Science.gov

Sample records for perennial ryegrass lolium

  1. Sulphate fertilization ameliorates long-term aluminum toxicity symptoms in perennial ryegrass (Lolium perenne).

    PubMed

    Wulff-Zottele, Cristian; Hesse, Holger; Fisahn, Joachim; Bromke, Mariusz; Vera-Villalobos, Hernán; Li, Yan; Frenzel, Falko; Giavalisco, Patrick; Ribera-Fonseca, Alejandra; Zunino, Ligia; Caruso, Immcolata; Stohmann, Evelyn; Mora, Maria de la Luz

    2014-10-01

    Effects of the oxanion sulphate on plant aluminum (Al(3+)) detoxification mechanisms are not well understood. Therefore, holistic physiological and biochemical modifications induced by progressively increased doses of sulphate fertilization in the presence of long-term Al(3+) stress were investigated in the aluminum sensitive perennial ryegrass (Lolium perenne L. cvJumbo). Plant growth inhibition induced by Al(3+) was decreased in response to increasing doses of sulphate supply. Aluminum concentrations measured in roots of perennial ryegrass by atomic absorption spectrometry declined significantly with increasing sulphate concentrations. In parallel, we determined a rise of sulphur in shoots and roots of perennial ryegrass. Inclusion of up to 360 μM of sulphate enhanced cysteine and glutathione biosynthesis in Al(3+) (1.07 μM) treated plants. This increase of thiol-containing compounds favored all modifications in the glutathione redox balance, declining lipid peroxidation, decreasing the activity of superoxide dismutase, and modifying the expression of proteins involved in the diminution of Al(3+) toxicity in roots. In particular, proteome analysis by 1D-SDS-PAGE and LC-MS/MS allowed to identify up (e.g. vacuolar proton ATPase, proteosome β subunit, etc) and down (Glyoxilase I, Ascorbate peroxidase, etc.) regulated proteins induced by Al(3+) toxicity symptoms in roots. Although, sulphate supply up to 480 μM caused a reduction in Al(3+) toxicity symptoms, it was not as efficient as compared to 360 μM sulphate fertilization. These results suggest that sulphate fertilization ameliorates Al(3+) toxicity responses in an intracellular specific manner within Lolium perenne.

  2. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  3. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed Central

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as ‘ergot alkaloid intoxication’. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of

  4. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  5. Ecological assessment of soil using a soil elutriate and the perennial ryegrass, Lolium perenne

    SciTech Connect

    Lawrence, C.; Meyers-Shone, L.; Duh, D.

    1995-12-31

    A 28-day plant bioassay using the perennial ryegrass, Lolium perenne, was utilized for an ecological assessment of soil from a hazardous waste site. An elutriate of the test soil was prepared and nutrients added, so that the seedlings would have direct exposure via uptake and to control for poor plant growth due to a lack of nutrients or proper soil profile characteristics. Use of an elutriate as the exposure medium assumes that those contaminants that can become waterborne for uptake by plants in the site conditions is the same as those which can be separated from adsorption to soil particulates during elutriate preparation. The ryegrass seeds were planted in a hydroponic system consisting of an upper chamber with an inert soil for a growth matrix and a lower reservoir with the nutrient and soil elutriate. Polyester cords were used to continuously wick the solution up to the inert soil and the chambers were drenched twice daily with the solution in the reservoir. At the conclusion of the study the plants` shoot length and dry weight (biomass) were measured to assess phytotoxicity of constituents in soil. The results of the test plants parameters were statistically compared to control plants to determine if test soil elutriates caused a measurable effect on ryegrass, The results of this plant bioassay provided additional and useful information for assessment of test soil.

  6. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants.

    PubMed

    Wang, Huanhua; Kou, Xiaoming; Pei, Zhiguo; Xiao, John Q; Shan, Xiaoquan; Xing, Baoshan

    2011-03-01

    To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe(3)O(4)) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe(3)O(4) NPs often induced more oxidative stress than Fe(3)O(4) bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe(3)O(4) NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l(-1) Fe(3)O(4) NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe(3)O(4) NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe(3)O(4) NPs was not significantly increased compared to that in the control shoots.

  7. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)).

    PubMed

    Hegarty, Matthew; Yadav, Rattan; Lee, Michael; Armstead, Ian; Sanderson, Ruth; Scollan, Nigel; Powell, Wayne; Skøt, Leif

    2013-06-01

    Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α-linolenic acid, an omega-3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high-sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction-associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n-6) on LGs 2 and 5; and α-linolenic acids (C18:3n-3) on LG 1 were identified. Two candidate genes (a lipase and a beta-ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n-6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop. PMID:23331642

  8. Aploneura lentisci (Homoptera: Aphididae) and Its Interactions with Fungal Endophytes in Perennial Ryegrass (Lolium perenne)

    PubMed Central

    Popay, Alison J.; Cox, Neil R.

    2016-01-01

    Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2-year period between Pistacia and secondary hosts, principally species of Gramineae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp.) and tall fescue (Schedonorus phoenix) where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were similar to those on

  9. Aploneura lentisci (Homoptera: Aphididae) and Its Interactions with Fungal Endophytes in Perennial Ryegrass (Lolium perenne)

    PubMed Central

    Popay, Alison J.; Cox, Neil R.

    2016-01-01

    Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2-year period between Pistacia and secondary hosts, principally species of Gramineae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp.) and tall fescue (Schedonorus phoenix) where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were similar to those on

  10. Functional Analyses of Caffeic Acid O-Methyltransferase and Cinnamoyl-CoA-Reductase Genes from Perennial Ryegrass (Lolium perenne)[W

    PubMed Central

    Tu, Yi; Rochfort, Simone; Liu, Zhiqian; Ran, Yidong; Griffith, Megan; Badenhorst, Pieter; Louie, Gordon V.; Bowman, Marianne E.; Smith, Kevin F.; Noel, Joseph P.; Mouradov, Aidyn; Spangenberg, German

    2010-01-01

    Cinnamoyl CoA-reductase (CCR) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. We identified candidate genes encoding these two enzymes in perennial ryegrass (Lolium perenne) and show that the spatio-temporal expression patterns of these genes in planta correlate well with the developmental profile of lignin deposition. Downregulation of CCR1 and caffeic acid O-methyltransferase 1 (OMT1) using an RNA interference–mediated silencing strategy caused dramatic changes in lignin level and composition in transgenic perennial ryegrass plants grown under both glasshouse and field conditions. In CCR1-deficient perennial ryegrass plants, metabolic profiling indicates the redirection of intermediates both within and beyond the core phenylpropanoid pathway. The combined results strongly support a key role for the OMT1 gene product in the biosynthesis of both syringyl- and guaiacyl-lignin subunits in perennial ryegrass. Both field-grown OMT1-deficient and CCR1-deficient perennial ryegrass plants showed enhanced digestibility without obvious detrimental effects on either plant fitness or biomass production. This highlights the potential of metabolic engineering not only to enhance the forage quality of grasses but also to produce optimal feedstock plants for biofuel production. PMID:20952635

  11. Effect of perennial ryegrass (Lolium perenne L.) cultivars on the milk yield of grazing dairy cows.

    PubMed

    Wims, C M; McEvoy, M; Delaby, L; Boland, T M; O'Donovan, M

    2013-03-01

    The objective of this experiment was to investigate the effect of four perennial ryegrass cultivars: Bealey, Astonenergy, Spelga and AberMagic on the milk yield and milk composition of grazing dairy cows. Two 4 × 4 latin square experiments were completed, one during the reproductive and the other during the vegetative growth phase of the cultivars. Thirty-two Holstein-Friesian dairy cows were divided into four groups, with each group assigned 17 days on each cultivar during both experiments. Within each observation period, milk yield and milk composition, sward morphology and pasture chemical composition were measured. During the reproductive growth phase, organic matter digestibility (OMD) was greater for Bealey and Astonenergy (P < 0.001; +1.6%). AberMagic contained a higher stem proportion (P < 0.01; +0.06) and a longer sheath height (P < 0.001; +1.9 cm). Consequently, cows grazing AberMagic recorded a lower milk yield (P < 0.001; -1.5 kg/day) and a lower milk solids yield (P < 0.001; -0.13 kg/day). During the vegetative growth phase, OMD was greater (P < 0.001; +1.1%) for Bealey, whereas the differences between the cultivars in terms of sward structure were smaller and did not appear to influence animal performance. As a result, cows grazing Bealey recorded a higher milk yield (P < 0.001; +0.9 kg/day) and a higher milk solids yield (P < 0.01; +0.08 kg/day). It was concluded that grass cultivar did influence milk yield due to variations in sward structure and chemical composition.

  12. Allelopathic Potential of Switchgrass ( Panicum virgatum L.) on Perennial Ryegrass ( Lolium perenne L.) and Alfalfa ( Medicago sativa L.)

    NASA Astrophysics Data System (ADS)

    Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa

    2010-10-01

    This study investigated allelopathy and its chemical basis in nine switchgrass ( Panicum virgatum L.) accessions. Perennial ryegrass ( Lolium perenne L.) and alfalfa ( Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China’s Loess Plateau.

  13. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2016-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool

  14. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool

  15. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool.

  16. Characterization of Proanthocyanidins from Seeds of Perennial Ryegrass (Lolium perenne L.) and Tall Fescue (Festuca arundinacea) by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Fraser, Karl; Collette, Vern; Hancock, Kerry R

    2016-09-01

    Perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) are forage species of the grass family (Poaceae) that are key components of temperate pasture-based agricultural systems. Proanthocyanidins (PAs) are oligomeric flavonoids that, when provided as part of a farm animal's diet, have been reported to improve animal production and health. Up to now, forage grasses have been deemed not to produce PAs. This paper reports for the first time the detection of polymerized PAs in aqueous methanolic extracts of seed tissue of both perennial ryegrass and tall fescue, using LC-MS/MS. We have determined the structure of the PAs to be trans-flavan-3-ol-based, consisting predominately of afzelechin and catechin and linked primarily by B-type bonds. Investigations into the leaf tissue of both species failed to detect any PAs. This discovery opens the possibility of using genetic engineering tools to achieve tannin accumulation in leaf tissue of perennial ryegrass and tall fescue. PMID:27532250

  17. Nitrous oxide emission factors for urine and dung from sheep fed either fresh forage rape (Brassica napus L.) or fresh perennial ryegrass (Lolium perenne L.).

    PubMed

    Luo, J; Sun, X Z; Pacheco, D; Ledgard, S F; Lindsey, S B; Hoogendoorn, C J; Wise, B; Watkins, N L

    2015-03-01

    In New Zealand, agriculture is predominantly based on pastoral grazing systems and animal excreta deposited on soil during grazing have been identified as a major source of nitrous oxide (N2O) emissions. Forage brassicas (Brassica spp.) have been increasingly used to improve lamb performance. Compared with conventional forage perennial ryegrass (Lolium perenne L.), a common forage in New Zealand, forage brassicas have faster growth rates, higher dry matter production and higher nutritive value. The aim of this study was to determine the partitioning of dietary nitrogen (N) between urine and dung in the excreta from sheep fed forage brassica rape (B. napus subsp. oleifera L.) or ryegrass, and then to measure N2O emissions when the excreta from the two different feed sources were applied to a pasture soil. A sheep metabolism study was conducted to determine urine and dung-N outputs from sheep fed forage rape or ryegrass, and N partitioning between urine and dung. Urine and dung were collected and then used in a field plot experiment for measuring N2O emissions. The experimental site contained a perennial ryegrass/white clover pasture on a poorly drained silt-loam soil. The treatments included urine from sheep fed forage rape or ryegrass, dung from sheep fed forage rape or ryegrass, and a control without dung or urine applied. N2O emission measurements were carried out using a static chamber technique. For each excreta type, the total N2O emissions and emission factor (EF3; N2O-N emitted during the 3- or 8-month measurement period as a per cent of animal urine or dung-N applied, respectively) were calculated. Our results indicate that, in terms of per unit of N intake, a similar amount of N was excreted in urine from sheep fed either forage rape or ryegrass, but less dung N was excreted from sheep fed forage rape than ryegrass. The EF3 for urine from sheep fed forage rape was lower compared with urine from sheep fed ryegrass. This may have been because of plant

  18. Identification of genomic loci associated with crown rust resistance in perennial ryegrass (Lolium perenne L.) divergently selected populations.

    PubMed

    Brazauskas, Gintaras; Xing, Yongzhong; Studer, Bruno; Schejbel, Britt; Frei, Ursula; Berg, Paul Ragnar; Lübberstedt, Thomas

    2013-07-01

    The inheritance of crown rust resistance in perennial ryegrass is complex with both major and minor quantitative trait loci (QTL) being detected on all seven linkage groups. However, QTL mapping populations have only few segregating alleles, limiting the transferability of results to other materials. In this study, a synthetic population was developed from four crown rust resistant and susceptible parents as starting material for a divergent selection experiment of crown rust resistance to be closer to practice in plant breeding programs, and to identify genome regions relevant across a broader range of genotypes. Following three cycles of directional selection, perennial ryegrass populations were produced with a two-fold difference in average rust resistance. Divergently selected populations were genotyped at 7 resistance gene analog-derived expressed sequence tag (RGA-derived EST) as well as 15 simple sequence repeat (SSR) loci. A test for selective neutrality (Waples test), which tests the hypothesis of genetic drift versus selection, identified significant differences in allele frequencies for 7 loci (32%). The selection effect was bidirectional with the same loci showing significant response in both positively and negatively selected populations. A region under selection represented by markers LpSSR006 and EST13 on linkage group (LG) 4 was further confirmed by colocation with two separate QTL for crown rust resistance in a VrnA, a two-way pseudo-testcross mapping population. This suggests suitability of alleles identified for introgression into perennial ryegrass germplasm, where quantitative resistance to crown rust is desired.

  19. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference.

    PubMed

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J; Luo, Dongwen; Janssen, Peter H; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688

  20. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference.

    PubMed

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J; Luo, Dongwen; Janssen, Peter H; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems.

  1. Lambs Fed Fresh Winter Forage Rape (Brassica napus L.) Emit Less Methane than Those Fed Perennial Ryegrass (Lolium perenne L.), and Possible Mechanisms behind the Difference

    PubMed Central

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J.; Luo, Dongwen; Janssen, Peter H.; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688

  2. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis

    PubMed Central

    2013-01-01

    Background Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses. Results A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor. Conclusions DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers. PMID:23819624

  3. Variations in efficiency of plastidial RNA editing within ndh transcripts of perennial ryegrass (Lolium perenne) are not linked to differences in drought tolerance

    PubMed Central

    Van Den Bekerom, Rob J. M.; Dix, Philip J.; Diekmann, Kerstin; Barth, Susanne

    2013-01-01

    Maintenance of healthy grasslands is essential for efficient livestock production, yet projected climate change is likely to place a heavy drought stress burden on key grassland species, such as perennial ryegrass (Lolium perenne). It is therefore important to gather an in-depth knowledge of the underlying plant response to this stress. The present study is focused on RNA editing (post-transcriptional nucleotide modifications resulting in altered transcripts) within plastidial transcripts of the NADH:ubiquinone oxidoreductase (NDH) complex (NADH dehydrogenase complex) in relation to the drought response of several accessions of perennial ryegrass. Previous studies have shown that the NDH complex is involved in countering oxidative stress during environmental stresses like drought. Owing to the nature of RNA editing within this complex, the RNA editing machinery could play a potential role in regulating the activity of the NDH complex. The investigation revealed dramatic and reproducible differences in RNA editing efficiency between accessions, but efficiency was not influenced by imposition of drought stress, and a direct relationship between editing behaviour and drought response was not detected.

  4. Nuclear changes induced by the nematodes Xiphinema diversicaudatum and Longidorus elongatus in root-tips of perennial ryegrass, Lolium perenne.

    PubMed

    Griffiths, B S; Robertson, W M; Trudgill, D L

    1982-09-01

    The DNA content and size of individual nuclei from galls of perennial ryegrass root-tips induced by X. diversicaudatum and L. elongatus were measured. Feeding by X. diversicaudatum increased the DNA content of the nuclei by varying amounts. No regular doubling pattern of the DNA content was discernible. The DNA values varied up to between 32-64C. Generally the size of the nuclei was not increased, although some were larger than control nuclei. The modified nuclei probably have an altered metabolic function, which increases the food value of the gall to the nematode. Some bi-nucleate cells were also observed, which probably result from mitosis without cytokinesis. A preliminary examination of nuclei from galls induced by L. elongatus revealed similar nuclear changes, but no bi-nucleate cells were found.

  5. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    PubMed

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  6. Immunological cross-reactivity of the major allergen from perennial ryegrass (Lolium perenne), Lol p I, and the cysteine proteinase, bromelain.

    PubMed

    Pike, R N; Bagarozzi, D; Travis, J

    1997-04-01

    Antibodies prepared in rabbits against the major allergen from ryegrass (Lolium perenne), Lol p I, cross-reacted with the cysteine proteinase bromelain from pineapple and vice versa. Deglycosylation of the proteins showed that the cross-reaction was based on recognition of the carbohydrate moiety of the allergen, but for bromelain the cross-reaction was most likely due to a combination of factors. The results indicate that the carbohydrate residues from these allergens play an important role in cross-reactions found between them and possibly those from other species.

  7. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.).

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2016-02-01

    Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass.

  8. Comparative Genomics in Perennial Ryegrass (Lolium perenne L.): Identification and Characterisation of an Orthologue for the Rice Plant Architecture-Controlling Gene OsABCG5

    PubMed Central

    Shinozuka, Hiroshi; Cogan, Noel O. I.; Spangenberg, German C.; Forster, John W.

    2011-01-01

    Perennial ryegrass is an important pasture grass in temperate regions. As a forage biomass-generating species, plant architecture-related characters provide key objectives for breeding improvement. In silico comparative genomics analysis predicted colocation between a previously identified QTL for plant type (erect versus prostrate growth) and the ortholocus of the rice OsABCG5 gene (LpABCG5), as well as related QTLs in other Poaceae species. Sequencing of an LpABCG5-containing BAC clone identified presence of a paralogue (LpABCG6) in the vicinity of the LpABCG5 locus, in addition to three other gene-like sequences. Comparative genomics involving five other 5 grass species (rice, Brachypodium, sorghum, maize, and foxtail millet) revealed conserved microsynteny in the ABCG5 ortholocus-flanking region. Gene expression profiling and phylogenetic analysis suggested that the two paralogues are functionally distinct. Fourteen additional ABCG5 gene family members, which may interact with the LpABCG5 gene, were identified through sequencing of transcriptomes from perennial ryegrass leaf, anther, and pistils. A larger-scale phylogenetic analysis of the ABCG gene family suggested conservation between major branches of the Poaceae family. This study identified the LpABCG5 gene as a candidate for the plant type determinant, suggesting that manipulation of gene expression may provide valuable phenotypes for perennial ryegrass breeding. PMID:21941532

  9. Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase-Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Zhang, Jing; Li, Huibin; Xu, Bin; Li, Jing; Huang, Bingru

    2016-01-01

    Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine) suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS) scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’) leaves were excised and incubated in 3 mM 2-(N-morpholino) ethanesulfonic buffer (pH 5.8) supplemented with melatonin or water (control) and exposed to dark treatment for 8 days. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA) content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69) during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant pathway and

  10. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  11. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  12. THE PHOTOSYNTHETIC RESPONSE OF THE PERENNIAL RYEGRASS (LOLIUM PERENNE) IN ITS FIFTH YEAR OF FREE-AIR CO{sub 2} ENRICHMENT (FACE) AT ESCHIKON, SWITZERLAND

    SciTech Connect

    ANDERSON,J.P.; LONG,STEPHEN,P.; WILLIAMS,J.

    1998-12-31

    Stands of Ryegrass (Lolium perenne L. cv.Bastion) were grown in the field at ambient or elevated (600 {micro}mol mol{sup {minus}1}) [CO{sub 2}], high (560 kg Ha{sup {minus}1} y{sup {minus}1}) or low (140 kg Ha{sup {minus}1} y{sup {minus}1}) nitrogen addition and were harvested five times a year during the growing season. The plants were sown during 1992, additional plots being sown during 1995. These were in their fifth year and second year of growth respectively. Exposure to elevated [CO{sub 2}] was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most realistic system of fumigation currently available. Elevated [CO{sub 2}] increased diurnal CO{sub 2} uptake by between 40 to 83% while reducing stomatal conductance by between 1 and 38% in all of the 1992 grown plants measured at high [CO{sub 2}]. Analysis of the A/c{sub i} response of 1992 grown plants showed no acclimation of the photosynthetic apparatus in response to elevated [CO{sub 2}]--both V{sub c,max} (a measure of the maximum in vivo rate of carboxylation) and J{sub max} (a measure of the maximum capacity for the regeneration of RuBP) showed no significant change during any of the periods of regrowth. In contrast the leaves of 1995 grown plants, appeared to be experiencing an acclimatory change in their photosynthetic apparatus in response to elevated [CO{sub 2}]. However, this negative response seemed to be removed directly after a harvest when the source:sink balance had increased. The apparent lack of an acclimatory response after almost 5 years of growth at elevated [CO{sub 2}], suggests that L. perenne may be close to achieving the appropriate photosynthetic adjustments which would allow it to attain a significantly higher photosynthetic potential.

  13. The photosynthetic response of the perennial ryegrass (Lolium perenne) in its fifth year of free-air CO(sub 2) enrichment (FACE) at Eschikon, Switzerland

    SciTech Connect

    Anderson, J.P.; Long, S.P.; Williams, J.

    1998-12-31

    Stands of Ryegrass (Lolium perenne L. cv.Bastion) were grown in the field at ambient or elevated (600 {micro}mol mol{sup {minus}1}) [CO{sub 2}], high (560 kg Ha{sup {minus}1} y{sup {minus}1}) or low (140 kg Ha{sup {minus}1} y{sup {minus}1}) nitrogen addition and were harvested five times a year during the growing season. The plants were sown during 1992, additional plots being sown during 1995. These were in their fifth year and second year of growth respectively. Exposure to elevated [CO{sub 2}] was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most realistic system of fumigation currently available. Elevated [CO{sub 2}] increased diurnal CO{sub 2} uptake by between 40 to 83% while reducing stomatal conductance by between 1 and 38% in all of the 1992 grown plants measured at high [CO{sub 2}]. Analysis of the A/c{sub i} response of 1992 grown plants showed no acclimation of the photosynthetic apparatus in response to elevated [CO{sub 2}] - both V{sub c,max} (a measure of the maximum in vivo rate of carboxylation) and J{sub max} (a measure of the maximum capacity for the regeneration of RuBP) showed no significant change during any of the periods of regrowth. In contrast the leaves of 1995 grown plants, appeared to be experiencing an acclimatory change in their photosynthetic apparatus in response to elevated [CO{sub 2}]. However, this negative response seemed to be removed directly after a harvest when the source:sink balance had increased. The apparent lack of an acclimatory response after almost 5 years of growth at elevated [CO{sub 2}], suggests that L. perenne may be close to achieving the appropriate photosynthetic adjustments which would allow it to attain a significantly higher photosynthetic potential.

  14. Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.).

    PubMed

    Pauly, Laurence; Flajoulot, Sandrine; Garon, Jérôme; Julier, Bernadette; Béguier, Vincent; Barre, Philippe

    2012-04-01

    Plant height, which is an estimator of vegetative yield, and crown rust tolerance are major criteria for perennial ryegrass breeding. Genetic improvement has been achieved through phenotypic selection but it should be speeded up using marker-assisted selection, especially in this heterozygous species suffering from inbreeding depression. Using connected multiparental populations should increase the diversity studied and could substantially increase the power of quantitative trait loci (QTL) detection. The objective of this study was to detect the best alleles for plant height and rust tolerance among three connected populations derived from elite material by comparing an analysis per parent and a multipopulation connected analysis. For the studied traits, 17 QTL were detected with the analysis per parent while the additive and dominance models of the multipopulation connected analysis made it possible to detect 33 and 21 QTL, respectively. Favorable alleles have been detected in all parents. Only a few dominance effects were detected and they generally had lower values than the additive effects. The additive model of the multipopulation connected analysis was the most powerful as it made it possible to detect most of the QTL identified in the other analyses and 11 additional QTL. Using this model, plant growth QTL and rust tolerance QTL explained up to 19 and 38.6% of phenotypic variance, respectively. This example involving three connected populations is promising for an application on polycross progenies, traditionally used in breeding programs. Indeed, polycross progenies actually are a set of several connected populations.

  15. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated w...

  16. Fructan synthesis, accumulation and polymer traits. II. Fructan pools in populations of perennial ryegrass (Lolium perenne L.) with variation for water-soluble carbohydrate and candidate genes were not correlated with biosynthetic activity and demonstrated constraints to polymer chain extension

    PubMed Central

    Gallagher, Joe A.; Cairns, Andrew J.; Thomas, David; Timms-Taravella, Emma; Skøt, Kirsten; Charlton, Adam; Williams, Peter; Turner, Lesley B.

    2015-01-01

    Differences have been shown between ryegrass and fescue within the Festulolium subline introgression family for fructan synthesis, metabolism, and polymer-size traits. It is well-established that there is considerable variation for water-soluble carbohydrate and fructan content within perennial ryegrass. However there is much still to be discovered about the fructan polymer pool in this species, especially in regard to its composition and regulation. It is postulated that similar considerable variation for polymer traits may exist, providing useful polymers for biorefining applications. Seasonal effects on fructan content together with fructan synthesis and polymer-size traits have been examined in diverse perennial ryegrass material comprising contrasting plants from a perennial ryegrass F2 mapping family and from populations produced by three rounds of phenotypic selection. Relationships with copy number variation in candidate genes have been investigated. There was little evidence of any variation in fructan metabolism across this diverse germplasm under these conditions that resulted in substantial differences in the complement of fructan polymers present in leaf tissue at high water-soluble carbohydrate concentrations. The importance of fructan synthesis during fructan accumulation was unclear as fructan content and polymer characteristics in intact plants during the growing season did not reflect the capacity for de novo synthesis. However, the retention of fructan in environmental conditions favoring high sink/low source demand may be an important component of the high sugar trait and the roles of breakdown and turnover are discussed. PMID:26528321

  17. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?

    PubMed

    Young, C A; Hume, D E; McCulley, R L

    2013-05-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloë/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate. PMID:23307839

  18. Effects of Chicory/Perennial Ryegrass Swards Compared with Perennial Ryegrass Swards on the Performance and Carcass Quality of Grazing Beef Steers

    PubMed Central

    Marley, Christina L.; Fychan, Rhun; Davies, John W.; Scollan, Nigel D.; Richardson, R. Ian; Theobald, Vince J.; Genever, Elizabeth; Forbes, Andy B.; Sanderson, Ruth

    2014-01-01

    An experiment investigated whether the inclusion of chicory (Cichorium intybus) in swards grazed by beef steers altered their performance, carcass characteristics or parasitism when compared to steers grazing perennial ryegrass (Lolium perenne). Triplicate 2-ha plots were established with a chicory/ryegrass mix or ryegrass control. Forty-eight Belgian Blue-cross steers were used in the first grazing season and a core group (n = 36) were retained for finishing in the second grazing season. The experiment comprised of a standardisation and measurement period. During standardisation, steers grazed a ryegrass/white clover pasture as one group. Animals were allocated to treatment on the basis of liveweight, body condition and faecal egg counts (FEC) determined 7 days prior to the measurement period. The measurement period ran from 25 May until 28 September 2010 and 12 April until 11 October 2011in the first and second grazing year. Steers were weighed every 14 days at pasture or 28 days during housing. In the first grazing year, faecal samples were collected for FEC and parasite cultures. At the end of the first grazing year, individual blood samples were taken to determine O. ostertagi antibody and plasma pepsinogen levels. During winter, animals were housed as one group and fed silage. In the second grazing year, steers were slaughtered when deemed to reach fat class 3. Data on steer performance showed no differences in daily live-weight gain which averaged 1.04 kg/day. The conformation, fat grade and killing out proportion of beef steers grazing chicory/ryegrass or ryegrass were not found to differ. No differences in FEC, O. ostertagi antibody or plasma pepsinogen levels of beef steers grazing either chicory/ryegrass or ryegrass were observed. Overall, there were no detrimental effects of including chicory in swards grazed by beef cattle on their performance, carcass characteristics or helminth parasitism, when compared with steers grazing ryegrass. PMID:24489708

  19. Cross-resistance to herbicides in annual ryegrass (lolium rigidum)

    SciTech Connect

    Christopher, J.T.; Powles, S.B.; Liljegren, D.R.; Holtum, J.A.M. )

    1991-04-01

    Lolium rigidum Gaud. biotype SLR31 is resistant to the herbicide diclofop-methyl and cross-resistant to several sulfonylurea herbicides. Wheat and the cross-resistant ryegrass exhibit similar patterns of resistance to sulfonylurea herbicides, suggesting that the mechanism of resistance may be similar. Cross-resistant ryegrass is also resistant to the wheat-selective imidazolinone herbicide imazamethabenz. The cross-resistant biotype SLR31 metabolized (phenyl-U-{sup 14}C)chlorsulfuron at a faster rate than a biotype which is susceptible to both diclofop-methyl and chlorsulfuron. A third biotype which is resistant to diclofop-methyl but not to chlorsulfuron metabolized chlorsulfuron at the same rate as the susceptible biotype. The increased metabolism of chlorsulfuron observed in the cross-resistant biotype is, therefore, correlated with the patterns of resistance observed in these L. rigidum biotypes. During high performance liquid chromatography analysis the major metabolite of chlorsulfuron in both susceptible and cross-resistant ryegrass coeluted with the major metabolite produced in wheat. The major product is clearly different from the major product in the tolerant dicot species, flax (Linium usitatissimum). The elution pattern of metabolites of chlorsulfuron was the same for both the susceptible and cross-resistant ryegrass but the cross-resistant ryegrass metabolized chlorsulfuron more rapidly. The investigation of the dose response to sulfonylurea herbicides at the whole plant level and the study of the metabolism of chlorsulfuron provide two independent sets of data which both suggest that the resistance to chlorsulfuron in cross-resistant ryegrass biotype SLR31 involves a wheat-like detoxification system.

  20. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    PubMed

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  1. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne.

    PubMed

    Rocheleau, Sylvie; Lachance, Bernard; Kuperman, Roman G; Hawari, Jalal; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2008-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain.

  2. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass.

    PubMed

    Yu, Xiaoqing; Pijut, Paula M; Byrne, Stephen; Asp, Torben; Bai, Guihua; Jiang, Yiwei

    2015-06-01

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass.

  3. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass.

    PubMed

    Yu, Xiaoqing; Pijut, Paula M; Byrne, Stephen; Asp, Torben; Bai, Guihua; Jiang, Yiwei

    2015-06-01

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass. PMID:25900564

  4. Development of a DNA Sequence-Based Multiplex Test for Rapid Differentiation of Ryegrass Growth Types

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual (Lolium multiflorum Lam.) and perennial (Lolium perenne L.) ryegrasses are two common forage species in temperate regions. Identifying annual ryegrass contamination in perennial ryegrass seed lots has been of major interest in the seed industry for many years. The objective of our work over t...

  5. Interrelationships between Acremonium lolii, Peramine, and Lolitrem B in Perennial Ryegrass

    PubMed Central

    Ball, O. J.; Prestidge, R. A.; Sprosen, J. M.

    1995-01-01

    Perennial ryegrass (Lolium perenne L.) is commonly infected with the endophytic fungus Acremonium lolii in a mutualistic relationship. The fungus produces a number of alkaloids, some of which are responsible for causing livestock disorders and/or for conferring insect resistance to the host grass. Little is known about the interrelationship between fungal growth and alkaloid production in the ryegrass plant and how this varies throughout the year. The concentrations of A. lolii and two of its alkaloid metabolites, lolitrem B and peramine, were monitored in basal (mainly leaf sheath) and upper (mainly leaf blade) parts of 17 endophyte-infected ryegrass plants on a monthly basis for 1 year. A. lolii, lolitrem B, and peramine concentrations were lowest in winter. The highest A. lolii concentrations were recorded in early summer, which coincided with the development of plant reproductive structures. Lolitrem B concentrations were highest from summer to early autumn and were consistently highest in the basal part of the plant. Peramine concentrations were generally highest in the upper part of the plant. Individual plants contained different levels of A. lolii, lolitrem B and peramine. These differences were generally maintained throughout the year. Although data for each month were variable, regression analyses showed that yearly mean concentrations of lolitrem B and peramine in individual plants were closely related to, and therefore probably largely determined by, yearly mean concentrations of A. lolii. PMID:16535001

  6. Identification of Anguina funesta from annual ryegrass (Lolium multiflorum) seed lots in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2010, seed galls containing Anguina sp. were isolated from 14 annual ryegrass (Lolium multiflorum) seed lots submitted for phytosanitary testing. To identify the species present, the ITS1 region of the ribosomal DNA of the nematodes from the seed lots was analyzed using a PCR-RFLP method (11). ...

  7. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould.

    PubMed

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould.

  8. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould

    PubMed Central

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar ‘Fagerlin’ based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould. PMID:27346054

  9. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

    PubMed Central

    Abeynayake, Shamila W.; Etzerodt, Thomas P.; Jonavičienė, Kristina; Byrne, Stephen; Asp, Torben; Boelt, Birte

    2015-01-01

    Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligosaccharides and polysaccharides with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructans, fructan distribution between above ground biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety “Veyo” and ecotype “Falster” from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans, especially DP = 4, in both the top and the roots of “Veyo” and “Falster” in response to low-temperature stress. The accumulation of DP > 50 fructans was only apparent in the top tissues where the Lp1-FFT expression is higher compared to the roots in both “Veyo” and “Falster.” Our results also show the accumulation and depolymerization of fructans with different DP, together with the induction of genes encoding fructosyltransferases and fructan exohydrolases in both “Veyo” and “Falster” during cold acclimation, supporting the hypothesis that fructan synthesis and depolymerization occurring simultaneously. The ecotype “Falster,” adapted to cold climates, increased total fructan content and produced more DP > 7 fructans in the roots than the variety “Veyo,” adapted to warmer climates. This indicates that high-DP fructan accumulation in roots may be an adaptive trait for plant recovery after abiotic stresses. PMID:26029229

  10. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould.

    PubMed

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould. PMID:27346054

  11. Italian ryegrass (Lolium multiflorum) and corn (Zea mays)competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Italian ryegrass is an annual/biennial grass that is typically used as a pasture crop or a cover crop along roadsides, rights-of-way, and industrial areas. Glyphosate-resistant (GR) Italian ryegrass populations have been documented around the world, mostly in orchard and vineyard situations. The fir...

  12. Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass.

    PubMed

    Lou, Yanhong; Yang, Yong; Hu, Longxing; Liu, Hongmei; Xu, Qingguo

    2015-08-01

    Glycinebetaine (GB) is an important organic osmolyte that accumulates in many plant species in response to abiotic stresses including heavy metals. The objective of this study was to investigate whether exogenous GB would ameliorate the adverse effect of cadmium (Cd) stress on perennial ryegrass (Lolium perenne). Fifty-three days old seedlings were exposed to hydroponic culture for 7 days with six treatments: T1 (control), T2 (0 mM Cd + 20 mM GB), T3 (0 mM Cd + 50 mM GB), T4 (0.5 mM Cd + 0 mM GB), T5 (0.5 mM Cd + 20 mM GB), T6 (0.5 mM Cd + 50 mM GB). Cd stress resulted in a remarkable decrease in turf quality, vertical shoot growth rate (VSGR), normalized relative transpiration (NRT) and Chlorophyll (Chl) content; with significant increases in electric conductivity (EL), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activity, oxalic and tartaric acid content. Exogenous application of GB decreased EL and MDA content in Cd stressed plants, and increased turf quality, VSGR, NRT, Chl content, SOD, CAT, POD activity, oxalic, tartaric acid content, and the gene expression level of SOD and POD when compared with Cd stressed without GB. Perennial ryegrass with 20 mM GB application suppressed the Cd accumulation in both shoots and roots. A lower translocation factor of Cd was found in GB treated plants than non-GB treated plants, and the lowest translocation factor was observed in the 20 mM GB application. These results suggested that GB could alleviate the detrimental effect of Cd on perennial ryegrass and the amelioration was mainly related to the elevation in SOD, CAT, and POD at enzyme and gene expression levels, which reduced Cd content in shoots and improved cell membrane stability by reducing oxidation of membrane lipids. These findings lead us to conclude that application of GB with 20 mM is the best strategy to ameliorate the detrimental impacts of Cd stress on perennial ryegrass. PMID:26135319

  13. Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass.

