Tariq; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Mader, Sylvie; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude
2016-12-01
MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
MHC class I–associated peptides derive from selective regions of the human genome
Pearson, Hillary; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Thibault, Pierre
2016-01-01
MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology. PMID:27841757
NASA Technical Reports Server (NTRS)
Lah, T. T.; Hawley, M.; Rock, K. L.; Goldberg, A. L.
1995-01-01
Previous studies have indicated that acid-optimal cysteine proteinase(s) in the endosomal-lysosomal compartments, cathepsins, play a critical role in the proteolytic processing of endocytosed proteins to generate the antigenic peptides presented to the immune system on major histocompatibility complex (MHC) class II molecules. The presentation of these peptides and the expression of MHC class II molecules by macrophages and lymphocytes are stimulated by gamma-interferon (gamma-IFN). We found that treatment of human U-937 monocytes with gamma-IFN increased the activities and the content of the two major lysosomal cysteine proteinases, cathepsins B and L. Assays of protease activity, enzyme-linked immunosorbant assays (ELISA) and immunoblotting showed that this cytokine increased the amount of cathepsin B 5-fold and cathepsin L 3-fold in the lysosomal fraction. By contrast, the aspartic proteinase, cathepsin D, in this fraction was not significantly altered by gamma-IFN treatment. An induction of cathepsins B and L was also observed in mouse macrophages, but not in HeLa cells. These results suggest coordinate regulation in monocytes of the expression of cathepsins B and L and MHC class II molecules. Presumably, this induction of cysteine proteases contributes to the enhancement of antigen presentation by gamma-IFN.
Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi
2005-09-01
There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.
San Segundo-Acosta, Pablo; Garranzo-Asensio, María; Oeo-Santos, Carmen; Montero-Calle, Ana; Quiralte, Joaquín; Cuesta-Herranz, Javier; Villalba, Mayte; Barderas, Rodrigo
2018-05-01
Olive pollen and yellow mustard seeds are major allergenic sources with high clinical relevance. To aid with the identification of IgE-reactive components, the development of sensitive methodological approaches is required. Here, we have combined T7 phage display and protein microarrays for the identification of allergenic peptides and mimotopes from olive pollen and mustard seeds. The identification of these allergenic sequences involved the construction and biopanning of T7 phage display libraries of mustard seeds and olive pollen using sera from allergic patients to both biological sources together with the construction of phage microarrays printed with 1536 monoclonal phages from the third/four rounds of biopanning. The screening of the phage microarrays with individual sera from allergic patients enabled the identification of 10 and 9 IgE-reactive unique amino acid sequences from olive pollen and mustard seeds, respectively. Five immunoreactive amino acid sequences displayed on phages were selected for their expression as His6-GST tag fusion proteins and validation. After immunological characterization, we assessed the IgE-reactivity of the constructs. Our results show that protein microarrays printed with T7 phages displaying peptides from allergenic sources might be used to identify allergenic components -peptides, proteins or mimotopes- through their screening with specific IgE antibodies from allergic patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Weekes, Michael P.; Wills, Mark R.; Mynard, Kim; Carmichael, Andrew J.; Sissons, J. G. Patrick
1999-01-01
Human cytomegalovirus (HCMV)-specific CD8+ cytotoxic T lymphocytes (CTL) appear to play an important role in the control of virus replication and in protection against HCMV-related disease. We have previously reported high frequencies of memory CTL precursors (CTLp) specific to the HCMV tegument protein pp65 in the peripheral blood of healthy virus carriers. In some individuals, the CTL response to this protein is focused on only a single epitope, whereas in other virus carriers CTL recognized multiple epitopes which we identified by using synthetic peptides. We have analyzed the clonal composition of the memory CTL response to four of these pp65 epitopes by sequencing the T-cell receptors (TCR) of multiple independently derived epitope-specific CTL clones, which were derived by formal single-cell cloning or from clonal CTL microcultures. In all cases, we have observed a high degree of clonal focusing: the majority of CTL clones specific to a defined pp65 peptide from any one virus carrier use only one or two different TCRs at the level of the nucleotide sequence. Among virus carriers who have the same major histocompatibility complex (MHC) class I allele, we observed that CTL from different donors that recognize the same peptide-MHC complex often used the same Vβ segment, although other TCR gene segments and CDR3 length were not in general conserved. We have also examined the clonal composition of CTL specific to pp65 peptides in asymptomatic human immunodeficiency virus-infected individuals. We have observed a similarly focused peptide-specific CTL response. Thus, the large population of circulating HCMV peptide-specific memory CTLp in virus carriers in fact contains individual CTL clones that have undergone extensive clonal expansion in vivo. PMID:9971792
Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo
2014-11-19
Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.
NASA Astrophysics Data System (ADS)
Rognan, Didier; Krebs, Stefan; Kuonen, Oliver; Lamas, , José R.; Castro, José A. López de; Folkers, Gerd
1997-09-01
Starting from the X-ray structure of a class I majorhistocompatibility complex (MHC)-encoded protein (HLA-B*2705), a naturallypresented self-nonapeptide and two synthetic analogues were simulated in thebinding groove of two human leukocyte antigen (HLA) alleles (B*2703 andB*2705) differing in a single amino acid residue. After 200 ps moleculardynamics simulations of the solvated HLA-peptide pairs, some molecularproperties of the complexes (distances between ligand and protein center ofmasses, atomic fluctuations, buried versus accessible surface areas,hydrogen-bond frequencies) allow a clear discrimination of potent from weakMHC binders. The binding specificity of the three nonapeptides for the twoHLA alleles could be explained by the disruption of one hydrogen-bondingnetwork in the binding pocket of the HLA-B*2705 protein where the singlemutation occurs. Rearrangements of interactions in the B pocket, which bindsthe side chain of peptidic residue 2, and a weakening of interactionsinvolving the C-terminal end of the peptide also took place. In addition,extension of the peptide backbone using a β-Ala analogue did notabolish binding to any of the two HLA-B27 subtypes, but increased theselectivity for B*2703, as expected from the larger peptide binding groovein this subtype. A better understanding of the atomic details involved inpeptide selection by closely related HLA alleles is of crucial importancefor unraveling the molecular features linking particular HLA alleles toautoimmune diseases, and for the identification of antigenic peptidestriggering such pathologies.
Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya
2013-01-01
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112
Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki
2018-06-01
Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.
Antigen processing and presentation: evolution from a bird's eye view.
Kaufman, Jim
2013-09-01
Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor-ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail. Copyright © 2012 Elsevier Ltd. All rights reserved.
Landry, C; Garant, D; Duchesne, P; Bernatchez, L
2001-06-22
According to the theory of mate choice based on heterozygosity, mates should choose each other in order to increase the heterozygosity of their offspring. In this study, we tested the 'good genes as heterozygosity' hypothesis of mate choice by documenting the mating patterns of wild Atlantic salmon (Salmo salar) using both major histocompatibility complex (MHC) and microsatellite loci. Specifically, we tested the null hypotheses that mate choice in Atlantic salmon is not dependent on the relatedness between potential partners or on the MHC similarity between mates. Three parameters were assessed: (i) the number of shared alleles between partners (x and y) at the MHC (M(xy)), (ii) the MHC amino-acid genotypic distance between mates' genotypes (AA(xy)), and (iii) genetic relatedness between mates (r(xy)). We found that Atlantic salmon choose their mates in order to increase the heterozygosity of their offspring at the MHC and, more specifically, at the peptide-binding region, presumably in order to provide them with better defence against parasites and pathogens. This was supported by a significant difference between the observed and expected AA(xy) (p = 0.0486). Furthermore, mate choice was not a mechanism of overall inbreeding avoidance as genetic relatedness supported a random mating scheme (p = 0.445). This study provides the first evidence that MHC genes influence mate choice in fish.
Bi, Jianjun; Song, Rengang; Yang, Huilan; Li, Bingling; Fan, Jianyong; Liu, Zhongrong; Long, Chaoqin
2011-01-01
Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well.
Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu
2018-01-01
Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744
Miller, Marcia M.; Taylor, Robert L.
2016-01-01
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry. PMID:26740135
McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.
2016-01-01
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218
Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B
2000-01-01
Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158
Living Cell Microarrays: An Overview of Concepts
Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank
2016-01-01
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077
Caccamo, Nadia; Pietra, Gabriella; Sullivan, Lucy C; Brooks, Andrew G; Prezzemolo, Teresa; La Manna, Marco P; Di Liberto, Diana; Joosten, Simone A; van Meijgaarden, Krista E; Di Carlo, Paola; Titone, Lucina; Moretta, Lorenzo; Mingari, Maria C; Ottenhoff, Tom H M; Dieli, Francesco
2015-04-01
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gori, Alessandro; Cretich, Marina; Vanna, Renzo; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Gramatica, Furio; Burastero, Samuele; Chiari, Marcella
2017-08-29
Multiple ligand presentation is a powerful strategy to enhance the affinity of a probe for its corresponding target. A promising application of this concept lies in the analytical field, where surface immobilized probes interact with their corresponding targets in the context of complex biological samples. Here we investigate the effect of multiple epitope presentation (MEP) in the challenging context of IgE-detection in serum samples using peptide microarrays, and evaluate the influence of probes surface density on the assay results. Using the milk allergen alpha-lactalbumin as a model, we have synthesized three immunoreactive epitope sequences in a linear, branched and tandem form and exploited a chemoselective click strategy (CuAAC) for their immobilization on the surface of two biosensors, a microarray and an SPR chip both modified with the same clickable polymeric coating. We first demonstrated that a fine tuning of the surface peptide density plays a crucial role to fully exploit the potential of oriented and multiple peptide display. We then compared the three multiple epitope presentations in a microarray assay using sera samples from milk allergic patients, confirming that a multiple presentation, in particular that of the tandem construct, allows for a more efficient characterization of IgE-binding fingerprints at a statistically significant level. To gain insights on the binding parameters that characterize antibody/epitopes affinity, we selected the most reactive epitope of the series (LAC1) and performed a Surface Plasmon Resonance Imaging (SPRi) analysis comparing different epitope architectures (linear versus branched versus tandem). We demonstrated that the tandem peptide provides an approximately twofold increased binding capacity with respect to the linear and branched peptides, that could be attributed to a lower rate of dissociation (K d ). Copyright © 2017 Elsevier B.V. All rights reserved.
Michaeli, Yael; Sinik, Keren; Haus-Cohen, Maya; Reiter, Yoram
2012-04-01
Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis for NKG2A/CD94 recognition of HLA-E
Kaiser, Brett K.; Pizarro, Juan Carlos; Kerns, Julie; Strong, Roland K.
2008-01-01
The NKG2x/CD94 (x = A, C, E) natural killer-cell receptors perform an important role in immunosurveillance by binding to HLA-E complexes that exclusively present peptides derived from MHC class I leader sequences, thereby monitoring MHC class I expression. We have determined the crystal structure of the NKG2A/CD94/HLA-E complex at 4.4-Å resolution, revealing two critical aspects of this interaction. First, the C-terminal region of the peptide, which displays the most variability among class I leader sequences, interacts entirely with CD94, the invariant component of these receptors. Second, residues 167–170 of NKG2A/C account for the ≈6-fold-higher affinity of the inhibitory NKG2A/CD94 receptor compared to its activating NKG2C/CD94 counterpart. These residues do not contact HLA-E or peptide directly but instead form part of the heterodimer interface with CD94. An evolutionary analysis across primates reveals that whereas CD94 is evolving under purifying selection, both NKG2A and NKG2C are evolving under positive selection. Specifically, residues at the CD94 interface have evolved under positive selection, suggesting that the evolution of these genes is driven by an interaction with pathogen-derived ligands. Consistent with this possibility, we show that NKG2C/CD94, but not NKG2A/CD94, weakly but specifically binds to the CMV MHC-homologue UL18. Thus, the evolution of the NKG2x/CD94 family of receptors has likely been shaped both by the need to bind the invariant HLA-E ligand and the need to avoid subversion by pathogen-derived decoys. PMID:18448674
Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.
Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng
2017-01-15
The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.
A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines.
Toussaint, Nora C; Dönnes, Pierre; Kohlbacher, Oliver
2008-12-01
Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore, as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.
Wolny, Marcin; Colegrave, Melanie; Colman, Lucy; White, Ed; Knight, Peter J; Peckham, Michelle
2013-11-01
It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301-1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.