    PubMed

    Hisano, Hiroshi; Kanazawa, Akira; Yoshida, Midori; Humphreys, Mervyn O; Iizuka, Masaru; Kitamura, Keisuke; Yamada, Toshihiko

    2008-01-01

    * Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.

  14. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne).

    PubMed

    Lasseur, Bertrand; Lothier, Jérémy; Wiemken, Andres; Van Laere, André; Morvan-Bertrand, Annette; Van den Ende, Wim; Prud'homme, Marie-Pascale

    2011-03-01

    The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.

  15. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

    PubMed Central

    Lasseur, Bertrand; Lothier, Jérémy; Wiemken, Andres; Van Laere, André; Morvan-Bertrand, Annette; den Ende, Wim Van; Prud'homme, Marie-Pascale

    2011-01-01

    The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare. PMID:21196473

  16. Cross-Resistance to Herbicides in Annual Ryegrass (Lolium rigidum)

    PubMed Central

    Matthews, John M.; Holtum, Joseph A. M.; Liljegren, David R.; Furness, Barbara; Powles, Stephen B.

    1990-01-01

    Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS. PMID:16667814

  17. Variation in the expression of ergot alkaloids between individual tillers of perennial ryegrass

    NASA Astrophysics Data System (ADS)

    Mace, Wade; Lunn, Kristy; Lloyd-West, Catherine

    2014-11-01

    Epichloë fungal endophytes of cool season grasses are well known to produce a range of alkaloids of benefit to the host. Some of these compounds are advantageous to agriculture due to qualities that promote pasture persistence (e.g. the loline class of alkaloids confer insect protection) while others are detrimental to the wellbeing of grazing livestock. The ergot alkaloids (e.g. ergovaline), produced in ryegrass and tall fescue associations, causes poor animal health in farming regions in many countries around the world and further study is required to improve our knowledge on this class of compounds. Here we present the application of a quantitative LC-MS/MS (liquid chromatography coupled to mass spectrometry) method measuring eight ergot alkaloids (chanoclavine, agroclavine, elymoclavine, lysergol, lysergic acid, ergine, lysergyl alanine, ergovaline) produced by endophyte infected grasses, to monitor levels in individual tillers from multiple plants of a single cultivar of perennial ryegrass (Lolium perenne cv. ‘Grasslands Samson’) infected with a common toxic endophyte strain (Epichloë festucae var. lolii). Monitoring the expression in individual tillers allows an estimation of the variability within a plant (between tillers) as well as between plants. The study showed that there is significant variation in the concentration of the ergot alkaloids between tillers of a single plant, at or exceeding the level of variation observed between individual plants of a population. This result emphasizes the fundamental importance of robust experimental design and sampling procedures when alkaloid expression assessment is required and these need to be rigorously tailored to the hypothesis being tested.

  18. Differential regulation of two sucrose transporters by defoliation and light conditions in perennial ryegrass.

    PubMed

    Furet, Pierre-Maxime; Berthier, Alexandre; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie; Meuriot, Frédéric

    2012-12-01

    Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.

  19. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant.

    PubMed

    Chen, Junmei; Thammina, Chandra; Li, Wei; Yu, Hao; Yer, Huseyin; El-Tanbouly, Rania; Marron, Manon; Katin-Grazzini, Lorenzo; Chen, Yongqin; Inguagiato, John; McAvoy, Richard J; Guillard, Karl; Zhang, Xian; Li, Yi

    2016-01-01

    Prostrate turf varieties are desirable because of their increased low mowing tolerance, heat resistance, traffic resistance and ground coverage compared with upright varieties. Mutation breeding may provide a powerful tool to create prostrate varieties, but there are no simple, straightforward methods to screen for such mutants. Elucidation of the molecular basis of the major 'green revolution' traits, dwarfism and semi-dwarfism, guided us to design a simple strategy for isolating dwarf mutants of perennial ryegrass (Lolium perenne L.). We have shown that gamma-ray-mediated dominant dwarf mutants can be easily screened for at the three-leaf stage. About 10% of dwarf mutant lines also displayed a prostrate phenotype at mature stages (>10 tillers). One prostrate line, Lowboy I, has been characterized in detail. Lowboy I had significantly shorter canopy, leaf blade and internode lengths compared with wild type. Lowboy I also exhibited greater tolerance to low mowing stress than wild type. Exogenous gibberellic acid (GA) restored Lowboy I to a wild-type phenotype, indicating that the dwarf and prostrate phenotypes were both due to GA deficiency. We further showed that phenotypes of Lowboy I were dominant and stably inherited through sexual reproduction. Prostrate turfgrass mutants are difficult to screen for because the phenotype is not observed at young seedling stages, therefore our method represents a simple strategy for easily isolating prostrate mutants. Furthermore, Lowboy I may provide an outstanding germplasm for breeding novel prostrate perennial ryegrass cultivars. PMID:26955481

  20. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant

    PubMed Central

    Chen, Junmei; Thammina, Chandra; Li, Wei; Yu, Hao; Yer, Huseyin; El-Tanbouly, Rania; Marron, Manon; Katin-Grazzini, Lorenzo; Chen, Yongqin; Inguagiato, John; McAvoy, Richard J.; Guillard, Karl; Zhang, Xian; Li, Yi

    2016-01-01

    Prostrate turf varieties are desirable because of their increased low mowing tolerance, heat resistance, traffic resistance and ground coverage compared with upright varieties. Mutation breeding may provide a powerful tool to create prostrate varieties, but there are no simple, straightforward methods to screen for such mutants. Elucidation of the molecular basis of the major ‘green revolution’ traits, dwarfism and semi-dwarfism, guided us to design a simple strategy for isolating dwarf mutants of perennial ryegrass (Lolium perenne L.). We have shown that gamma-ray-mediated dominant dwarf mutants can be easily screened for at the three-leaf stage. About 10% of dwarf mutant lines also displayed a prostrate phenotype at mature stages (>10 tillers). One prostrate line, Lowboy I, has been characterized in detail. Lowboy I had significantly shorter canopy, leaf blade and internode lengths compared with wild type. Lowboy I also exhibited greater tolerance to low mowing stress than wild type. Exogenous gibberellic acid (GA) restored Lowboy I to a wild-type phenotype, indicating that the dwarf and prostrate phenotypes were both due to GA deficiency. We further showed that phenotypes of Lowboy I were dominant and stably inherited through sexual reproduction. Prostrate turfgrass mutants are difficult to screen for because the phenotype is not observed at young seedling stages, therefore our method represents a simple strategy for easily isolating prostrate mutants. Furthermore, Lowboy I may provide an outstanding germplasm for breeding novel prostrate perennial ryegrass cultivars. PMID:26955481

  1. Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions.

    PubMed

    Tang, Jinchi; Yu, Xiaoqing; Luo, Na; Xiao, Fangming; Camberato, James J; Jiang, Yiwei

    2013-11-01

    Natural variation in salinity response, effects of population structure on growth and physiological traits and gene-trait association were examined in 56 global collections of diverse perennial ryegrass (Lolium perenne L.) accessions. Three population structure groups were identified with 66 simple sequence repeat markers, which on average accounted for 9 and 11% of phenotypic variation for the control and salinity treatment at 300 mm NaCl. Group 1 (10 accessions) had greater plant height, leaf dry weight and water content, chlorophyll index, K(+) concentration and K(+) /Na(+) than group 2 (39 accessions) and group 3 (7 accessions) under salinity stress, while group 3 had higher Na(+) than groups 1 and 2. Eighty-seven single nucleotide polymorphisms were detected from four partial candidate genes encoding aquaporin and Na(+) /H(+) antiporter in both plasma and tonoplast membranes. Overall, rapid decay of linkage disequilibrium was observed within 500 bp. Significant associations were found between the putative LpTIP1 and Na(+) for the control and between the putative LpNHX1 and K(+) /Na(+) under the control and salinity treatments after controlling population structure. These results indicate that population structure influenced phenotypic traits, and allelic variation in LpNHX1 may affect salinity tolerance of perennial ryegrass.

  2. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum).

    PubMed

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh M; Sun, Qining; Shah, Riddhi; Ragauskas, Arthur J

    2014-03-26

    The development of deuterated biomass is essential for effective neutron scattering studies on biomass, which can provide key insights into the complex biomass conversion processes. A method for optimized production of deuterated annual ryegrass (Lolium multiflorum) was developed by growing the plants in 50% D2O in perfused hydroponic chambers. Deuterium incorporation of 36.9% was found in the annual rye grown in 50% D2O. Further, deuterium incorporation of 60% was achieved by germinating the rye seedlings in H2O and growing in 50% D2O inside the perfusion chambers. The characteristics related to enzymatic hydrolysis such as biomass composition, degree of polymerization, and cellulose crystallinity were compared with its control protiated counterpart. The cellulose molecular weight indicated slight variation while hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration.

  3. Localization of beta-glucan synthases on the membranes of cultured Lolium multiflorum (ryegrass) endosperm cells.

    PubMed Central

    Henry, R J; Schibeci, A; Stone, B A

    1983-01-01

    The distribution of beta-glucan synthases between plasma membranes and intracellular membranes of suspension-cultured Italian-ryegrass (Lolium multiflorum Lam.) endosperm cells was examined. Highly purified plasma membranes prepared from protoplasts were only slightly enriched in beta-glucan synthases assayed at 10 microM- and 1 mM-UDP-glucose. Most beta-glucan synthase was associated with intracellular membranes. These membranes were fractionated on a linear sucrose density gradient and were resolved into different membrane fractions containing beta-glucan synthases. Beta-Glucan synthases assayed at 10 microM-UDP-glucose were found in a fraction banding at a density of 1.11 g . cm-3, but most of the beta-glucan synthase assayed at 1 mM-DDP-glucose was at a density of 1.04 g . cm-3. PMID:6223621

  4. A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass.

    PubMed

    Manzanares, Chloé; Barth, Susanne; Thorogood, Daniel; Byrne, Stephen L; Yates, Steven; Czaban, Adrian; Asp, Torben; Yang, Bicheng; Studer, Bruno

    2016-04-01

    The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus.

  5. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  6. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  7. Effects of the mycoparasite Sphaerellopsis filum on overwintering survival of stem rust in perennial ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaerellopsis filum is a mycoparasite of Puccinia graminis subsp. graminicola (Pgg), a rust fungus that causes widespread crop damage on perennial ryegrass grown for seed. In observations taken over the winters of 2000-2003 S. filum was found in 10% of Pgg uredinia on 1st year plantings of perennia...

  8. Silicon induced systemic defense responses in perennial ryegrass against Magnaporthe oryzae infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) is a potential inducer or modulator of plant defenses against different pathogen...

  9. The effect of glyphosate, paraquat and paclobutrazol on lolitrem B levels in endophyte-infected perennial ryegrass.

    PubMed

    Prestidge, R A; Sprosen, J M

    1995-08-01

    Two herbicides (glyphosate and paraquat) and a plant growth regulator (paclobutrazol) were applied to endophyteinfected (Acremonium lolii) perennial ryegrass swards. Subsamples of these swards were then chemically analysed at intervals up to 28 days later for lolitrem B, the compound responsible for perennial ryegrass staggers in domestic livestock. Glyphosate and paclobutrazol had no effect on lolitrem B concentrations. Paraquat applications decreased lolitrem B concentrations in the herbage. Because none of the chemicals tested increased the concentration of lolitrem B in the herbage, they are unlikely to be directly implicated in perennial ryegrass staggers in grazing animals.

  10. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Wallis, Christopher M; Uddin, Wakar

    2015-06-01

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development. PMID:25738553

  11. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Wallis, Christopher M; Uddin, Wakar

    2015-06-01

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development.

  12. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass.

    PubMed

    Paina, Cristiana; Byrne, Stephen L; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date.

  13. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass

    PubMed Central

    Paina, Cristiana; Byrne, Stephen L.; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date. PMID:27010567

  14. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass.

    PubMed

    Patel, Minesh; Milla-Lewis, Susana; Zhang, Wanjun; Templeton, Kerry; Reynolds, William C; Richardson, Kim; Biswas, Margaret; Zuleta, Maria C; Dewey, Ralph E; Qu, Rongda; Sathish, Puthigae

    2015-06-01

    HUB1, also known as Ubl5, is a member of the subfamily of ubiquitin-like post-translational modifiers. HUB1 exerts its role by conjugating with protein targets. The function of this protein has not been studied in plants. A HUB1 gene, LpHUB1, was identified from serial analysis of gene expression data and cloned from perennial ryegrass. The expression of this gene was reported previously to be elevated in pastures during the summer and by drought stress in climate-controlled growth chambers. Here, pasture-type and turf-type transgenic perennial ryegrass plants overexpressing LpHUB1 showed improved drought tolerance, as evidenced by improved turf quality, maintenance of turgor and increased growth. Additional analyses revealed that the transgenic plants generally displayed higher relative water content, leaf water potential, and chlorophyll content and increased photosynthetic rate when subjected to drought stress. These results suggest HUB1 may play an important role in the tolerance of perennial ryegrass to abiotic stresses. PMID:25487628

  15. [Effects of ryegrass (Lolium perenne) root exudates dose on pyrene degradation and soil microbes in pyrene-contaminated soil].

    PubMed

    Xie, Xiao-mei; Liao, Min; Yang, Jing

    2011-10-01

    By simulating a gradually decreasing concentration of root exudates with the distance away from root surface in rhizosphere, this paper studied the effects of ryegrass (Lolium perenne) root exudates dose on the pyrene degradation and microbial ecological characteristics in a pyrene-contaminated soil. It was observed that with the increasing dose of ryegrass root exudates, the residual amount of soil pyrene changed nonlinearly, i. e. , increased after an initial decrease. When the root exudates dose was 32.75 mg kg(-1) of total organic carbon, the residual pyrene was the minimum, indicating that the root exudates at this dose stimulated pyrene degradation significantly. In the meantime, soil microbial biomass carbon and microbial quotient had an opposite trend, suggesting the close relationship between pyrene degradation and soil microbes. In the test soil, microbial community was dominated by bacteria, and the bacteria had the same variation trend as the pyrene degradation, which indicated that the pyrene was degraded mainly by bacteria, and the effects of root exudates on pyrene degradation were mainly carried out through the effects on bacterial population. There was a similar variation trend between the activity of soil dehydrogenase, a microbial endoenzyme catalyzing the dehydrogenation of organic matter, and the soil microbes, which further demonstrated that the variations of soil microbes and their biochemical characteristics were the ecological mechanisms affecting the pyrene degradation in the pyrene-contaminated soil when the ryegrass root exudates dose increased. PMID:22263480

  16. Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress.

    PubMed

    Wang, Xia; Ma, Xiao; Huang, Linkai; Zhang, Xinquan

    2015-01-01

    Annual ryegrass (Lolium multiflorum) is a cool-season annual grass cultivated worldwide for its high yield and quality. With the areas of saline soil increasing, investigation of the molecular mechanisms of annual ryegrass tolerance under salt stress has become a significant topic. qRT-PCR has been a predominant assay for determination of the gene expression, in which selecting a valid internal reference gene is a crucial step. The objective of present study was to evaluate and identify suitable reference genes for qRT-PCR in annual ryegrass under salt stress. The results calculated by RefFinder indicated that eEF1A(s) was the most stable reference gene in leaves, whereas EF1-a was the least stable; meanwhile, TBP-1 was the most optimal in roots and in all samples, and the eIF-5A shouldn't be utilized for normalization of the gene expression. eEF1A(s) is more suitable than TBP-1 as reference gene in leaves when verified with P5CS1 and Cyt-Cu/Zn SOD genes. We should choose optimal reference genes in specific tissues instead of the most stable one selected from different conditions and tissues.

  17. The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass.

    PubMed

    Siddiqui, Samina; Adams, W A

    2002-02-01

    Hydrocarbon contamination in soils may be toxic to plants and soil microorganisms and act as a source of groundwater contamination. The objective of this study was to evaluate the fate of diesel in soils with or without added nutrients. The soils examined either had or had not a previous history of hydrocarbon contamination. Particular aspects examined were soil respiration, changes in microbial population, breakdown of diesel hydrocarbons, and phytotoxicity to the germination of perennial ryegrass. Soil respiration was measured as evolved CO2. Bacterial population was determined as colony forming units in dilution plates and fungal activity was measured as hyphal length. The fate of individual hydrocarbons was determined by gas chromatography-mass spectrometry after extraction with dichloromethane. When diesel was added to soil with no previous history of hydrocarbon contamination at rates up to 50 mg/g, the respiration response showed a lag phase of 6 days and maximum respiration occurred at day 11. The lag phase was 2 days and maximum respiration occurred at day 3 in soil with a previous history of hydrocarbon contamination. After the peak, respiration decreased up to about 20 days in both soils. Thereafter, respiration become more or less constant but substantially greater than the control. N and P addition along with diesel did not reduce the lag phase but increased the respiration over the first 20 days of incubation. Diesel addition with or without N and P increased the bacterial population 10- to 100-fold but fungal hyphal length did not increase. Diesel addition at a rate of 136 mg/g did not increase the microbial population. Removal of inhibition to germination of perennial ryegrass was linked to the decomposition of nC10 and nC11 hydrocarbons and took from 11 to 30 days at diesel additions up to 50 mg/g depending on the soil. Inhibition to germination of perennial ryegrass persisted to more than 24 weeks at the 136 mg/g of diesel addition.

  18. Structure-Function Analyses of a Caffeic Acid O-Methyltransferase from Perennial Ryegrass Reveal the Molecular Basis for Substrate Preference[W][OA

    PubMed Central

    Louie, Gordon V.; Bowman, Marianne E.; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P.

    2010-01-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-l-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT’s catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde. PMID:21177481

  19. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  20. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass.

    PubMed

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  1. Transforming a Fructan:Fructan 6G-Fructosyltransferase from Perennial Ryegrass into a Sucrose:Sucrose 1-Fructosyltransferase1[C

    PubMed Central

    Lasseur, Bertrand; Schroeven, Lindsey; Lammens, Willem; Le Roy, Katrien; Spangenberg, German; Manduzio, Hélène; Vergauwen, Rudy; Lothier, Jérémy; Prud'homme, Marie-Pascale; Van den Ende, Wim

    2009-01-01

    Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale. PMID:18952861

  2. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance.

    PubMed

    Hu, Tao; Hu, Longxing; Zhang, Xunzhong; Zhang, Pingping; Zhao, Zhuangjun; Fu, Jinmin

    2013-01-01

    Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive 'PI 538976' and salt-tolerant 'Overdrive') were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for 'Overdrive' stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in 'Overdrive' (P<0.01) and 'PI 538976' (P<0.05) under salt stress. 'Overdrive' had higher CO2 assimilation and Fv/Fm than 'PI 538976'. Intercellular CO2 concentration, however, was higher in 'PI 538976' treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in 'Overdrive' and 'PI 538976' leaves and in 'PI 538976' stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r(2) = 0.83, P<0.01) and turf quality (r(2) = 0.88, P<0.01) in salt-tolerant 'Overdrive', however, the opposite trend for salt-sensitive 'PI 538976' (r(2) = 0.71, P<0.05 for RGR; r(2) = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in 'Overdrive' than 'PI 538976'. A higher level of SPS and SS expression in leaves was found in 'PI 538976' relative to 'Overdrive'. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.

  3. Investigating the Mechanism of Glyphosate Resistance in Rigid Ryegrass (Lolium rigidum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a broad-spectrum herbicide that has been used extensively for more than 20 yr. The first glyphosate-resistant weed biotype appeared in 1996; it involved a rigid ryegrass population from Australia that exhibited an LD50 value approximately 10-fold higher than that of sensitive biotypes....

  4. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures. PMID:24185879

  5. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).

    PubMed

    Wang, Kai; Huang, Huagang; Zhu, Zhiqiang; Li, Tingqiang; He, Zhenli; Yang, Xiaoe; Alva, Ashok

    2013-01-01

    A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.

  6. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation.

    PubMed

    Li, Miao; Sheng, Guo-ping; Wu, Yue-jin; Yu, Zeng-liang; Bañuelos, Gary S; Yu, Han-qing

    2014-01-01

    Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2 × 10(16) N(+) ions/cm(2) and 30 keV 4.16 × 10(16) N(+) ions/cm(2), respectively (p < 0.05). Furthermore, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those in the control and were positively correlated with TN and TP supplied. L. multiflorum itself was directly responsible for 39-49 and 47-58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum.

  7. Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne.

    PubMed

    Kumble, Krishnanand D; Demmer, Jerome; Fish, Steven; Hall, Claire; Corrales, Sofia; DeAth, Angela; Elton, Clare; Prestidge, Ross; Luxmanan, Selvanesan; Marshall, Craig J; Wharton, David A

    2008-12-01

    Five genes coding for ice-active proteins were identified from an expressed sequence tag database of Lolium perenne cDNA libraries. Each of the five genes were characterized by the presence of an N-terminal signal peptide, a region enriched in hydrophilic amino acids and a leucine-rich region in four of the five genes that is homologous with the receptor domain of receptor-like protein kinases of plants. The C-terminal region of all five genes contains sequence homologous with Lolium and Triticum ice-active proteins. Of the four ice-active proteins (IAP1, IAP2, IAP3 and IAP5) cloned, three could be expressed in Escherichia coli and recovered in a functional form in order to study their ice activity. All three ice-active proteins had recrystallization inhibition activity but showed no detectable antifreeze or ice nucleation activity at the concentration tested. IAP2 and IAP5 formed distinct hexagonal-shaped crystals in the nanolitre osmometer as compared to the weakly hexagonal crystals produced by IAP3. PMID:18835384

  8. Interannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production.

    PubMed

    Burchill, William; Li, Dejun; Lanigan, Gary J; Williams, Micheal; Humphreys, James

    2014-10-01

    Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2 O emissions. The objectives of this study were to (i) quantify annual N2 O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51'N, 08°21'W). The annual N2 O-N emissions (kg ha(-1); mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2 O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2 O emissions highlights the need for long-term studies of emissions from managed pastoral systems.

  9. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.

  10. Pollen Expression of Herbicide Target Site Resistance Genes in Annual Ryegrass (Lolium rigidum).

    PubMed Central

    Richter, J.; Powles, S. B.

    1993-01-01

    Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms. PMID:12231886

  11. Allergenic fragments of ryegrass (Lolium perenne) pollen allergen Lol p IV.

    PubMed

    Jaggi, K S; Ekramoddoullah, A K; Kisil, F T

    1989-01-01

    To facilitate studies on establishing the nature of structure/function relationships of allergens, ryegrass pollen allergen, Lol p IV, was cleaved into smaller fragments by cyanogen bromide (CNBr) and the resulting peptides were further digested with trypsin. The resulting peptides were then fractionated by high performance liquid chromatography (HPLC) on a C-18 reverse phase column. The allergenic activity of the HPLC fractions was evaluated in terms of their ability to inhibit the binding of 125I-Lol p IV to serum IgE antibodies of a grass-allergic patient. Many of these fractions inhibited the binding between the native allergen and IgE antibodies in a dose-dependent manner. The inhibitions were specific, i.e., the fractions did not inhibit the binding between 125I-Lol p I (a group-I ryegrass pollen allergen) and the IgE antibodies present in the allergic human serum. The possibility that the allergenic peptide fractions were contaminated by the native undegraded allergen, which might have accounted for the observed inhibition, was ruled out by the fact that the native allergen could not be detected by SDS-PAGE and the elution profiles of allergenically active peptides did not coincide with that of native allergen. One of the allergenic sites recognized by monoclonal antibody (Mab) 90, i.e., site A, was located in HPLC fractions 90-100 while another allergenic site B (recognized by Mab 12) appeared to be lost following the sequential digestion of Lol p IV with CNBr and trypsin.

  12. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG.

  13. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG. PMID:26542074

  14. Mineral accumulation by perennial grasses in a high rainfall environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw produced as a co-product of perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata), tall fescue (Schedonorus phoenix (Scop.) Holub), and Kentucky bluegrass (Poa pratensis L.) seed production in the high rainfall area of western Oregon as well as clippings from urban and recr...

  15. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    SciTech Connect

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh Michael; Sun, Qining; Shah, Riddhi S; Ragauskas, Arthur

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings in H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.

  16. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-01-01

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources. PMID:26782500

  17. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-12-28

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources.

  18. Milk production and composition of mid-lactation cows consuming perennial ryegrass-and chicory-based diets.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2014-02-01

    Dry matter intakes (DMI), nutrient selection, and milk production responses of dairy cows grazing 3 herbage-based diets offered at 2 allowances were measured. The 2 allowances were 20 (low) and 30 (high) kg of dry matter (DM)/cow per day and these were applied to 3 herbage types: perennial ryegrass (PRG) and chicory (CHIC+) monocultures and a mixed sward of chicory and perennial ryegrass (MIX). The CHIC+ diet was supplemented with alfalfa hay (approximately 2 kg of DM/cow per day) to maintain dietary neutral detergent fiber (NDF) concentration and all diets were supplemented with energy-based pellets (6 kg of DM/cow per day). Holstein-Friesian dairy cows averaging 136 ± 30 d in milk were allocated to 4 replicates of the 6 treatments using stratified randomization procedures. Cows were adapted to their experimental diets over a 14-d period, with measurements of DMI, milk yield, and composition conducted over the following 10 d. Herbage DMI was lowest (12.8 vs. 14.0 kg of DM/d) for CHIC+ compared with the MIX and PRG, although total forage intake (grazed herbage plus hay) was similar (14.0 to 15.0 kg of DM/d) across the 3 treatments. Milk production, milk protein, and milk fat concentrations were not different between herbage types. Grazed herbage DMI increased with increasing herbage allowance and this was associated with increased milk protein concentration (3.23 to 3.34%) and total casein production (41.7 to 43.6 mg/g). Concentrations of polyunsaturated fatty acids in milk fat, particularly linoleic acid, were increased in milk from cows offered the CHIC+ or the MIX diets, indicating potential benefits of chicory herbage on milk fatty acid concentrations. Although feeding CHIC+ or MIX did not increase milk yield, these herbage types could be used as an alternative to perennial ryegrass pasture in spring. PMID:24290818

  19. Effect of ryegrass (Lolium perenne L.) roots inoculation using different arbuscular mycorrhizal fungi (AMF) species on sorption of iron-cyanide (Fe-CN) complexes

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-04-01

    Soils and groundwater on sites of the former Manufactured Gas Plants (MGPs) are contaminated with various complex iron-cyanides (Fe-CN). Phytoremediation is a promising tool in stabilization and remediation of Fe-CN affected soils, however, it can be a challenging task due to extreme adverse and toxic conditions. Phytoremediation may be enhanced via rhizosphere microbial activity, which can cooperate on the degradation, transformation and uptake of the contaminants. Recently, increasing number of scientist reports improved plants performance in the removal of toxic compounds with the support of arbuscular mycorrhizae fungi (AMF). Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations, were used to study the effect of ryegrass roots (Lolium perenne L.) inoculation with Rhizophagus irregularis and a mixture of Rhizophagus irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum on Fe-CN sorption. Results indicated significantly higher colonization of R. irregularis than for the mixture of AMF species on ryegrass roots. Sorption experiments revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study indicates contribution of AM fungi in phytoremediation of Fe-CN contaminated soil.

  20. Finishing steers on winter annual ryegrass (Lolium multiflorum Lam.) with varied levels of corn supplementation I: effects on animal performance, carcass traits, and forage quality.

    PubMed

    Roberts, S D; Kerth, C R; Braden, K W; Rankins, D L; Kriese-Anderson, L; Prevatt, J W

    2009-08-01

    Crossbred steers (n = 72) were selected to study forage-based finishing systems using winter annual ryegrass (Lolium multiflorum Lam.) with varying levels of grain supplementation. In December, cattle were allotted to 1 of 6 treatments consisting of ryegrass pasture (1 ha) with whole shell corn supplemented at 0.0% (0.0), 0.5% (0.5), 1.0% (1.0), 1.5% (1.5), and 2.0% (2.0) of BW, or an ad libitum mixed-ration grain diet in a drylot. Steers were randomly assigned to pens of 4 with pen serving as the experimental unit. Cattle were slaughtered by pen when average pen backfat thickness (as measured by real-time ultrasound) reached approximately 0.64 cm. Forage samples and disk meter height were taken from ryegrass paddocks on a monthly basis to determine forage quality and mass. Live animal performance, carcass traits, proximate analysis, Warner-Bratzler shear force, and sensory characteristics from the LM of the rib section were analyzed. Increasing the amount of grain in the diet of finishing cattle resulted in a linear decrease (P < 0.05) in days on feed and a linear increase (P < 0.05) in ADG, preliminary yield grade, final yield grade, flavor intensity, and beef flavor. Forage DM mass increased with each incremental increase in grain added to the grazing diets. Quality of forage was not (P > 0.05) affected by adding grain to the diet. Adding corn to the diet of cattle being finished on forage improved animal performance and decreased forage utilization characteristics in addition to improving the flavor characteristics of beef.

  1. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds. PMID:27174047

  2. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds.

  3. Fructans, But Not the Sucrosyl-Galactosides, Raffinose and Loliose, Are Affected by Drought Stress in Perennial Ryegrass

    PubMed Central

    Amiard, Véronique; Morvan-Bertrand, Annette; Billard, Jean-Pierre; Huault, Claude; Keller, Felix; Prud'homme, Marie-Pascale

    2003-01-01

    The aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [α-d-Gal (1,3) α-d-Glc (1,2) β-d-Fru] and raffinose [α-d-Gal (1,6) α-d-Glc (1,2) β-d-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.4.1.82). Moreover, the concentrations of the raffinose precursors, myoinositol and galactinol, as well as the gene expressions of myoinositol 1-phosphate synthase (EC 5.5.1.4) and galactinol synthase (EC 2.4.1.123) were either decreased or unaffected by drought stress. Taken together, these data are not in favor of an obvious role of sucrosyl-galactosides in drought tolerance of perennial ryegrass at the vegetative stage. By contrast, drought stress caused fructans to accumulate in leaf tissues, mainly in leaf sheaths and elongating leaf bases. This increase was mainly due to the accumulation of long-chain fructans (degree of polymerization > 8) and was not accompanied by a Suc increase. Interestingly, Suc but not fructan concentrations greatly increased in drought-stressed roots. Putative roles of fructans and sucrosyl-galactosides are discussed in relation to the acquisition of stress tolerance. PMID:12913176

  4. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II.

    PubMed

    Ansari, A A; Shenbagamurthi, P; Marsh, D G

    1989-07-01

    The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p II was determined by automated Edman degradation of the protein and selected fragments. Cleavage of the protein by enzymatic and chemical techniques established an unambiguous sequence for the protein. Lol p II contains 97 amino acid residues, with a calculated molecular weight of 10,882. The protein lacks cysteine and glutamine and shows no evidence of glycosylation. Theoretical predictions by Fraga's (Fraga, S. (1982) Can. J. Chem. 60, 2606-2610) and Hopp and Woods' (Hopp, T. P., and Woods, K. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3824-3828) methods indicate the presence of four hydrophilic regions, which may contribute to sequential or parts of conformational B-cell epitopes. Analysis of amphipathic regions by Berzofsky's method indicates the presence of a highly amphipathic region, which may contain, or contribute to, an Ia/T-cell epitope. This latter segment of Lol p II was found to be highly homologous with an antibody-binding segment of the major rye allergen Lol p I and may explain why immune responsiveness to both the allergens is associated with HLA-DR3.

  5. ESPS gene amplification endows resistance to glyphosate in Italian ryegrass (Lolium perene ssp multiflorum) from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non-crop systems, and especially in glyphosate-resistant crops. A glyphosate-resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucid...

  6. Seed size effects on early seedling growth and response to applied nitrogen in annual ryegrass (Lolium multiflorum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of individual plants as experimental units may be necessary when resources are limited, but inter-plant variation risks obscuring differences among treatments. Experiments were undertaken to measure the effects of seed size on seedling size and response to applied nitrogen of annual ryegrass (Lo...

  7. EPSPS gene amplification in glyphosate-resistant in Italian ryegrass (Lolium perenne ssp. multiflorum) populations from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant Italian ryegrass was detected in Arkansas, USA in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations was studied to assess the severity of the problem and identify altern...

  8. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  9. Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.).

    PubMed

    Di Tullo, Pamela; Versini, Antoine; Bueno, Maïté; Le Hécho, Isabelle; Thiry, Yves; Biron, Philippe; Castrec-Rouelle, Maryse; Pannier, Florence

    2015-12-01

    Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes.

  10. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum) forage.

    PubMed

    Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon

    2015-04-01

    The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human.

  11. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability.

    PubMed

    Barbera, A C; Maucieri, C; Ioppolo, A; Milani, M; Cavallaro, V

    2014-04-01

    Direct spreading on agricultural lands may represent an environmentally friendly disposal method and a possible use of water and nutrients from olive mill wastewaters (OMWs). However, the agronomic use of OMWs is limited, among others by polyphenols, which exert phytotoxic effects. Activated charcoal (AC) has been recognized as a very effective agent for polyphenol abatement, as it enables an irreversible process of phenol adsorption. Addition of calcium hydroxide (Ca(OH)2) has also been described as a cheap and effective method in polyphenols abatement. However, the effects of Ca(OH)2 addition to OMW on seed germination are unclear. In this paper, the effects of AC and/or Ca(OH)2 on OMW polyphenols abatement, and Lolium multiflorum seed germination have been investigated. The highest polyphenols removal, approximately 95%, was observed when 80 g L(-1) of AC was added to OMWs (the maximum dose in this investigation). The addition of Ca(OH)2 not only improved the effectiveness of the AC treatment but also resulted in a significant rise in Lolium seed germination at the highest AC doses (60 and 80 g L(-1)). Considering the high salinity (7300 μS cm(-1)) of these wastewaters, low quantities of Ca(OH)2 may also exert a protective effect on soil structure counteracting the sodium-induced dispersion through the binding action of calcium cation on clays and organic matter.

  12. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen.

    PubMed

    Blaher, B; Suphioglu, C; Knox, R B; Singh, M B; McCluskey, J; Rolland, J M

    1996-07-01

    T-cell recognition of Lol p 9, a major allergen of ryegrass pollen, was investigated by using a T-cell line and T-cell clones generated from the peripheral blood of an atopic donor. The T-cell line reacted with purified Lol p 9, as well as with crude ryegrass pollen extract, but failed to cross-react with Bermuda grass pollen extract. All of six T-cell clones generated from this line proliferated in response to Lol p 9. Epitope mapping was carried out with a panel of 34 overlapping synthetic peptides, which spanned the entire sequence of the Lol p 9 12R isoform. The T-cell line responded to two of the peptides, Lol p 9 (105-116) and Lol p 9 (193-204), whereas reactivity with one or other of these peptides was shown by five T-cell clones. These two peptides contained sequences consistent with motifs previously reported for major histocompatibility complex class II-restricted peptides. HLA antibody blocking studies showed that presentation of peptide Lol p 9 (105-116) to one T-cell clone was HLA-DR-restricted; this clone expressed a T helper cell phenotype (CD3+, CD4+) and the T-cell receptor alpha beta. The identification of immunodominant T-cell epitope(s) on allergens is essential for devising safer and more effective immunotherapy strategies, which can interrupt the chain of events leading to allergic disease.

  13. Simultaneous Influx and Efflux of Nitrate during Uptake by Perennial Ryegrass 1

    PubMed Central

    Morgan, M. A.; Volk, R. J.; Jackson, W. A.

    1973-01-01

    Experiments with intact plants of Lolium perenne previously grown with 14NO3− revealed significant efflux of this isotopic species when the plants were transferred to solutions of highly enriched 15NO3−. The exuded 14NO3− was subsequently reabsorbed when the ambient solutions were not replaced. When they were frequently replaced, continual efflux of the 14NO3− was observed. Influx of 15NO3− was significantly greater than influx of 14NO3− from solutions of identical NO3− concentration. Transferring plants to 14NO3− solutions after a six-hour period in 15NO3− resulted in efflux of the latter. Presence of Mg2+, rather than Ca2+, in the ambient 15NO3− solution resulted in a decidedly increased rate of 14NO3− efflux and a slight but significant increase in 15NO3− influx. Accordingly, net NO3− influx was slightly depressed. A model in accordance with these observations is presented; its essential features include a passive bidirectional pathway, an active uptake mechanism, and a pathway for recycling of endogenous NO3− within unstirred layers from the passive pathway to the active uptake site. PMID:16658313

  14. Digestion during continuous culture fermentation when replacing perennial ryegrass with barley and steam-flaked corn.