Homan, E Jane; Bremel, Robert D
2014-01-01
Resurgent mumps outbreaks have raised questions about the current efficacy of mumps vaccines. We have applied immunoinformatics techniques based on principal component analysis to evaluate patterns in predicted B-cell linear epitopes, MHC binding affinity and cathepsin cleavage in the hemagglutinin neuraminidase protein of vaccine strains and wild-type mumps isolates. We have mapped predicted MHC-peptide binding for 37 MHC-I and 28 MHC-II alleles and predicted cleavage by cathepsin B, L and S. By all measures we applied Jeryl-Lynn JL5 major strain is an outlier with immunomic features arising from a small number of amino acid changes that distinguish it from other virus strains. Individuals vaccinated with Jeryl-Lynn who are not exposed to wild-type virus until their protective antibody titer has waned may be unable to recall a protective immune response when exposed to wild-type virus. Dependence on serology to evaluate mumps vaccines may have overemphasized the conservation of one neutralizing antibody epitope, at the expense of monitoring other related changes in the HN protein that could affect recall responses. PMID:24275080
Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S.; Tosi, Giovanna
2013-01-01
The activation of CD4+ T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution. PMID:23986750
Goswami, Ravinder; Singh, Archana; Gupta, Nandita; Rani, Rajni
2012-09-01
The pathogenesis of isolated hypoparathyroidism, also referred to as idiopathic hypoparathyroidism (IH), is not clear. There is a paucity of information related to the immunogenetic basis of the disease due to its rarity. A recurrent theme of several autoimmune disorders is aberrant antigen presentation. We investigated for the association of alleles of the human leukocyte antigen (HLA) class I and II loci with IH. A total of 134 patients with IH and 902 healthy controls from the same ethnic background participated in the study. There was a significant increase of HLA class I alleles HLA-A*26:01 [P < 1.71 × 10(-34); odds ratio (OR) = 9.29; 95% confidence interval (CI) = 6.08-14.16] and HLA-B*08:01 (P < 8.19 × 10(-6); OR = 2.59; 95% CI = 1.63-4.04) in patients with IH compared to healthy controls. However, the association of A*26:01 was primary because B*08:01 was in linkage disequilibrium with A*26:01. Although the major histocompatibility complex (MHC) is very polymorphic, several alleles of HLA loci share key residues at anchor positions in the peptide binding pockets such that similar peptides may be presented by different MHC molecules encoded by the same locus. These allelic forms with similar anchoring amino acids have been clustered in supertypes. An analysis of HLA-A locus supertypes A01, A02, A03, and A04 revealed that supertype A01 was significantly increased (P < 9.18 × 10(-9); OR = 2.95) in IH compared to controls. However, this increase in the supertype A01 was contributed by A*26:01 because 68.7% of the A01 samples had A*26:01. Other alleles of the supertype did not show any significant differences. The strong association of HLA-A*26:01 suggests an important role of MHC class I-mediated presentation of autoantigenic peptides to CD8(+) cytotoxic T cells in the pathogenesis of IH. These data provide evidence for the autoimmune etiology of IH akin to other autoimmune disorders like type 1 diabetes and rheumatoid arthritis.
Vasireddi, Mugdha
2012-01-01
B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8+ T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions. PMID:22973043
List, Claudia; Qi, Weihong; Maag, Eva; Gottstein, Bruno; Müller, Norbert; Felger, Ingrid
2010-01-01
Background Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. Methodology/Principal Findings Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. Conclusions/Significance This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens. PMID:20689813
A vaccine targeting mutant IDH1 induces antitumour immunity.
Schumacher, Theresa; Bunse, Lukas; Pusch, Stefan; Sahm, Felix; Wiestler, Benedikt; Quandt, Jasmin; Menn, Oliver; Osswald, Matthias; Oezen, Iris; Ott, Martina; Keil, Melanie; Balß, Jörg; Rauschenbach, Katharina; Grabowska, Agnieszka K; Vogler, Isabel; Diekmann, Jan; Trautwein, Nico; Eichmüller, Stefan B; Okun, Jürgen; Stevanović, Stefan; Riemer, Angelika B; Sahin, Ugur; Friese, Manuel A; Beckhove, Philipp; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael
2014-08-21
Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.
On-chip activation and subsequent detection of individual antigen-specific T cells
Song, Qing; Han, Qing; Bradshaw, Elizabeth M.; Kent, Sally C.; Raddassi, Khadir; Nilsson, Björn; Nepom, Gerald T.; Hafler, David A.; Love, J. Christopher
2010-01-01
The frequencies of antigen-specific CD4+ T cells in samples of human tissue has been difficult to determine accurately ex vivo, particularly for autoimmune diseases such as multiple sclerosis or Type 1 diabetes. Conventional approaches involve the expansion of primary T cells in vitro to increase the numbers of cells, and a subsequent assessment of the frequencies of antigen-specific T cells in the expanded population by limiting dilution or by using fluorescently labeled tetramers of peptide-loaded major histocompatibility complex (MHC) receptors. Here we describe an alternative approach that uses arrays of subnanoliter wells coated with recombinant peptide-loaded MHC Class II monomers to isolate and stimulate individual CD4+ T cells in an antigen-specific manner. In these experiments, activation was monitored using microengraving to capture two cytokines (IFNγ and IL-17) released from single cells. This new method should enable direct enumeration of antigen-specific CD4+ T cells ex vivo from clinical samples. PMID:20000848
Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands.
van den Berg, Hugo A; Rand, David A
2004-12-21
The ability of T lymphocytes (T cells) to recognize and attack foreign invaders while leaving healthy cells unharmed is often analysed as a discrete self/non-self dichotomy, with each peptide/MHC ligand classified as either self or non-self. We argue that the ligand immunogenicity is more naturally treated as a continuous quantity, and show how to define and quantitate relative ligand immunogenicity. In our theory, self-tolerance is acquired through reduction of the relative immunogenicity of autoantigens, whereas xenoantigens, typically not presented during induction of deletional tolerance, retain a high degree of relative immunogenicity. Autoantigens that are not prominently presented in deletional tolerance likewise retain a high relative immunogenicity and remain essentially foreign. According to our analysis, any given autoantigen can attain a high level of relative immunogenicity, provided it is presented at sufficiently high levels. Our theory provides a quantitative tool to analyse the immunogenicity of tumour-associated neoantigens and the aetiology of autoimmune disease.
Tuli, Amit; Sharma, Mahak; McIlhaney, Mary M.; Talmadge, James E.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.
2008-01-01
The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to cytotoxic T lymphocytes by cell surface major histocompatibility complex (MHC) class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule Kd. In the current study, APLP2 was found to associate with folded Kd molecules following their endocytosis and to increase the amount of endocytosed Kd. In addition, increased expression of APLP2 was shown to decrease Kd surface expression and thermostability. Correspondingly, Kd thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of Kd molecules. PMID:18641335
What chickens would tell you about the evolution of antigen processing and presentation.
Kaufman, Jim
2015-06-01
Outside of mammals, antigen processing and presentation have only been investigated in chickens. The chicken MHC is organized differently than mammals, allowing the co-evolution of polymorphic genes, with each MHC haplotype having a set of TAP1, TAP2 and tapasin alleles directed to high expression of a single classical class I molecule. However, the class I alleles vary in the size of peptide-binding repertoire, along with a suite of other properties. The salient features of the chicken MHC are found in many non-mammalian vertebrates, and are likely to have been set at the origin of the adaptive immune system of jawed vertebrates, with unrelated genes co-evolving to set up the original pathways. Half a billion years later, various features of presentation and resistance to disease still reflect this ancestral arrangement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transformation of the genital epithelial tract occurs early in California sea lion development
Barragán-Vargas, Cecilia; Montano-Frías, Jorge; Ávila Rosales, Germán; Godínez-Reyes, Carlos R.; Acevedo-Whitehouse, Karina
2016-01-01
An unusually high prevalence of metastatic urogenital carcinoma has been observed in free-ranging California sea lions stranded off the coast of California in the past two decades. No cases have been reported for sea lions in the relatively unpolluted Gulf of California. We investigated occurrence of genital epithelial transformation in 60 sea lions (n=57 pups and 3 adult females) from the Gulf of California and examined whether infection by a viral pathogen previously found to be associated with urogenital carcinoma accounted for such alterations. We also explored the contribution of MHC class II gene expression on transformation. Cellular alterations, such as squamous cell atypia (ASC), atypical squamous cells of undetermined significance (ASCUS) and low-grade squamous intraepithelial lesions were observed in 42% of the pups and in 67% of the adult females. Normal genital epithelium was more common in male than female pups. ASC was five times more likely to occur in older pups. Epithelial alterations were unrelated to infection by the potentially oncogenic otarine type I gammaherpesvirus (OtHV-1), but ASCUS was more common in pups with marked and severe inflammation. Expression of MHC class II DRB loci (Zaca DRB-D) by peripheral antigen-presenting leucocytes showed a slightly ‘protective’ effect for ASC. We propose that transformation of the California sea lion genital epithelium is relatively common in young animals, increases with age and is probably the result of infection by an unidentified pathogen. Expression of a specific MHC class II gene, suggestive of presentation of specific antigenic peptides to immune effectors, appears to lower the risk of transformation. Our study provides the first evidence that epithelial transformation of the California sea lion genital tract is relatively common, even from an early age, and raises questions regarding differences in sea lion cancer-detection and -repair success between geographical regions. PMID:27069641
Quantitating T cell cross-reactivity for unrelated peptide antigens.