    PubMed

    Wales, W J; Kolver, E S; Egan, A R

    2009-01-01

    The objective of this study was to quantify the optimal inclusion rate of grain required to maximize nutrient digestion of a diet based on highly digestible pasture. It was hypothesized that maximum digestion would occur at a rate of grain inclusion that resulted in a culture pH of 6.0, reflecting the pH below which fiber digestion would be expected to be compromised. Four dual-flow continuous culture fermenters were used to establish the effects on digestion of replacing freeze-dried, highly digestible ryegrass with 0, 15, 30, and 45% of dry matter as 60% barley, 35% steam-flaked corn, and 5% molasses mix. The respective composite diets were fed twice daily to mimic intake patterns observed in dairy cows offered supplements during milking and offered half their daily allowance of pasture after each milking. Digesta samples were collected during the last 3 d of each of four 9-d experimental periods. Average daily culture pH decreased linearly as proportion of cereal grain in the diet increased, with average daily pH ranging from 6.29 to 5.74. Concentrations of neutral detergent fiber and total fatty acids decreased linearly with increasing proportion of cereal grain in the diet. Digestion of organic matter (OM) was maximized at an interpolated value of 24% grain inclusion and culture pH of 6.0, but the difference in the OM digestibility over the range of grain treatments from 0 to 45% was small (3 percentage units) despite pH changes over a range of 6.3 to 5.7. The relatively small change in OM digestibility was explained by reduced fiber and crude protein digestibilities being balanced by an increased digestion of nonstructural carbohydrate. Although different relationships between ruminal pH and digestibility appear to exist when cows are fed pasture alone compared with a total mixed ration, when starch supplements are included in pasture diets, the relationships associated with feeding a total mixed ration may then be more likely to apply. PMID:19109278

  15. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  16. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding. PMID:26734049

  17. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    PubMed

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.

  18. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.

  19. Acclimation of photosynthesis to elevated CO{sub 2} under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO{sub 2} enrichment

    SciTech Connect

    Rogers, A.; Bryant, J.; Raines, C.A.; Long, S.P.L.; Fischer, B.U.; Frehner, M.; Blum, H.; Long, S.P. |

    1998-10-01

    Acclimation of photosynthesis to elevated CO{sub 2} has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO{sub 2} (pCO{sub 2}) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-biphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers, just before the cut, when the canopy was relatively large, growth at elevated pCO{sub 2} and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-biphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO{sub 2} resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.

  20. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  1. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  2. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  3. Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers.

    PubMed

    Inoue, Maiko; Gao, Zhensheng; Hirata, Mariko; Fujimori, Masahiro; Cai, Hongwei

    2004-02-01

    To construct a high-density molecular linkage map of Italian ryegrass (Lolium multiflorum Lam), we used a two-way pseudo-testcross F1 population consisting of 82 individuals to analyze three types of markers: restriction fragment length polymorphism markers, which we detected by using genomic probes from Italian ryegrass as well as heterologous anchor probes from other species belonging to the Poaceae family, amplified fragment length polymorphism markers, which we detected by using PstI/MseI primer combinations, and telomeric repeat associated sequence markers. Of the restriction fragment length polymorphism probes that we generated from a PstI genomic library, 74% (239 of 323) of randomly selected probes detected hybridization patterns consistent with single-copy or low-copy genetic locus status in the screening. The 385 (mostly restriction fragment length polymorphism) markers that we selected from the 1226 original markers were grouped into seven linkage groups. The maps cover 1244.4 cM, with an average of 3.7 cM between markers. This information will prove useful for gene targeting, quantitative trait loci mapping, and marker-assisted selection in Italian ryegrass.

  4. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne

    PubMed Central

    Blackmore, T.; Thorogood, D.; Skøt, L.; McMahon, R.; Powell, W.; Hegarty, M.

    2016-01-01

    Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass. PMID:26935901

  5. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne.

    PubMed

    Blackmore, T; Thorogood, D; Skøt, L; McMahon, R; Powell, W; Hegarty, M

    2016-01-01

    Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass. PMID:26935901

  6. Bale Location Effects on Nutritive Value and Fermentation Characteristics of Annual Ryegrass Bale Stored in In-line Wrapping Silage

    PubMed Central

    Han, K. J.; McCormick, M. E.; Derouen, S. M.; Blouin, D. C.

    2014-01-01

    In southeastern regions of the US, herbage systems are primarily based on grazing or hay feeding with low nutritive value warm-season perennial grasses. Nutritious herbage such as annual ryegrass (Lolium multiflorum Lam.) may be more suitable for preserving as baleage for winter feeding even with more intensive production inputs. Emerging in-line wrapped baleage storage systems featuring rapid wrapping and low polyethylene film requirements need to be tested for consistency of storing nutritive value of a range of annual ryegrass herbage. A ryegrass storage trial was conducted with 24-h wilted ‘Marshall’ annual ryegrass harvested at booting, heading and anthesis stages using three replicated in-line wrapped tubes containing ten round bales per tube. After a six-month storage period, nutritive value changes and fermentation end products differed significantly by harvest stage but not by bale location. Although wilted annual ryegrass exhibited a restricted fermentation across harvest stages characterized by high pH and low fermentation end product concentrations, butyric acid concentrations were less than 1 g/kg dry matter, and lactic acid was the major organic acid in the bales. Mold coverage and bale aroma did not differ substantially with harvest stage or bale location. Booting and heading stage-harvested ryegrass baleage were superior in nutritive value to anthesis stage-harvested herbage. Based on the investigated nutritive value and fermentation characteristics, individual bale location within in-line tubes did not significantly affect preservation quality of ryegrass round bale silages. PMID:25178371

  7. Comparison of specific methane yield of perennial ryegrass prepared by thermal drying versus non-thermal drying in small-scale batch digestion tests.

    PubMed

    Nolan, P; McEniry, J; Doyle, E M; O'Kiely, P

    2014-10-01

    Dried milled biomass samples are frequently utilised in small-scale batch digestion tests. However, herbage chemical composition can be altered by thermal drying, and this may affect specific methane (CH4) yields. Thus, the specific CH4 yield of herbage pre- and post-ensiling, prepared by two preparation methods were compared. Perennial ryegrass samples were either non-thermally dried (i.e. subject to cryogenic conditions, -196 °C) or thermally dried (40 °C), prior to milling. Specific CH4 yield was subsequently determined in a small-scale batch digestion test. Herbage pre-ensiling yielded 204 and 243 L CH4 kg(-1)VS(added) and herbage post-ensiling yielded 212 and 188 L CH4 kg(-1)VS(added) with non-thermal dried and thermal dried sample preparation methods, respectively. Due to opposing effects of thermal drying on CH4 yields of herbage either pre- or post-ensiling, it is not recommended to use thermal drying. Instead, it is recommended that non-thermal dried herbage samples are used in small-scale batch digestion tests.

  8. Heat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis

    PubMed Central

    Wang, Yan; Dai, Ya; Tao, Xiang; Wang, Jia-Zhen; Cheng, Hai-Yang; Yang, Hong; Ma, Xin-Rong

    2016-01-01

    Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress, respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops. PMID:26793208

  9. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass

    NASA Astrophysics Data System (ADS)

    Li, Ting; Wang, Huoyan; Wang, Jing; Zhou, Zijun; Zhou, Jianmin

    2015-03-01

    In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg-1 h-1 and 30.64 g (kg dry matter)-1, respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg-1) and vermiculite (5.58 g kg-1), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg-1, respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer.

  10. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass.

    PubMed

    Li, Ting; Wang, Huoyan; Wang, Jing; Zhou, Zijun; Zhou, Jianmin

    2015-03-18

    In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg(-1) h(-1) and 30.64 g (kg dry matter)(-1), respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg(-1)) and vermiculite (5.58 g kg(-1)), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg(-1), respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer.

  11. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass () using data measured in indirect open-circuit respiration chambers.

    PubMed

    Zhao, Y G; O'Connell, N E; Yan, T

    2016-06-01

    Development of effective methane (CH) mitigation strategies for grazing sheep requires accurate prediction tools. The present study aimed to identify key parameters influencing enteric CH emissions and develop prediction equations for enteric CH emissions from sheep offered fresh grass. The data used were collected from 82 sheep offered fresh perennial ryegrass () as sole diets in 6 metabolism experiments (data from non-grass-only diets were not used). Sheep were from breeds of Highlander, Texel, Scottish Blackface, and Swaledale at the age of 5 to 18 mo and weighing from 24.5 to 62.7 kg. Grass was harvested daily from 6 swards on contrasting harvest dates (May to December). Before the commencement of each study, the experimental sward was harvested at a residual height of 4 cm and allowed to grow for 2 to 4 wk. The feeding trials commenced when the grass sward was suitable to zero grazing (average grass height = 15 cm), thus offering grass of a quality similar to what grazing animals would receive under routine grazing management. Sheep were housed in individual pens for 14 d and then moved to individual calorimeter chambers for 4 d. Feed intake, fecal and urine outputs, and CH emissions were measured during the final 4 d. Data were analyzed using the REML procedure to develop prediction equations for CH emissions. Linear and multiple prediction equations were developed using BW, DMI, GE intake (GEI), and grass chemical concentrations (DM, OM, water-soluble carbohydrates [WSC], NDF, ADF, nitrogen [N], GE, DE, and ME) as explanatory variables. The mean CH production was 21.1 g/kg DMI or 0.062 MJ/MJ GEI. Dry matter intake and GEI were much more accurate predictors for CH emissions than BW ( < 0.001, = 0.86 and = 0.87 vs. = 0.09, respectively). Adding grass DE and ME concentrations and grass nutrient concentrations (e.g., OM, N, GE, NDF, and WSC) to the relationships between DMI or GEI and CH emissions improved prediction accuracy with values increased to 0

  12. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).

    PubMed

    Bonnet, M; Camares, O; Veisseire, P

    2000-05-01

    The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.

  13. In Vitro and In Vivo Enhancement of Adipogenesis by Italian Ryegrass (Lolium multiflorum) in 3T3-L1 Cells and Mice

    PubMed Central

    Kim, Da Hye; Gun Roh, Sang; Lee, Jeong-Chae; Choi, Ki Choon

    2014-01-01

    Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals. PMID:24454838

  14. Assessment of candidate reference genes for the expression studies with brassinosteroids in Lolium perenne and Triticum aestivum.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Janeczko, Anna; Paczyński, Robert; Rapacz, Marcin

    2014-10-15

    Quantitative PCR studies need proper reference genes with expression stability exclusively validated under certain experimental conditions. The expression stability of several genes commonly used as references was tested under 24-epibrassinolide (EBR) and temperature treatment. Different statistical approaches (qBase(PLUS), BestKeeper, NormFinder) were used to prepare rankings of expression stability in two species of an economic importance: common wheat (Triticum aestivum) and perennial ryegrass (Lolium perenne). Candidate reference genes were shown to be regulated differentially in these two plant species. The maximum stability values indicated that the expression stability was higher in T. aestivum. Taking into account of all ranks it seems that TBP-1 and UBI in ryegrass and ACT, ADP and EF1A in wheat should be used as reference genes in the brassinosteroids and temperature involving studies.

  15. Immunocytochemical localization of water-soluble glycoproteins, including group 1 allergen, in pollen of ryegrass, Lolium perenne, using ferritin-labelled antibody.

    PubMed

    Vithanage, H I; Howlett, B J; Jobson, S; Knox, R B

    1982-11-01

    The cellular sites of the glycoproteins Group 1 allergen (glycoprotein 1) and Antigen A (glycoprotein 2) in mature ryegrass pollen have been investigated by immunoelectron microscopy. Radioimmunoassays confirm previous findings of cross-reactivity between the purified glycoprotein antigens at the high immunoglobulin G (IgG) concentrations used for localization. Freeze-drying of anthers followed by anhydrous processing has been employed because of the water solubility and mobility of the glycoproteins. A double-embedding technique has been developed. This involves, first, embedding anthers in the water-soluble plastic resin JB-4, sectioning and incubating in ferritin-labelled antisera by the indirect method. The sections are then embedded in Spurr's resin for ultra-thin sectioning. Both glycoproteins are found in the following sites: (1) exine and intine wall layers; (2) pollen cytoplasm; (3) the orbicules and anther loculus; and (4) the anther cuticle. In the exine arcades and surface and in the anther loculus, the ferritin label is bound to pollenkitt. The finding that the glycoproteins are in similar sites is predictable in view of the cross-specificity of the antisera. The extent of antibody penetration of the plastic sections has been examined; labelling is confined to cut grains and absent from intact grains.

  16. The photosynthetic acclimation of Lolium perenne growing in a free-air CO{sub 2} enrichment (FACE) system

    SciTech Connect

    Bryant, J.B. |

    1994-11-01

    Stands of Ryegrass (Lolium perenne L. cv. Bastion) were grown in the field at ambient or elevated (600{mu}mol/mol) CO{sub 2} concentration, high (560Kg/ha) or low (140Kg/ha) nitrogen addition and with a frequent (every 4 weeks) or infrequent (every 8 weeks) cutting regime. Plants were in the second year of a 3 year experiment. Exposure to elevated CO{sub 2} was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most {open_quote}realistic{close_quote} system of CO{sub 2} fumigation currently available. Elevated CO{sub 2} increased diurnal CO{sub 2} assimilation by between 34 and 88% whilst reducing rates of stomatal conductance by between 1 and 42%. However, analysis of the A vs. Ci response showed considerable acclimation of the photosynthetic apparatus in response to elevated CO{sub 2} - Vc{sub max} as an in vivo measure of RubisCO activity, decreased by between 29 and 35% in high CO{sub 2}, whilst J{sub max}, as a measure of the RubP regeneration capacity, showed no significant change. Two out of three additional perennial grassland species studied showed similar acclamatory behavior to Ryegrass. Diurnal assimilation rate, J{sub max} and, in most cases, Vc{sub max}, increased significantly directly after cutting of Ryegrass stands, but nitrogen treatment had little effect on any of these parameters. Neither stomatal density, stomatal index nor stomatal pore length of Ryegrass were significantly altered by growth in elevated CO{sub 2}. The results are discussed in terms of the limitation imposed on maximizing photosynthetic and growth responses of Ryegrass at elevated CO{sub 2}, by the ability of perennial species to increase long-term sink capacity under these conditions.

  17. A synteny-based draft genome sequence of the forage grass Lolium perenne.

    PubMed

    Byrne, Stephen L; Nagy, Istvan; Pfeifer, Matthias; Armstead, Ian; Swain, Suresh; Studer, Bruno; Mayer, Klaus; Campbell, Jacqueline D; Czaban, Adrian; Hentrup, Stephan; Panitz, Frank; Bendixen, Christian; Hedegaard, Jakob; Caccamo, Mario; Asp, Torben

    2015-11-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands.

  18. The effect of applying sodium fertilizer on the rate of digestion of perennial ryegrass and white clover incubated in rumen liquor, with implications for ruminal tympany in cattle.

    PubMed

    Phillips, C J; Tenlep, S Y; Pennell, K; Omed, H; Chiy, P C

    2001-01-01

    A high herbage K:Na ratio increases the risk of ruminal tympany in cattle, which may relate to digestion rate. Experiment 1 examined whether in vitro digestibility of ryegrass was affected by NaCl fertilizer or by Na concentration in artificial saliva. Fertilizer Na increased grass digestibility, but Na in artificial saliva decreased it, probably due to the energy cost of sodium exclusion from bacteria. Increased herbage digestibility with fertilizer Na is therefore not due to additional Na, but may relate to increased water-soluble carbohydrates. Experiment 2 examined whether NaCl fertilizer applied at 35 or 70 kg Na ha(-1)to ryegrass and white clover affected in vitro gas production. Sodium fertilizer increased maximum gas output from grass and rate of production, confirming the increase in grass digestibility recorded previously, but in clover it had the opposite effect, thereby potentially reducing ruminal tympany in cows fed a high legume diet.

  19. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: comparison with known Lol p I and II sequences.

    PubMed

    Ansari, A A; Shenbagamurthi, P; Marsh, D G

    1989-10-17

    The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p III, determined by the automated Edman degradation of the protein and its selected fragments, is reported in this paper. Cleavage by enzymatic and chemical techniques established unambiguously the sequence for this 97-residue protein (Mr = 10,909), which lacks cysteine and shows no evidence of glycosylation. The sequence of Lol p III is very similar to that of another L. perenne allergen, Lol p II, which was sequenced recently; of the 97 positions in the two proteins, 57 are occupied by identical amino acids (59% identity). In addition, both allergens share a similar structure with an antibody-binding fragment of a third L. perenne allergen, Lol p I. Since human antibody responsiveness to all these three allergens is associated with HLA-DR3, and since the structure common to the three molecules shows high degrees of amphipathicity in Lol p II and III, we speculate that this common segment in the three molecules might contain or contribute to the respectively Ia/T-cell sites.

  20. Temperature and Plant Genotype Alter Alkaloid Concentrations in Ryegrass Infected with an Epichloë Endophyte and This Affects an Insect Herbivore

    PubMed Central

    Hennessy, Louise M.; Popay, Alison J.; Finch, Sarah C.; Clearwater, Michael J.; Cave, Vanessa M.

    2016-01-01

    Asexual Epichloë endophytes colonize agricultural forage grasses in a relationship which is mutually beneficial and provides the host plant with protection against herbivorous insects. The endophyte strain AR37 (Epichloë festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata (Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how the resulting variations in concentration affected consumption, growth and survival of porina larvae. Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic diets were analyzed by high performance liquid chromatography. AR37-infected ryegrass grown at high temperature contained high in planta concentrations of epoxy-janthitrem (30.6 μg/g in leaves and 83.9 μg/g in pseudostems) that had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their survival by 25–42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in AR37-infected ryegrass grown at low temperature were very low (0.67 μg/g in leaves and 7.4 μg/g in pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although alkaloid concentrations were greatly reduced by low temperature this reduction did not occur

  1. Temperature and Plant Genotype Alter Alkaloid Concentrations in Ryegrass Infected with an Epichloë Endophyte and This Affects an Insect Herbivore.

    PubMed

    Hennessy, Louise M; Popay, Alison J; Finch, Sarah C; Clearwater, Michael J; Cave, Vanessa M

    2016-01-01

    Asexual Epichloë endophytes colonize agricultural forage grasses in a relationship which is mutually beneficial and provides the host plant with protection against herbivorous insects. The endophyte strain AR37 (Epichloë festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata (Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how the resulting variations in concentration affected consumption, growth and survival of porina larvae. Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic diets were analyzed by high performance liquid chromatography. AR37-infected ryegrass grown at high temperature contained high in planta concentrations of epoxy-janthitrem (30.6 μg/g in leaves and 83.9 μg/g in pseudostems) that had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their survival by 25-42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in AR37-infected ryegrass grown at low temperature were very low (0.67 μg/g in leaves and 7.4 μg/g in pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although alkaloid concentrations were greatly reduced by low temperature this reduction did not occur until

  2. Toxicity of formulated glycol deicers and ethylene and propylene glycol to lactuca sativa, lolium perenne, selenastrum capricornutum, and lemna minor

    PubMed

    Pillard; DuFresne

    1999-07-01

    Laboratory studies were conducted to determine the toxicity of ethylene glycol (EG) and propylene glycol (PG) as well as two formulated glycol aircraft deicing/anti-icing fluids (ADAFs) to lettuce (Lactuca sativa), perennial ryegrass (Lolium perenne), a green alga (Selenastrum capricornutum), and duckweed (Lemna minor). Seedling emergence, root length, and shoot length were measured in lettuce and ryegrass; cell growth of the alga and frond growth, chlorophyll a, and pheophytin a of the duckweed were measured. While both the ADAFs and pure glycols were toxic to the test species, there were substantial differences in how the organisms responded to the test materials. ADAFs affected emergence in ryegrass more than in lettuce. However, when considering the sublethal endpoints of root and shoot length, the ADAFs were significantly more toxic to lettuce. The root length 120-h IC25s for lettuce were 2,710 and 21, 270 mg EG/L for the ADAF and pure EG compound, respectively; the root length 120-h IC25s for ryegrass were 4,150 and 3,620 mg EG/L for the ADAF and pure EG compound, respectively. EG and PG ADAFs were more toxic than pure EG or PG to L. minor. To S. capricornutum, EG ADAF toxicity was similar to EG toxicity, however, PG ADAF was substantially more toxic to the alga than pure PG. The greater toxicity of ADAFs is reflective of other studies using animals and suggests that although glycols no doubt contribute to toxicity in deicer formulations, other compounds in the mixtures also contribute to the toxicity of the deicers. However, differences in responses between the four plant species suggest differences in modes of action and/or how the plants metabolize the compounds.http://link. springer-ny.com/link/service/journals/00244/bibs/37n1p29.html

  3. Silage from maize (Zea mays), annual ryegrass (Lolium multiflorum) or their mixture in the dry season feeding of grazing dairy cows in small-scale dairy production systems in the highlands of Mexico.

    PubMed

    Anaya-Ortega, J P; Garduño-Castro, G; Espinoza-Ortega, A; Rojo-Rubio, R; Arriaga-Jordán, C M

    2009-04-01

    Small-scale dairy systems based on grazing have dry-season herbage shortages. A repeated 3 x 3 Latin Square experiment evaluated grazing with silage from maize (MS), annual ryegrass (ARG) or a mixture (MIX) with 9 cows with 3 week periods; continuously grazed at 3.6 cows/ha with 3.6 kg DM/day of concentrate. Treatments were 7 kg DM of MS, ARG or a 2 MS:1 ARG mixture. Milk yield (MY), milk composition, live-weight, body condition, silage and concentrate intake were recorded. Herbage DM intake was estimated indirectly. Activity budgets were done for economic analysis. MY on MS (21.5 kg/cow/d) was 0.06 higher than on ARG (P < 0.09) with no differences on MIX. There were no differences for milk fat, milk protein, or body condition score. Live-weight on ARG was higher (P < 0.01) than on MS or MIX. Silage intake was higher (P < 0.01) on ARG and MS than on MIX. Herbage intake was lower (P < 0.05) on MS, compared with MIX and ARG. Total DM intake on ARG was higher than MS (P < 0.01), and MIX in between. MS resulted in 0.12 higher economic returns over ARG which had highest costs. Annual ryegrass may have a place in small-scale systems, but not as silage due to higher costs. PMID:18787970

  4. Silage from maize (Zea mays), annual ryegrass (Lolium multiflorum) or their mixture in the dry season feeding of grazing dairy cows in small-scale dairy production systems in the highlands of Mexico.

    PubMed

    Anaya-Ortega, J P; Garduño-Castro, G; Espinoza-Ortega, A; Rojo-Rubio, R; Arriaga-Jordán, C M

    2009-04-01

    Small-scale dairy systems based on grazing have dry-season herbage shortages. A repeated 3 x 3 Latin Square experiment evaluated grazing with silage from maize (MS), annual ryegrass (ARG) or a mixture (MIX) with 9 cows with 3 week periods; continuously grazed at 3.6 cows/ha with 3.6 kg DM/day of concentrate. Treatments were 7 kg DM of MS, ARG or a 2 MS:1 ARG mixture. Milk yield (MY), milk composition, live-weight, body condition, silage and concentrate intake were recorded. Herbage DM intake was estimated indirectly. Activity budgets were done for economic analysis. MY on MS (21.5 kg/cow/d) was 0.06 higher than on ARG (P < 0.09) with no differences on MIX. There were no differences for milk fat, milk protein, or body condition score. Live-weight on ARG was higher (P < 0.01) than on MS or MIX. Silage intake was higher (P < 0.01) on ARG and MS than on MIX. Herbage intake was lower (P < 0.05) on MS, compared with MIX and ARG. Total DM intake on ARG was higher than MS (P < 0.01), and MIX in between. MS resulted in 0.12 higher economic returns over ARG which had highest costs. Annual ryegrass may have a place in small-scale systems, but not as silage due to higher costs.

  5. Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations

    PubMed Central

    Grinberg, Nastasiya F.; Lovatt, Alan; Hegarty, Matt; Lovatt, Andi; Skøt, Kirsten P.; Kelly, Rhys; Blackmore, Tina; Thorogood, Danny; King, Ross D.; Armstead, Ian; Powell, Wayne; Skøt, Leif

    2016-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield. Genetic gain for traits such as biomass yield has been relatively modest. This has been attributed to its long breeding cycle, and the necessity to use population based breeding methods. Thanks to recent advances in genotyping techniques there is increasing interest in genomic selection from which genomically estimated breeding values are derived. In this paper we compare the classical RRBLUP model with state-of-the-art machine learning techniques that should yield themselves easily to use in GS and demonstrate their application to predicting quantitative traits in a breeding population of L. perenne. Prediction accuracies varied from 0 to 0.59 depending on trait, prediction model and composition of the training population. The BLUP model produced the highest prediction accuracies for most traits and training populations. Forage quality traits had the highest accuracies compared to yield related traits. There appeared to be no clear pattern to the effect of the training population composition on the prediction accuracies. The heritability of the forage quality traits was generally higher than for the yield related traits, and could partly explain the difference in accuracy. Some population structure was evident in the breeding populations, and probably contributed to the varying effects of training population on the predictions. The average linkage disequilibrium between adjacent markers ranged from 0.121 to 0.215. Higher marker density and larger training population closely related with the test population are likely to improve the prediction accuracy. PMID:26904088

  6. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops.

    PubMed

    Lehoczky, E; Nelima, M Okumu; Szabó, R; Szalai, A; Nagy, P

    2011-01-01

    Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was

  7. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops.

    PubMed

    Lehoczky, E; Nelima, M Okumu; Szabó, R; Szalai, A; Nagy, P

    2011-01-01

    Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was

  8. Transferability of cereal EST-SSR markers to ryegrass.

    PubMed

    Sim, Sung-Chur; Yu, Ju-Kyung; Jo, Young-ki; Sorrells, Mark E; Jung, Geunhwa

    2009-05-01

    A large number of expressed sequence tags (ESTs) in public databases have provided an opportunity for the systematic development of simple sequence repeat (SSR) markers. EST-SSRs derived from conserved coding sequences show considerable cross-species transferability in related species. In the present study, we assessed the utility of cereal EST-SSRs in ryegrass (Lolium spp.). A total of 165 cereal EST-SSRs were tested; a high rate of transferability (57%) and polymorphism (67% of functional EST-SSRs) was demonstrated between cereals and ryegrass. A total of 46 segregating loci derived from 37 EST-SSRs were mapped on an existing ryegrass genetic map. The mapped loci were uniformly distributed across all seven linkage groups without significant clustering at the distal regions of linkage groups. Sequences of ryegrass amplicons generated by randomly selected 16 EST-SSRs were aligned with reference sequences of cereal EST-SSRs. The SSR motifs and repeat lengths of the cereal EST-SSR markers were different from the majority of ryegrass amplicons. Furthermore, a majority of EST-SSRs amplified different flanking sequences of SSRs in ryegrass than the original cereal sequences. Our results suggest that the high degree of cereal EST-SSR transferability to ryegrass can be a useful enhancement to the molecular database of PCR-based markers but sequence analysis is essential before transferring genetic information using comparative mapping.

  9. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    PubMed

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  10. Stocker growth on rye and ryegrass pastures affects subsequent feedlot gains and carcass traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stocker calves were stocked on annual rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) pastures using stocking strategies (STK) to create graded levels of gain to assess subsequent growth rates, feedlot performance, and carcass traits. During two consecutive years, yearling Angus, Here...

  11. Morphological traits associated with weed-suppressive ability of winter wheat against Italian ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed-suppressive wheat (Triticum aestivum L.) cultivars have been suggested as a complement to chemical and cultural methods of weed control. The objectives of this study were to assess the range of weed-suppressive ability against Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] ...

  12. Phytoremediation of high phosphorus soil by annual ryegrass and common bermudagrass harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This four-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic...

  13. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  14. An Extracellular Siderophore Is Required to Maintain the Mutualistic Interaction of Epichloë festucae with Lolium perenne

    PubMed Central

    Johnson, Linda J.; Koulman, Albert; Christensen, Michael; Lane, Geoffrey A.; Fraser, Karl; Forester, Natasha; Johnson, Richard D.; Bryan, Gregory T.; Rasmussen, Susanne

    2013-01-01

    We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN) encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N5-trans-anhydromevalonyl-N5-hydroxyornithine (trans-AMHO), displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass) with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction. PMID:23658520

  15. First report of Fusarium graminearum, F. asiaticum and F. cortaderiae as head blight pathogens of annual ryegrass in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the Fusarium graminearum species complex (FGSC) cause Fusarium head blight (FHB) of small grains and several grasses, including annual ryegrass (Lolium multiflorum Lam.), an important forage crop, but also a common weed in wheat, rice and maize agroecosystem in southern Brazil. Although i...

  16. Effects of ryegrass on biodegradation of hydrocarbons in soil.

    PubMed

    Günther, T; Dornberger, U; Fritsche, W

    1996-07-01

    The effects of growing ryegrass (Lolium perenne L.) on the biodegradation of hydrocarbons was studied in laboratory scale soil columns. Degradation of hydrocarbons as well as bacterial numbers, soil respiration rates and soil dehydrogenase activities were determined. In the rhizosphere soil system, aliphatic hydrocarbons disappeared faster than in unvegetated columns. Abiotic loss by evaporation was of minor significance. Elimination of pollutants was accompanied by an increase in microbial numbers and activities. The microbial plate counts and soil respiration rates were substantially higher in the rhizosphere than in the bulk soil. The results indicate that biodegradation of hydrocarbons in the rhizosphere is stimulated by plant roots.

  17. Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L.

    PubMed

    Morvan-Bertrand, A; Boucaud, J; Le Saos, J; Prud'homme, M P

    2001-05-01

    The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30-60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance.

  18. Comparative analysis of multiple disease resistance in ryegrass and cereal crops.

    PubMed

    Jo, Young-Ki; Barker, Reed; Pfender, William; Warnke, Scott; Sim, Sung-Chur; Jung, Geunhwa

    2008-08-01

    Ryegrass (Lolium spp.) is among the most important forage crops in Europe and Australia and is also a popular turfgrass in North America. Previous genetic analysis based on a three-generation interspecific (L. perennexL. multiflorum) ryegrass population identified four quantitative trait loci (QTLs) for resistance to gray leaf spot (Magneporthe grisea) and four QTLs for resistance to crown rust (Puccinia coronata). The current analysis based on the same mapping population detected seven QTLs for resistance to leaf spot (Bipolaris sorokiniana) and one QTL for resistance to stem rust (Puccinia graminis) in ryegrass for the first time. Three QTLs for leaf spot resistance on linkage groups (LGs) 2 and 4 were in regions of conserved synteny to the positions of resistance to net blotch (Drechslera teres) in barley (Hordeum vulgare). One ryegrass genomic region spanning 19 cM on LG 4, which contained three QTLs for resistance to leaf spot, gray leaf spot, and stem rust, had a syntenic relationship with a segment of rice chromosome 3, which contained QTLs for resistance to multiple diseases. However, at the genome-wide comparison based on 72 common RFLP markers between ryegrass and cereals, coincidence of QTLs for disease resistance to similar fungal pathogens was not statistically significant.

  19. Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization.

    PubMed

    Lothier, Jérémy; Lasseur, Bertrand; Le Roy, Katrien; Van Laere, André; Prud'homme, Marie-Pascale; Barre, Philippe; Van den Ende, Wim; Morvan-Bertrand, Annette

    2007-01-01

    Fructans, which are beta-(2,1) and/or beta-(2,6) linked polymers of fructose, are important storage carbohydrates in many plants. They are mobilized via fructan exohydrolases (FEHs). The cloning, mapping, and functional analysis of the first 1-FEH (EC 3.2.1.153) from Lolium perenne L. var. Bravo is described here. By screening a perennial ryegrass cDNA library, a 1-FEH cDNA named Lp1-FEHa was cloned. The Lp1-FEHa deduced protein has a low iso-electric point (5.22) and it groups together with plant FEHs and cell-wall type invertases. The deduced amino acid sequence shows 75% identity to wheat 1-FEH w2. The Lp1-FEHa gene was mapped at a distal position on the linkage group 3 (LG3). Functional characterization of the recombinant protein in Pichia pastoris demonstrated that it had high FEH activity towards 1-kestotriose, 1,1-kestotetraose, and inulin, but low activity against 6-kestotriose and levan. Like other fructan-plant FEHs, no hydrolase activity could be detected towards sucrose, convincingly demonstrating that the enzyme is not a classic invertase. The expression pattern analysis of Lp1-FEHa revealed transcript accumulation in leaf tissues accumulating fructans while transcript level was low in the photosynthetic tissues. The high expression level of this 1-FEH in conditions of active fructan synthesis, together with its low expression level when fructan contents are low, suggest that it might play a role as a beta-(2,1) trimming enzyme acting during fructan synthesis in concert with fructan synthesis enzymes.

  20. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    PubMed

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters. PMID:24617071

  1. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    PubMed

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters.

  2. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x))

    PubMed Central

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-01-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  3. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x)).

    PubMed

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-03-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  4. Effect of silage from ryegrass intercropped with winter or common vetch for grazing dairy cows in small-scale dairy systems in Mexico.

    PubMed

    Hernández-Ortega, Martha; Heredia-Nava, Darwin; Espinoza-Ortega, Angelica; Sánchez-Vera, Ernesto; Arriaga-Jordán, Carlos M

    2011-06-01

    The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass-white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.

  5. Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum

    PubMed Central

    Pan, Ling; Zhang, Xinquan; Wang, Jianping; Ma, Xiao; Zhou, Meiliang; Huang, LinKai; Nie, Gang; Wang, Pengxi; Yang, Zhongfu; Li, Ji

    2016-01-01

    Drought is a major environmental stress that limits growth and development of cool-season annual grasses. Drought transcriptional profiles of resistant and susceptible lines were studied to understand the molecular mechanisms of drought tolerance in annual ryegrass (Lolium multiflorum L.). A total of 4718 genes exhibited significantly differential expression in two L. multiflorum lines. Additionally, up-regulated genes associated with drought response in the resistant lines were compared with susceptible lines. Gene ontology enrichment and pathway analyses revealed that genes partially encoding drought-responsive proteins as key regulators were significantly involved in carbon metabolism, lipid metabolism, and signal transduction. Comparable gene expression was used to identify the genes that contribute to the high drought tolerance in resistant lines of annual ryegrass. Moreover, we proposed the hypothesis that short-term drought have a beneficial effect on oxidation stress, which may be ascribed to a direct effect on the drought tolerance of annual ryegrass. Evidence suggests that some of the genes encoding antioxidants (HPTs, GGT, AP, 6-PGD, and G6PDH) function as antioxidant in lipid metabolism and signal transduction pathways, which have indispensable and promoting roles in drought resistance. This study provides the first transcriptome data on the induction of drought-related gene expression in annual ryegrass, especially via modulation of metabolic homeostasis, signal transduction, and antioxidant defenses to improve drought tolerance response to short-term drought stress. PMID:27200005

  6. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil. PMID:24797639

  7. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil.

  8. Windrow burning eliminates Italian Ryegrass (Lolium perenne ssp. multiflorum) seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burning of crop residues that have been concentrated behind the harvest combine (windrowed) is one of several harvest weed seed control strategies that have been developed and evaluated in Australia to address the widespread evolution of multiple herbicide resistance in annual weeds. Herbicide-resis...

  9. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations.

    PubMed

    Goecke, Paul; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2011-07-01

    The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass. PMID:21972502

  10. Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide

    SciTech Connect

    Ginkel, J.H. van; Whitmore, A.P.; Gorissen, A.

    1999-10-01

    Model calculations and scenario studies suggest the existence of a considerable positive feedback between temperature and CO{sub 2} levels in the atmosphere. Rising temperatures are supposed to increase decomposition of soil organic C leading to increased production of CO{sub 2} and this extra CO{sub 2} induces a positive feedback by raising the temperature still further. Evidence was found that negative feedback mechanisms also exist; more primary production is allocated to roots as atmospheric CO{sub 2} rises and these roots decompose more slowly than roots grown at ambient CO{sub 2} levels. Experimental data partly obtained with {sup 14}C-techniques were applied in a grassland C model. The model results show that at an atmospheric CO{sub 2} concentration of 700 {micro}L L{sup {minus}1} increased below ground C storage will be more than sufficient to balance the increased decomposition of soil organic C in a ryegrass (Lolium perenne L.) grassland soil. Once a doubling of the present atmospheric CO{sub 2} concentration has been reached, C equivalent to 55% of the annual CO{sub 2} increase above 1 ha ryegrass can be withdrawn from the atmosphere. This indicates that grassland soils represent a significant sink for rising atmospheric CO{sub 2}.

  11. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.

    PubMed

    Ciannamea, Stefano; Kaufmann, Kerstin; Frau, Marta; Tonaco, Isabella A Nougalli; Petersen, Klaus; Nielsen, Klaus K; Angenent, Gerco C; Immink, Richard G H

    2006-01-01

    Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here the analysis of three APETALA1 (AP1)-like MADS box proteins (LpMADS1-3) and a SHORT VEGETATIVE PHASE (SVP)-like MADS box protein (LpMADS10) from the monocot perennial grass species Lolium perenne is reported. Features of these MADS box proteins were studied by yeast two-hybrid assays. Protein-protein interactions among the Lolium proteins and with members of the Arabidopsis MADS box family have been studied. The expression pattern for LpMADS1 and the protein properties suggest that not the Arabidopsis AP1 gene, but the SUPPRESSOR OF CONSTANS1 (SOC1) gene, is the functional equivalent of LpMADS1. To obtain insight into the molecular mechanism underlying the regulation of LpMADS1 gene expression in vernalization-sensitive and -insensitive Lolium accessions, the upstream sequences of this gene from a winter and spring growth habit variety were compared with respect to MADS box protein binding. In both promoter elements, a putative MADS box transcription factor-binding site (CArG-box) is present; however, the putative spring promoter has a short deletion adjacent to this DNA motif. Experiments using yeast one-hybrid and gel retardation assays demonstrated that the promoter element is bound by an LpMADS1-LpMADS10 higher order protein complex and, furthermore, that this complex binds efficiently to the promoter element from the winter variety only. This strongly supports the model that LpMADS1 together with LpMADS10 controls the vernalization-dependent regulation of the LpMADS1 gene, which is part of the vernalization-induced flowering process in Lolium. PMID:17005923

  12. Virus induced gene silencing in Lolium temulentum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium temulentum L. is valuable as a model species for studying abiotic stress in closely related forage and turf grasses, many of which are polyploid outcrossing species. As with most monocot species, Agrobacterium-mediated transformation of L. temulentum is still challenging, time consuming and n...

  13. Interplanting Annual Ryegrass, Wheat, Oat, and Corn to Mitigate Iron Deficiency in Dry Beans

    PubMed Central

    Omondi, Emmanuel Chiwo; Kniss, Andrew R.

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal. PMID:25536084

  14. Interplanting annual ryegrass, wheat, oat, and corn to mitigate iron deficiency in dry beans.

    PubMed

    Omondi, Emmanuel Chiwo; Kniss, Andrew R

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.

  15. The molecular mechanism of "ryegrass staggers," a neurological disorder of K+ channels.

    PubMed

    Imlach, Wendy L; Finch, Sarah C; Dunlop, James; Meredith, Andrea L; Aldrich, Richard W; Dalziel, Julie E

    2008-12-01

    "Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement. Lolitrem B and the structurally related tremor inducer paxilline both act as potent large conductance calcium-activated potassium (BK) channel inhibitors. Using patch clamping, we show that their different apparent affinities correlate with their toxicity in vivo. To investigate whether the motor function deficits produced by lolitrem B and paxilline are due to inhibition of BK ion channels, their ability to induce tremor and ataxia in mice deficient in this ion channel (Kcnma1(-/-)) was examined. Our results show that mice lacking Kcnma1 are unaffected by these neurotoxins. Furthermore, doses of these substances known to be lethal to wild-type mice had no effect on Kcnma1(-/-) mice. These studies reveal the BK channel as the molecular target for the major components of the motor impairments induced by ryegrass neurotoxins. Unexpectedly, when the response to lolitrem B was examined in mice lacking the beta4 BK channel accessory subunit (Kcnmb4(-/-)), only low-level ataxia was observed. Our study therefore reveals a new role for the accessory BK beta4 subunit in motor control. The beta4 subunit could be considered as a potential target for treatment of ataxic conditions in animals and in humans.

  16. Genetic diversity and relationships in cultivars of Lolium multiflorum Lam. using sequence-related amplified polymorphism markers.

    PubMed

    Huang, L K; Jiang, X Y; Huang, Q T; Xiao, Y F; Chen, Z H; Zhang, X Q; Miao, J M; Yan, H D

    2014-12-04

    Sequence-related amplified polymorphism (SRAP) markers were used to analyze and estimate the genetic variability, level of diversity, and relationships among 20 cultivars and strains of annual ryegrass (Lolium multiflorum Lam.). Eighteen SRAP primer combinations generated 334 amplification bands, of which 298 were polymorphic. The polymorphism information content ranged from 0.4715 (me10 + em1) to 0.5000 (me5 + em7), with an average of 0.4921. The genetic similarity coefficient ranged from 0.4304 to 0.8529, and coefficients between 0.65 and 0.90 accounted for 90.00%. The cluster analysis separated the accessions into five groups partly according to their germplasm resource origins.

  17. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko

    1990-01-01

    Rhizotoxicity of Al is more pronounced in younger plants. Effects of Al on nutrient uptake by plants of different age are poorly understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solutions by intact 15- and 35-day-old plants of two ryegrass (Lolium multiflorum Lam.) cultivars. Lowering the pH from 6.0 to 4.2 decreased the maximum net ion influx without affecting Km. Aluminum at 6.6 micromolar Al3+ activity increased Km indicating competitive inhibition. The effects of pH and 6.6 micromolar Al3+ on net Mg2+ uptake were much larger in 15- than in 35-day-old plants. Aluminum at 26 micromolar Al3+ activity competitively inhibited net Mg2+ uptake by 35-day-old plants, while causing time- and external Mg2+ activity-dependent net Mg2+ efflux from 15-day-old plants. The equilibrium constant (Ki) of a reversible combination of postulated plasmalemma Mg2+ transporter and Al3+ was calculated to be 2 and 5 micromolar Al3+ activity for 15-day-old plants of Wilo and Gulf ryegrass, respectively, and 21 micromolar Al3+ activity for 35-day-old plants of both cultivars. The Al3+-mediated increase in Km was larger for 15-day-old plants of the Al-sensitive cultivar `Wilo' than of the more Al-tolerant cultivar `Gulf,' while Al3+ affected 35-day-old plants of both cultivars to the same extent. PMID:16667588

  18. Doppler ultrasonography for evaluating vascular responses to ergopeptine alkaloids in livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids are produced by non-spore producing fungal endophytes that infect certain species of grasses, most notably tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] and perennial ryegrass (Lolium perenne L.), and the spore producing Claviceps spp. that infect seed heads of certain grasses...

  19. Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Huang, Yanbo; Nandula, Vijay K.; Reddy, Krishna N.

    2014-05-01

    Glyphosate based herbicide programs are most preferred in current row crop weed control practices. With the increased use of glyphosate, weeds, including Italian ryegrass (Lolium multiflorum), have developed resistance to glyphosate. The identification of glyphosate resistant weeds in crop fields is critical because they must be controlled before they reduce the crop yield. Conventionally, the method for the identification with whole plant or leaf segment/disc shikimate assays is tedious and labor-intensive. In this research, we investigated the use of high spatial resolution hyperspectral imagery to extract spectral curves derived from the whole plant of Italian ryegrass to determine if the plant is glyphosate resistant (GR) or glyphosate sensitive (GS), which provides a way for rapid, non-contact measurement for differentiation between GR and GS weeds for effective site-specific weed management. The data set consists of 226 greenhouse grown plants (119 GR, 107 GS), which were imaged at three and four weeks after emergence. In image preprocessing, the spectral curves are normalized to remove lighting artifacts caused by height variation in the plants. In image analysis, a subset of hyperspectral bands is chosen using a forward selection algorithm to optimize the area under the receiver operating characteristic (ROC) between GR and GS plants. Then, the dimensionality of selected bands is reduced using linear discriminant analysis (LDA). Finally, the maximum likelihood classification was conducted for plant sample differentiation. The results show that the overall classification accuracy is between 75% and 80% depending on the age of the plants. Further refinement of the described methodology is needed to correlate better with plant age.

  20. Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils.

    PubMed

    Moreno, José L; Sanchez-Marín, Antonio; Hernández, Teresa; García, Carlos

    2006-05-01

    Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations that produced 5% 10%, and 50% inhibition of each of the two soil microbiological parameter studied (ecological dose, ED, values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass (Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15 g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil. PMID:16485164

  1. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.

    PubMed

    Karami, Nadia; Clemente, Rafael; Moreno-Jiménez, Eduardo; Lepp, Nicholas W; Beesley, Luke

    2011-07-15

    Green waste compost and biochar amendments were assessed for their assistance in regulating the mobility of copper (Cu) and lead (Pb) and the resultant uptake of these metals into vegetation. The amendments were mixed with a heavily Cu and Pb contaminated soil (600 and 21,000 mg kg(-1), respectively) from a former copper mine in Cheshire (UK), on a volume basis both singly and in combination in greenhouse pot trials. Ryegrass (Lolium perenne L. var. Cadix) was grown for the following 4 months during which biomass, metals in soil pore water and plant uptake were measured in three consecutive harvests. Very high Pb concentrations in pore water from untreated soil (>80 mg l(-1)) were reduced furthest by compost amendment (<5 mg l(-1)) whereas biochar was the more effective treatment at reducing pore water Cu concentrations. Duly, ryegrass shoot Cu levels were reduced and large, significant reductions in shoot Pb levels were observed after biochar and compost amendments, respectively during successive harvests. However, because green waste compost singly and in combination with biochar vividly enhanced biomass yields, harvestable amounts of Pb were only significantly reduced by the compost amendment which had reduced shoot Pb levels furthest. The low biomass of ryegrass with biochar amendment meant that this was the only amendment which did not significantly increase harvestable amounts of Cu. Therefore the two amendments have opposing metal specific suitability for treating this contaminated soil regarding whether it is a maximum reduction in plant tissue metal concentration or a maximum reduction in harvestable amount of metal that is required.

  2. Toxicity of endophyte-infected ryegrass hay containing high ergovaline level in lactating ewes.

    PubMed

    Zbib, N; Repussard, C; Tardieu, D; Priymenko, N; Domange, C; Guerre, P

    2015-08-01

    The symbiotic association of var. (formerly named ) with perennial ryegrass () leads to the production of ergovaline (EV) and lolitrem B (LB) that are toxic for livestock. The objectives of this study were to determine the effects of feeding endophyte-infected ryegrass (SE+) hay on 16 lactating ewes (BW 80 ± 10 kg) in comparison with endophyte-free ryegrass (SE-) hay to investigate the putative mechanisms of action of EV and LB and to evaluate their persistence in milk and animal tissues. The mean EV and LB concentrations in SE+ hay were 851 and 884 μg/kg DM, respectively, whereas these alkaloids were below the limit of detection in SE- hay. No effect of SE+ was observed on animal health and skin temperature whereas prolactin decreased and significant differences between hays were observed from d 7 to 28 of the study ( < 0.03) but had no effect on milk production. Hematocrit and biochemical analyses of plasma revealed no significant difference between SE+ and SE-, whereas cortisol concentration differed significantly on d 28 ( = 0.001). Measurement of oxidative damage and antioxidant enzyme activities in plasma, liver, and kidneys revealed a slight increase in some enzyme activities involved in defense against oxidative damage in the SE+ fed ewes. Slight variations in the activities of hepatic and kidney flavin monooxygenase enzymes were observed, whereas in the kidney, glutathione -transferase activity decreased significantly ( = 0.002) in the SE+ fed ewes, whereas uridine diphosphate glucuronosyltransferase activity increased ( = 0.001). After 28 d of exposure of ewes to the SE+ hay, low EV and LB concentrations were measured in tissues. The highest concentration of EV was observed in the liver (0.68 μg/kg) whereas fat contained the highest concentration of LB (2.39 μg/kg). Both toxins were also identified at the trace level in milk. PMID:26440189

  3. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fluorescence percentages in ryegrasses. 201.61 Section... ACT FEDERAL SEED ACT REGULATIONS Tolerances § 201.61 Fluorescence percentages in ryegrasses. Tolerances for 400-seed fluorescence tests shall be those set forth in the following table plus one-half...

  4. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass

    SciTech Connect

    Kulli, B.; Balmer, M.; Krebs, R.; Lothenbach, B.; Geiger, G.; Schulin, R.

    1999-12-01

    Metal uptake and removal from the soil by plants may be a useful measure to remediate contaminated soils. These processes can be enhanced by adding metal chelators to soil. The authors investigated the effect of nitrolotriacetate (NTA) and urea on the uptake of Cd, Cu, and Zn by lettuce (Lactuca sativa L. ev. Orion) and Italian ryegrass (Lolium perenne L. ev. Bastion) in pot experiments. Nitric acid-extractable heavy metal concentrations in the contaminated soil were 2 mg Cd, 530 mg Cu, and 700 mg Zn/kg. Three NTA treatments were compared with two urea treatments, and a control. Nitrilotriacetate and urea increased the NaNO{sub 3}-extractable soil concentrations of the three metals. At the highest NTA dose, metal concentrations in the aboveground plant biomass was 4 to 24 times greater than in the control plants. While NTA increased plant metal concentrations, it reduced plant matter production. At lower doses, this effect was small. At the highest NTA dose, plant growth was almost completely inhibited. Severe visual symptoms indicated metal toxicity as the likely cause. The urea treatments generally increased the plant matter production. Total metal uptake was in general larger at the lowest or at the intermediate NTA dose than at the highest doses. Little additional total metal uptake was achieved with NTA treatments than with urea. Compared with the controls, neither NTA nor urea enhanced total uptake under the given conditions by more than threefold.

  5. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  6. Nitrate Absorption and Assimilation in Ryegrass as Influenced by Calcium and Magnesium 1

    PubMed Central

    Morgan, M. A.; Jackson, W. A.; Volk, R. J.

    1972-01-01

    The absorption and assimilation patterns of 15NO3− supplied as the Ca2+ and Mg2+ salts to intact ryegrass (Lolium perenne) seedlings were compared. No statistically significant effect of ambient cation on the amounts of 15NO3− absorbed was observed in the initial six hours, but during the subsequent six hours, absorption from Ca(15NO3)2 exceeded that from Mg (15NO3)2. Lower rates of 15NO3− assimilation were found in roots exposed to Mg(15NO3)2 than in those exposed to Ca(15NO3)2. It was proposed that Mg2+ initiated a restriction in 15NO3− reduction in roots, probably as a consequence of a Mg2+-induced physiological Ca2+ deficiency. Lower 15N translocation rates were also observed from Mg(15NO3)2. These effects of Mg2+ in depressing 15NO3− assimilation and translocation occurred prior to an effect on 15NO3− uptake. In shoots, larger amounts of reduced 15N products occurred with Ca(15NO3)2 than with Mg(15NO3)2. It was concluded that this was due to enhanced translocation of 15NO3− (and possibly its reduced products) in presence of Ca2+ rather than to specific cation effects on 15NO3− assimilation in the shoots. PMID:16658201

  7. Factors Influencing β-Glucan Synthesis by Particulate Enzymes from Suspension-Cultured Lolium multiflorum Endosperm Cells 1

    PubMed Central

    Henry, Robert J.; Stone, Bruce A.

    1982-01-01

    Particulate enzymes from suspension-cultured ryegrass (Lolium multiflorum Lam.) endosperm cells incorporated glucosyl residues from UDP-glucose and GDP-glucose into β-glucans. Three types of β-glucans were produced from UDP-glucose: 1,3-β-glucan; 1,4-β-glucan; and mixed-linkage 1,3;1,4-β-glucan. As in other systems, relatively more 1,4-β-glucan was produced from a low (10 micromolar) UDP-glucose concentration, and relatively more 1,3-β-glucan was produced from a high (1 millimolar) UDP-glucose concentration. However, in ryegrass, 1,3;1,4-β-glucan represented a major proportion of the products at both low and high UDP-glucose concentrations. The arrangement of linkages in the 1,3;1,4-β-glucan was different at the two concentrations; at the low UDP-glucose concentration, more sequences of three consecutive 1,4-linkages were produced. The effects of pH, temperature, and metal ion concentrations on incorporation were dependent on the UDP-glucose concentration. At the low UDP-glucose concentration, incorporation into all three types of β-glucan increased with increasing pH. At the high UDP-glucose concentration, 1,3-β-glucan was the major product at pH 7 and below; 1,4-β-glucan synthesis was optimal at pH 8; and synthesis of 1,3;1,4-β-glucan was greatest above pH 8. With 10 micromolar GDP-glucose as substrate, 1,4-β-glucan, but no 1,3;1,4-β-glucan, was produced. Incorporation from either UDP-glucose or GDP-glucose was not influenced by the presence of the other. PMID:16662263

  8. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum

    PubMed Central

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation. PMID:27336441

  9. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    PubMed

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation. PMID:27336441

  10. Perennial Grain and Oilseed Crops.

    PubMed

    Kantar, Michael B; Tyl, Catrin E; Dorn, Kevin M; Zhang, Xiaofei; Jungers, Jacob M; Kaser, Joe M; Schendel, Rachel R; Eckberg, James O; Runck, Bryan C; Bunzel, Mirko; Jordan, Nick R; Stupar, Robert M; Marks, M David; Anderson, James A; Johnson, Gregg A; Sheaffer, Craig C; Schoenfuss, Tonya C; Ismail, Baraem; Heimpel, George E; Wyse, Donald L

    2016-04-29

    Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems. PMID:26789233

  11. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.

    PubMed

    Feng, Mingbao; He, Qun; Shi, Jiaqi; Qin, Li; Zhang, Xuesheng; Sun, Ping; Wang, Zunyao

    2016-06-01

    In the present study, the toxic effect of decabromodiphenyl ether (BDE-209), an important brominated fire retardant, on soil was evaluated by amending with different concentrations (0 mg/kg, 1 mg/kg, 10 mg/kg, and 500 mg/kg dry wt) for 40 d. The activities of 3 soil enzymes (urease, catalase, and alkaline phosphatase) were measured as the principal assessment endpoints. Meanwhile, the effects of natural environmental factors, such as light conditions and soil biota, on BDE-209 intoxication were studied. For the latter, 30 earthworms (Metaphire guillelmi) with fully matured clitella or ryegrass (Lolium perenne) with fully matured leaves were exposed in soil amended with BDE-209. The activities of the soil enzymes were adversely affected by BDE-209, especially for the high-concentration treatments, with greater adverse effects in the dark than in the light. The presence of earthworms reduced toxicity to BDE-209, whereas ryegrass did not. The calculated integrated biomarker response index, which provides a general indicator of the health status of test species by combining different biomarker signals, further validated these findings. Moreover, the antioxidant status (oxidant-antioxidant balance) of these 2 biota was assessed. Results indicated that BDE-209 significantly affected the activities of antioxidant enzymes (superoxide dismutase and catalase) and enhanced the levels of malondialdehyde in both species. The present study may facilitate a better understanding of the toxicity of BDE-209 toward the soil environment. Environ Toxicol Chem 2016;35:1349-1357. © 2015 SETAC. PMID:26448514

  12. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.

    PubMed

    Feng, Mingbao; He, Qun; Shi, Jiaqi; Qin, Li; Zhang, Xuesheng; Sun, Ping; Wang, Zunyao

    2016-06-01

    In the present study, the toxic effect of decabromodiphenyl ether (BDE-209), an important brominated fire retardant, on soil was evaluated by amending with different concentrations (0 mg/kg, 1 mg/kg, 10 mg/kg, and 500 mg/kg dry wt) for 40 d. The activities of 3 soil enzymes (urease, catalase, and alkaline phosphatase) were measured as the principal assessment endpoints. Meanwhile, the effects of natural environmental factors, such as light conditions and soil biota, on BDE-209 intoxication were studied. For the latter, 30 earthworms (Metaphire guillelmi) with fully matured clitella or ryegrass (Lolium perenne) with fully matured leaves were exposed in soil amended with BDE-209. The activities of the soil enzymes were adversely affected by BDE-209, especially for the high-concentration treatments, with greater adverse effects in the dark than in the light. The presence of earthworms reduced toxicity to BDE-209, whereas ryegrass did not. The calculated integrated biomarker response index, which provides a general indicator of the health status of test species by combining different biomarker signals, further validated these findings. Moreover, the antioxidant status (oxidant-antioxidant balance) of these 2 biota was assessed. Results indicated that BDE-209 significantly affected the activities of antioxidant enzymes (superoxide dismutase and catalase) and enhanced the levels of malondialdehyde in both species. The present study may facilitate a better understanding of the toxicity of BDE-209 toward the soil environment. Environ Toxicol Chem 2016;35:1349-1357. © 2015 SETAC.

  13. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    PubMed

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  14. Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation.

    PubMed

    Dall-Orsoletta, Aline C; Almeida, João Gabriel R; Carvalho, Paulo C F; Savian, Jean V; Ribeiro-Filho, Henrique M N

    2016-06-01

    The inclusion of grazed pasture in dairy feeding systems based on a total mixed ration (TMR) reduces feed costs, benefits herd health, and reduces environmental impact. The present study aimed to evaluate the effect of ryegrass pasture combined with a partial TMR on enteric methane emissions, dry matter intake (DMI), and performance of dairy cows from mid to late lactation. The experimental treatments included 100% TMR (control), partial TMR + 6h of continuous grazing (0900-1500 h), and partial TMR + 6h of grazing that was divided into 2 periods of 3h each that took place after milking (0900-1200 h; 1530-1830 h). Twelve F1 cows (Holstein × Jersey; 132±44 DIM) were divided into 6 lots and distributed in a 3×3 Latin square design with 3 periods of 21 d (15 d of adaptation and 6 d of evaluation). Ryegrass (Lolium multiflorum Lam.) pasture was used, and the TMR was composed of 80% corn silage, 18% soybean meal, and 2% mineral and vitamin mixture, based on dry matter. The same mixture was used for cows with access to pasture. The total DMI, milk production, and 4% fat-corrected milk were similar for all cows; however, the pasture DMI (7.4 vs. 6.0kg/d) and grazing period (+ 40 min/d) were higher in cows that had access to pasture for 2 periods of 3h compared with those that grazed for a continuous 6-h period. Methane emission was higher (656 vs. 547g/d) in confined cows than in those that received partial TMR + pasture. The inclusion of annual ryegrass pasture in the diet of dairy cows maintained animal performance and reduced enteric methane emissions. The percentage of grazed forage in the cows' diet increased when access to pasture was provided in 2 periods after the morning and afternoon milking. PMID:27016830

  15. The janthitrems: fluorescent tremorgenic toxins produced by Penicillium janthinellum isolates from ryegrass pastures.

    PubMed Central

    Gallagher, R T; Latch, G C; Keogh, R G

    1980-01-01

    New tremorgenic mycotoxins named janthitrem A, B, and C (molecular weights 601, 585, and 569, respectively) were produced by more than half of 21 Penicillium janthinellum isolates obtained from ryegrass pastures involved in ryegrass staggers outbreaks in sheep. PMID:7356319

  16. Molecular basis of IgE-recognition of Lol p 5, a major allergen of rye-grass pollen.

    PubMed

    Suphioglu, C; Blaher, B; Rolland, J M; McCluskey, J; Schäppi, G; Kenrick, J; Singh, M B; Knox, R B

    1998-04-01

    Grass pollen, especially of rye-grass (Lolium perenne). represents an important cause of type I allergy. Identification of IgE-binding (allergenic) epitopes of major grass pollen allergens is essential for understanding the molecular basis of interaction between allergens and human IgE antibodies and therefore facilitates the devising of safer and more effective diagnostic and immunotherapy reagents. The aim of this study was to identify the allergenic epitopes of Lol p 5, a major allergen of rye-grass pollen, immunodissect these epitopes further so that the amino acid residues critical for antibody binding can be determined and investigate the conservation and nature of these epitopes within the context of the natural grass pollen allergens. Peptides, 12-13 amino acid residues long and overlapping each other by 4 amino acid residues, based on the entire deduced amino acid sequence of the coding region of Lol p 5, were synthesised and assayed for IgE-binding. Two strong IgE-binding epitopes (Lol p 5 (49-60) and (265-276), referred to as peptides 7 and 34, respectively) were identified. These epitopes were further resolved by truncated peptides and amino acid replacement studies and the amino acid residues critical for IgE-binding determined (Lol p 5 (49-60) residue Lys57 and (265-276) residue Lys275). Sequences of these epitopes were conserved in related allergens and may form the conserved allergenic domains responsible for the cross-reactivity observed between pollen allergens of taxonomically related grasses. Furthermore, due to its strong IgE-reactivity, synthetic peptide Lol p 5 (265-276) was used to affinity-purify specific IgE antibodies which recognised proteins of other clinically important grass pollens. further indicating presence of allergenic cross-reactivity at the level of allergenic epitope. Moreover, Lol p 5 (265 276) demonstrated a strong capacity to inhibit IgE-binding to natural rye-grass pollen proteins highlighting the antibody accessibility

  17. Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes.

    PubMed

    Sui, Ying; Yang, Hong

    2013-12-01

    Soil pollution with herbicides is a global problem. Before phytoremediation technology is developed for the plant-based clean-up of polluted soils, investigation of potential plants that can be used to accumulate and degrade herbicides is a critical step. In this study, three selected genotypes of ryegrass were comprehensively analyzed with regard to the atrazine accumulation, degradation and toxicological response. Under the conditions of soil with 0.8 mg kg(-1) atrazine, the maximum value for atrazine accumulation was 2.70 mg kg(-1) in shoots and 0.58 mg kg(-1) in roots. The residue of atrazine in soil with ryegrass cultivation was much lower than that in soil without ryegrass cultivation. Also, the content of atrazine residues in the rhizosphere was significantly lower than that in the non-rhizosphere soil. Activities of several enzymes (urease, invertase, polyphenol oxidase, acid phosphatase and alkaline phosphatase) in soil were assayed. These enzymes were depressed by atrazine but activated by ryegrass cultivation, even in the presence of atrazine. Finally, comparative studies have been conducted on the ryegrass genotypes in response to atrazine. They showed different capacities of degradation and bioaccumulation of atrazine. One of the grass cultivars Changjiang II (CJ) had better growth and higher levels of chlorophyll, but displayed less oxidative injury than two others, Abode (AB) and Jiewei (JW), under atrazine exposure. PMID:24196985

  18. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development.

    PubMed

    Dupont, Pierre-Yves; Eaton, Carla J; Wargent, Jason J; Fechtner, Susanne; Solomon, Peter; Schmid, Jan; Day, Robert C; Scott, Barry; Cox, Murray P

    2015-12-01

    Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host. PMID:26305687

  19. Immunochemical studies of Lolium perenne (rye grass) pollen allergens, Lol p I, II, and III.

    PubMed

    Ansari, A A; Kihara, T K; Marsh, D G

    1987-12-15

    It was reported earlier that human immune responses to three perennial rye grass (Lolium perenne) pollen allergens, Lol p I, II, and III, are associated with histocompatibility leukocyte antigen (HLA)-DR3. Rye-allergic people are often concordantly sensitive to all three of these allergens. Since earlier studies suggested that these antigens are non-cross-reactive, their immunologic relatedness by double antibody radioimmunoassay (DARIA) was studied in order to understand further the immunochemical basis for the concordant recognition of the three allergens. Direct binding DARIA studies were performed with human sera from 189 allergic subjects. Inhibition DARIA studies were carried out with 17 human sera from grass-allergic patients who were on grass immunotherapy, one goat anti-serum, and six rabbit antisera. None of the sera detected any significant degree of two-way cross-reactivity between Lol p I and II, or between Lol p I and III. However, the degree of two-way cross-reactivity between Lol p II and III exhibited by individual human and animal antisera varied between undetectable and 100%. In general, the degree of cross-reactivity between Lol p II and III was higher among human sera than among animal sera. Taken together with earlier findings that antibody responses to Lol p I, II and III are associated with HLA-HDR3, and that most Lol p II and III responders are also Lol p I responders, but not vice versa, our present results suggest the following: the HLA-DR3-encoded Ia molecule recognizes a similar immunodominant Ia recognition site (agretope) shared between Lol p I and Lol p II and/or III; in addition, Lol p I appears to contain unique Ia recognition site(s) not present in Lol p II and III. However, further epitope analyses are required to investigate these possibilities.

  20. Control of the gray field slug during annual ryegrass establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather conditions, in particular soil moisture and soil and air temperature, interact with both crop seedling and slug emergence during the early autumn season. Late, or inadequate autumn rainfall in western Oregon occasionally causes the timing of emergence of newly established annual ryegrass see...

  1. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  2. Cerebellar Disease in an Adult Cow

    PubMed Central

    Oz, H. H.; Nicholson, S. S.; Al-Bagdadi, F. K.; Zeman, D. H.

    1986-01-01

    This is the report of clinical signs and lesions of a cerebellar disorder in an adult four year old Limousin cow grazing perennial ryegrass (Lolium perenne). The most striking histopathological lesion was a marked paucity of Purkinje cells throughout the cerebellum. ImagesFigure 1.Figure 2. PMID:17422607

  3. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the fate and uptake of [14C]-TNT from soil into orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) over a one year period in a greenhouse-controlled environment. Pots (n=4 for each grass, containing 10 mg cold TNT/kg s...

  4. Comparative trends in forage nutritional quality across the growing season in thirteen grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on recent climate change models, landscapes are likely going to get drier and hotter; thus reducing the available water to support herbage production in species heavily dependent on water for persistence and production such as perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glom...

  5. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang; Peng, Fang; Wan, Yun; Liao, Min-Hong

    2014-07-01

    In this work, a laboratory experiment was performed to investigate the influences of inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus caledoniun L. and/or epigeic earthworms (Eisenia foetida) on phytoremediation of a PCB-contaminated soil by ryegrass grown for 180d. Planting ryegrass, ryegrass inoculated with earthworms, ryegrass inoculated with AMF, and ryegrass co-inoculated with AMF and earthworms decreased significantly initial soil PCB contents by 58.4%, 62.6%, 74.3%, and 79.5%, respectively. Inoculation with AMF and/or earthworms increased the yield of plants, and the accumulation of PCBs in ryegrass. However, PCB uptake by ryegrass accounted for a negligible portion of soil PCB removal. The number of soil PCB-degrading populations increased when ryegrass was inoculated with AMF and/or earthworms. The data show that fungal inoculation may significantly increase the remedial potential of ryegrass for soil contaminated with PCBs.

  6. Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity

    PubMed Central

    Goggin, Danica E.; Powles, Stephen B.; Steadman, Kathryn J.

    2011-01-01

    Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0–42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development. PMID:20974739

  7. Innate Type-2 Response to Alternaria Extract Enhances Ryegrass-induced Lung Inflammation

    PubMed Central

    Kim, Hee-Kyoo; Lund, Sean; Baum, Rachel; Rosenthal, Peter; Khorram, Naseem; Doherty, Taylor A.

    2014-01-01

    Background Exposure to the fungal allergen Alternaria alternata as well as ryegrass pollen has been implicated in severe asthma symptoms during thunderstorms. We have previously shown that Alternaria extract induces innate type 2 lung inflammation in mice. We hypothesized that the innate eosinophilic response to Alternaria extract may enhance lung inflammation induced by ryegrass. Methods Mice were sensitized to ryegrass allergen and administered a single challenge with Alternaria alternata extract before or after final ryegrass challenges. Levels of BAL eosinophils, neutrophils, Th2 cells, innate lymphoid cells (ILC2), IL-5 and IL-13 as well as inflammation and mucus were assessed. Results Mice receiving ryegrass sensitization and challenge developed an eosinophilic lung response. A single challenge with Alternaria extract given 3 days before or 3 days after ryegrass challenges resulted in increased eosinophils, peribronchial inflammation and mucus production in the airway compared with ryegrass only challenges. Type 2 innate lymphoid cell (ILC2) and Th2 cell recruitment to the airway was increased after Alternaria extract exposure in ryegrass challenged mice. Innate challenges with Alternaria extract induced BAL eosinophilia, Th2 cell recruitment as well as ILC2 expansion and proliferation. Conclusions A single exposure of Alternaria extract in ryegrass sensitized and challenged mice enhances the type-2 lung inflammatory response including airway eosinophilia, peribronchial infiltrate, and mucus production possibly through Th2 cell recruitment and ILC2 expansion. If translated to humans, exposures to both grass pollen and Alternaria may be a potential cause of thunderstorm-related asthma. PMID:24296722

  8. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass.

    PubMed

    Korade, Deepali L; Fulekar, M H

    2009-12-30

    The potential of ryegrass for rhizosphere bioremediation of chlorpyrifos in mycorrhizal soil was investigated by the green house pot culture experiments. The pot cultured soil amended at initial chlorpyrifos concentration of 10mg/kg was observed to be degraded completely within 7 days where the rest amended concentrations (25-100mg/kg) decreased rapidly under the influence of ryegrass mycorrhizosphere as the incubation progressed till 28 days. This bioremediation of chlorpyrifos in soil is attributed to the microorganisms associated with the roots in the ryegrass rhizosphere, therefore the microorganisms surviving in the rhizospheric soil spiked at highest concentration (100mg/kg) was assessed and used for isolation of chlorpyrifos degrading microorganisms. The potential degrader identified by 16s rDNA analysis using BLAST technique was Pseudomonas nitroreducens PS-2. Further, bioaugmentation for the enhanced chlorpyrifos biodegradation was performed using PS-2 as an inoculum in the experimental set up similar to the earlier. The heterotrophic bacteria and fungi were also enumerated from the inoculated and non-inoculated rhizospheric soils. In bioaugmentation experiments, the percentage dissipation of chlorpyrifos was 100% in the inoculated rhizospheric soil as compared to 76.24, 90.36 and 90.80% in the non-inoculated soil for initial concentrations of 25, 50 and 100mg/kg at the 14th, 21st and 28th day intervals respectively.

  9. Water deficit and induction of summer dormancy in perennial Mediterranean grasses

    PubMed Central

    Volaire, Florence; Seddaiu, Giovanna; Ledda, Luigi; Lelievre, François

    2009-01-01

    Background and Aims Summer dormancy is a trait conferring superior drought survival in Mediterranean perennial grasses. As the respective roles of environmental factors and water deficit on induction of summer dormancy are unclear, the effect of intense drought were tested under contrasting day lengths in a range of forage and native grasses. Methods Plants of Poa bulbosa, Dactylis glomerata ‘Kasbah’ and Lolium arundinaceum ‘Flecha’ were grown in pots (a) from winter to summer in a glasshouse and subjected to either an early or a late-spring drought period followed by a summer water deficit and (b) in controlled conditions, with long days (LD, 16 h) or short days (SD, 9 h) and either full irrigation or water deficit followed by rehydration. Leaf elongation, senescence of aerial tissues and dehydration of basal tissues were measured to assess dormancy. Endogenous abscisic acid (ABA) in basal tissues was determined by monoclonal immunoassay analysis. Key Results Even under irrigation, cessation of leaf elongation, senescence of lamina and relative dehydration of basal tissues were triggered only by a day length longer than 13 h 30 min (late spring and LD) in plants of Poa bulbosa and Dactylis glomerata ‘Kasbah’ which exhibit complete dormancy. Plants of Lolium arundinaceum ‘Flecha’ maintained leaf growth under irrigation irrespective of the day length since its dormancy is incomplete. ABA concentrations were not higher during late-spring drought than early, and could not be associated with spring dormancy induction. In summer, ABA concentration in bulbs of the desiccation-tolerant Poa were greater than in basal tissues of other species. Conclusions The results of both experiments tend to invalidate the hypothesis that water deficit has a role in early summer-dormancy induction in the range of tested grasses. However, a late-spring drought tends to increase plant senescence and ABA accumulation in basal tissues of forage grasses which could enhance

  10. A simulation model for epidemics of stem rust in ryegrass seed crops.

    PubMed

    Pfender, W F; Upper, D

    2015-01-01

    A simulation model (STEMRUST_G, named for stem rust of grasses) was created for stem rust (caused by Puccinia graminis subsp. graminicola) in perennial ryegrass grown to maturity as a seed crop. The model has a daily time step and is driven by weather data and an initial input of disease severity from field observation. Key aspects of plant growth are modeled. Disease severity is modeled as rust population growth, where individuals are pathogen colonies (pustules) grouped in cohorts defined by date of initiation and plant part infected. Infections due to either aerial spread or within-plant contact spread are modeled. Pathogen cohorts progress through life stages that are modeled as disease cycle components (colony establishment, latent period, infectious period, and sporulation) affected by daily weather variables, plant growth, and fungicide application. Fungicide effects on disease cycle components are modeled for two commonly used active ingredients, applied preinfection or postinfection. Previously validated submodels for certain disease cycle components formed the framework for integrating additional processes, and the complete model was calibrated with field data from 10 stem rust epidemics. Discrepancies between modeled outcomes and the calibration data (log10[modeled]-log10[observed]) had a mean near zero but considerable variance, with 1 standard deviation=0.5 log10 units (3.2-fold). It appears that a large proportion of the modeling error variance may be due to variability in field observations of disease severity. An action threshold for fungicide application was derived empirically, using a constructed weather input file favorable for disease development. The action threshold is a negative threshold, representing a level of disease (latent plus visible) below which damaging levels of disease are unable to develop before the yield-critical crop stage. The model is in the public domain and available on the Internet.