Ishizuka, Jeffrey; Grebe, Kristie; Shenderov, Eugene; Peters, Bjoern; Chen, Qiongyu; Peng, Yanchun; Wang, Lili; Dong, Tao; Pasquetto, Valerie; Oseroff, Carla; Sidney, John; Hickman, Heather; Cerundolo, Vincenzo; Sette, Alessandro; Bennink, Jack R; McMichael, Andrew; Yewdell, Jonathan W
2009-10-01
Quantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity. We failed to identify any cross-reactions between the synthetic peptides in the panel and polyclonal CD8+ T cells raised to viral or alloantigens. These findings provide the best estimate to date of the frequency of T cell cross-reactivity to unrelated peptides ( approximately 1/30,000), explaining why cross-reactions between unrelated pathogens are infrequently encountered and providing a critical parameter for understanding the scope of self-tolerance.
Quantitating T Cell Cross-Reactivity for Unrelated Peptide Antigens1
Ishizuka, Jeffrey; Grebe, Kristie; Shenderov, Eugene; Peters, Bjoern; Chen, Qiongyu; Peng, YanChun; Wang, Lili; Dong, Tao; Pasquetto, Valerie; Osroff, Carla; Sidney, John; Hickman, Heather; Cerundolo, Vincenzo; Sette, Alessandro; Bennink, Jack R.; McMchael, Andrew; Yewdell, Jonathan W.
2009-01-01
Quantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity. We failed to identify any cross-reactions between the synthetic peptides in the panel and polyclonal CD8+ T cells raised to viral or alloantigens. These findings provide the best estimate to date of the frequency of T cell cross-reactivity to unrelated peptides (∼1/30,000), explaining why cross-reactions between unrelated pathogens are infrequently encountered and providing a critical parameter for understanding the scope of self-tolerance. PMID:19734234
Cardiac stem cell genetic engineering using the alphaMHC promoter.
Bailey, Brandi; Izarra, Alberto; Alvarez, Roberto; Fischer, Kimberlee M; Cottage, Christopher T; Quijada, Pearl; Díez-Juan, Antonio; Sussman, Mark A
2009-11-01
Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. Normal CSCs engineered with fluorescent reporter protein constructs under control of the alphaMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the alphaMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. Therapeutic genes controlled by the alphaMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy.
Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya
2006-08-01
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
An automated benchmarking platform for MHC class II binding prediction methods.
Andreatta, Massimo; Trolle, Thomas; Yan, Zhen; Greenbaum, Jason A; Peters, Bjoern; Nielsen, Morten
2018-05-01
Computational methods for the prediction of peptide-MHC binding have become an integral and essential component for candidate selection in experimental T cell epitope discovery studies. The sheer amount of published prediction methods-and often discordant reports on their performance-poses a considerable quandary to the experimentalist who needs to choose the best tool for their research. With the goal to provide an unbiased, transparent evaluation of the state-of-the-art in the field, we created an automated platform to benchmark peptide-MHC class II binding prediction tools. The platform evaluates the absolute and relative predictive performance of all participating tools on data newly entered into the Immune Epitope Database (IEDB) before they are made public, thereby providing a frequent, unbiased assessment of available prediction tools. The benchmark runs on a weekly basis, is fully automated, and displays up-to-date results on a publicly accessible website. The initial benchmark described here included six commonly used prediction servers, but other tools are encouraged to join with a simple sign-up procedure. Performance evaluation on 59 data sets composed of over 10 000 binding affinity measurements suggested that NetMHCIIpan is currently the most accurate tool, followed by NN-align and the IEDB consensus method. Weekly reports on the participating methods can be found online at: http://tools.iedb.org/auto_bench/mhcii/weekly/. mniel@bioinformatics.dtu.dk. Supplementary data are available at Bioinformatics online.
A Systematic Review of Fetal Genes as Biomarkers of Cardiac Hypertrophy in Rodent Models of Diabetes
2014-01-01
Pathological cardiac hypertrophy activates a suite of genes called the fetal gene program (FGP). Pathological hypertrophy occurs in diabetic cardiomyopathy (DCM); therefore, the FGP is widely used as a biomarker of DCM in animal studies. However, it is unknown whether the FGP is a consistent marker of hypertrophy in rodent models of diabetes. Therefore, we analyzed this relationship in 94 systematically selected studies. Results showed that diabetes induced with cytotoxic glucose analogs such as streptozotocin was associated with decreased cardiac weight, but genetic or diet-induced models of diabetes were significantly more likely to show cardiac hypertrophy (P<0.05). Animal strain, sex, age, and duration of diabetes did not moderate this effect. There were no correlations between the heart weight:body weight index and mRNA or protein levels of the fetal genes α-myosin heavy chain (α-MHC) or β-MHC, sarco/endoplasmic reticulum Ca2+-ATPase, atrial natriuretic peptide (ANP), or brain natriuretic peptide. The only correlates of non-indexed heart weight were the protein levels of α-MHC (Spearman's ρ = 1, P<0.05) and ANP (ρ = −0.73, P<0.05). These results indicate that most commonly measured genes in the FGP are confounded by diabetogenic methods, and are not associated with cardiac hypertrophy in rodent models of diabetes. PMID:24663494
Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart
Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta
2012-01-01
Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596
Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W
2014-02-14
Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S
2014-06-15
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.
Non-natural amino acid peptide microarrays to discover Ebola virus glycoprotein ligands.
Rabinowitz, Joshua A; Lainson, John C; Johnston, Stephen Albert; Diehnelt, Chris W
2018-02-06
We demonstrate a platform to screen a virus pseudotyped with Ebola virus glycoprotein (GP) against a library of peptides that contain non-natural amino acids to develop GP affinity ligands. This system could be used for rapid development of peptide-based antivirals for other emerging or neglected tropical infectious diseases.
Fink, Annette; Renzaho, Angeliqué; Reddehase, Matthias J; Lemmermann, Niels A W
2013-12-16
The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1g complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1g interface.
Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen
2009-09-01
An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.
Comparative study of classification algorithms for immunosignaturing data
2012-01-01
Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696
Cole, David K.; Sami, Malkit; Scott, Daniel R.; Rizkallah, Pierre J.; Borbulevych, Oleg Y.; Todorov, Penio T.; Moysey, Ruth K.; Jakobsen, Bent K.; Boulter, Jonathan M.; Baker, Brian M.; Yi Li
2013-01-01
Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A∗0201) complexed with human T cell lymphotropic virus type 111–19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies. PMID:23805144
Hecker, Michael; Fitzner, Brit; Wendt, Matthias; Lorenz, Peter; Flechtner, Kristin; Steinbeck, Felix; Schröder, Ina; Thiesen, Hans-Jürgen; Zettl, Uwe Klaus
2016-01-01
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g. MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (p values <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392–411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS. PMID:26831522
CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.
Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D
1999-01-08
Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.
Intermittent Ca2+ signals mediated by Orai1 regulate basal T cell motility
Greenberg, Milton L; Jairaman, Amit; Akunwafo, Chijioke; Leverrier, Sabrina; Yu, Ying; Parker, Ian; Dynes, Joseph L
2017-01-01
Ca2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here, we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca2+ transients: short-duration ‘sparkles’ and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance. PMID:29239723
Bell, Charlotte R; MacHugh, Niall D; Connelley, Timothy K; Degnan, Kathryn; Morrison, W Ivan
2015-07-09
Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels. A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells. The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells used in vaccine production, coupled with a powerful adjuvant, are responsible for the generation of pathogenic alloantibodies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon.
Lukacs, Morten F; Harstad, Håvard; Bakke, Hege G; Beetz-Sargent, Marianne; McKinnel, Linda; Lubieniecki, Krzysztof P; Koop, Ben F; Grimholt, Unni
2010-03-05
We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene Sasa-UBA in addition to a soluble MHC class I molecule, Sasa-ULA. A pseudolocus for Sasa-UCA was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region. The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, ZAA. The IB region was extended with 350 kb including three new Z-lineage loci, ZBA, ZCA and ZDA in addition to a UGA locus. An allelic version of the IB region contained a functional UDA locus in addition to the UCA pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus SAA (previously known as UAA) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of UBA being dominantly expressed in gut, spleen and gills, and ZAA with high expression in blood. Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (UBA), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.
Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos
2010-01-01
Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance. PMID:20419139
Lai, Zengzu; Schreiber, John R
2009-05-21
Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.
In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase
Carbone, Catherine B.; Fernandes, Ricardo A.; Hui, Enfu; Su, Xiaolei; Garcia, K. Christopher; Vale, Ronald D.
2017-01-01
T cell signaling initiates upon the binding of peptide-loaded MHC (pMHC) on an antigen-presenting cell to the T cell receptor (TCR) on a T cell. TCR phosphorylation in response to pMHC binding is accompanied by segregation of the transmembrane phosphatase CD45 away from TCR–pMHC complexes. The kinetic segregation hypothesis proposes that CD45 exclusion shifts the local kinase–phosphatase balance to favor TCR phosphorylation. Spatial partitioning may arise from the size difference between the large CD45 extracellular domain and the smaller TCR–pMHC complex, although parsing potential contributions of extracellular protein size, actin activity, and lipid domains is difficult in living cells. Here, we reconstitute segregation of CD45 from bound receptor–ligand pairs using purified proteins on model membranes. Using a model receptor–ligand pair (FRB–FKBP), we first test physical and computational predictions for protein organization at membrane interfaces. We then show that the TCR–pMHC interaction causes partial exclusion of CD45. Comparing two developmentally regulated isoforms of CD45, the larger RABC variant is excluded more rapidly and efficiently (∼50%) than the smaller R0 isoform (∼20%), suggesting that CD45 isotypes could regulate signaling thresholds in different T cell subtypes. Similar to the sensitivity of T cell signaling, TCR–pMHC interactions with Kds of ≤15 µM were needed to exclude CD45. We further show that the coreceptor PD-1 with its ligand PD-L1, immunotherapy targets that inhibit T cell signaling, also exclude CD45. These results demonstrate that the binding energies of physiological receptor–ligand pairs on the T cell are sufficient to create spatial organization at membrane–membrane interfaces. PMID:29042512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borbulevych, Oleg Y.; Santhanagopolan, Sujatha M.; Hossain, Moushumi
2013-09-18
T cells engineered to express TCRs specific for tumor Ags can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Although DMF4 binds the two with a different orientation,more » altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity toward both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same Ags and the finding that TCR-binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity.« less
Borbulevych, Oleg Y.; Santhanagopolan, Sujatha M.; Hossain, Moushumi; Baker, Brian M.
2011-01-01
T cells engineered to express T cell receptors (TCRs) specific for tumor antigens can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Whereas DMF4 binds the two with a different orientation, altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity towards both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same antigens and the finding that TCR binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity. PMID:21795600
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2016-06-01
infiltrating T cells. Our team has achieved a number of accomplishments. We have determined the likely specificity of immunogenic peptides for MHC alleles...endeavoring to identify antigenic targets for breast cancer- infiltrating T cells. We have identified a number of candidates in breast cancer tissues as well
Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) Tapasin.
Pinto, Rute D; da Silva, Diogo V; Pereira, Pedro J B; dos Santos, Nuno M S
2012-01-01
Mammalian tapasin (TPN) is a key member of the major histocompatibility complex (MHC) class I antigen presentation pathway, being part of the multi-protein complex called the peptide loading complex (PLC). Several studies describe its important roles in stabilizing empty MHC class I complexes, facilitating peptide loading and editing the repertoire of bound peptides, with impact on CD8(+) T cell immune responses. In this work, the gene and cDNA of the sea bass (Dicentrarchus labrax) glycoprotein TPN have been isolated and characterized. The coding sequence has a 1329 bp ORF encoding a 442-residue precursor protein with a predicted 24-amino acid leader peptide, generating a 418-amino acid mature form that retains a conserved N-glycosylation site, three conserved mammalian tapasin motifs, two Ig superfamily domains, a transmembrane domain and an ER-retention di-lysine motif at the C-terminus, suggestive of a function similar to mammalian tapasins. Similar to the human counterpart, the sea bass TPN gene comprises 8 exons, some of which correspond to separate functional domains of the protein. A three-dimensional homology model of sea bass tapasin was calculated and is consistent with the structural features described for the human molecule. Together, these results support the concept that the basic structure of TPN has been maintained through evolution. Moreover, the present data provides information that will allow further studies on cell-mediated immunity and class I antigen presentation pathway in particular, in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Andrew I.; Dunstone, Michelle A.; Williamson, Nicholas A.
2010-07-20
A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of {beta}-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding {beta}-amino acid and examined the resultant efficacy of these mimotopes.more » Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with {beta}-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using {beta}-amino acids. We conclude that the rational incorporation of {beta}-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring {alpha}-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.« less
Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.
2016-01-01
ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904
Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei
2016-05-18
Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.