  11. [Effects of organic acids on the toxicity of cadmium during ryegrass growth].

    PubMed

    Liao, Min; Huang, Changyong

    2002-01-01

    Effects of low molecular weight organic acids(oxalic acid, citric acid, and acetic acid) and higher molecular weight organic acid(humic acid) on the toxicity of Cd during ryegrass growth were studied. The results showed that Cd toxicity enhanced gradually with increasing the concentration of low molecular weight organic acids, and led to the decreasing of chlorophyll concentration in ryegrass plant and the biomass of ryegrass. The sequence of this influence was: oxalic acid < acetic acid < citric acid. On the contrary, Cd toxicity was reduced as a result of addition of humic acid, and the concentration of chlorophyll in ryegrass shoots and the biomass of ryegrass increased consequently. The concentration of Cd in roots and shoots of the ryegrass increased with increasing the concentration of low molecular weight organic acids, and the sequence of this influence was: citric acid > acetic acid > oxalic acids. The concentration of Cd decreased gradually as a result of increasing the concentration of humic acid, which means humic acid could reduce the toxicity of Cd on ryegrass. Furthermore, the concentration of Cd was higher in roots than in shoots, which indicated that the roots of ryegrass could prevent transport of Cd from roots to shoots and reduce Cd accumulation in the shoots.

  12. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  13. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediaiton of polycyclic aromatic hydrocarbons...

  14. Identification of quantitative trait loci for seed trait and floral morphology in a field-grown Lolium perenne x Lolium multiflorum mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium multiflorum Lam. and L. perenne L. differ in the requirements for initiation of flowering, and in other morphological traits. Generally, L. multiflorum spikes are larger than L. perenne spikes, and have more spikelets, more florets per spikelet, larger seeds, and awns. The greater number of s...

  15. Weed control in herbaceous perennial container production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control in container production of herbaceous perennials is difficult due to being grown primarily in enclosed production sites where traditional herbicides cannot be used, and due to sensitivity of these crops to traditional herbicides even when they are grown outdoors. Controlling weeds in h...

  16. Establishing and managing perennial grasses for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum) is native to every U.S. state east of the Rocky Mountains, is the most advanced herbaceous perennial bioenergy feedstock, and best management practices (BMPs) have been developed for bioenergy production in most agro-ecoregions. Additionally, big bluestem (Andropogon g...

  17. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  18. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne

    PubMed Central

    Koulman, Albert; Lee, T. Verne; Fraser, Karl; Johnson, Linda; Arcus, Vickery; Lott, J. Shaun; Rasmussen, Susanne; Lane, Geoffrey

    2012-01-01

    A number of genes encoding non-ribosomal peptide synthetases (NRPSs) have been identified in fungi of Epichloë/Neotyphodium species, endophytes of Pooid grasses, including sidN, putatively encoding a ferrichrome siderophore-synthesizing NRPS. Targeted gene replacement and complementation of sidN in Epichloë festucae has established that extracellular siderophore epichloënin A is the major product of the SidN enzyme complex (Johnson et al., 2007a). We report here high resolution mass spectrometric fragmentation experiments and NMR analysis of an isolated fraction establishing that epichloënin A is a siderophore of the ferrichrome family, comprising a cyclic sequence of four glycines, a glutamine and three Nδ-trans-anhydromevalonyl–Nδ-hydroxyornithine (AMHO) moieties. Epichloënin A is unusual among ferrichrome siderophores in comprising an octapeptide rather than hexapeptide sequence, and in incorporating a glutamine residue. During this investigation we have established that desferrichrome siderophores with pendant trans-AMHO groups can be distinguished from those with pendant cis-AMHO groups by the characteristic neutral loss of an hydroxyornithine moiety in the MS/MS spectrum. A minor component, epichloënin B, has been characterized as the triglycine variant by mass spectrometry. A peptide characterized by mass spectrometry as the putative deoxygenation product, epichloëamide has been detected together with ferriepichloënin A in guttation fluid from ryegrass (Lolium perenne) plants infected with wild-type E. festucae, but not in plants infected with the ΔsidN mutant strain, and also detected at trace levels in wild-type E. festucae fungal culture. PMID:22196939

  19. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex

    PubMed Central

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  20. The photosynthetic acclimation of Lolium perenne in response to three years growth in a free-air CO{sub 2} enrichment (FACE) system

    SciTech Connect

    Hymus, G.J. |

    1996-08-01

    Pure stands of Ryegrass were in their third year of growth in the field, exposed to either ambient (355 {mu}mol mol{sup -1}), or elevated (600 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration. A Free-Air CO{sub 2} Enrichment (FACE) system was used to maintain the elevated CO{sub 2} concentration whilst limiting experimental constraints on the field conditions. The theoretically predicted increase in the net rates of CO{sub 2} uptake per unit leaf area (A {mu}mol mol{sup -1}) as a consequence, primarily, of the suppression of photorespiration by CO{sub 2} a competitive inhibitor of RubP oxygenation by Rubisco, was observed for the Lolium perenne studied. Also observed was a general decline in leaf evapotranspiration (E) consistent with observations of increased water use efficiency of crops grown in elevated CO{sub 2}. Enhancement of leaf A in the FACE grown L. perenne ranged from 26.5 1 % to 44.95% over the course of a diurnal set of measurements. Whilst reductions in leaf E reached a maximum of 16.61% over the same diurnal course of-measurements. The increase in A was reconciled with an absence of the commonly observed decline in V{sub c}{sub max} as a measure of the maximum in vivo carboxylation capacity of the primary carboxylasing enzyme Rubisco and J{sub max} a measure of the maximum rate of electron transport. The manipulation of the source sink balance of the crop, stage of canopy regrowth or height in the canopy had no effect on the observation of a lack of response. The findings of this study will be interpreted with respect to the long term implications of C{sub 3} crops being able to adapt physiologically to maximize the potential benefits conferred by growth in elevated CO{sub 2}.

  1. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex.

    PubMed

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  2. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fluorescence percentages in ryegrasses. 201.61 Section... found fluorescence tolerance 100 99 1.0 98 1.6 97 2.0 96 2.3 95 2.6 94 2.9 93 3.2 92 3.4 91 3.6 90 3.8... 6.6 31 6.6 30 6.5 29 6.5 28 6.4 27 6.4 26 6.3 25 6.2 24 6.2 23 6.1 22 6.0 21 5.9 20 5.8 19 5.7 18...

  3. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  4. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation. PMID:22707204

  5. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  6. Human immune responsiveness to Lolium perenne pollen allergen Lol p III (rye III) is associated with HLA-DR3 and DR5.

    PubMed

    Ansari, A A; Freidhoff, L R; Meyers, D A; Bias, W B; Marsh, D G

    1989-05-01

    A well-characterized allergen of Lolium perenne (perennial rye grass) pollen, Lol p III, has been used as a model antigen to study the genetic control of the human immune response. Associations between HLA type and IgE or IgG antibody (Ab) responsiveness to Lol p III were studied in two groups of skin-test-positive Caucasoid adults (N = 135 and 67). We found by nonparametric and parametric analyses that immune responsiveness to Lol p III was significantly associated with HLA-DR3 and DR5. No association was found between any DQ type and immune responsiveness to Lol p III. Geometric mean IgE or IgG Ab levels to Lol p III were not different between B8+, DR3+ subjects and B8-, DR3+ subjects, showing that HLA-B8 had no influence on the association. Lol p III IgG Ab data obtained on subjects after grass antigen immunotherapy showed that 100% of DR3 subjects and 100% of DR5 subjects were Ab+. A comparison of all the available protein sequences of DRB gene products showed that the first hypervariable region of DR3 and DR5 (and DRw6), and no other region, contains the sequence Glu9-Tyr-Ser-Thr-Ser13. Our observations are consistent with the possibility that immune responsiveness to the allergen Lol p III is associated with this amino acid sequence in the first hypervariable region of the DR beta 1 polypeptide chain.

  7. Transcriptome response in different tissues of Lolium arundinaceum to the fungal endophyte Epichloe coenophiala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum) plants symbiotic with the endophytic fungus, Epichloe coenophiala , (E+), have been shown to have better survivability and persistence than plants lacking the endophyte (E-). To understand more about the grass-endophyte interactions and how endophyte affects the ho...

  8. Transcriptome response of Lolium arundinaceum to the fungal endophyte Epichloe coenophiala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum) is one of the principal cool-season species used as a forage and turf within the USA. A number of benefits associated with the persistence of tall fescue have been attributed to the presence of its seed-transmissible symbiont, the fungal endophyte Epichloë coenophi...

  9. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings.

  10. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. PMID:26479907

  11. Summer Dormancy in Perennial Temperate Grasses

    PubMed Central

    VOLAIRE, FLORENCE; NORTON, MARK

    2006-01-01

    • Background and Aims Dormancy has been extensively studied in plants which experience severe winter conditions but much less so in perennial herbaceous plants that must survive summer drought. This paper reviews the current knowledge on summer dormancy in both native and cultivated perennial temperate grasses originating from the Mediterranean Basin, and presents a unified terminology to describe this trait. • Scope Under severe drought, it is difficult to separate the responses by which plants avoid and tolerate dehydration from those associated with the expression of summer dormancy. Consequently, this type of endogenous (endo-) dormancy can be tested only in plants that are not subjected to moisture deficit. Summer dormancy can be defined by four criteria, one of which is considered optional: (1) reduction or cessation of leaf production and expansion; (2) senescence of mature foliage; (3) dehydration of surviving organs; and (4, optional) formation of resting organs. The proposed terminology recognizes two levels of summer dormancy: (a) complete dormancy, when cessation of growth is associated with full senescence of foliage and induced dehydration of leaf bases; and (b) incomplete dormancy, when leaf growth is partially inhibited and is associated with moderate levels of foliage senescence. Summer dormancy is expressed under increasing photoperiod and temperature. It is under hormonal control and usually associated with flowering and a reduction in metabolic activity in meristematic tissues. Dehydration tolerance and dormancy are independent phenomena and differ from the adaptations of resurrection plants. • Conclusions Summer dormancy has been correlated with superior survival after severe and repeated summer drought in a large range of perennial grasses. In the face of increasing aridity, this trait could be used in the development of cultivars that are able to meet agronomic and environmental goals. It is therefore important to have a better

  12. Photoperiodic growth control in perennial trees.

    PubMed

    Azeez, Abdul; Sane, Aniruddha P

    2015-01-01

    Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses.

  13. Photoperiodic growth control in perennial trees

    PubMed Central

    Azeez, Abdul; Sane, Aniruddha P

    2015-01-01

    Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses. PMID:26340077

  14. Denitrification and N2O emissions in annual croplands, perennial grass buffers, and restored perennial grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inclusion of perennial vegetation filter strips (PFS) in the toeslope of annual cropland watersheds can decrease nitrate (NO3) losses to ground and surface waters. Although PFS are similar to riparian buffers, PFS are a relatively new conservation tool and the processes responsible for NO3 removal f...

  15. Regulation of levels of serum antibodies to ryegrass pollen allergen Lol pIV by an internal image anti-idiotypic monoclonal antibody.

    PubMed

    Zhou, E M; Kisil, F T

    1995-03-01

    A murine monoclonal anti-idiotypic antibody (anti-Id), designated B1/1, was produced against an idiotope of a murine antibody (mAb91), which recognizes the epitope, site A, of allergen Lol pIV, one of the major groups of allergens in ryegrass (Lolium perenne) pollen. The ability of B1/1 to modulate the antibody responses to Lol pIV was investigated in murine model systems. In the first system, B1/1-keyhole limpet haemocyanin (KLH) conjugate was administered to treat three different strains of mice (C57BL/6, BALB/c and C3H). In the second and third model systems, a solution of B1/1 in phosphate-buffered saline (PBS) was used to treat syngeneic BALB/c mice at various doses and time intervals, respectively. The treatment with either form of B1/1, administered at doses ranging from 100 ng to 100 micrograms mouse, resulted in a reduction of the levels of the antibodies to Lol pIV. In particular, the level of IgE antibodies to Lol pIV was greatly reduced. The administration of a single intravenous (i.v.) injection of a solution of B1/1 8 weeks prior to the challenge with Lol pIV was still effective in reducing the level of antibodies to the allergen. Moreover, the level of antibodies to Lol pIV that expressed the idiotope mAb91 was also markedly decreased. By contrast, it was observed that the level of antibodies to Lol pIV in mice pretreated with B1/1 in PBS at a dose of 10 ng/mouse increased (albeit slightly) compared to that in mice treated with control mAb. These experimental models lend themselves for investigating the mechanism(s) by which an anti-Id modulates antibody responses to a grass pollen allergen.

  16. Evaluation of the Ryegrass Stem Rust Model STEMRUST_G and Its Implementation as a Decision Aid.

    PubMed

    Pfender, W F; Coop, L B; Seguin, S G; Mellbye, M E; Gingrich, G A; Silberstein, T B

    2015-01-01

    STEMRUST_G, a simulation model for epidemics of stem rust in perennial ryegrass grown to maturity as a seed crop, was validated for use as a heuristic tool and as a decision aid for disease management with fungicides. Multistage validation had been used in model creation by incorporating previously validated submodels for infection, latent period duration, sporulation, fungicide effects, and plant growth. Validation of the complete model was by comparison of model output with observed disease severities in 35 epidemics at nine location-years in the Pacific Northwest of the United States. We judge the model acceptable for its purposes, based on several tests. Graphs of modeled disease progress were generally congruent with plotted disease severity observations. There was negligible average bias in the 570 modeled-versus-observed comparisons across all data, although there was large variance in size of the deviances. Modeled severities were accurate in >80% of the comparisons, where accuracy is defined as the modeled value being within twice the 95% confidence interval of the observed value, within ±1 day of the observation date. An interactive website was created to produce disease estimates by running STEMRUST_G with user-supplied disease scouting information and automated daily weather data inputs from field sites. The model and decision aid supplement disease managers' information by estimating the level of latent (invisible) and expressed disease since the last scouting observation, given season-long weather conditions up to the present, and it estimates effects of fungicides on epidemic development. In additional large-plot experiments conducted in grower fields, the decision aid produced disease management outcomes (management cost and seed yield) as good as or better than the growers' standard practice. In future, STEMRUST_G could be modified to create similar models and decision aids for stem rust of wheat and barley, after additional experiments to

  17. Evaluation of the Ryegrass Stem Rust Model STEMRUST_G and Its Implementation as a Decision Aid.

    PubMed

    Pfender, W F; Coop, L B; Seguin, S G; Mellbye, M E; Gingrich, G A; Silberstein, T B

    2015-01-01

    STEMRUST_G, a simulation model for epidemics of stem rust in perennial ryegrass grown to maturity as a seed crop, was validated for use as a heuristic tool and as a decision aid for disease management with fungicides. Multistage validation had been used in model creation by incorporating previously validated submodels for infection, latent period duration, sporulation, fungicide effects, and plant growth. Validation of the complete model was by comparison of model output with observed disease severities in 35 epidemics at nine location-years in the Pacific Northwest of the United States. We judge the model acceptable for its purposes, based on several tests. Graphs of modeled disease progress were generally congruent with plotted disease severity observations. There was negligible average bias in the 570 modeled-versus-observed comparisons across all data, although there was large variance in size of the deviances. Modeled severities were accurate in >80% of the comparisons, where accuracy is defined as the modeled value being within twice the 95% confidence interval of the observed value, within ±1 day of the observation date. An interactive website was created to produce disease estimates by running STEMRUST_G with user-supplied disease scouting information and automated daily weather data inputs from field sites. The model and decision aid supplement disease managers' information by estimating the level of latent (invisible) and expressed disease since the last scouting observation, given season-long weather conditions up to the present, and it estimates effects of fungicides on epidemic development. In additional large-plot experiments conducted in grower fields, the decision aid produced disease management outcomes (management cost and seed yield) as good as or better than the growers' standard practice. In future, STEMRUST_G could be modified to create similar models and decision aids for stem rust of wheat and barley, after additional experiments to

  18. Nitrous oxide emissions from in situ deposition of N-labeled ryegrass litter in a pasture soil.

    PubMed

    Pal, Pranoy; Clough, Tim J; Kelliher, Francis M; Sherlock, Robert R

    2013-01-01

    During pasture grazing, freshly harvested herbage (litterfall) is dropped onto soils from the mouths of dairy cattle, potentially inducing nitrous oxide (NO) emissions. Although the Intergovernmental Panel on Climate Change (IPCC) recommends accounting for NO emissions from arable crop residues in national inventories, emissions from the litterfall of grazed pasture systems are not recognized. The objective of this study was to investigate the potential of litterfall to contribute to NO emissions in a field study located on a pasture site in Canterbury, New Zealand (43°38.50' S, 172°27.17' E). We applied N-labeled perennial ryegrass ( L.) to the surface of a pastoral soil (Temuka clay loam) and, for up to 139 d thereafter, quantified the contribution of herbage decomposition to NO production and soil N dynamics. Litterfall contributed to the N enrichment of soil NO-N and NO-N pools. After 49 d, N recovery as NO equated to 0.93% of the surface-applied litter N, with 38 to 75% of the cumulative NO flux occurring within 4 to 10 d of treatment application. Emissions of NO likely resulted from ammonification followed by a coupling of nitrification and denitrification during litter decomposition on the soil surface. The emission factor of the litter deposited in situ was 1.2 ± 0.2%, which is not substantially greater than the IPCC default emission factor value of 1% for crop residues. Further in situ studies using different pasture species and litterfall rates are required to understand the microbial processes responsible for litter-induced NO emissions.

  19. Genomics and the Contrasting Dynamics of Annual and Perennial Domestication.

    PubMed

    Gaut, Brandon S; Díez, Concepción M; Morrell, Peter L

    2015-12-01

    Plant domestication modifies a wild species genetically for human use. Among thousands of domesticated plants, a major distinction is the difference between annual and perennial life cycles. The domestication of perennials is expected to follow different processes than annuals, with distinct genetic outcomes. Here we examine domestication from a population genetics perspective, with a focus on three issues: genetic bottlenecks during domestication, introgression as a source of local adaptation, and genetic load. These three issues have been studied nominally in major annual crops but even less extensively in perennials. Here we highlight lessons from annual plants, motivations to study these issues in perennial plants, and new approaches that may lead to further progress.

  20. What makes a perennial a perennial? A meta-analysis of allocation patterns and functional traits in congeneric annual and perennial plant

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Weih, Martin

    2014-05-01

    Currently, a large fraction of food, fiber, and feed is provided by annual crops - in particular annual grains. A shift from annual to perennial crops has been advocated to move towards a more sustainable agriculture. While providing lower yields than annuals, perennial crops are often assumed to reduce soil erosion, promote soil health, and be able to achieve higher water and nitrogen use efficiency, primarily through higher allocation below ground. Nevertheless, quantifications of these benefits are still scarce and often inconclusive, as well as mostly limited to first-year perennials. Here we consider congeneric annual and perennial species pairs, for which measured productivity, resource allocation, and resource use efficiency are available in the literature, in search for a signature of life-history (i.e., annuality vs. perenniality) on plant allocation, traits, and agronomic performances. A new database of allocation strategies and functional traits of these congeneric species is developed, covering more than 25 genera of agronomical and ecological relevance, including wild and domesticated species, as well as new hybrids, grown under a variety of conditions. Some general patterns emerge. Perennials have lower biomass allocation to reproductive structures (as expected), and generally higher root-to-shoot biomass ratio, potentially promoting soil C accumulation. Patterns in nitrogen tissue concentration and resource use efficiencies are less clear, due to the limited available data. Our analyses highlight a paucity of comprehensive studies, hampering our understanding of the long-term implications of a shift to perennial crops for ecosystem hydrologic and biogeochemical cycles.

  1. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  2. Closing the Carbon Budget in Perennial Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Anderson-Teixeira, K. J.; Bernacchi, C.; Hudiburg, T. W.; Masters, M. D.; DeLucia, E. H.

    2013-12-01

    At present, some 40% of corn grown in the United States, accounting for more than 26 million acres of farmland, is processed for bioethanol. Interest has arisen in converting biofuel production from corn grain ethanol to cellulosic ethanol, derived primarily from cellulose from dedicated energy crops. As many cellulosic biofuel feedstocks are perennial grasses, conversion from annual corn cropping to perennials represents a substantial change in farming practices with the potential to alter the plant-soil relationship in the Midwestern United States. Elimination of annual tillage preserves soils structure, conserving soil carbon and maintaining plant root systems. Five years of perennial grass establishment in former agricultural land in Illinois has shown a significant change in soil carbon pools and fluxes. Atmospheric carbon exchange monitoring combined with vegetation and soil sampling and respiration measurements confirm that in the first 3 years (establishment phase), perennial giant grasses Miscanthus x giganteus and Panicum virgatum rapidly increased belowground carbon allocation >400% and belowground biomass 400-750% compared to corn. Following establishment, perennial grasses maintained below- and aboveground annual biomass production, out-performing corn in both average and drought conditions. Here we offer a quantitative comparison of the carbon allocation pathways of corn and perennial biofuel crops in Midwestern landscapes, demonstrating the carbon benefits of perennial cropping through increased C allocation to root and rhizome structures. Long rotation periods in perennial grasses combined with annual carbon inputs to the soil system are expected to convert these agricultural soils from atmospheric carbon sources to carbon sinks.

  3. The use of goat grazing to biologically suppress perennial pepperweed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial pepperweed (Lepidium latifolium) is a creeping rooted exotic weed that has infested riparian areas, native hay meadows and agronomic fields throughout the western United States. Perennial pepperweed is a highly invasive weed that causes management and economic problems through the loss of...

  4. Thickness of ice on perennially frozen lakes

    USGS Publications Warehouse

    McKay, C.P.; Clow, G.D.; Wharton, R.A.; Squyres, S. W.

    1985-01-01

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.

  5. Growth-Promoting Hormone DA-6 Assists Phytoextraction and Detoxification of Cd by Ryegrass.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2015-01-01

    A pot experiment was carried out to study the effect of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) on Cd phytoextraction and detoxification in ryegrass. Foliar spray of DA-6 significantly enhanced Cd extraction efficiency (P<0.05), with 1 μM DA-6 the most effective. At the subcellular level, 43-53% of Cd was soluble fraction and 23-46% in cell wall, and 9-25% in organelles. Chemical speciation analysis showed that 52.7-58.5% of Cd was NaCl extractable, 12.1-22.7% ethanol extractable, followed by other fractions. DA-6 alleviated metal toxicity by fixing more Cd in cell wall and decreasing Cd migration in plant. In conclusion, ryegrass tolerates Cd by cell wall compartmentalization along with protein and organic acids combination, and the treatment of 1 μM DA-6 appears to be optimal for enhancing the remediation efficiency of ryegrass for Cd contaminated soil.

  6. Production of tremorgenic toxins by Penicillium janthinellum Biourge: a possible aetiological factor in ryegrass staggers.

    PubMed

    Lanigan, G W; Payne, A L; Cockrum, P A

    1979-02-01

    Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins. PMID:475667

  7. Economic and environmental feasibility of a perennial cow dairy farm.

    PubMed

    Rotz, C A; Zartman, D L; Crandall, K L

    2005-08-01

    More efficient and economical production systems are needed to improve the sustainability of dairy farms. One concept to consider is using perennial cows. Perennial cows are those that maintain a relatively high milk production for >or=2 yr without going through the typical dry period followed by calving. Farm records show that some cows have produced over 20 kg/d after 4 yr of continuous lactation. A farm simulation model was used to evaluate the long-term performance, environmental impact, and economics of a conceptual perennial cow production system on a typical dairy farm in Pennsylvania. Compared with a traditional 100-cow farm with replacement heifers produced on the farm, a perennial herd of 100 cows and purchased replacements provided environmental benefit but sustained a substantial economic loss. However, increasing the perennial herd to 128 cows better utilized the feed produced on the farm. Compared with the traditional 100-cow farm, use of the perennial 128-cow herd reduced supplemental protein and mineral feed purchases by 38%, increased annual milk sales by 21%, reduced nitrogen losses by 17%, maintained a phosphorus balance, and increased annual net return to farm management by 3200 dollars. A traditional 120-cow dairy farm with purchased replacements also used a similar amount of farm-produced feed. Compared with this option, the farm with 128 perennial cows reduced protein and mineral feed purchases by 36%, maintained similar annual milk sales, increased manure production by 7%, reduced N losses by 10%, and increased annual net return by 12,700 dollars. The economic feasibility of the perennial-cow dairy farm was very sensitive to the milk production maintained by the perennial herd and market prices for milk and perennial replacement animals. The analysis was relatively insensitive to the assumed useful life of perennial cows as long as they could be maintained in the herd for at least 3 yr. Thus, a perennial cow production system can improve the

  8. Daylength mediated control of seasonal growth patterns in perennial trees.

    PubMed

    Petterle, Anna; Karlberg, Anna; Bhalerao, Rishikesh P

    2013-06-01

    Daylength is a key regulator of seasonal growth patterns in perennial trees in temperate regions. Cessation of growth is induced by short day signal in these trees before the advent of winter and constitutes a major adaptive developmental program. In this review, we report on the recent progress made in identifying the molecular mechanisms that underlie the daylength mediated control of seasonal growth in perennial trees. A major finding that has emerged from the analysis of this process is that the regulation of growth cessation in perennial trees and flowering time by daylength in annuals such as Arabidopsis thaliana involves identical signalling components.

  9. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  10. Draft Genome Sequence of Pediococcus lolii NGRI 0510QT Isolated from Ryegrass Silage

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Fujino, Yasuhiro; Nagayoshi, Yuko; Hayashi, Yoshiharu; Kuhara, Satoru; Ohshima, Toshihisa

    2013-01-01

    Pediococcus lolii NGRI 0510QT was isolated from ryegrass silage produced on Ishigaki Island, Okinawa Prefecture, Japan. Here we present a draft genome sequence for this strain, consisting of 103 contigs for a total of 2,047,078 bp, 2,154 predicted coding sequences, and a G+C content of 42.1%. PMID:23405350

  11. Temperate Perennial Grass Response to Defoliation Height and Interval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency and extent to which temperate perennial grasses are defoliated influences their productivity and persistence. Field-grown tillers of meadow fescue (Festuca pratensis Huds.), orchardgrass (Dactylis glomerata L.), common quackgrass [Elymus repens (L.) Gould], and reed canarygrass (Phala...

  12. Guidelines for growing perennial grasses for biofuel and bioproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guidelines for growing perennial grasses for biofuel and bioproducts Rob Mitchell Abstract: Switchgrass, big bluestem, and warm-season grass mixtures provide numerous benefits. Existing field equipment, herbicides, and cultivar improvement promote rapid establishment in the planting year. These gra...

  13. Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum or perennial ryegrass in serpentine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 400 plant species naturally accumulate high levels of metals such as Cd, Cu, Co, Mn, Ni, and Zn. The genus Alyssum (Brassicaceae) contains the greatest number of reported Ni hyperaccumulators (50), many of which can achieve 3 wt% Ni in dry leaves. Some Alyssum hyperaccumulators are viabl...

  14. Arctic Perennial and Winter Multiyear Ice on a Precipitous Decline

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    2008-12-01

    Knowledge about the state of the Arctic perennial and multiyear ice cover is important because they are the mainstay of the Arctic sea ice cover. Perennial ice is ice that survives the summer and consists mainly of second year and the older multiyear ice types. The rapid rate of decline in the perennial ice cover has been reported and examined previously and with the precipitous decline in 2007 and again in 2008, the Arctic Ocean has become an intense area of climate change result. The perennial ice area in 2007 was observed to be 27% less than the previous record low established in 2005 and was 38% less than climatological average. The sea surface temperature (SST) in the Arctic has also been on the rise at about 0.7 per decade with the SST at the Chukchi Sea region being observed by satellite data to be anomalously higher than average by about 5 oC. This is an indication that ice-albedo feedback effects in the region are already being observed and that a recovery of the perennial ice cover in the foreseeable future may not be possible. To gain insight into the state of the multiyear ice cover, we take advantage of the large contrast in the emissivity of first year and multiyear ice in winter and assess the variability and trend of the older multiyear ice type. The contrast is largest in February when the ice is cold and dry and the technique and is most pronounced between first year and the older multiyear (3 years or older) ice types. The retrieved area of winter multiyear ice is about 2 million km2 less than that of the perennial ice area observed during the previous summer indicating that only the older and thicker types of multiyear ice are included. The trend of the retrieved multiyear ice cover for the period 1979 to 2007 is observed to be about -14%/decade which indicates a significantly faster decline than the perennial ice cover. This suggests that the thicker component of the perennial ice cover is declining even more rapidly that the perennial ice. The

  15. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures.

    PubMed

    Pembleton, Keith G; Hills, James L; Freeman, Mark J; McLaren, David K; French, Marion; Rawnsley, Richard P

    2016-05-01

    There is interest in the reincorporation of legumes and forbs into pasture-based dairy production systems as a means of increasing milk production through addressing the nutritive value limitations of grass pastures. The experiments reported in this paper were undertaken to evaluate milk production, blood metabolite concentrations, and forage intake levels of cows grazing either pasture mixtures or spatially adjacent monocultures containing perennial ryegrass (Lolium perenne), white clover (Trifolium repens), and plantain (Plantago lanceolata) compared with cows grazing monocultures of perennial ryegrass. Four replicate herds, each containing 4 spring-calving, cross-bred dairy cows, grazed 4 different forage treatments over the periods of early, mid, and late lactation. Forage treatments were perennial ryegrass monoculture (PRG), a mixture of white clover and plantain (CPM), a mixture of perennial ryegrass, white clover, and plantain (RCPM), and spatially adjacent monocultures (SAM) of perennial ryegrass, white clover, and plantain. Milk volume, milk composition, blood fatty acids, blood β-hydroxybutyrate, blood urea N concentrations, live weight change, and estimated forage intake were monitored over a 5-d response period occurring after acclimation to each of the forage treatments. The acclimation period for the early, mid, and late lactation experiments were 13, 13, and 10 d, respectively. Milk yield (volume and milk protein) increased for cows grazing the RCPM and SAM in the early lactation experiment compared with cows grazing the PRG, whereas in the mid lactation experiment, milk fat increased for the cows grazing the RCPM and SAM when compared with the PRG treatments. Improvements in milk production from grazing the RCPM and SAM treatments are attributed to improved nutritive value (particularly lower neutral detergent fiber concentrations) and a potential increase in forage intake. Pasture mixtures or SAM containing plantain and white clover could be a

  16. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m x 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.

  17. Perennial Roots to Immortality1,2[C

    PubMed Central

    Munné-Bosch, Sergi

    2014-01-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. PMID:24563283

  18. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  19. Seasonal versus perennial immunotherapy: evaluation after three years of treatment.

    PubMed

    Muñoz Lejarazu, D; Bernaola, G; Fernández, E; Audícana, M; Ventas, P; Martín, S; Fernández de Corres, L

    1993-01-01

    We have performed a comparative study to evaluate seasonal and perennial schedules after 3 years of immunotherapy. Sixty patients suffering from rhinitis and/or asthma due to grass pollen sensitization were randomly allocated to receive a semi-depot extract of Phleum pratense according to a perennial or seasonal schedule. The last year of the study, 14 patients were recruited as a control group without immunotherapy. The cumulative dose was 602 BU in the perennial group and 372 BU in the seasonal group. The frequency and severity of side-effects were similar and very low in both treated groups. The IgE level was significantly lower after perennial immunotherapy at the end of the first 2 years. A seasonal decrease in specific IgG levels was observed in patients who interrupted immunotherapy, while this was not observed in patients under the perennial schedule. Symptoms and medication scores did not show differences between groups. Nevertheless, we found a significant difference between treated patients and the control group. PMID:8281355

  20. Effects of elevated CO(2) levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress.

    PubMed

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-04-01

    This study was conducted to investigate the combined effects of elevated CO(2) levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO(2) levels (360 and 1 000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO(2) increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO(2) than under ambient CO(2), especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO(2) under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO(2). The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO(2) than under ambient CO(2). Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO(2) may have implications in food safety and phytoremediation.

  1. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress*

    PubMed Central

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388

  2. Response of Additional Herbaceous Perennial Ornamentals to Meloidogyne hapla

    PubMed Central

    LaMondia, J. A.

    1996-01-01

    Twenty-nine herbaceous perennial ornamentals were evaluated for root galling after 2 months in soil infested with Meloidogyne hapla u n d e r greenhouse conditions. Plants such as Asclepias, Epimedium, Liriope, Lithospermura, Myosotis, Penstemon, Sidalecea, and Solidago did not have galls or egg masses present on the root system and were rated as resistant. Astrantia, Boltonia, Centranthus, and Miscanthus had more than 100 galls on the roots (similar to 'Rutgers' tomato controls) and were rated susceptible. The remaining plants were intermediate in response. The identification of additional M. hapla-resistant perennial ornamentals will aid in nematode management in nurseries and landscapes. PMID:19277187

  3. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    EPA Science Inventory

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  4. Response of perennial specialty crops to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial specialty crop production is sensitive to temperature, water availability, solar radiation, air pollution, and carbon dioxide. Elevated atmospheric cabon dioxide generally increases growth rate and yield, resulting in a higher accumulation of biomass, and fruit production and quality in f...

  5. The Perennial and the Particular Challenges of Design Education

    ERIC Educational Resources Information Center

    Ruecker, Stan

    2012-01-01

    Education in design shares with other disciplines a number of perennial challenges, including the need to transfer human culture, the choice of what parts of human culture to transfer and the decision as to what approaches work best in accomplishing that transfer. Design education also faces particular challenges, which are shared with only a few…

  6. Evaluating perennial sunflower for wildlife and food uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to use current genetics and plant breeding techniques to introgress genes for perennial habit from Helianthus tuberosus L. (2n=6x=102) into domesticated sunflower (Helianthus annuus L., 2n=2x=34). H. tuberosusis part of the secondary gene pool of sunflower and has b...

  7. Rhetorical Transcendence Revisited: The "Thin Red Line" as Perennial Philosophy.

    ERIC Educational Resources Information Center

    Stroud, Scott R.

    Fifteen years ago, J. H. Rushing published a seminal article addressing the fragmentation within contemporary society and the ways in which myths (films) may address this exigence. The exigence of fragmentation is relieved, according to her analysis, by mediated recourse to the perennial philosophy of monistic holism that is found across the…

  8. Evaluation of a Non-Flowering Perennial Sorghum spp. Hybrid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial Sorghum spp. hybrids (PSSHs) such as Columbusgrass (Sorghum almum Parodi; S. bicolor [L.] Moench x S. halepense [L.] Pers.) and the reciprocal hybridization (S. halepense x S. bicolor; e.g. Cv 'Krish') are high-biomass feedstocks currently utilized as forage but with potential as dual-...

  9. Converting perennial legumes to organic cropland without tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers are interested in developing a no-till system for crop production. In this study, we examined management tactics to convert perennial legumes to annual crops without tillage. Our hypothesis was that reducing carbohydrate production in the fall by mowing would favor winterkill. M...

  10. Soil nutrient dynamics in a perennial biomass production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the upper Midwest, economic and social interests in bioenergy and low-carbon fuels are stimulating the conversion of cropland into perennial biomass systems. Landowners are embracing the change by developing diverse whole-farm management systems that can balance economic and environmental risk of...

  11. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  12. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  13. Ionomics: Genes and QTLs controlling heavy metal uptake in perennial grasses grown on phytoxic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses occupy diverse soils throughout the world, including many sites contaminated with heavy metals. Uncovering the genetic architecture of QTLs controlling mineral homoeostasis is critical for understanding the biochemical pathways that determine the elemental profiles of perennial pl...

  14. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids

    PubMed Central

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  15. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids.

    PubMed

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  16. Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites.

    PubMed

    Nemli, Gökay; Demirel, Samet; Gümüşkaya, Esat; Aslan, Mustafa; Acar, Cengiz

    2009-03-01

    This study investigated some of the important physical (thickness swelling) and mechanical (modulus of rupture, modulus of elasticity and internal bond) properties of single-layer particleboard panels made from eucalyptus (Eucalyptus camaldulensis Dehn.), waste of grass clippings (Lolium perenne L.) and combinations of the two. The chemical properties (pH, holocelluse and alpha cellulose contents, and water, alcohol-benzene and 1% sodium hydroxide solubilities) of the raw materials were also determined. Panels with a 6:94 ratio of grass-to-eucalyptus particles had the required mechanical properties for interior fitments including furniture and general uses. Boards manufactured with 100% grass clippings exhibited the lowest quality. The overall panel properties improved with a lower percentage of grass clippings added. Based on initial results, it also appears that grass should compose no more than 13% to achieve acceptable panel properties for interior fitments and general uses.

  17. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    PubMed

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  18. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    PubMed Central

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  19. Effect of sewage sludge amendment on heavy metal uptake and yield of ryegrass seedling in a mudflat soil.

    PubMed

    Gu, Chuanhui; Bai, Yanchao; Tao, Tianyun; Chen, Guohua; Shan, Yuhua

    2013-01-01

    Mudflat soil amendment by sewage sludge is a potential way to dispose of solid wastes and increase fertility of mudflat soils for crop growth. The present study aimed to assess the impact of sewage sludge amendment (SSA) on heavy metal accumulation and growth of ryegrass ( L.) in a seedling stage. We investigated the metal availability, plant uptake, and plant yield in response to SSA at rates of 0, 30, 75, 150, and 300 t ha. The SSA increased the metal availability in a mudflat soil and subsequently metal accumulation in ryegrass. The SSA increased the bioavailable fraction of the metals by 4550, 58.8, 898, 189, 35.8, and 84.8% for Zn, Mn, Cu, Ni, Cr, and Cd, respectively, at an SSA rate of 300 t ha as compared to unamended soil. Consequently, the metal concentrations in ryegrass increased by 1130, 12.9, 355, 108, 2230, and 497% in roots and by 431, -4.3, 92.6, 58.3, 890, and 211% in aboveground parts, for Zn, Mn, Cu, Ni, Cr, and Cd, respectively, at the 300 t ha rate as compared to unamended soil. The enhanced metal accumulation, however, did not induce growth inhibition of ryegrass. Fresh weight of aboveground parts and roots of ryegrass at 300 t ha SSA rate increased by 555 and 128%, respectively, as compared to those grown in unamended soil. The study suggests that SSA can promote yield of ryegrass seedlings grown in mudflat soils. None of metal concentrations at all SSA rates was above the Chinese permissible limits. Despite the data at only the seedling stage, our results indicate that SSA in mudflat soils might be a potential way for mudflat soil fertility improvement and sewage sludge disposal. Further study at plants' maturity stage is warranted to fully assess the suitability of sewage sludge amendment on mudflat soils.

  20. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-08-01

    In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C(3) plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, F(v)/F(m) decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced F(v)/F(m) in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by 'closed' PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of

  1. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species

    PubMed Central

    Hussain, M. Iftikhar; Reigosa, Manuel J.

    2011-01-01

    In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C3 plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, Fv/Fm decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced Fv/Fm in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by ‘closed’ PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of safe

  2. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    The study shows an exceptionally long-term recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection in 1906, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of clear relationship between environment (e.g., precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery process after disturbances.

  3. A rapidly declining perennial sea ice cover in the Arctic

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.

    2002-10-01

    The perennial sea ice cover in the Arctic is shown to be declining at -9% per decade using satellite data from 1978 to 2000. A sustained decline at this rate would mean the disappearance of the multiyear ice cover during this century and drastic changes in the Arctic climate system. An apparent increase in the fraction of second year ice in the 1990s is also inferred suggesting an overall thinning of the ice cover. Surface ice temperatures derived from satellite data are negatively correlated with perennial ice area and are shown to be increasing at the rate of 1.2 K per decade. The latter implies longer melt periods and therefore decreasing ice volume in the more recent years.

  4. Response of Perennial Herbaceous Ornamentals to Meloidogyne hapla

    PubMed Central

    LaMondia, J. A.

    1995-01-01

    Sixty-nine herbaceous perennial ornamentals in 56 genera were evaluated for root galling after 2 months in soil infested with Meloidogyne hapla under greenhouse conditions. Plants were rated susceptible or resistant based on the number of galls present on the root system. Thirty-six percent had more than 100 galls on the roots (similar to 'Rutgers' tomato controls) and were rated susceptible. Thirty percent of the plants tested did not have galls or egg masses present on the root system and were rated resistant. The remaining 34 percent were intermediate in response. Variation in response to M. hapla was observed within plant genera and species. The identification of M. hapla-resistant perennial ornamentals will aid in management of this nematode in landscapes and production fields. PMID:19277335

  5. A Rapidly Declining Arctic Perennial Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The perennial sea ice cover in the Arctic is shown to be declining at -8.9 plus or minus 2.0% per decade, using 22 years of satellite data. A sustained decline at this rate would mean the disappearance of the multiyear ice cover during this century and drastic changes in the seasonal characteristics of the Arctic ice cover. An apparent increase in the fraction of second year ice in the 1990s is also inferred suggesting an overall thinning of the ice cover while co-registered satellite surface temperatures show a warming trend of 0.8 plus or minus 0.6 K per decade in summer and a good correlation with the perennial ice data.

  6. Convergent evolution of perenniality in rice and sorghum.

    PubMed

    Hu, F Y; Tao, D Y; Sacks, E; Fu, B Y; Xu, P; Li, J; Yang, Y; McNally, K; Khush, G S; Paterson, A H; Li, Z-K

    2003-04-01

    Annual and perennial habit are two major strategies by which grasses adapt to seasonal environmental change, and these distinguish cultivated cereals from their wild relatives. Rhizomatousness, a key trait contributing to perenniality, was investigated by using an F(2) population from a cross between cultivated rice (Oryza sativa) and its wild relative, Oryza longistaminata. Molecular mapping based on a complete simple sequence-repeat map revealed two dominant-complementary genes controlling rhizomatousness. Rhz3 was mapped to the interval between markers OSR16 [1.3 centimorgans (cM)] and OSR13 (8.1 cM) on rice chromosome 4 and Rhz2 located between RM119 (2.2 cM) and RM273 (7.4 cM) on chromosome 3. Comparative mapping indicated that each gene closely corresponds to major quantitative trait loci (QTLs) controlling rhizomatousness in Sorghum propinquum, a wild relative of cultivated sorghum. Correspondence of these genes in rice and sorghum, which diverged from a common ancestor approximately 50 million years ago, suggests that the two genes may be key regulators of rhizome development in many Poaceae. Many additional QTLs affecting abundance of rhizomes in O. longistaminata were identified, most of which also corresponded to the locations of S. propinquum QTLs. Convergent evolution of independent mutations at, in some cases, corresponding genes may have been responsible for the evolution of annual cereals from perennial wild grasses. DNA markers closely linked to Rhz2 and Rhz3 will facilitate cloning of the genes, which may contribute significantly to our understanding of grass evolution, advance opportunities to develop perennial cereals, and offer insights into environmentally benign weed-control strategies. PMID:12642667

  7. Diseases caused by Ganoderma spp. on perennial crops in Pakistan.

    PubMed

    Nasir, Nasreen

    2005-01-01

    Ganoderma applanatum (Pres. Wallr) Pat. and G. lucidum (Leyss. ex Fr.) Karst attack species of Pinus, Dalbergia, Artocarpus, Morus, Cedrus, Melia, Quercus, Populus and other trees in Pakistan causing stem, butt and root rot diseases. A research institution to manage the diseases of perennial crops in general and of trees yielding edible oil in particular such as coconut and oil palm needs to be established in Pakistan.

  8. Perennial grass production for biofuels: Soil conversion considerations

    SciTech Connect

    McLaughlin, S.B.; Bransby, D.I.; Parrish, D.

    1994-10-01

    The increased use of renewable fuels for energy offers the United States a mechanism for significantly reducing national dependency on imported oil, reducing greenhouse gas emissions, and improving regional agricultural economies. As mandated by law, a wide range of issues have been raised regarding the net environmental impacts of implementation of these new technologies. While uncertainties regarding both positive and negative environmental influences still exist in many areas of this new technology, it is now possible to address with substantial certainty the positive aspects of perennial herbaceous energy crops on several important soil conservation issues. Past experience with forage grasses and recent research with switchgrass. A warm season perennial forage grass selected as one of the model bioenergy species, indicates that important benefits will be gained in the area of soil conservation as grasses replace energy-intensive annual row crops. These include reduced erosion, improved conservation of water and nutrients, and increased productivity of soils by the deep and vigorous rooting systems of perennial warm-season gasses.

  9. Functional mapping of seasonal transition in perennial plants.

    PubMed

    Ye, Meixia; Jiang, Libo; Mao, Ke; Wang, Yaqun; Wang, Zhong; Wu, Rongling

    2015-05-01

    Unlike annuals, all perennial plants undergo seasonal transitions during ontogeny. As an adaptive response to seasonal changes in climate, the seasonal pattern of growth is likely to be under genetic control, although its underlying genetic basis remains unknown. Here, we develop a computational model that can map specific quantitative trait loci (QTLs) responsible for seasonal transitions of growth in perennials. The model is founded on functional mapping, a statistical framework to map developmental dynamics, which is reformed to integrate a seasonally adjusted growth function. The new model is equipped with a capacity to characterize the genetic effects of QTLs on seasonal alternation at different ages and then to better elucidate the genetic architecture of development. The model is implemented with a series of testing procedures, including (i) how a QTL controls an overall ontogenetic growth curve, (ii) how the QTL determines seasonal trajectories of growth within years and (iii) how it determines the dynamic nature of age-specific season response. The model was validated through computer simulation. The extension of season adjustment to other types of biological curves is statistically straightforward, facilitating a wider variety of genetic studies into ontogenetic growth and development in perennial plants.

  10. Comparison studies of unsaturated flow below annual and perennial plants.

    PubMed

    Scott, Bill; Lantzke, Ross; Nicholson, Dave; Findlater, Paul

    2012-01-01

    Values of unsaturated water content determined with neutron moisture measurements (NMM) reveal different water profiles below different plantings. In the extremes, calibration requires a linear and logarithmic response (using the Lambert-W function) along with the normal submersion in a drum of water. Nevertheless a post-calibration with a hydraulic push sampler was used for confirmation. Data were collected at six pastures near the Western Australia coast near Geraldton, with four replicates through the profile. The sites have mostly sandy soils and receive 300-500 mm of rainfall annually. Findings generally showed that, if there was sufficient water, as in 2006, the perennials were able to use the water evenly throughout the vertical profile. Otherwise, with low rainfall, as in 2009, perennials struggle to survive and use less water than the annuals. Modelling of the soil water movement, plant growth and calibration/recalibration is and will be used to get a maximum likehood fit. Clearly, in desert conditions and little or no vegetation, rainfall tends to build up deep in the profile, increase salinity in groundwater, and create waterlogging. Any vegetation is helpful; perennials more so; provided they have sufficient water and are not significantly harvested.

  11. Development and annotation of perennial Triticeae ESTs and SSR markers.

    PubMed

    Bushman, B Shaun; Larson, Steve R; Mott, Ivan W; Cliften, Paul F; Wang, Richard R-C; Chatterton, N Jerry; Hernandez, Alvaro G; Ali, Shahjahan; Kim, Ryan W; Thimmapuram, Jyothi; Gong, George; Liu, Lei; Mikel, Mark A

    2008-10-01

    Triticeae contains hundreds of species of both annual and perennial types. Although substantial genomic tools are available for annual Triticeae cereals such as wheat and barley, the perennial Triticeae lack sufficient genomic resources for genetic mapping or diversity research. To increase the amount of sequence information available in the perennial Triticeae, three expressed sequence tag (EST) libraries were developed and annotated for Pseudoroegneria spicata, a mixture of both Elymus wawawaiensis and E. lanceolatus, and a Leymus cinereus x L. triticoides interspecific hybrid. The ESTs were combined into unigene sets of 8 780 unigenes for P. spicata, 11 281 unigenes for Leymus, and 7 212 unigenes for Elymus. Unigenes were annotated based on putative orthology to genes from rice, wheat, barley, other Poaceae, Arabidopsis, and the non-redundant database of the NCBI. Simple sequence repeat (SSR) markers were developed, tested for amplification and polymorphism, and aligned to the rice genome. Leymus EST markers homologous to rice chromosome 2 genes were syntenous on Leymus homeologous groups 6a and 6b (previously 1b), demonstrating promise for in silico comparative mapping. All ESTs and SSR markers are available on an EST information management and annotation database (http://titan.biotec.uiuc.edu/triticeae/). PMID:18923529

  12. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site.

    PubMed

    Arienzo, M; Adamo, P; Cozzolino, V

    2004-02-01

    A greenhouse study was carried out to determine the possibility of using Lolium perenne for revegetation of soil from a former ferrous metallurgical plant (Naples, South Italy) contaminated by Cu, Pb and Zn at levels above current Italian regulatory limits. Surface soil samples (0-40 cm) from the facility area where raw minerals were disposed (RM1 and RM2), from a nearby unpolluted cultivated soil (C) as control and a 1:3 mixture of the control with the polluted ones (RM1+C and RM2+C) were utilized for the experiment. Revegetation trials were conducted in the greenhouse. At 90 days from seeding, shoot length, chlorophyll content, biomass yield, plant metal uptake and changes of organic carbon content and metal distribution among soil extractable phases defined by sequential extraction were determined. In the mixed substrates (RM1+C and RM2+C) concentrations of Cu, Pb and Zn were still two to three times higher than the Italian regulatory limits. Plants were healthy with 100% survival in all substrates, with no macroscopic symptoms of metal toxicity. The high pH of the soil could be one of the most important parameters responsible for the limited plant availability of the metals. On RM1, RM2 and mixed media, plants experienced retarded growth, reduced shoot length and biomass yield and higher total chlorophyll content compared to those cropped on the control soil, without any evident phytotoxic symptoms. In RM1 and RM2, the plant contents of Cu (19.3 and 12.6 mg kg(-1)), Pb (0.98 and 0.67 mg kg(-1)) and Zn (99 and 88 mg kg(-1)) were higher than that of plants grown on non-contaminated soil (Cu 10.1, Pb < 0.2, Zn 79 mg kg(-1)), but still in the range of physiologically acceptable levels. The distribution of metals in soil was slightly affected by Lolium growth with changes only regarding the organic-bound Cu and Zn pool, with reduction up to 24%. Results indicated that an acceptable healthy vegetative cover can be achieved on the contaminated soil by the proposed

  13. Fragipan horizon fragmentation in slaking experiments with amendment materials and ryegrass root tissue extracts.

    PubMed

    Karathanasis, A D; Murdock, L W; Matocha, C J; Grove, J; Thompson, Y L

    2014-01-01

    Slaking experiments were conducted of fragipan clods immersed in solutions of poultry manure, aerobically digested biosolid waste (ADB), fluidized bed combustion byproduct (FBC), D-H2O, CaCO3, NaF, Na-hexa-metaphosphate, and ryegrass root biomass. The fragipan clods were sampled from the Btx horizon of an Oxyaquic Fragiudalf in Kentucky. Wet sieving aggregate analysis showed significantly better fragmentation in the NaF, Na-hexa-metaphosphate, and ryegrass root solutions with a mean weight diameter range of 15.5-18.8 mm compared to the 44.2-47.9 mm of the poultry manure, ADB, and FBC treatments. Dissolved Si, Al, Fe, and Mn levels released in solution were ambiguous. The poor efficiency of the poultry manure, ADB, and FBC treatments was attributed to their high ionic strength, while the high efficiency of the NaF, Na-hexa-metaphosphate, and rye grass root solutions to their high sodium soluble ratio (SSR). A slaking mechanism is proposed suggesting that aqueous solutions with high SSR penetrate faster into the fragipan capillaries and generate the critical swelling pressure and shearing stress required to rupture the fragipan into several fragments. Additional fragmentation occurs in a followup stage during which potential Si, Al, Fe, and Mn binding agents may be released into solution. Field experiments testing these findings are in progress. PMID:25254233

  14. Fragipan Horizon Fragmentation in Slaking Experiments with Amendment Materials and Ryegrass Root Tissue Extracts

    PubMed Central

    Karathanasis, A. D.; Murdock, L. W.; Matocha, C. J.; Grove, J.; Thompson, Y. L.

    2014-01-01

    Slaking experiments were conducted of fragipan clods immersed in solutions of poultry manure, aerobically digested biosolid waste (ADB), fluidized bed combustion byproduct (FBC), D-H2O, CaCO3, NaF, Na-hexa-metaphosphate, and ryegrass root biomass. The fragipan clods were sampled from the Btx horizon of an Oxyaquic Fragiudalf in Kentucky. Wet sieving aggregate analysis showed significantly better fragmentation in the NaF, Na-hexa-metaphosphate, and ryegrass root solutions with a mean weight diameter range of 15.5–18.8 mm compared to the 44.2–47.9 mm of the poultry manure, ADB, and FBC treatments. Dissolved Si, Al, Fe, and Mn levels released in solution were ambiguous. The poor efficiency of the poultry manure, ADB, and FBC treatments was attributed to their high ionic strength, while the high efficiency of the NaF, Na-hexa-metaphosphate, and rye grass root solutions to their high sodium soluble ratio (SSR). A slaking mechanism is proposed suggesting that aqueous solutions with high SSR penetrate faster into the fragipan capillaries and generate the critical swelling pressure and shearing stress required to rupture the fragipan into several fragments. Additional fragmentation occurs in a followup stage during which potential Si, Al, Fe, and Mn binding agents may be released into solution. Field experiments testing these findings are in progress. PMID:25254233

  15. Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis.

    PubMed Central

    King, J; Armstead, I P; Donnison, I S; Thomas, H M; Jones, R N; Kearsey, M J; Roberts, L A; Thomas, A; Morgan, W G; King, I P

    2002-01-01

    A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line 2n = 2x = 14. In this line recombination occurs throughout the length of the F. pratensis/L. perenne bivalent. The F. pratensis chromosome and recombinants between it and its L. perenne homeologue can be visualized using genomic in situ hybridization (GISH). GISH junctions represent the physical locations of sites of recombination, enabling a range of recombinant chromosomes to be used for physical mapping of the introgressed F. pratensis chromosome. The physical map, in conjunction with a genetic map composed of 104 F. pratensis-specific amplified fragment length polymorphisms (AFLPs), demonstrated: (1) the first large-scale analysis of the physical distribution of AFLPs; (2) variation in the relationship between genetic and physical distance from one part of the F. pratensis chromosome to another (e.g., variation was observed between and within chromosome arms); (3) that nucleolar organizer regions (NORs) and centromeres greatly reduce recombination; (4) that coding sequences are present close to the centromere and NORs in areas of low recombination in plant species with large genomes; and (5) apparent complete synteny between the F. pratensis chromosome and rice chromosome 1. PMID:12019245

  16. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation. PMID:19520670

  17. Phytochelatin synthesis in response to elevated CO2 under cadmium stress in Lolium perenne L.

    PubMed

    Jia, Yan; Ju, Xuehai; Liao, Shangqiang; Song, Zhengguo; Li, Zhongyang

    2011-10-15

    The increasing atmospheric CO(2) and heavy metal contamination in soil are two of the major environmental problems. Knowledge of the Cd stress coping mechanisms is needed to understand the regulation of the plants' metabolism under the increasing atmospheric CO(2) levels. Lolium perenne L. was grown hydroponically under two concentrations of atmospheric CO(2) (360 and 1000μLL(-1)) and six concentrations of cadmium (0-160μmolL(-1)) to investigate Cd uptake, Cd transportation, and variations in phytochelatin (PC) concentration. Cd concentrations in roots and shoots were decreased, but transport index (Ti) was increased under elevated CO(2) compared to ambient CO(2). Regardless of CO(2) concentrations, Cd and PC concentrations, especially the concentrations of high molecular weight PCs (PC(4), PC(5), PC(6)) were higher with increasing Cd concentration in growth media and longer Cd exposure time. Under the elevated CO(2), more high molecular weight PCs (PC(4), PC(5), PC(6)) in shoots and roots were synthesized compared to ambient CO(2), with higher SH:Cd ratio in roots as well. These results indicate that under elevated CO(2), L. perenne may be better protected against Cd stress with higher biomass, lower Cd concentration and better detoxification by phytochelatins.

  18. Monoclonal antibodies to the major Lolium perenne (rye grass) pollen allergen Lol p I (Rye I).

    PubMed

    Kahn, C R; Marsh, D G

    1986-12-01

    Thirteen monoclonal antibodies (MAbs) were produced against Lol p I (Rye I), the major Lolium perenne (rye grass) pollen allergen. Spleen cells from A/J and SJL mice immunized with highly purified Lol p I (Lol I) were allowed to fuse with cells from the non-secreting Sp2/0-Ag14 myeloma cell line. Each MAb was analyzed for antigenic specificity by radioimmunoassay (RIA) using 125I-Lol I. The epitope specificities of seven of the MAbs were examined by competitive binding against a labelled standard MAb for the Lol I antigen (Ag). The dissociation constant, Kd, of one MAb (No. 3.2) that was studied most extensively was determined by double Ab RIA to be 3.5 X 10(-6) L/M. This MAb recognized the related 27,000-30,000 Group I glycoproteins found in the pollens of nine other species of grass pollens tested, including weak binding to Bermuda grass Group I (Cyn d I), which by conventional analysis using polyclonal anti-Lol I serum shows no detectable binding. Monoclonal antibody No. 3.2 was coupled covalently to Sepharose 4B and used to prepare highly purified Lol I from a partially purified rye pollen extract. Finally, an RIA was developed which permitted the analysis of the Group I components in rye grass and nine other grass pollen species. The latter assay is likely to prove useful in the standardization of grass pollen extracts according to their Group I contents.

  19. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce.

    PubMed

    Crush, J R; Briggs, L R; Sprosen, J M; Nichols, S N

    2008-04-01

    The effect of irrigation with lake water containing a variety of microcystins on accumulation of toxins, or toxin metabolites, and plant growth in ryegrass, clover, rape, and lettuce, was investigated in a glasshouse experiment. The plants were grown in sand culture and received either three or six applications of lake water, which was applied either directly to the sand surface or to the plant shoots. As determined by LC-MS, each plant received 170 mug of a mixture of 10 different microcystins per application. Microcystins in plant samples were extracted with 70% methanol and analyzed by Adda-specific ELISA. For the shoot application treatment, microcystins were not present at measurable levels in shoots of ryegrass or rape, but were present in lettuce [0.79 mg/kg dry weight (DW)] and clover (0.20 mg/kg DW). Total microcystin concentration in roots did not vary greatly depending on whether treatment water was applied directly to the sand, or reached the roots via run-off from the shoots. Microcystins in roots were highest in clover (1.45 mg/kg DW), intermediate in lettuce (0.68 mg/kg DW) and low in ryegrass (0.20 mg/kg DW), and rape (0.12 mg/kg DW). There was no evidence for root-to-shoot translocation of microcystins. Three applications of microcystins reduced shoot DW of ryegrass, rape and lettuce, and increased root DW of ryegrass and lettuce. Clover DW was not changed by treatment with microcystins. The results show that irrigation with water containing microcystins has the potential to move microcystins into farm animal and human food chains at concentrations that can exceed recommended tolerable limits.

  20. Senescence, dormancy and tillering in perennial C4 grasses.

    PubMed

    Sarath, Gautam; Baird, Lisa M; Mitchell, Robert B

    2014-03-01

    Perennial, temperate, C4 grasses, such as switchgrass and miscanthus have been tabbed as sources of herbaceous biomass for the production of green fuels and chemicals based on a number of positive agronomic traits. Although there is important literature on the management of these species for biomass production on marginal lands, numerous aspects of their biology are as yet unexplored at the molecular level. Perenniality, a key agronomic trait, is a function of plant dormancy and winter survival of the below-ground parts of the plants. These include the crowns, rhizomes and meristems that will produce tillers. Maintaining meristem viability is critical for the continued survival of the plants. Plant tillers emerge from the dormant crown and rhizome meristems at the start of the growing period in the spring, progress through a phase of vegetative growth, followed by flowering and eventually undergo senescence. There is nutrient mobilization from the aerial portions of the plant to the crowns and rhizomes during tiller senescence. Signals arising from the shoots and from the environment can be expected to be integrated as the plants enter into dormancy. Plant senescence and dormancy have been well studied in several dicot species and offer a potential framework to understand these processes in temperate C4 perennial grasses. The availability of latitudinally adapted populations for switchgrass presents an opportunity to dissect molecular mechanisms that can impact senescence, dormancy and winter survival. Given the large increase in genomic and other resources for switchgrass, it is anticipated that projected molecular studies with switchgrass will have a broader impact on related species. PMID:24467906

  1. Mapping perennial vegetation cover in the Mojave Desert

    USGS Publications Warehouse

    Wallace, Cynthia S.A.

    2011-01-01

    Scientists with the U.S. Geological Survey's Western Geographic Science Center have recently created a regional map of perennial vegetation cover for the Mojave Desert. The scientists used existing field data collected for a variety of previous studies and satellite data available for free through USGS archives to create a calibrated model of percent vegetation cover, an important attribute of desert ecosystems. This map is being used to inform ongoing scientific investigations and land-management efforts, including endangered species habitat mapping and vulnerability and recoverability studies of desert landscapes in the arid Southwest.

  2. Perennial atopic rhinitis as an early stage of bronchial asthma.

    PubMed

    Gniazdowski, R

    1979-01-01

    Etiologic factors and incidence of bronchial hyperreactivity as a 'stigma' of bronchial asthma were studied in 237 patients suffering from perennial atopic rhinitis. All pateints underwent detailed laryngologic and allergologic examiniation and pulmonary function tests at rest, after exercise, and after histamine inhalation. Most often the patients were sensitized tungal allergens. Bronchial hyperreactivity, typical of bronchial asthma, was observed in 48.52% of patients. Results were analysed statistically. It was concluded that early institution of causal therapy can cure the symptoms of rhinitis and prevent evolution of the disease into atopic bronchial asthma in patients already suffering from bronchial hyperreactivity. PMID:495074

  3. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (Rye I and Rye II). II. Longitudinal variation of antibody levels in relation to symptomatology and pollen exposure and correction of seasonally elevated antibody levels to basal values.

    PubMed

    Freidhoff, L R; Ehrlich-Kautzky, E; Meyers, D A; Marsh, D G

    1987-11-01

    This study used a standardized, dialyzed, Lolium perenne (ryegrass) pollen extract and two of its well-characterized components, Lol p I (Rye I) and Lol p II (Rye II), to characterize the longitudinal variation of both IgE and IgG antibody (Ab) levels, as well as total serum IgE levels, in 20 grass-allergic subjects followed for 13 months. Ab levels declined toward a basal level just before, and increased just after, the grass-pollination season, returning to the same basal level just before the next grass-pollination season. The least complex allergen, Lol II, demonstrated the most uniform pattern of variation in both IgE and IgG Ab levels. Total serum IgE levels demonstrated the least regular pattern of variation. Grass-pollen counts were strongly correlated with symptom-medication scores for these subjects (rs = 0.87). Initial values were correlated with the rise in total IgE and IgE Ab to Lol II across the grass-pollen season. Skin test results were correlated with initial IgE Ab levels for L. perenne pollen extract and Lol II. Finally, a procedure for correcting IgE Ab levels to basal values was proposed and tested. The correction procedure, for each IgE Ab, was based on the average rise during the grass-pollination season (or average decline after the grass-pollination season) observed for all subjects with that IgE Ab.

  4. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  5. Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach.

    PubMed

    Ciannamea, Stefano; Busscher-Lange, Jacqueline; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H

    2006-04-01

    Many plant species including temperate grasses require vernalization in order to flower. Vernalization is the process of promotion of flowering after exposure to prolonged periods of cold. To investigate the vernalization response in monocots, the expression patterns of about 1,500 unique genes of Lolium perenne were analyzed by a cDNA microarray approach, at different time points after transfer of plants to low temperatures. Vernalization of L. perenne takes around 80 d and, therefore, the plants were incubated at low temperatures for at least 12 weeks. A total of 70 cold-responsive genes were identified that are either up- or down-regulated with a minimal 2-fold difference compared with the common reference. The majority of these genes show a very rapid response to the cold treatment, indicating that their expression is affected by the cold stress and, therefore, these genes are not likely to be involved in the flowering process. Based on hierarchical clustering, one gene could be identified that is down-regulated towards the end of the cold period and, in addition, a few genes have been found that are up-regulated in the last weeks of the cold treatment and, hence, are putative candidates for genes involved in the vernalization response. Three of the up-regulated genes are homologous to members of the MADS box, CONSTANS-like and JUMONJI families of transcription factors, respectively. The latter two are novel genes not connected previously to vernalization-induced flowering. Furthermore, members of the JUMONJI family of transcription factors have been shown to be involved in chromatin remodeling, suggesting that this molecular mechanism, as in Arabidopsis, plays a role in the regulation of the vernalization response in monocots. PMID:16449231

  6. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II.

    PubMed

    Sidoli, A; Tamborini, E; Giuntini, I; Levi, S; Volonté, G; Paini, C; De Lalla, C; Siccardi, A G; Baralle, F E; Galliani, S

    1993-10-15

    The molecular cloning of the cDNA encoding for an isoallergenic form of Lol p II, a major rye grass (Lolium perenne) pollen allergen, was performed by polymerase chain reaction amplification on mRNA extracted from pollen. The amino acid sequence derived from the cDNA was truncated by 4 and 5 residues at the NH2- and COOH-terminal ends, respectively, and differed only in one position from that previously reported. This cDNA was expressed in Escherichia coli by fusion to the carboxyl terminus of the human ferritin H-chain. The molecule was produced in high yields as a soluble protein and was easily purified. The protein retains the multimeric quaternary structure of ferritin, and it exposes on the surface the allergenic moiety, which can be recognized in Western blotting and in enzyme-linked immunosorbent assay experiments by specific IgE from allergic patients. The recombinant allergen was used to analyze the sera of 26 patients allergic to L. perenne compared with control sera. The results were in good agreement with the values obtained with the radioallergosorbent test assay. In addition, histamine release experiments in whole blood from an allergic patient and skin prick tests showed that the recombinant allergen retains some of the biological properties of the natural compound. These findings indicate that the availability of homogeneous recombinant allergens may be useful for the development of more specific diagnostic and therapeutic procedures. Moreover, this expression system may be of more general interest for producing large amounts of soluble protein domains in E. coli.

  7. Molecular genetics of human immune responsiveness to Lolium perenne (rye) allergen, Lol p III.

    PubMed

    Ansari, A A; Freidhoff, L R; Marsh, D G

    1989-01-01

    Lol p II and III are each about 11-kD protein allergens from the pollen of Lolium perenne (rye grass). We have found that human immune responses (IgE and IgG antibodies) to both proteins are significantly associated with HLA-DR3. In addition, the two proteins are cross-reactive with the antibodies in many human sera (about 84% human sera showed the cross-reactivity). We have determined greater than 90% of the amino acid sequences of the two proteins and found that they are at least 54% homologous. Berzofsky found that 75% of the 23 known T cell sites in various proteins had an amphipathic structure. Our analysis by the same method showed that both Lol p II and III have a major region of amphipathicity (at residues 61-67, Lol p III numbering) which might contain sites for binding to an Ia molecule and a T cell receptor. This region is identical between Lol p II and III, except for an Arg-Lys substitution, and could account, in part, for the DR3 association with responsiveness to both molecules. An interesting difference between the two proteins is that immune response to Lol p III is associated with DR5 (in addition to DR3), whereas no DR5 association is found in the case of Lol p II. One possibility is that Lol p III has an additional site which binds to the DR5 Ia molecule. Lol p III indeed has a second highly amphiphathic peptide, 24-30 (Lol p III 24 R P G D T L A 30), which is different and not amphipathic in Lol p II.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Preplant 1,3-D treatments test well for perennial crop nurseries,but challenges remain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preplant fumigation with methyl bromide commonly is used in open-field perennial crop nurseries in California for control of plant-parasitic nematodes, pathogens and weeds. Because this fumigant is being phased out, alternatives are needed to ensure the productivity of the perennial crop nursery ind...

  9. Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...

  10. Co-evolution of perennial stream and water balance under climate control

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wu, L.

    2012-12-01

    Streams are categorized into perennial and temporal streams based on flow durations. Perennial stream is the basic network, and temporal stream (ephemeral or intermittent) is the expanded network. Connection between perennial stream and runoff generation at the mean annual scale exists since one of the hydrologic functions of perennial stream is to deliver runoff. The partitioning of precipitation into runoff and evaporation at the mean annual scale, on the first order, is represented by the Budyko hypothesis which quantifies the ratio of evaporation to precipitation (E/P) as a function of climate aridity index (Ep/P, ratio of potential evaporation to precipitation). Perennial stream densities for 185 watersheds in the United States are computed based on the high resolution national hydrography dataset (NHD). It is found that pernnial stream density strongly depends on Ep/P. Similarity between normalized perennial stream density and the ratio of base flow to precipitation demonstrates the co-evolution of perennial stream network and water balance.; The observed perennial stream density versus climate aridity index

  11. Nitrate sinks in perennial vegetation filter strips in the toeslopes of agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of perennial filter strips (PFS) into the toeslope of agricultural watersheds may decrease downstream NO3 losses, especially if subsurface flow interacts with the rooting zone of the perennial vegetation. However, the long-term effectiveness of NO3 removal depends on the relative importa...

  12. Low input production of biomass from perennial grasses in the Coastal Plain of Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warm-season perennial grasses have the greatest potential for biomass production in the Southeast. The larger root systems of perennial crops should be able to adapt to lower inputs of water and fertilizer, and should also contribute to soil carbon sequestration. This study was initiated in fall 2...

  13. Growth and Quality of Cool-Season Perennial Grass Species in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annually planted winter wheat is the major cool-season livestock forage enterprise in a large part of the southern Great Plains and is a good complement to warm-season perennials. However, gaps in both fall and spring exist in the system. Cool-season perennial grasses that have origins in the Nort...

  14. Perennial grassland establishment and production response following different annual cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing efficient, economical methods of perennial mixture establishment in a semi-arid environment is needed for grazing and conservation purposes. We evaluated different perennial monocultures and mixtures planted into various annual crops (spring wheat, corn, soybean, dry pea, and canola) to ...