Mahmud, Hasan; Scherpen, Frank J.G.; de Boer, Tiny Meeuwsen; Lourens, Harm-Jan; Schoenherr, Caroline; Eder, Matthias; Scherr, Michaela; Guryev, Victor; De Bont, Eveline S.
2017-01-01
The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML. In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress. Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment. PMID:28978037
Bartl, S; Weissman, I L
1994-01-04
The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse shark, Ginglymostoma cirratum. Two clones, most probably alleles, encode proteins which differ by 13 amino acids located in the putative antigen-binding cleft. The protein structure and the location of polymorphic residues are similar to their mammalian counterparts. Although these genes appear to encode a typical MHC protein, no T-cell-mediated responses have been demonstrated in cartilaginous fish. The nurse shark represents the most phylogenetically primitive organism in which both class IIA [Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. & Flajnik, M.F. (1992) Proc. Natl. Acad. Sci USA 89, 6688-6692] and class IIB genes, presumably encoding the alpha/beta heterodimer, have been isolated.
Organization of the resting TCR in nanoscale oligomers.
Schamel, Wolfgang W A; Alarcón, Balbino
2013-01-01
Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa
2008-01-01
Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845
Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila
2013-02-01
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Diagnostic Peptide Discovery: Prioritization of Pathogen Diagnostic Markers Using Multiple Features
Carmona, Santiago J.; Sartor, Paula A.; Leguizamón, María S.; Campetella, Oscar E.; Agüero, Fernán
2012-01-01
The availability of complete pathogen genomes has renewed interest in the development of diagnostics for infectious diseases. Synthetic peptide microarrays provide a rapid, high-throughput platform for immunological testing of potential B-cell epitopes. However, their current capacity prevent the experimental screening of complete “peptidomes”. Therefore, computational approaches for prediction and/or prioritization of diagnostically relevant peptides are required. In this work we describe a computational method to assess a defined set of molecular properties for each potential diagnostic target in a reference genome. Properties such as sub-cellular localization or expression level were evaluated for the whole protein. At a higher resolution (short peptides), we assessed a set of local properties, such as repetitive motifs, disorder (structured vs natively unstructured regions), trans-membrane spans, genetic polymorphisms (conserved vs. divergent regions), predicted B-cell epitopes, and sequence similarity against human proteins and other potential cross-reacting species (e.g. other pathogens endemic in overlapping geographical locations). A scoring function based on these different features was developed, and used to rank all peptides from a large eukaryotic pathogen proteome. We applied this method to the identification of candidate diagnostic peptides in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We measured the performance of the method by analyzing the enrichment of validated antigens in the high-scoring top of the ranking. Based on this measure, our integrative method outperformed alternative prioritizations based on individual properties (such as B-cell epitope predictors alone). Using this method we ranked 10 million 12-mer overlapping peptides derived from the complete T. cruzi proteome. Experimental screening of 190 high-scoring peptides allowed the identification of 37 novel epitopes with diagnostic potential, while none of the low scoring peptides showed significant reactivity. Many of the metrics employed are dependent on standard bioinformatic tools and data, so the method can be easily extended to other pathogen genomes. PMID:23272069
Lee, Carol; Moroldo, Marco; Perdomo-Sabogal, Alvaro; Mach, Núria; Marthey, Sylvain; Lecardonnel, Jérôme; Wahlberg, Per; Chong, Amanda Y; Estellé, Jordi; Ho, Simon Y W; Rogel-Gaillard, Claire; Gongora, Jaime
2018-06-01
The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.
Fink, Annette; Renzaho, Angeliqué; Reddehase, Matthias J.; Lemmermann, Niels A. W.
2013-01-01
The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface. PMID:24351798
Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna
2008-08-15
Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.
Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei
2012-09-21
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes
Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta
2015-01-01
Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune diseases. PMID:26039878
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K
2008-09-17
Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning aminomore » acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.« less
Borbulevych, Oleg Y.; Insaidoo, Francis K.; Baxter, Tiffany K.; Powell, Daniel J.; Johnson, Laura A.; Restifo, Nicholas P.; Baker, Brian M.
2007-01-01
Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26–35 decamer, although only the 27–35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26–35 and 27–35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-126/27–35-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27–35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone. PMID:17719062
Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.
Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta
2015-01-01
The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune diseases.
Identification of glycopeptides as post-translationally modified neoantigens in leukemia
Malaker, Stacy A.; Penny, Sarah A.; Steadman, Lora G.; Myers, Paisley T.; Loke, Justin C; Raghavan, Manoj; Bai, Dina L.; Shabanowitz, Jeffrey; Hunt, Donald F.; Cobbold, Mark
2017-01-01
Leukemias are highly immunogenic but have a low mutational load, providing few mutated peptide targets. Thus, the identification of alternative neoantigens is a pressing need. Here, we identify 36 MHC class I–associated peptide antigens with O-linked β-N-acetylglucosamine (O-GlcNAc) modifications as candidate neoantigens, using three experimental approaches. Thirteen of these peptides were also detected with disaccharide units on the same residues and two contain either mono- and/or di-methylated arginine residues. A subset were linked with key cancer pathways, and these peptides were shared across all of the leukemia patient samples tested (5/5). Seven of the O-GlcNAc peptides were synthesized and five (71%) were shown to be associated with multifunctional memory T-cell responses in healthy donors. An O-GlcNAc-specific T-cell line specifically killed autologous cells pulsed with the modified peptide, but not the equivalent unmodified peptide. Therefore, these post-translationally modified neoantigens provide logical targets for cancer immunotherapy. PMID:28314751
Moghram, Basem Ameen; Nabil, Emad; Badr, Amr
2018-01-01
T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB1*0101 allele of the Wang benchmark dataset. The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
The Role of NKT Cells in Tumor Immunity
Terabe, Masaki; Berzofsky, Jay A.
2009-01-01
NKT cells are a relatively newly recognized member of the immune community, with profound effects on the rest of the immune system despite their small numbers. They are true T cells with a T cell receptor (TCR), but unlike conventional T cells that detect peptide antigens presented by conventional major histocompatibility (MHC) molecules, NKT cells recognize lipid antigens presented by CD1d, a non-classical MHC molecule. As members of both the innate and adaptive immune systems, they bridge the gap between these, and respond rapidly to set the tone for subsequent immune responses. They fill a unique niche in providing the immune system a cellular arm to recognize lipid antigens. They play both effector and regulatory roles in infectious and autoimmune diseases. Furthermore, subsets of NKT cells can play distinct and sometimes opposing roles. In cancer, type I NKT cells, defined by their invariant TCR using Vα14Jα18 in mice and Vα24Jα18 in humans, are mostly protective, by producing interferon-γ to activate NK and CD8+ T cells and by activating dendritic cells to make IL-12. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibit tumor immunity. Moreover, type I and type II NKT cells counter-regulate each other, forming a new immunoregulatory axis. Because NKT cells respond rapidly, the balance along this axis can greatly influence other immune responses that follow. Therefore, learning to manipulate the balance along the NKT regulatory axis may be critical to devising successful immunotherapies for cancer. PMID:19055947
The differentiation and protective function of cytolytic CD4 T cells in influenza infection
USDA-ARS?s Scientific Manuscript database
CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity play a role in chronic, as well as, acute infections...
Alvarez, Bruno; Barra, Carolina; Nielsen, Morten; Andreatta, Massimo
2018-01-12
Recent advances in proteomics and mass-spectrometry have widely expanded the detectable peptide repertoire presented by major histocompatibility complex (MHC) molecules on the cell surface, collectively known as the immunopeptidome. Finely characterizing the immunopeptidome brings about important basic insights into the mechanisms of antigen presentation, but can also reveal promising targets for vaccine development and cancer immunotherapy. This report describes a number of practical and efficient approaches to analyze immunopeptidomics data, discussing the identification of meaningful sequence motifs in various scenarios and considering current limitations. Guidelines are provided for the filtering of false hits and contaminants, and to address the problem of motif deconvolution in cell lines expressing multiple MHC alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how machine learning can be readily employed by non-expert users to generate accurate prediction models directly from mass-spectrometry eluted ligand data sets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anisimov, Sergey V; Khavinson, Vladimir Kh; Anisimov, Vladimir N
2004-01-01
Aging is associated with significant alterations in gene expression in numerous organs and tissues. Anti-aging therapy with peptide bioregulators holds much promise for the correction of age-associated changes, making a screening for their molecular targets in tissues an important question of modern gerontology. The synthetic tetrapeptide Cortagen (Ala-Glu-Asp-Pro) was obtained by directed synthesis based on amino acid analysis of natural brain cortex peptide preparation Cortexin. In humans, Cortagen demonstrated a pronounced therapeutic effect upon the structural and functional posttraumatic recovery of peripheral nerve tissue. Importantly, other effects were also observed in cardiovascular and cerebrovascular parameters. Based on these latter observations, we hypothesized that acute course of Cortagen treatment, large-scale transcriptome analysis, and identification of transcripts with altered expression in heart would facilitate our understanding of the mechanisms responsible for this peptide biological effects. We therefore analyzed the expression of 15,247 transcripts in the heart of female 6-months CBA mice receiving injections of Cortagen for 5 consecutive days was studied by cDNA microarrays. Comparative analysis of cDNA microarray hybridisation with heart samples from control and experimental group revealed 234 clones (1,53% of the total number of clones) with significant changes of expression that matched 110 known genes belonging to various functional categories. Maximum up- and down-regulation was +5.42 and -2.86, respectively. Intercomparison of changes in cardiac expression profile induced by synthetic peptides (Cortagen, Vilon, Epitalon) and pineal peptide hormone melatonin revealed both common and specific effects of Cortagen upon gene expression in heart.
Effect of Mild Acid on Gene Expression in Staphylococcus aureus
Weinrick, Brian; Dunman, Paul M.; McAleese, Fionnuala; Murphy, Ellen; Projan, Steven J.; Fang, Yuan; Novick, Richard P.
2004-01-01
During staphylococcal growth in glucose-supplemented medium, the pH of a culture starting near neutrality typically decreases by about 2 units due to the fermentation of glucose. Many species can comfortably tolerate the resulting mildly acidic conditions (pH, ∼5.5) by mounting a cellular response, which serves to defend the intracellular pH and, in principle, to modify gene expression for optimal performance in a mildly acidic infection site. In this report, we show that changes in staphylococcal gene expression formerly thought to represent a glucose effect are largely the result of declining pH. We examine the cellular response to mild acid by microarray analysis and define the affected gene set as the mild acid stimulon. Many of the genes encoding extracellular virulence factors are affected, as are genes involved in regulation of virulence factor gene expression, transport of sugars and peptides, intermediary metabolism, and pH homeostasis. Key results are verified by gene fusion and Northern blot hybridization analyses. The results point to, but do not define, possible regulatory pathways by which the organism senses and responds to a pH stimulus. PMID:15576791
Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Takakura, Kazuki; Mori, Masako; Yoshizaki, Shinji; Tsukinaga, Shintaro; Odahara, Shunichi; Koyama, Seita; Imazu, Hiroo; Uchiyama, Kan; Kajihara, Mikio; Arakawa, Hiroshi; Misawa, Takeyuki; Toyama, Yoichi; Yanagisawa, Satoru; Ikegami, Masahiro; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Ishidao, Takefumi; Yusa, Sei-Ichi; Shimodaira, Shigetaka; Gong, Jianlin; Sugiyama, Haruo; Ohkusa, Toshifumi; Tajiri, Hisao
2014-08-15
We performed a phase I trial to investigate the safety, clinical responses, and Wilms' tumor 1 (WT1)-specific immune responses following treatment with dendritic cells (DC) pulsed with a mixture of three types of WT1 peptides, including both MHC class I and II-restricted epitopes, in combination with chemotherapy. Ten stage IV patients with pancreatic ductal adenocarcinoma (PDA) and 1 patient with intrahepatic cholangiocarcinoma (ICC) who were HLA-positive for A*02:01, A*02:06, A*24:02, DRB1*04:05, DRB1*08:03, DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01 were enrolled. The patients received one course of gemcitabine followed by biweekly intradermal vaccinations with mature DCs pulsed with MHC class I (DC/WT1-I; 2 PDA and 1 ICC), II (DC/WT1-II; 1 PDA), or I/II-restricted WT1 peptides (DC/WT1-I/II; 7 PDA), and gemcitabine. The combination therapy was well tolerated. WT1-specific IFNγ-producing CD4(+) T cells were significantly increased following treatment with DC/WT1-I/II. WT1 peptide-specific delayed-type hypersensitivity (DTH) was detected in 4 of the 7 patients with PDA vaccinated with DC/WT1-I/II and in 0 of the 3 patients with PDA vaccinated with DC/WT1-I or DC/WT1-II. The WT1-specific DTH-positive patients showed significantly improved overall survival (OS) and progression-free survival (PFS) compared with the negative control patients. In particular, all 3 patients with PDA with strong DTH reactions had a median OS of 717 days. The activation of WT1-specific immune responses by DC/WT1-I/II combined with chemotherapy may be associated with disease stability in advanced pancreatic cancer. ©2014 American Association for Cancer Research.
HIV-1 Envelope Resistance to Proteasomal Cleavage: Implications for Vaccine Induced Immune Responses
Steers, Nicholas J.; Ratto-Kim, Silvia; de Souza, Mark S.; Currier, Jeffrey R.; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Rao, Mangala
2012-01-01
Background Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. Methods In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4+ T-cell lines derived from RV144 volunteers. Results Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4+ T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. Conclusions Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4+T cell and antibody responses in the RV144 vaccinees. PMID:22880042
Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam
2017-06-01
To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity
Liu, Geng; Li, Dongli; Li, Zhang; Qiu, Si; Li, Wenhui; Chao, Cheng-chi; Yang, Naibo; Li, Handong; Cheng, Zhen; Song, Xin; Cheng, Le; Zhang, Xiuqing; Wang, Jian; Yang, Huanming
2017-01-01
Abstract Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles. PMID:28327987
Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto
2015-01-01
Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869
Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto
2015-01-01
Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.