  15. Lasting mantle scars lead to perennial plate tectonics

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  16. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  17. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  18. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  19. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon. PMID:27282541

  20. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  1. Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Andersen, D. W.; Nedell, S. S.; Wharton, R. A. Jr; Wharton RA, J. r. (Principal Investigator)

    1991-01-01

    Lake Hoare in the Dry Valleys of Antarctica is covered with a perennial ice cover more than 3 m thick, yet there is a complex record of sedimentation and of growth of microbial mats on the lake bottom. Rough topography on the ice covering the lake surface traps sand that is transported by the wind. In late summer, vertical conduits form by melting and fracturing, making the ice permeable to both liquid water and gases. Cross-sections of the ice cover show that sand is able to penetrate into and apparently through it by descending through these conduits. This is the primary sedimentation mechanism in the lake. Sediment traps retrieved from the lake bottom indicate that rates of deposition can vary by large amounts over lateral scales as small as 1 m. This conclusion is supported by cores taken in a 3 x 3 grid with a spacing of 1.5 m. Despite the close spacing of the cores, the poor stratigraphic correlation that is observed indicates substantial lateral variability in sedimentation rate. Apparently, sand descends into the lake from discrete, highly localized sources in the ice that may in some cases deposit a large amount of sand into the lake in a very short time. In some locations on the lake bottom, distinctive sand mounds have been formed by this process. They are primary sedimentary structures and appear unique to the perennially ice-covered lacustrine environment. In some locations they are tens of centimetres high and gently rounded with stable slopes; in others they reach approximately 1 m in height and have a conical shape with slopes at angle of repose. A simple formation model suggests that these differences can be explained by local variations in water depth and sedimentation rate. Rapid colonization of fresh sand surfaces by microbial mats composed of cyanobacteria, eukaryotic algae, and heterotrophic bacteria produces a complex intercalation of organic and sandy layers that are a distinctive form of modern stromatolites.

  2. Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover.

    PubMed

    Squyres, S W; Andersen, D W; Nedell, S S; Wharton, R A

    1991-01-01

    Lake Hoare in the Dry Valleys of Antarctica is covered with a perennial ice cover more than 3 m thick, yet there is a complex record of sedimentation and of growth of microbial mats on the lake bottom. Rough topography on the ice covering the lake surface traps sand that is transported by the wind. In late summer, vertical conduits form by melting and fracturing, making the ice permeable to both liquid water and gases. Cross-sections of the ice cover show that sand is able to penetrate into and apparently through it by descending through these conduits. This is the primary sedimentation mechanism in the lake. Sediment traps retrieved from the lake bottom indicate that rates of deposition can vary by large amounts over lateral scales as small as 1 m. This conclusion is supported by cores taken in a 3 x 3 grid with a spacing of 1.5 m. Despite the close spacing of the cores, the poor stratigraphic correlation that is observed indicates substantial lateral variability in sedimentation rate. Apparently, sand descends into the lake from discrete, highly localized sources in the ice that may in some cases deposit a large amount of sand into the lake in a very short time. In some locations on the lake bottom, distinctive sand mounds have been formed by this process. They are primary sedimentary structures and appear unique to the perennially ice-covered lacustrine environment. In some locations they are tens of centimetres high and gently rounded with stable slopes; in others they reach approximately 1 m in height and have a conical shape with slopes at angle of repose. A simple formation model suggests that these differences can be explained by local variations in water depth and sedimentation rate. Rapid colonization of fresh sand surfaces by microbial mats composed of cyanobacteria, eukaryotic algae, and heterotrophic bacteria produces a complex intercalation of organic and sandy layers that are a distinctive form of modern stromatolites. PMID:11538650

  3. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  4. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    PubMed

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal.

  5. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    PubMed

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal. PMID:27012004

  6. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  7. Cumulative drought and land-use impacts on perennial vegetation across a North American dryland region

    USGS Publications Warehouse

    Munson, Seth M.; Long, A. Lexine; Wallace, Cynthia; Webb, Robert H.

    2016-01-01

    Question The decline and loss of perennial vegetation in dryland ecosystems due to global change pressures can alter ecosystem properties and initiate land degradation processes. We tracked changes of perennial vegetation using remote sensing to address the question of how prolonged drought and land-use intensification have affected perennial vegetation cover across a desert region in the early 21st century? Location Mojave Desert, southeastern California, southern Nevada, southwestern Utah and northwestern Arizona, USA. Methods We coupled the Moderate-Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) with ground-based measurements of perennial vegetation cover taken in about 2000 and about 2010. Using the difference between these years, we determined perennial vegetation changes in the early 21st century and related these shifts to climate, soil and landscape properties, and patterns of land use. Results We found a good fit between MODIS-EVI and perennial vegetation cover (2000: R2 = 0.83 and 2010: R2 = 0.74). The southwestern, far southeastern and central Mojave Desert had large declines in perennial vegetation cover in the early 21st century, while the northeastern and southeastern portions of the desert had increases. These changes were explained by 10-yr precipitation anomalies, particularly in the cool season and during extreme dry or wet years. Areas heavily impacted by visitor use or wildfire lost perennial vegetation cover, and vegetation in protected areas increased to a greater degree than in unprotected areas. Conclusions We find that we can extrapolate previously documented declines of perennial plant cover to an entire desert, and demonstrate that prolonged water shortages coupled with land-use intensification create identifiable patterns of vegetation change in dryland regions.

  8. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  9. Identification of two distinct allergenic sites on ryegrass-pollen allergen, Lol p IV.

    PubMed

    Jaggi, K S; Ekramoddoullah, A K; Kisil, F T; Dzuba-Fischer, J M; Rector, E S; Sehon, A H

    1989-04-01

    Lol p IV is an important allergen of ryegrass pollen. For the immunochemical identification of antigenic and/or allergenic site(s), murine monoclonal antibodies (MAbs) were prepared against Lol p IV. The hybridoma cell-culture supernatants were screened for anti-Lol p IV antibodies by a combination of ELISA and Western immunoblot analyses. The MAbs were finally purified from ascites on a Mono Q ion-exchange column. In a competitive radioimmunoassay with Lol p IV as the solid phase and 125I-labeled MAbs, it was established that MAbs 90, 91, 92, 93, and 94, although they differed in their relative affinities, recognized in common with one another an epitope designated as antigenic site A, whereas MAb 12 recognized a different epitope referred to as site B. Sites A and B were also demonstrated to constitute allergenic determinants of Lol p IV. Differences in the repertoire of specificities of the human IgE antibodies directed to Lol p IV were also demonstrated. Interestingly, it was found that sera from both allergic as well as from nonatopic individuals had IgG antibodies to sites A and/or B.

  10. Rootstock scion somatogenetic interactions in perennial composite plants

    PubMed Central

    2014-01-01

    The ancient plant production practice of grafting which instantly imparts new physiological properties to the desirable scion still remains shrouded in mystery. Yet, grafting remains a widely used technique in the production of several horticultural species. In a composite grafted plant, rootstocks control many aspects of scion growth and physiology including yield and quality attributes as well as biotic and abiotic stress tolerance. Broadly, physical, physiological, biochemical and molecular mechanisms have been reviewed to develop an integrated understanding of this enigmatic process that challenges existing genetic paradigms. This review summarizes the reported mechanisms underlying some of the economically important traits and identifies several key points to consider when conducting rootstock scion interaction experiments. Study of the somatogenetic interactions between rootstock and scion is a field that is ripe for discovery and vast improvements in the coming decade. Further, utilization of rootstocks based on a better understanding of the somatogenetic interactions is highly relevant in the current agricultural environment where there is a need for sustainable production practices. Rootstocks may offer a non-transgenic approach to rapidly respond to the changing environment and expand agricultural production of annual and perennial crops where grafting is feasible in order to meet the global food, fiber and fuel demands of the future. PMID:23793453

  11. Microbiota within the perennial ice cover of Lake Vida, Antarctica.

    PubMed

    Mosier, Annika C; Murray, Alison E; Fritsen, Christian H

    2007-02-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.

  12. Bellis perennis: a useful tool for protein localization studies.

    PubMed

    Jaedicke, Katharina; Rösler, Jutta; Gans, Tanja; Hughes, Jon

    2011-10-01

    Fluorescent fusion proteins together with transient transformation techniques are commonly used to investigate intracellular protein localisation in vivo. Biolistic transfection is reliable, efficient and avoids experimental problems associated with producing and handling fragile protoplasts. Onion epidermis pavement cells are frequently used with this technique, their excellent properties for microscopy resulting from their easy removal from the underlying tissues and large size. They also have advantages over mesophyll cells for fluorescence microscopy, as they are devoid of chloroplasts whose autofluorescence can pose problems. The arrested plastid development is peculiar to epidermal cells, however, and stands in the way of studies on protein targeting to plastids. We have developed a system enabling studies of in vivo protein targeting to organelles including chloroplasts within a photosynthetically active plant cell with excellent optical properties using a transient transformation procedure. We established biolistic transfection in epidermal pavement cells of the lawn daisy (Bellis perennis L., cultivar "Galaxy red") which unusually contain a moderate number of functional chloroplasts. These cells are excellent objects for fluorescence microscopy using current reporters, combining the advantages of the ease of biolistic transfection, the excellent optical properties of a single cell layer and access to chloroplast protein targeting. We demonstrate chloroplast targeting of plastid-localised heme oxygenase, and two further proteins whose localisation was equivocal. We also demonstrate unambiguous targeting to mitochondria, peroxisomes and nuclei. We thus propose that the Bellis system represents a valuable tool for protein localisation studies in living plant cells. PMID:21626148

  13. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. PMID:27152456

  14. Estimation of perennial vegetation cover distribution in the Mojave Desert using MODIS-EVI data

    USGS Publications Warehouse

    Wallace, C.S.A.; Webb, R.H.; Thomas, K.A.

    2008-01-01

    This paper details a method to create regional models of perennial vegetation cover using pre-existing field data and satellite imagery. Total cover of perennial vegetation is an important ecological attribute of desert ecosystems, including the Mojave Desert, USA, an area of 125,000 km2. Moderate-Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) data were coupled with measurements of total perennial cover and plot elevation using stepwise linear regression and linear regression techniques to create two models of cover. The final models produced R2 of 0.82 and 0.81, respectively, and yielded maps of perennial cover distribution in the Mojave Desert at 250 m spatial resolution. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  15. Gene flow in genetically engineered perennial grasses: Lessons for modification of dedicated bioenergy crops

    EPA Science Inventory

    The potential ecological consequences of the commercialization of genetically engineered (GD) crops have been the subject of intense debate, particularly when the GE crops are perennial and capable of outcrossing to wild relatives. The essential ecological impact issues for engi...

  16. Leaves it cleaner than they found it: perennial forages and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topics to be discussed: 1) perennial forage root growth, water use, and nitrate uptake; 2) reducing ground water nitrate; 3) protecting surface water quality; and 4) potential role in nitrate TMDLs for cold water streams....

  17. Molecular relationships between Australian annual wild rice, Oryza meridionalis, and two related perennial forms

    PubMed Central

    2013-01-01

    Background The perennial, Oryza rufipogon distributed from Asia to Australia and the annual O. meridionalis indigenous to Australia are AA genome species in the Oryza. However, recent research has demonstrated that the Australian AA genome perennial populations have maternal genomes more closely related to those of O. meridionalis than to those found in Asian populations of O. rufipogon suggesting that the Australian perennials may represent a new distinct gene pool for rice. Results Analysis of an Oryza core collection covering AA genome species from Asia to Oceania revealed that some Oceania perennials had organellar genomes closely related to that of O meridionalis (meridionalis-type). O. rufipogon accessions from New Guinea carried either the meridionalis-type or rufirpogon-type (like O. rufipogon) organellar genomes. Australian perennials carried only the meridionalis-type organellar genomes when accompanied by the rufipogon-type nuclear genome. New accessions were collected to better characterize the Australian perennials, and their life histories (annual or perennial) were confirmed by field observations. All of the material collected carried only meridionalis-type organellar genomes. However, there were two distinct perennial groups. One of them carried an rufipogon-type nuclear genome similar to the Australian O. rufipogon in the core collection and the other carried an meridionalis-type nuclear genome not represented in the existing collection. Morphologically the rufipogon-type shared similarity with Asian O. rufipogon. The meridionalis-type showed some similarities to O. meridionalis such as the short anthers usually characteristic of annual populations. However, the meridionalis-type perennial was readily distinguished from O. meridionalis by the presence of a larger lemma and higher number of spikelets. Conclusion Analysis of current accessions clearly indicated that there are two distinct types of Australian perennials. Both of them differed

  18. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  19. Controls over native perennial grass exclusion and persistence in California grasslands invaded by annuals.

    PubMed

    Mordecai, Erin A; Molinari, Nicole A; Stahlheber, Karen A; Gross, Kevin; D'Antonio, Carla

    2015-10-01

    Despite obvious impacts of nonnative species in many ecosystems, the long-term outcome of competition between native and exotic species often remains unclear. Demographic models can resolve the outcome of competition between native and exotic species and provide insight into conditions favoring exclusion vs. coexistence. California grasslands are one of the most heavily invaded ecosystems in North America. Although California native perennial bunchgrasses are thought to be restricted to a fraction of their original abundance, the eventual outcome of competition with invasive European annual grasses at a local scale (competitive exclusion, stable persistence, or priority effects) remains unresolved. Here, we used a two-species discrete time population growth model to predict the outcome of competition between exotic annual and native perennial grasses in California, and to determine the demographic traits responsible for the outcome. The model is parameterized with empirical data from several field experiments. We found that, once introduced, annual grasses persist stably with little uncertainty. Although perennial grasses are competitively excluded on average, the most likely range of model predictions also includes stable coexistence with annual grasses. As for many other perennial plants, native bunchgrass population growth is highly sensitive to the survival of adults. Management interventions that improve perennial adult survival are likely to be more effective than those that reduce exotic annual seed production or establishment, reduce competition, or increase perennial seedling establishment. Further empirical data on summer survival of bunchgrass adults and competitive effects of annuals on perennials would most improve model predictions because they contribute most to the uncertainty in the predicted outcome for the perennial grass. This work demonstrates how demographic approaches can clarify the outcome of competition between native and exotic species

  20. Controls over native perennial grass exclusion and persistence in California grasslands invaded by annuals.

    PubMed

    Mordecai, Erin A; Molinari, Nicole A; Stahlheber, Karen A; Gross, Kevin; D'Antonio, Carla

    2015-10-01

    Despite obvious impacts of nonnative species in many ecosystems, the long-term outcome of competition between native and exotic species often remains unclear. Demographic models can resolve the outcome of competition between native and exotic species and provide insight into conditions favoring exclusion vs. coexistence. California grasslands are one of the most heavily invaded ecosystems in North America. Although California native perennial bunchgrasses are thought to be restricted to a fraction of their original abundance, the eventual outcome of competition with invasive European annual grasses at a local scale (competitive exclusion, stable persistence, or priority effects) remains unresolved. Here, we used a two-species discrete time population growth model to predict the outcome of competition between exotic annual and native perennial grasses in California, and to determine the demographic traits responsible for the outcome. The model is parameterized with empirical data from several field experiments. We found that, once introduced, annual grasses persist stably with little uncertainty. Although perennial grasses are competitively excluded on average, the most likely range of model predictions also includes stable coexistence with annual grasses. As for many other perennial plants, native bunchgrass population growth is highly sensitive to the survival of adults. Management interventions that improve perennial adult survival are likely to be more effective than those that reduce exotic annual seed production or establishment, reduce competition, or increase perennial seedling establishment. Further empirical data on summer survival of bunchgrass adults and competitive effects of annuals on perennials would most improve model predictions because they contribute most to the uncertainty in the predicted outcome for the perennial grass. This work demonstrates how demographic approaches can clarify the outcome of competition between native and exotic species

  1. Ryegrass cv. Lema and guava cv. Paluma biomonitoring suitability for estimating nutritional contamination risks under seasonal climate in Southeastern Brazil.

    PubMed

    Bulbovas, Patricia; Camargo, Carla Z S; Domingos, Marisa

    2015-08-01

    The risks posed by nutrient deposition due to air pollution on ecosystems and their respective services to human beings can be appropriately estimated by bioindicator plants when they are well acclimated to the study region environmental conditions. This assumption encouraged us to comparatively evaluate the accumulation potential of ryegrass cv. Lema and guava cv. Paluma macro and micronutrients. We also indicated the most appropriate species for biomonitoring nutrient contamination risks in tropical areas of Southeastern Brazil, which are characterized by marked dry and wet seasons and complex mixtures of air pollutants from different sources (industries, vehicle traffic and agriculture). The study was conducted in 14 sites with different neighboring land uses, within the Metropolitan Region of Campinas, central-eastern region of São Paulo State. The exposure experiments with ryegrass and guava were consecutively repeated 40 (28 days each) and 12 (84 days each) times, respectively, from Oct/2010 to Sept/2013. Macro and micronutrients were analyzed and background concentrations and enrichment ratios (ER) were estimated to classify the contamination risk within the study region. Significantly higher ER suggested that ryegrass were the most appropriate accumulator species for N, S, Mg, Fe, Mn, Cu and Zn deposition and guava for K, Ca, P and B deposition. Based on these biomonitoring adjustments, we concluded that the nutrient deposition was spatially homogeneous in the study area, but clear seasonality in the contamination risk by nutritional inputs was evidenced. Significantly higher contamination risk by S, Fe, K and B occurred during the dry season and enhanced contamination risk by Mn, Cu and Zn were highlighted during the wet season. Distinctly high contamination risk was estimated for S, Fe and Mn in several exposure experiments.

  2. Carbon relations of flowering in a semelparous clonal desert perennial

    SciTech Connect

    Tissue, D.T.; Nobel, P.S. )

    1990-02-01

    Agave deserti is a long-lived, semelparous perennial of the northwestern Sonoran Desert that flowers after {approx} 50-55 yr. Measurements of CO{sub 2} exchange over 24-h periods indicated that leaves of flowering rosettes had 24% more net CO{sub 2} uptake than leaves of adjacent nonflowering rosettes during the first month of inflorescence production. Net CO{sub 2} uptake for leaves of flowering rosettes was 32% less thereafter than for leaves of nonflowering rosettes, as senescing leaves of flowering rosettes exhibited dramatic reductions in nitrogen and chlorophyll contents. During the course of flowering, levels of total nonstructural carbohydrate (TNC) in the leaves of flowering rosettes dropped from 38 to 6% of the leaf dry mass, indicating substantial translocation of stored carbon to the inflorescence. TNC reserves of the rosette provided 70% of the carbon required to produce the 1.53 kg inflorescence, and CO{sub 2} uptake by the leaves and the inflorescence provided the remaining 30%. Rosettes must attain a minimum size (> 1,000 g dry mass) to initiate flowering, unless they are connected to a large flowering rosette. Small rosettes did not produce inflorescences when their rhizome connection to a large rosette was severed {approx} 4 wk before inflorescences emerged, suggesting that a chemical signal is transmitted through the rhizome that induces the small rosette to flower precociously. Small flowering rosettes could not complete formation of the inflorescence unless partially supported by carbon supplied by the connected large rosette. The contribution of the large rosette declined from 74% for a 0-30 g dry mass connected rosette to 35% for a 200-600 g rosette. For both small and large flowering rosettes, the translocation of substantial carbohydrate reserves from the leaves is essential for production of the inflorescence.

  3. Increased heterosis in selfing populations of a perennial forb

    PubMed Central

    Oakley, Christopher G.; Spoelhof, Jonathan P.; Schemske, Douglas W.

    2015-01-01

    Quantifying the importance of random genetic drift in natural populations is central to understanding the potential limits to natural selection. One approach is to estimate the magnitude of heterosis, the increased fitness of progeny derived from crosses between populations relative to crosses within populations caused by the heterozygous masking of deleterious recessive or nearly recessive alleles that have been fixed by drift within populations. Self-fertilization is expected to reduce the effective population size by half relative to outcrossing, and population bottlenecks may be common during the transition to selfing. Therefore, chance fixation of deleterious alleles due to drift in selfing populations should increase heterosis between populations. Increased homozygosity due to fixation or loss of alleles should also decrease inbreeding depression within populations. Most populations of the perennial herb Arabidopsis lyrata ssp. lyrata are self-incompatible (SI), but several have evolved self-compatibility and are highly selfing. We quantified heterosis and inbreeding depression in two predominantly self-compatible (SC) and seven SI populations in a field common garden experiment within the species' native range and examined the correlation between these metrics to gauge the similarity in their genetic basis. We measured proportion germination in the lab, and survival and fecundity (flower and seed production) for 2 years in the field, and calculated estimates of cumulative fitness. We found 7.2-fold greater heterosis in SC compared with SI populations, despite substantial heterosis in SI populations (56 %). Inbreeding depression was >61 %, and not significantly different between SC and SI populations. There was no correlation between population estimates of heterosis and inbreeding depression, suggesting that they have somewhat different genetic bases. Combined with other sources of information, our results suggest a history of bottlenecks in all of these

  4. Oat and ryegrass silage for small-scale dairy systems in the highlands of central Mexico.

    PubMed

    Celis-Alvarez, Maria Danaee; López-González, Felipe; Martínez-García, Carlos Galdino; Estrada-Flores, Julieta Gertrudis; Arriaga-Jordán, Carlos Manuel

    2016-08-01

    This study investigated the effects of the inclusion of oat-ryegrass silage (ORGS) in combination with maize silage (MSLG) in four treatments: T1 = 100 % ORGS, T2 = 67 % ORGS/33 % MSLG, T3 = 67 % ORGS/33 % MSLG, and T4 = 100 % MSLG to milking cows on continuous grazing with 4.7 kg DM of commercial dairy concentrate 18 % CP. Daily milk yield and composition, live weight, body condition score, and chemical composition of feeds were recorded during the last 4 days of the experimental periods. Feeding costs were calculated by partial budgets. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square, with 14-day periods. There were no statistical differences (P > 0.05) for milk yield (mean 15.5 ± 5.0 kg/day/cow) or composition (mean milk fat 34.6 ± 4.4 g/kg, protein 32.4 ± 3.1 g/kg, lactose 46.9 ± 1.6 g/kg), milk urea nitrogen (11.3 ± 2.1 mg/dl), live weight (434 ± 38 kg), or body condition score (2.4 ± 0.15). The silage cost of ORGS was 2.5 times higher than MSLG, so the feeding cost in T1 was 26 % higher per kilogram of milk than for T4, with T2 and T3 as intermediates. ORGS can be a substitute to maize silage in the proportions studied, although feeding costs were higher.

  5. Biowaste Mixtures Affecting the Growth and Elemental Composition of Italian Ryegrass ().

    PubMed

    Esperschütz, Jürgen; Lense, Obed; Anderson, Craig; Bulman, Simon; Horswell, Jacqui; Dickinson, Nicholas; Robinson, Brett

    2016-05-01

    Biosolids (sewage sludge) can be beneficially applied to degraded lands to improve soil quality. Plants grown on biosolids-amended soils have distinct concentrations of macronutrients and trace elements, which can be beneficial or present a risk to humans and ecosystems. Potentially, biosolids could be blended with other biowastes, such as sawdust, to reduce the risks posed by rebuilding soils using biosolids alone. We sought to determine the effect of mixing biosolids and sawdust on the macronutrient and trace element concentration of ryegrass over a 5-mo period. was grown in a low fertility soil, typical for marginal farm areas, that was amended with biosolids (1250 kg N ha), biosolids + sawdust (0.5:1) and urea (200 kg N ha), as well as a control. Biosolids increased the growth of from 2.93 to 4.14 t ha. This increase was offset by blending the biosolids with sawdust (3.00 t ha). Urea application increased growth to 4.93 t ha. The biowaste treatments increased N, P, Cu, Mn, and Zn relative to the control, which may be beneficial for grazing animals. Although biowaste application caused elevated Cd concentrations (0.15-0.24 mg kg) five- to eightfold higher than control and urea treatments, these were below levels that are likely to result in unacceptable concentrations in animal tissues. Mixing biosolids with sawdust reduced Cd uptake while still resulting in increased micronutrient concentrations (P, S, Mn, Zn, Cu) in plants. There were significant changes in the elemental uptake during the experiment, which was attributed to the decomposition of the sawdust. PMID:27136174

  6. Oat and ryegrass silage for small-scale dairy systems in the highlands of central Mexico.

    PubMed

    Celis-Alvarez, Maria Danaee; López-González, Felipe; Martínez-García, Carlos Galdino; Estrada-Flores, Julieta Gertrudis; Arriaga-Jordán, Carlos Manuel

    2016-08-01

    This study investigated the effects of the inclusion of oat-ryegrass silage (ORGS) in combination with maize silage (MSLG) in four treatments: T1 = 100 % ORGS, T2 = 67 % ORGS/33 % MSLG, T3 = 67 % ORGS/33 % MSLG, and T4 = 100 % MSLG to milking cows on continuous grazing with 4.7 kg DM of commercial dairy concentrate 18 % CP. Daily milk yield and composition, live weight, body condition score, and chemical composition of feeds were recorded during the last 4 days of the experimental periods. Feeding costs were calculated by partial budgets. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square, with 14-day periods. There were no statistical differences (P > 0.05) for milk yield (mean 15.5 ± 5.0 kg/day/cow) or composition (mean milk fat 34.6 ± 4.4 g/kg, protein 32.4 ± 3.1 g/kg, lactose 46.9 ± 1.6 g/kg), milk urea nitrogen (11.3 ± 2.1 mg/dl), live weight (434 ± 38 kg), or body condition score (2.4 ± 0.15). The silage cost of ORGS was 2.5 times higher than MSLG, so the feeding cost in T1 was 26 % higher per kilogram of milk than for T4, with T2 and T3 as intermediates. ORGS can be a substitute to maize silage in the proportions studied, although feeding costs were higher. PMID:27107750

  7. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray.

    PubMed

    Rocha, Laiane Corsini; Mittelmann, Andrea; Houben, Andreas; Techio, Vânia Helena

    2016-07-01

    Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages. PMID:27174104

  8. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis.

    PubMed

    Kane, Daniel A; Rogé, Paul; Snapp, Sieglinde S

    2016-01-01

    Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems.

  9. Particulate Organic Matter Responses to Perennial Grass Production in Midwestern Soil

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; DeLucia, E. H.

    2015-12-01

    Terrestrial carbon sequestration is essential to mitigating atmospheric carbon dioxide levels. While annual row crop agriculture contributes to soil carbon loss in the Midwest, the establishment of perennial crops has the potential to increase soil carbon stocks through increased organic inputs and changes soil carbon pools and fluxes. Perennial grasses eliminate the need for tillage and increase belowground biomass, both critical to the conservation of soil organic matter and soil carbon sequestration. The effect of C4 perennial grasses on particulate organic matter (POM) was evaluated in Illinois, where native switchgrass and a sterile hybrid of the Asian grass Miscanthus were planted at the University of Illinois Energy Farm in 2008. During 6 years after establishment of perennial crops, POM was compared with plots growing a corn-corn-soy rotation typical of the area and a 26-species restored prairie. POM concentrations increased for all crops between 67 and 79% over 6 years, with the greatest increases in prairie and miscanthus soils. POM concentrations were highest at the 0-10 cm depth, however POM accrued faster in the 10-30 cm depth. Isotopic analyses of POM material showed that after 6 years, POM carbon consisted of 22-33% C4 material under perennial monoculture crops, indicating the incorporation of newly-established plant material to the POM fraction. As POM carbon is primarily plant-derived, increases in POM reflect increases in organic matter inputs as well as the cessation of tillage. While increases in POM under annual row crops reflect the incorporation of aboveground organic matter by tillage, POM increases in untilled perennial crops mirror increases in belowground biomass and the formation large soil aggregates, structures which protect POM carbon from microbial degradation and result in longer residence times for soil carbon. Therefore untilled soils under long-term perennial crop production provide an important environment for the storage and

  10. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis

    PubMed Central

    2016-01-01

    Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems. PMID:27213283

  11. Thermal insights of the Greenland ice sheet perennial firn aquifer

    NASA Astrophysics Data System (ADS)

    Forster, R. R.; Miège, C.; Koenig, L.; Brucker, L.

    2013-12-01

    The Greenland ice sheet hydrology is characterized by a complex system and is triggered essentially by surface melt starting late spring to early summer each year. Understanding the hydrologic system for the ice sheet remains important to address ice dynamics and surface mass balance questions. In April 2011, in Southeast Greenland, field work was conducted and firn-core drilling identified the presence of liquid water persisting through the winter without freezing. This observed feature is named perennial firn aquifer (PFA) and can be mapped by the Accumulation Radar on board of the NASA Operation IceBridge mission. Even if the extent of this feature can be constrained by remote sensing techniques its formation and persistence mechanism remain unclear. Thermal behavior of the PFA is a key parameter to monitor in order to understand melting and refreezing processes at the PFA location. The PFA-13 site (66.18°N, 39.04°W and 1563 m), located near the 2011 site where the PFA was first identified, was revisited in early April 2013 for further investigations of the aquifer. To characterize the PFA thermal regime and seasonal evolution, we installed two thermistor strings . They are used to record the vertical temperature evolution for a year, from the surface to the bottom of the PFA and below. The data are being uploaded daily via satellite link. Progressive heating of the firn pack is observed from June 15th to the end of July 2013, by then, the entire firn column from the surface to 12 m depth (top of PFA) is at 0 °C. This observation brings evidence that meltwater can reach the depth of 12 m in the firn, during one and a half months. By the end of the summer, refreezing is expected from near the surface and the cold surface temperatures will slowly penetrate into the firn. In addition, freshly fallen snow, usually > 2 m over the course of a winter, will help insulate the remaining liquid water within the firn from the surface. We will present the time series of

  12. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    PubMed

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. PMID:24762567

  13. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    PubMed Central

    2010-01-01

    Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of

  14. Variation in the establishment of a non-native annual grass influences competitive interactions with Mojave Desert perennials

    USGS Publications Warehouse

    DeFalco, L.A.; Fernandez, G.C.J.; Nowak, R.S.

    2007-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts, the highly variable timing of resource availability also influences non-native plant establishment, thus modulating their impacts on native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native Mojave Desert perennials-Larrea tridentata, Achnatherum hymenoides, and Pleuraphis rigida-in either winter or spring. For comparison, additional plots were prepared for the same perennial species and seasons, but with a mixture of native annual species as neighbors. Growth of perennials declined when Bromus was established in winter because Bromus stands had 2-3 months of growth and high water use before perennial growth began. However, water potentials for the perennials were not significantly reduced, suggesting that direct competition for water may not be the major mechanism driving reduced perennial growth. The impact of Bromus on Larrea was lower than for the two perennial grasses, likely because Larrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This result contrasts with the perennial grasses, whose phenology completely overlaps with (Achnatherum) or closely follows (Pleuraphis) that of Bromus. In comparison, Bromus plants established in spring were smaller than those established in winter and thus did not effectively reduce growth of the perennials. Growth of perennials with mixed annuals as neighbors also did not differ from those with Bromus neighbors of equivalent biomass, but stands of these native annuals did not achieve the high biomass of Bromus stands that were necessary to reduce perennial growth. Seed dormancy and narrow requirements for seedling survivorship of native annuals produce densities and biomass lower than those achieved by Bromus; thus, impacts of native Mojave Desert

  15. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  16. Effects of Perennial Peanut (Arachis glabrata) Ground Cover on Nematode Communities in Citrus.

    PubMed

    Macchia, E T; McSorley, R; Duncan, L W; Syvertsen, J S

    2003-12-01

    The effects of perennial peanut (Arachis glabrata) ground cover on the nematode community in a citrus orchard were examined. Samples were taken from two different ground cover treatments (perennial peanut or bare ground) at each of three distances from the tree trunk. Richness, measured as total numbers of nematode genera per sample, and total numbers of nematodes were greatest in the perennial peanut treatment (P < 0.05). Abundance of many genera of bacterivores, fungivores, and omnivores were increased by the perennial peanut ground cover. Total numbers of plant parasites were greater in perennial peanut treatments on three of the five sampling dates (P < 0.05), mainly due to trends in numbers of Mesocriconema. Distance from a tree trunk and the interaction of ground cover treatments and proximity to a tree trunk were most influential for Belonolaimus and Hoplolaimus. Although differences among treatments were observed for nematode genera and trophic groups, ecological indices were not consistently sensitive to treatments. Among several ecological indices evaluated, richness was most often affected by ground cover treatment.

  17. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development.

    PubMed

    Steinwand, Michael A; Young, Hugh A; Bragg, Jennifer N; Tobias, Christian M; Vogel, John P

    2013-01-01

    Perennial species offer significant advantages as crops including reduced soil erosion, lower energy inputs after the first year, deeper root systems that access more soil moisture, and decreased fertilizer inputs due to the remobilization of nutrients at the end of the growing season. These advantages are particularly relevant for emerging biomass crops and it is projected that perennial grasses will be among the most important dedicated biomass crops. The advantages offered by perennial crops could also prove favorable for incorporation into annual grain crops like wheat, rice, sorghum and barley, especially under the dryer and more variable climate conditions projected for many grain-producing regions. Thus, it would be useful to have a perennial model system to test biotechnological approaches to crop improvement and for fundamental research. The perennial grass Brachypodiumsylvaticum is a candidate for such a model because it is diploid, has a small genome, is self-fertile, has a modest stature, and short generation time. Its close relationship to the annual model Brachypodiumdistachyon will facilitate comparative studies and allow researchers to leverage the resources developed for B. distachyon. Here we report on the development of two keystone resources that are essential for a model plant: high-efficiency transformation and inbred lines. Using Agrobacterium tumefaciens-mediated transformation we achieved an average transformation efficiency of 67%. We also surveyed the genetic diversity of 19 accessions from the National Plant Germplasm System using SSR markers and created 15 inbred lines. PMID:24073248

  18. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles.

    PubMed

    Pembleton, Luke W; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C; Forster, John W; Cogan, Noel O I

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25-0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  19. Effects of crude protein level in concentrate supplements on animal performance and nitrogen utilization of lactating dairy cows fed fresh-cut perennial grass.

    PubMed

    Hynes, D N; Stergiadis, S; Gordon, A; Yan, T

    2016-10-01

    Nitrogen pollution of air and ground water from grazing cattle is of increasing concern. Although several studies have investigated mitigation strategies for nitrogen output from dairy cows fed conserved forages and concentrates, similar research on fresh-cut grass in addition to production parameters is limited. The current study, using 3dietary treatments and incorporating 2 genotypes, was designed to evaluate the effects of concentrate crude protein (CP) levels on animal production and nitrogen utilization efficiency (NUE) in lactating dairy cows. Twelve multiparous cows (6 Holstein and 6 Holstein × Swedish Red) were used in a changeover study with three 25-d periods and 3 diet treatments. Low, medium and high CP concentrate [14.1, 16.1, and 18.1%, respectively, dry matter (DM) basis] diets were fed at 32.8% DM intake combined with good-quality zero-grazed perennial ryegrass (18.2% CP, DM basis). Each period consisted of an adaptation phase (18d) housed as a single group, a 1-d adaptation phase in individual stalls, and a 6-d measurement phase with feed intake and feces, urine, and milk output recorded. We observed no significant interaction between cow genotype and concentrate CP level on any animal performance or NUE parameter. Total DM intake, milk yield and composition, and NUE were not affected by dietary treatment. However, increasing concentrate CP level increased (1) N intake by 42g/d and excretion in urine and manure by 38 and 40g/d, respectively, and (2) the ratio of urine N over manure N. Feeding high CP rather than low CP concentrate increased milk urea N (MUN) content by 3.6mg/dL and total MUN output by 1.08g/d. Crossbred cows had lower grass DM intake, total DM intake, total N intake, and energy-corrected milk yield. However, cow genotype had no significant effect on NUE or MUN parameters. Equations have been developed to predict urine N excretion using MUN output as a sole predictor or in combination with dietary CP level. The present study

  20. Effects of crude protein level in concentrate supplements on animal performance and nitrogen utilization of lactating dairy cows fed fresh-cut perennial grass.

    PubMed

    Hynes, D N; Stergiadis, S; Gordon, A; Yan, T

    2016-10-01

    Nitrogen pollution of air and ground water from grazing cattle is of increasing concern. Although several studies have investigated mitigation strategies for nitrogen output from dairy cows fed conserved forages and concentrates, similar research on fresh-cut grass in addition to production parameters is limited. The current study, using 3dietary treatments and incorporating 2 genotypes, was designed to evaluate the effects of concentrate crude protein (CP) levels on animal production and nitrogen utilization efficiency (NUE) in lactating dairy cows. Twelve multiparous cows (6 Holstein and 6 Holstein × Swedish Red) were used in a changeover study with three 25-d periods and 3 diet treatments. Low, medium and high CP concentrate [14.1, 16.1, and 18.1%, respectively, dry matter (DM) basis] diets were fed at 32.8% DM intake combined with good-quality zero-grazed perennial ryegrass (18.2% CP, DM basis). Each period consisted of an adaptation phase (18d) housed as a single group, a 1-d adaptation phase in individual stalls, and a 6-d measurement phase with feed intake and feces, urine, and milk output recorded. We observed no significant interaction between cow genotype and concentrate CP level on any animal performance or NUE parameter. Total DM intake, milk yield and composition, and NUE were not affected by dietary treatment. However, increasing concentrate CP level increased (1) N intake by 42g/d and excretion in urine and manure by 38 and 40g/d, respectively, and (2) the ratio of urine N over manure N. Feeding high CP rather than low CP concentrate increased milk urea N (MUN) content by 3.6mg/dL and total MUN output by 1.08g/d. Crossbred cows had lower grass DM intake, total DM intake, total N intake, and energy-corrected milk yield. However, cow genotype had no significant effect on NUE or MUN parameters. Equations have been developed to predict urine N excretion using MUN output as a sole predictor or in combination with dietary CP level. The present study

  1. Chemical Composition, In vivo Digestibility and Metabolizable Energy Values of Caramba (Lolium multiflorum cv. caramba) Fresh, Silage and Hay.