Atassi, M Z
2015-12-01
Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barnea, Eilon; Melamed Kadosh, Dganit; Haimovich, Yael; Satumtira, Nimman; Dorris, Martha L.; Nguyen, Mylinh T.; Hammer, Robert E.; Tran, Tri M.; Colbert, Robert A.; Taurog, Joel D.
2017-01-01
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502. PMID:28188227
Nielsen, Morten; Andreatta, Massimo
2017-07-03
Peptides are extensively used to characterize functional or (linear) structural aspects of receptor-ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide-MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor-ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Liu, Yanjie; Li, Xin; Qi, Jianxun; Zhang, Nianzhi; Xia, Chun
2016-01-01
It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms. PMID:27122108
Goyos, Ana; Guethlein, Lisbeth A.; Horowitz, Amir; Hilton, Hugo G.; Gleimer, Michael; Brodsky, Frances M.; Parham, Peter
2015-01-01
Chimpanzees have orthologs of the six, fixed, functional human MHC class I genes. But in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T-cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different as shown using specific monoclonal and polyclonal antibodies made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules. PMID:26371256
2004-01-01
of RNA From Peripheral Blood Cells: A Validation Study for Molecular Diagnostics by Microarray and Kinetic RT-PCR Assays Application in...VALIDATION STUDY FOR MOLECULAR DIAGNOSTICS BY MICROARRAY AND KINETIC RT-PCR ASSAYS APPLICATION IN AEROSPACE MEDICINE INTRODUCTION Extraction of cellular
Learning a peptide-protein binding affinity predictor with kernel ridge regression
2013-01-01
Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting peptide-protein binding affinities. The proposed approach is flexible and can be applied to predict any quantitative biological activity. Moreover, generating reliable peptide-protein binding affinities will also improve system biology modelling of interaction pathways. Lastly, the method should be of value to a large segment of the research community with the potential to accelerate the discovery of peptide-based drugs and facilitate vaccine development. The proposed kernel is freely available at http://graal.ift.ulaval.ca/downloads/gs-kernel/. PMID:23497081
Mapping of Epitopes Occurring in Bovine α(s1)-Casein Variants by Peptide Microarray Immunoassay.
Lisson, Maria; Erhardt, Georg
2016-01-01
Immunoglobulin E epitope mapping of milk proteins reveals important information about their immunologic properties. Genetic variants of αS1-casein, one of the major allergens in bovine milk, are until now not considered when discussing the allergenic potential. Here we describe the complete procedure to assess the allergenicity of αS1-casein variants B and C, which are frequent in most breeds, starting from milk with identification and purification of casein variants by isoelectric focusing (IEF) and anion-exchange chromatography, followed by in vitro gastrointestinal digestion of the casein variants, identification of the resulting peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), in silico analysis of the variant-specific peptides as allergenic epitopes, and determination of their IgE-binding properties by microarray immunoassay with cow's milk allergic human sera.
The Role of IDO in Muc1 Targeted Immunotherapy
2013-06-01
the immune system activation, such as S100A8 , S100A9, Fc receptors, MHC Class II molecules and even arginase were significantly up-regulated...protein analysis of CCN1 revealed that it was not significantly changed between 10 groups (Figure 26A). Also although S100A8 and S100A9 were...highly altered in our RNA microarray data, protein levels of S100A8 and S100A9 were highly variable within our tumors and thus an exact correlation to
Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L
2007-06-01
Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.
Ferrara, Giovanni; Valentini, Davide; Rao, Martin; Wahlström, Jan; Grunewald, Johan; Larsson, Lars-Olof; Brighenti, Susanna; Dodoo, Ernest; Zumla, Alimuddin; Maeurer, Markus
2017-03-01
Sarcoidosis is considered an idiopathic granulomatous disease, although similar immunological and clinical features with tuberculosis (TB) suggest mycobacterial involvement in its pathogenesis. High-content peptide microarrays (HCPM) may help to decipher mycobacteria-specific antibody reactivity in sarcoidosis. Serum samples from patients with sarcoidosis, Löfgren's syndrome, and TB, as well as from healthy individuals (12/group), were tested on HCPM containing 5964 individual peptides spanning 154 Mycobacterium tuberculosis proteins displayed as 15-amino acid stretches. Inclusion/exclusion and significance analyses were performed according to published methods. Each study group recognized 68-78% M. tuberculosis peptides at least once. M. tuberculosis epitope recognition by sarcoidosis patient sera was 42.7%, and by TB patient sera was 39.1%. Seven and 16 peptides were recognized in 9/12 (75%) and 8/12 (67%) sarcoidosis patient sera but not in TB patient sera, respectively. Nine (75%) and eight (67%) out of twelve TB patient sera, respectively recognized M. tuberculosis peptides that were not recognized in sarcoidosis patient sera. Specific IgG recognition patterns for M. tuberculosis antigens in sarcoidosis patients re-affirm mycobacterial involvement in sarcoidosis, providing biologically relevant targets for future studies pertaining to diagnostics and immunotherapy. Copyright © 2017. Published by Elsevier Ltd.
Pérez-Bercoff, Lena; Valentini, Davide; Gaseitsiwe, Simani; Mahdavifar, Shahnaz; Schutkowski, Mike; Poiret, Thomas; Pérez-Bercoff, Åsa; Ljungman, Per; Maeurer, Markus J.
2014-01-01
Cytomegalovirus (CMV) infection represents a vital complication after Hematopoietic Stem Cell Transplantation (HSCT). We screened the entire CMV proteome to visualize the humoral target epitope-focus profile in serum after HSCT. IgG profiling from four patient groups (donor and/or recipient +/− for CMV) was performed at 6, 12 and 24 months after HSCT using microarray slides containing 17174 of 15mer-peptides overlapping by 4 aa covering 214 proteins from CMV. Data were analyzed using maSigPro, PAM and the ‘exclusive recognition analysis (ERA)’ to identify unique CMV epitope responses for each patient group. The ‘exclusive recognition analysis’ of serum epitope patterns segregated best 12 months after HSCT for the D+/R+ group (versus D−/R−). Epitopes were derived from UL123 (IE1), UL99 (pp28), UL32 (pp150), this changed at 24 months to 2 strongly recognized peptides provided from UL123 and UL100. Strongly (IgG) recognized CMV targets elicited also robust cytokine production in T-cells from patients after HSCT defined by intracellular cytokine staining (IL-2, TNF, IFN and IL-17). High-content peptide microarrays allow epitope profiling of entire viral proteomes; this approach can be useful to map relevant targets for diagnostics and therapy in patients with well defined clinical endpoints. Peptide microarray analysis visualizes the breadth of B-cell immune reconstitution after HSCT and provides a useful tool to gauge immune reconstitution. PMID:24740411
Transfection microarray and the applications.
Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun
2009-05-01
Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.