    PubMed

    Özelçam, H; Kırkpınar, F; Tan, K

    2015-10-01

    The experiment was conducted to determine nutritive values of caramba (Lolium multiflorum cv. caramba) fresh, silage and hay by in vivo and in vitro methods. There was a statistically significant difference (p<0.01) in crude protein content value between fresh caramba (12.83%) and silage (8.91%) and hay (6.35%). According to results of experiment, the crude fiber, neutral detergent fiber, acid detergent fiber (ADF), acid detergent lignin contents of the three forms of caramba varied between 30.22% to 35.06%, 57.41% to 63.70%, 35.32% to 43.29%, and 5.55% to 8.86% respectively. There were no significant differences between the three forms of caramba in digestibility of nutrients and in vivo metabolizable energy (ME) values (p>0.05). However, the highest MECN (ME was estimated using crude nutrients) and MEADF values were found in fresh caramba (p<0.01). As a result, it could be said that, there were no differences between the three forms of caramba in nutrient composition, digestibility and ME value, besides drying and ensiling did not affect digestibility of hay. Consequently, caramba either as fresh, silage or hay is a good alternative source of forage for ruminants. PMID:26323399

  2. Chemical Composition, In vivo Digestibility and Metabolizable Energy Values of Caramba (Lolium multiflorum cv. caramba) Fresh, Silage and Hay

    PubMed Central

    Özelçam, H.; Kırkpınar, F.; Tan, K.

    2015-01-01

    The experiment was conducted to determine nutritive values of caramba (Lolium multiflorum cv. caramba) fresh, silage and hay by in vivo and in vitro methods. There was a statistically significant difference (p<0.01) in crude protein content value between fresh caramba (12.83%) and silage (8.91%) and hay (6.35%). According to results of experiment, the crude fiber, neutral detergent fiber, acid detergent fiber (ADF), acid detergent lignin contents of the three forms of caramba varied between 30.22% to 35.06%, 57.41% to 63.70%, 35.32% to 43.29%, and 5.55% to 8.86% respectively. There were no significant differences between the three forms of caramba in digestibility of nutrients and in vivo metabolizable energy (ME) values (p>0.05). However, the highest MECN (ME was estimated using crude nutrients) and MEADF values were found in fresh caramba (p<0.01). As a result, it could be said that, there were no differences between the three forms of caramba in nutrient composition, digestibility and ME value, besides drying and ensiling did not affect digestibility of hay. Consequently, caramba either as fresh, silage or hay is a good alternative source of forage for ruminants. PMID:26323399

  3. Exudation of alcohol and aldehyde sugars from roots of defoliated Lolium perenne L. grown under sterile conditions.

    PubMed

    Clayton, Stephen J; Read, Derek B; Murray, Philip J; Gregory, Peter J

    2008-11-01

    Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.

  4. Comparative Metabolite Fingerprinting of the Rumen System during Colonisation of Three Forage Grass (Lolium perenne L.) Varieties

    PubMed Central

    Kingston-Smith, Alison H.; Davies, Teri E.; Rees Stevens, Pauline; Mur, Luis A. J.

    2013-01-01

    The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment. PMID:24312434

  5. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    PubMed

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  6. Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain.

    PubMed

    González-Torralva, Fidel; Gil-Humanes, Javier; Barro, Francisco; Brants, Ivo; De Prado, Rafael

    2012-09-01

    The resistance mechanism of a glyphosate-resistant Lolium multiflorum Lam. biotype collected in Córdoba (Southern Spain) was examined. Resistance Factor values at three different growth stages ranged between 4.77 and 4.91. At 96 hours after treatment (HAT) the S biotype had accumulated seven times more shikimic acid than the R biotype. There were significant differences in translocation of (14)C-glyphosate between biotypes, i.e. at 96 HAT, the R biotype accumulated in the treated leaf more than 70% of the absorbed herbicide, in comparison with 59.21% of the S biotype; the R biotype translocated only 14.79% of the absorbed (14)C-glyphosate to roots, while in the S population this value was 24.79%. Visualization of (14)C-glyphosate by phosphor imaging showed a reduced distribution in the R biotype compared with the S. Glyphosate metabolism was not involved in the resistance mechanism due to both biotypes showing similar values of glyphosate at 96 HAT. Comparison of the EPSPS gene sequences between biotypes indicated that the R biotype has a proline 182 to serine amino acid substitution. In short, the resistance mechanism of the L. multiflorum Lam. biotype is due to an impaired translocation of the herbicide and an altered target site.

  7. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    PubMed Central

    Busi, Roberto; Neve, Paul; Powles, Stephen

    2013-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (NE), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility. PMID:23798973

  8. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils.

    PubMed

    Wang, Qian; Liu, Xiaoyan; Zhang, Xinying; Hou, Yunyun; Hu, Xiaoxin; Liang, Xia; Chen, Xueping

    2016-03-01

    Tea saponin (TS), a kind of biodegradable surfactant, was chosen to improve the accessible solubilization of pyrene and cadmium (Cd) in co-contaminated soils cultivated Lolium multiflorum. TS obviously improved the accessibility of pyrene and Cd for L. multiflorum to accelerate the process of accumulation and elimination of the pollutants. The chemical forms of Cd was transformed from Fe-Mn oxides and associated to carbonates fractions into exchangeable fractions by adding TS in single Cd and pyrene-Cd contaminated soils. Moreover, the chemical forms of pyrene were transformed from associated fraction into bioaccessible fraction by adding TS in pyrene and pyrene-Cd contaminated soils. In pyrene-Cd contaminated soil, the exchangeable fraction of Cd was hindered in the existence of pyrene, and bioaccessible fraction of pyrene was promoted by the cadmium. Besides, in the process of the pyrene degradation and Cd accumulation, the effect could be improved by the elongation of roots with adding TS, and the microorganism activity was stimulated by TS to accelerate the removal of pollutions. Therefore, Planting L. multiflorum combined with adding TS would be an effective method on the phytoremediation of organics and heavy metals co-contaminated soils.

  9. Perennial grasses for energy and conservation: Evaluating some ecological agricultural, and economic issues

    SciTech Connect

    Downing, M.; Walsh, M.; McLaughlin, S.

    1995-11-01

    Perennial prairie grasses offer many advantages to the developing biofuels industry. High yielding varieties of native prairie grasses such as switchgrass, which combine lower levels of nutrient demand, diverse geographical growing range, high net energy yields and high soil and water conservation potential indicate that these grasses could and should supplement annual row crops such as corn in developing alternative fuels markets. Favorable net energy returns, increased soil erosion prevention, and a geographically diverse land base that can incorporate energy grasses into conventional farm practices will provide direct benefits to local and regional farm economies and lead to accelerated commercialization of conversion technologies. Displacement of row crops with perennial grasses will have major agricultural, economic, sociologic and cross-market implications. Thus, perennial grass production for biofuels offers significant economic advantages to a national energy strategy which considers both agricultural and environmental issues.

  10. Scaling water use of perennial grasses from the plot to Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Bernacchi, C. J.; VanLoocke, A. D.; Hickman, G. C.; Zeri, M.; Twine, T. E.

    2011-12-01

    Perennial rhizomatous C4 grasses are currently considered, in many regions, one of the most promising vegetation types to supply biomass for bioenergy production. Because one goal of bioenergy production is to benefit the environment, the potential environmental impacts and services that would be associated with large scale production must be investigated. Of particular interest is the impact that altering the composition of vegetation at the landscape scale would have on regional hydrological cycles driven by higher rates of evapotranspiration (ET). To assess this, we implemented micrometeorological measurements using two independent techniques over multiple growing seasons for replicated plots of two perennial rhizomatous grasses, Miscanthus giganteus (miscanthus) and Panicum virgatum (switchgrass), and two traditional crop species, Zea mays (maize) and Glycine Max (soybean), planted throughout Central Illinois. When averaged across the entire growing season, ET for miscanthus was double relative to annual crops, and 140% of P. virgatum ET. The differences between the perennial grasses and annual crops were primarily due to longer growing season associated with the perennial grasses, but Miscanthus also demonstrated higher instantaneous water use. These results, coupled with physiological measurements of these species, were then used to parameterize and validate a dynamic vegetation model, Agro-IBIS, to investigate the large-scale consequences of land-use change on ecosystem hydrology from existing agriculture to various perennial grass production scenarios ranging from 10% to 100%. Results show that uniform production scenarios of less than 25% have little impact on regional hydrology but 'hotspots' with higher percentage land cover devoted to perennial grasses can have important consequences in localized areas. Given the increasing demand on water, we investigated whether the increased carbon gain associated with bioenergy crops was sufficient to offset the

  11. Similarity between runoff coefficient and perennial stream density in the Budyko framework

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wu, L.

    2012-06-01

    Streams are categorized into perennial and temporal streams based on flow durations. Perennial stream is the basic network, and temporal stream (ephemeral or intermittent) is the expanded network. Connection between perennial stream and runoff generation at the mean annual scale exists since one of the hydrologic functions of perennial stream is to deliver runoff. The partitioning of precipitation into runoff and evaporation at the mean annual scale, on the first order, is represented by the Budyko hypothesis which quantifies the ratio of evaporation to precipitation (E/P) as a function of climate aridity index (Ep/P, ratio of potential evaporation to precipitation). In this paper, it is hypothesized that similarity exists between perennial stream density (Dp) and runoff coefficient (Q/P) as a function of climate aridity index, i.e., DpDp* (EpP) and QP (EpP) where Dp* is a scaling factor and Q is mean annual runoff. To test the hypothesis, perennial stream densities for 185 watersheds in the United States are computed based on the high resolution national hydrography dataset (NHD). The similarity between perennial stream density and runoff coefficient is promising

  12. Profile of Hanwoo Steer Carcass Characteristics, Meat Quality and Fatty Acid Composition after Feeding Italian Ryegrass Silage

    PubMed Central

    Kang, Suk-Nam; Chu, Gyo-Moon; Kim, Da Hye; Park, Jae-Hong; Oh, Young Kyoon

    2015-01-01

    The objective of this work was to evaluate the growth performance, feed intake, slaughter characteristics, meat quantity and quality characteristics of Hanwoo steers fed with Italian ryegrass (IRG) silage (TRT). IRG silage consisted 11.70% protein, 2.84% ether extract, 53.50% dry matter digestibility and 63.34% total digestible nutrients. The daily weight gain and feed conversion ratio of TRT were significantly (p<0.01) higher than that of control diet (CON; fed rice straw) in the whole periods. However, the slaughter weight, dressing percentage, quantity grade and quantity traits (marbling score, meat color, fat color, and quality grade) of either TRT or CON were similar. Meat fed TRT diet showed higher crude fat and lightness (L*) value and lower moisture content and pH value compared with the CON diet (p<0.05). Overall the carcass yield was 12.5% higher than CON diet. PMID:26761843

  13. Profile of Hanwoo Steer Carcass Characteristics, Meat Quality and Fatty Acid Composition after Feeding Italian Ryegrass Silage.

    PubMed

    Kim, Won Ho; Kang, Suk-Nam; Arasu, Mariadhas Valan; Chu, Gyo-Moon; Kim, Da Hye; Park, Jae-Hong; Oh, Young Kyoon; Choi, Ki Choon

    2015-01-01

    The objective of this work was to evaluate the growth performance, feed intake, slaughter characteristics, meat quantity and quality characteristics of Hanwoo steers fed with Italian ryegrass (IRG) silage (TRT). IRG silage consisted 11.70% protein, 2.84% ether extract, 53.50% dry matter digestibility and 63.34% total digestible nutrients. The daily weight gain and feed conversion ratio of TRT were significantly (p<0.01) higher than that of control diet (CON; fed rice straw) in the whole periods. However, the slaughter weight, dressing percentage, quantity grade and quantity traits (marbling score, meat color, fat color, and quality grade) of either TRT or CON were similar. Meat fed TRT diet showed higher crude fat and lightness (L*) value and lower moisture content and pH value compared with the CON diet (p<0.05). Overall the carcass yield was 12.5% higher than CON diet. PMID:26761843

  14. Cloning and sequencing of Lol pI, the major allergenic protein of rye-grass pollen.

    PubMed

    Griffith, I J; Smith, P M; Pollock, J; Theerakulpisut, P; Avjioglu, A; Davies, S; Hough, T; Singh, M B; Simpson, R J; Ward, L D

    1991-02-25

    We have isolated a full length cDNA clone encoding the major glycoprotein allergen Lol pI. The clone was selected using a combination of immunological screening of a cDNA expression library and PCR amplification of Lol pI-specific transcripts. Lol pI expressed in bacteria as a fusion protein shows recognition by specific IgE antibodies present in sera of grass pollen-allergic subjects. Northern analysis has shown that the Lol pI transcripts are expressed only in pollen of rye-grass. Molecular cloning of Lol pI provides a molecular genetic approach to study the structure-function relationship of allergens.

  15. Energy-conserving perennial agriculture for marginal land in southern Appalachia. Final technical report

    SciTech Connect

    Williams, G.

    1982-01-30

    USDA economists predict the end of surplus farm production in the US within this decade. More and more marginal land will be cropped to provide feed for the growing world population and to produce energy. Much of this potential cropland in Southern Appalachia is poorly suited to annual crops, such as corn. Perennial crops are much better suited to steep, rocky, and wet sites. Research was undertaken on the theoretical potentials of perennial species with high predicted yields of protein, carbohydrates, or oils. Several candidate staple perennial crops for marginal land in Southern Appalachia were identified, and estimates were made of their yields, energy input requirements, and general suitabilities. Cropping systems incorporating honeylocust, persimmon, mulberry, jujube, and beech were compared with corn cropping systems. It appears that these candidate staple perennials show distinct advantages for energy conservation and environmental preservation. Detailed economic analyses must await actual demonstration trials, but preliminary indications for ethanol conversion systems with honeylocust are encouraging. It is suggested that short-term loans to farmers undertaking this new type of agriculture would be appropriate to solve cash-flow problems.

  16. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  17. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  18. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  19. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  20. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  1. Beginning with Healthy Plants: The Cornerstone of Integrated Pest Management for Perennial Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial clonally propagated crops are subject to many graft transmissible diseases caused by viruses and systemic prokaryotes. Many of these crops, such as citrus, have the potential to be productive for decades. The use of certification programs which incorporates a quarantine program to ensure...

  2. Non-flowering Sorghum spp. hybrids: Perennial, sterile, high-biomass feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial Sorghum spp. hybrids such as Columbusgrass (Sorghum almum Parodi; S. bicolor [L.] Moench x S. halepense [L.] Pers.) and the reciprocal hybridization (S. halepense x S. bicolor; e.g. Cv 'Krish') are high-biomass forage feedstocks. Utilization of such hybrids is limited, however, by both th...

  3. Biomass composition of perennial grasses for biofuel production in North Dakota, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful development of biofuels from biomass feedstocks depends on high yields and acceptable quality. We investigated the chemical composition of ten perennial grasses and mixtures across environments in North Dakota, USA. The contents of neutral detergent fiber, acid detergent fiber, acid deter...

  4. From the Lab Bench: Differences in annual and perennial grasses in meeting cattle production goals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written that provided the advantages and disadvantages of annual warm- and cool-season grasses. Warm-season annual grasses can increase the supply of forage during the summer slump in cool-season perennial grass growth. Utilization of toxic endophyte-infected tall fescue pastures can ...

  5. Remote sensing of perennial crop stand duration and pre-crop identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field to field variability in soil erosion and off-site transport of nutrients and pesticides in western Oregon in any single year is primarily driven by the question of whether individual fields were disturbed for planting of new crop stands or remained in production of established perennial crops...

  6. Those Nagging Headaches: Perennial Issues and Tensions in the Politics of Education Field.

    ERIC Educational Resources Information Center

    Johnson, Bob L., Jr.

    2003-01-01

    Examines perennial issues, needs, and tensions within the politics of education field: issues associated with defining and focusing the field, problems with theoretical hegemony and group-think, addressing and bridging the macro-micro politics divide, and the challenges of sustaining conceptual and theoretical rigor. Draws implications for the…

  7. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Literature published after 1984 were reviewed to address: (1) genome relationships among monogenomic diploid species, (2) progenitors of the unknown Y genome in Elymus polyploids, X in Thinopyrum intermedium, and Xm in Leymus, and (3) genome constitutions of some perennial Triticeae species that wer...

  8. Sustainability of perennial grass yields as bioenergy feedstock for the southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warm-season perennial grasses will be part of the biomass production system in the Southeast for the emerging bioenergy industry. Among the candidates for dedicated feedstocks are energy cane (Sacchurum sp.), Miscanthus x gigantius, switchgrass (Panicum virgatum), and napiergrass (Pennistem purpure...

  9. Molecular mechanisms responsive to dehydration may impact the invasiveness of perennial weeds under global climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is an invasive perennial weed in the great plains of the US and Canada. The ability of this herbaceous weed to regenerate new shoot growth from an abundance of crown and root buds after severe abiotic stress is critical for survival. Due to its adaptable and aggressive nature, global cl...

  10. N2O emission and soil C sequestration from herbaceous perennial biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  11. Collection and evaluation of wild perennial Helianthus pumilus achenes for oil concentration and fatty acid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Helianthus consists of 52 species and 19 subspecies with 14 annual and 38 perennial species. The narrow genetic base of cultivated sunflower has been broadened by the infusion of genes from the wild species, which have provided a continued source of desirable agronomic traits. There has ...

  12. Collection and evaluation of wild perennial Helianthus pumilus achenes for oil concentration and fatty acid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Helianthus consists of 51 species and 19 subspecies with 14 annual and 37 perennial species. The narrow genetic base of cultivated sunflower has been broadened by the infusion of genes from the wild species, which have provided a continued source of desirable agronomic traits. There has ...

  13. Microbiological quality of runoff from manure-amended fields as affected by perennial grass buffer strip

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Runoff from manure-amended agricultural fields can provide a transmission route for pathogens and fecal indicator organisms to surface waters. Establishment of stiff-stemmed perennial grass hedges along the contours of agricultural fields has been shown to reduce both soil and nutrient ...

  14. Genome analysis of biomass heterosis and other functionally important perennial grass traits in hybrid leymus wildryes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leymus is an allopolyploid perennial Triticeae genus with about 30 species that display remarkable adaptations to extreme cold, saline, and many other harsh growing environments throughout temperature regions of the World. Caespitose basin wildrye (Leymus cinereus) grows up to 3 m tall and is consi...

  15. Natural enemies of perennial pepperweed, lepidium latifolium L., in its introduced range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial pepperweed, Lepidium latifolium L., is a member of the Brassicaceae native to Eurasia. It was unintentionally introduced to North America in the early 1900s, where it has since spread over millions of acres. This weed is an aggressive invader of wetlands, meadows, roadsides, and agricult...

  16. Urbanization eliminates ephemeral and intermittent stream length and increases perennial flow

    EPA Science Inventory

    Protection of headwater streams under the Clean Water Act has been under scrutiny in recent Supreme Court cases, leading to renewed interest in the extent of non-perennial tributaries and their connections to downstream navigable waters. In this study, we assessed the effects of...

  17. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  18. Candidate perennial bioenergy grasses have a higher albedo than annual row crops in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...

  19. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush (Artemisia tridentata Nutt.) plant communities in the US Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintenance of native perennial bunchgrasses is key to controlling annual grass expansion,...

  20. Effects of integrating mowing and imazapyr application on African rue (Peganum harmala) and native perennial grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African rue (Peganum harmala L.) is a poisonous perennial forb that readily invades salt desert shrub and sagebrush steppe rangelands. Information detailing options for integrated management of African rue are lacking. To date, a limited number of studies have researched the efficacy of different ...

  1. On-farm Preservation and Pretreatment of Perennial Grasses for Fuel Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, wet storage methods have been proposed for feedstock preservation and on-farm storage of perennial grass and corn stover biomass. The advantages over a dry storage system include lower risk of fire, reduced harvest costs, and improved feedstock susceptibility to enzymatic hydrolysis. We be...

  2. Transferring sclerotinia resistance genes from wild perennial Helianthus species into cultivated sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the lack of highly tolerant cultivated sunflower germplasm, new sources of Sclerotinia resistance from wild Helianthus species need to be identified and incorporated into a cultivated background. Wild perennial Helianthus species are highly resistant to Sclerotinia and have provided good sou...

  3. Genes and quantitative trait loci controlling biomass yield and forage quality traits in perennial wildrye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native perennial grasses provide vital ecosystem services and have potential use as low-input feedstocks in diverse environments. Cool-season grasses, in particular, dominate temperate growing regions throughout higher elevations and latitudes of the World. However, innovative breeding methods are...

  4. Returning succession to downy brome dominated rangelands: roadblocks to perennial grass establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most common cause of successional retrogression in the Great Basin is wildfires fueled by downy brome (Bromus tectorum). Downy brome invasion has reduced fire intervals from an estimated 60-100 years down to 5-10 years. Our previous research found that establishment of long-lived perennial grass...

  5. Growth and Quality of Perennial C3 Grasses in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring and fall gaps in forage production for systems utilizing winter wheat forage in the Southern Great Plains have led to an interest in additional resources such as C3 perennial grasses. We evaluated the potential of nine cool-season grass entries for forage production and quality through the fa...

  6. In search of a perennial philosophy for behavioral health integration in primary care.

    PubMed

    Mauksch, Larry B; Fogarty, Colleen T

    2016-06-01

    The "perennial philosophy," a concept religious scholars have studied for centuries, represents a search for the values, themes, and constructs that transcend individual religions. Can we who develop and disseminate behavioral health integration in primary care step back from individual models to identify our perennial philosophy? If so, what are the components? What does the evidence tell us? What do we need to learn? Four case examples are presented which represent many patients seen by both of us-a family therapist and a family physician-over our combined 55 years of collaborative practice within integrated primary care settings. Can these patients be cared for in a primary care setting? Our experience provides a simple answer-yes. However, providing care for this range of patients requires variability in team configurations, frequency of visits, lengths of relationships, and interventional strategies. Is there a perennial philosophy of how to design and implement the integration of behavioral health in primary care? We think there should be. we highlight a recent publication from the Eugene S. Farley, Jr. Health Policy Center, entitled "Core Competencies For Behavioral Health Providers Working In Primary Care." The authors purposefully transcend models in delineating eight core competencies. Embedded within these competencies are common or perennial factors. These factors may guide our field going forward, helping us avoid "religious" divisions, seek to understand diverse designs, and embrace integration of models to meet the needs of the populations and teams we serve. (PsycINFO Database Record

  7. Registration of perennial Sorghum bicolor x S. propinquum line 'PSH12TX09'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel sorghum x Sorghum propinquum recombinant inbred line, named PSSH12TX09, was identified that successfully overwintered across plant hardiness zones 8a, 8b, and 9a between 2013 and 2015. Overwintering perenniality of PSSH12TX09 exceeded 90% at all locations across both evaluation years, with ...

  8. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  9. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.

    PubMed

    van Parijs, F R D; Ruttink, T; Boerjan, W; Haesaert, G; Byrne, S L; Asp, T; Roldán-Ruiz, I; Muylle, H

    2015-07-01

    In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.

  10. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  11. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne.

    PubMed

    Pfender, W F; Saha, M C; Johnson, E A; Slabaugh, M B

    2011-05-01

    A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F(1) individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F(1) progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne. PMID:21344184

  12. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2014-12-01

    Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil. PMID:24999226

  13. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility

    PubMed Central

    Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan

    2013-01-01

    Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749

  14. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2014-12-01

    Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil.

  15. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  16. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  17. A logistic regression equation for estimating the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Archfield, Stacey A.

    2002-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis

  18. Spread dynamics of perennial pepperweed (Lepidium latifolium) in two seasonal wetland areas

    USGS Publications Warehouse

    Renz, Mark J.; Steinmaus, Scott J.; Gilmer, David S.; DiTomaso, Joseph M.

    2012-01-01

    Perennial pepperweed is an invasive plant that is expanding rapidly in several plant communities in the western United States. In California, perennial pepperweed has aggressively invaded seasonal wetlands, resulting in degradation of habitat quality. We evaluated the rate and dynamics of population spread, assessed the effect of disturbance on spread, and determined the biotic and abiotic factors influencing the likelihood of invasion. The study was conducted at eight sites within two wetland regions of California. Results indicate that in undisturbed sites, spread was almost exclusively through vegetative expansion, and the average rate of spread was 0.85 m yr−1 from the leading edge. Spread in sites that were disked was more than three times greater than in undisturbed sites. While smaller infestations increased at a faster rate compared with larger populations, larger infestations accumulated more newly infested areas than smaller infestations from year to year. Stem density was consistently higher in the center of the infestations, with about 2.4 times more stems per square meter compared with the leading edge at the perimeter of the population. The invasion by perennial pepperweed was positively correlated with increased water availability but was negatively correlated with the cover of perennial and annual species. Thus, high cover of resident vegetation can have a suppressive effect on the rate of invasion, even in wetland ecosystems. On the basis of these results, we recommend that resident plant cover not be disturbed, especially in wet areas adjacent to areas currently infested with perennial pepperweed. For infested areas, management efforts should be prioritized to focus on controlling satellite populations as well as the leading edge of larger infestations first. This strategy could reduce the need for costly active restoration efforts by maximizing the probability of successful re-establishment of resident vegetation from the adjacent seedbank.

  19. Candidate perennial bioenergy grasses have a higher albedo than annual row crops

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; VanLoocke, A.; Gomez-Casanovas, N.; Bernacchi, C.

    2015-12-01

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate 'regulators' due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model based approaches have investigated biogeochemical tradeoffs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (α), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, we established paired fields of Miscanthus × giganteus (miscanthus) and Panicum virgatum (switchgrass), two of the leading perennial cellulosic feedstock candidates, and traditional annual row crops in the highly productive "Corn-belt". Our results show that miscanthus did and switchgrass did not have an overall higher α than current row crops but a strong seasonal pattern existed. Both perennials had consistently higher growing season α than row crops and winter α did not differ. The lack of observed differences in winter α, however, masked an interaction between snow cover and species differences, with the perennial species, compared with the row crops, having a higher α when snow was absent and a much lower α when snow was present. Overall, these changes resulted in an average net reduction in annual absorbed energy of about 5 W/m2 for switchgrass and about 8 W/m2 for miscanthus relative to annual crops. Therefore, the conversion from annual row to perennial crops alters the radiative balance of the surface via changes in α and could lead to regional cooling.

  20. Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Bhardwaj, A. K.; Basso, B.; Robertson, G. P.

    2015-06-01

    Water use by plant communities across years of varying water availability indicates how terrestrial water balances will respond to climate change and variability as well as to land cover change. Perennial biofuel crops, likely grown mainly on marginal lands of limited water availability, provide an example of a potentially extensive future land cover conversion. We measured growing-season evapotranspiration (ET) based on daily changes in soil profile water contents in five perennial systems—switchgrass, miscanthus, native grasses, restored prairie, and hybrid poplar—and in annual maize (corn) in a temperate humid climate (Michigan, USA). Three study years (2010, 2011 and 2013) had normal growing-season rainfall (480-610 mm) whereas 2012 was a drought year (210 mm). Over all four years, mean (±SEM) growing-season ET for perennial systems did not greatly differ from corn (496 ± 21 mm), averaging 559 (±14), 458 (±31), 573 (±37), 519 (±30), and 492 (±58) mm for switchgrass, miscanthus, native grasses, prairie, and poplar, respectively. Differences in biomass production largely determined variation in water use efficiency (WUE). Miscanthus had the highest WUE in both normal and drought years (52-67 and 43 kg dry biomass ha-1 mm-1, respectively), followed by maize (40-59 and 29 kg ha-1 mm-1) the native grasses and prairie were lower and poplar was intermediate. That measured water use by perennial systems was similar to maize across normal and drought years contrasts with earlier modeling studies and suggests that rain-fed perennial biomass crops in this climate have little impact on landscape water balances, whether replacing rain-fed maize on arable lands or successional vegetation on marginal lands. Results also suggest that crop ET rates, and thus groundwater recharge, streamflow, and lake levels, may be less sensitive to climate change than has been assumed.

  1. Evaporite deposition in a shallow perennial lake, Qaidam basin, western China

    SciTech Connect

    Schubel, K.A.; Lowenstein, T.K. ); Spencer, R.J. ); Pengxi, Z. )

    1991-03-01

    Evaporites accumulate in ephemeral saline-pans, shallow perennial lakes or lagoons, and deep perennial systems. Continuous brine trench exposures of Holocene evaporites from the Qaidam basin provide criteria for the recognition of shallow perennial lake sediments. Based on Landsat photographs, lateral extent of beds (at least 7 km), and sequence thicknesses (maximum 2.5 m), the paleolake is interpreted to have been less than 2.5 m deep and at least 120 km{sup 2} in area. Sediments consist of laminated siliciclastic mud overlain by mud-halite couplets (mm- to cm-scale layers), which represent one vertical shallowing- and concentrating-upwards sequence. The basal laminite marks the onset of deposition in this shallow perennial paleolake. Syndepositional halite textures and fabrics in the overlying mud-halite couplets include cumulates, rafts, and chevrons, draped by mud laminae, and halite layers truncated by horizontal dissolution surfaces (increasing in frequency upwards). Paleolake brines, determined from fluid inclusion melting temperatures, are Na-Mg-Cl-rich and evolve from 0.84 m Mg{sup 2} to 1.52 m Mg{sup 2+} (near the surface). Combinations of the following criteria may be used for the recognition of shallow, nonstratified, perennial lake sediments: lateral continuity of layers; muds undisrupted by subaerial exposure; vertical bottom-growth of halite; halite layers conformably overlain by mud; halite layers truncated by nonuniformly spaced horizontal dissolution surfaces; erosional scours and channels filled with cross-laminated gypsum, halite, and siliciclastic sand and mud; and salinity fluctuations over small stratigraphic intervals within an overall concentrating-upwards sequence.

  2. NEWER SDHI FUNGICIDES AND GRASSES: EFFECTS ON SEED YIELD AND DISEASE CONTROL.

    PubMed

    Rijckaert, G; Vanden Nest, T

    2015-01-01

    Grass seed crops (ryegrass), a minor crop in Belgium, should be managed more intensively and in an arable way, comparable with the intensive wheat culture. Even more important than higher seed yields are stable, higher yields over time, Integrated pest management (IPM) forms the framework around this intensification. Two similar seed production field trials--one with perennial ryegrass (Lolium perenne L.) and one with Italian ryegrass (Lolium multiflorum L.)--were conducted in 2014, dealing with 4 SDHI fungicides (bixafen, boscalid, fluxapyroxad and isopyrazam) that were compared with an untreated control and some reference treatments. There were four application times (stages): i.e. early stem elongation--BBCH 33 (T1), ear tips visible--BBCH 51 (T2), full ear, begin of flowering--BBCH 61 (T3) and end of flowering--BBCH 69 (T4). Except for the Italian ryegrass trial, only the last three stages were used. In the Italian ryegrass trial, which had only sporadic incidence of disease, all T3 treatments clearly increased seed yield compared with the untreated control, by 13% on average. For the T2 treatments only Fandango and Adexar clearly out yielded the control. The curative T4 treatment (Tilt + Corbel) tended to increase seed yield, but this was not significant. Seed yield differences could not be explained by variations in thousand seed weight (TSW), leaf withering and NDVI scores (crop reflectance). The disease pressure (crown rust) was very low before flowering, but stem rust developed strongly during the last 2 weeks before harvest of the perennial ryegrass trial. Yield responses were mostly pronounced at the T3 treatment. Except for Fandango and Horizon, all T3 treatments clearly increased yield in comparison with the untreated control, by 18.4% on average. The T4 treatment (Tilt + Corbel) could not repair the crop damage. Further seed yield data are discussed in relation to yield components, TSW, leaf withering and vegetation index (NDVI). An integrated

  3. [Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato].

    PubMed

    Jiang, Ling; Yang, Yun; Xu, Wei-Hong; Wang, Chong-Li; Chen, Rong; Xiong, Shi-Juan; Xie, Wen-Wen; Zhang, Jin-Zhong; Xiong, Zhi-Ting; Wang, Zheng-Yin; Xie, De-Ti

    2014-06-01

    Pot experiments were carried out to investigate the effects of ryegrass and arbuscular mycorrhiza on the plant growth, malondialdehyde (MDA), antioxidant enzyme activities of leaf and root, accumulation and chemical forms of cadmium (Cd) in tow varieties of tomato when exposed to Cd (20 mg x kg(-1)). The results showed that dry weights of fruit and plant, and contents of malondialdehyde (MDA) and antioxidant enzyme activities of leaf and root, and concentrations and accumulations of Cd significantly differed between two varieties of tomato. Dry weights of fruit, roots, stem, leaf and plant were increased by single or combined remediation of ryegrass and arbuscular mycorrhiza, while MDA contents and antioxidant enzyme activities of leaf and root reduced. The total extractable Cd, F(E), F(W), F(NaCl), F(HAc), F(HCl), and F(R) in fruit of two varieties of tomato reduced by 19.4% - 52.4%, 31.0% - 75.2%, 19.7% - 59.1%, 3.1% - 48.2%, 20.0% - 65.0%, 40.7% - 100.0% and 15.2% - 50.0%, respectively. Cadmium accumulations in tomato were in the order of leaf > stem > fruit > root. Cadmium concentrations in leaf, stem, root and fruit of both varieties decreased by single or combined remediation of ryegrass and arbuscular mycorrhiza, and Cd accumulations of stem and plant of two varieties also reduced. Cd accumulations in fruit of two varieties decreased by 42.9% and 43.7% in the combined remediation treatments, respectively. Tolerance and resistance of 'LUO BEI QI' on Cd was more than 'De Fu mm-8', and Cd concentrations and Cd accumulations in fruit and plant were in the order of 'LUO BEI QI' < 'De Fu mm-8' in the presence or absence of single or combined remediation of ryegrass and arbuscular mycorrhiza.

  4. Phylogenetic relationships between annual and perennial species of Helianthus: evolution of a tandem repeated DNA sequence and cytological hybridization experiments.

    PubMed

    Natali, L; Ceccarelli, M; Giordani, T; Sarri, V; Zuccolo, A; Jurman, I; Morgante, M; Cavallini, A; Cionini, P G

    2008-12-01

    The amplification and chromosomal localization of tandem repeated DNA sequences from Helianthus annuus (clone HAG004N15) and the physical organization of ribosomal DNA were studied in annual and perennial species of Helianthus. HAG004N15-related sequences, which did not show amplification in other Asteraceae except for Viguiera multiflora, were redundant in all the Helianthus species tested, but their frequency was significantly higher in perennials than in annuals. These sequences were located at the ends and intercalary regions of all chromosome pairs of annual species. A similar pattern was found in the perennials, but a metacentric pair in their complement was not labelled. Ribosomal cistrons were carried on two chromosome pairs in perennials and on three pairs in annuals except for H. annuus, where rDNA loci were on four pairs. No difference was observed between cultivated H. annuus and its wild accessions in the hybridization pattern of the HAG004N15 and ribosomal probes. These findings support the hypothesis that the separation between annual and perennial Helianthus species occurred through interspecific hybridization involving at least one different parent. However, GISH in H. annuus using genomic DNA from the perennial Helianthus giganteus as blocking DNA failed to reveal different genomic assets in annual and perennial species.

  5. Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass.

    PubMed

    Wang, Xiao-Ling; Liu, Dan; Li, Zhen-Qing

    2012-05-01

    The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.

  6. A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.

    2006-01-01

    A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial

  7. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].

    PubMed

    Wu, Qiu-Ling; Wang, Wen-Chu; He, Shan-Ying

    2014-10-01

    A pot experiment was conducted to study the effects of plant growth regulator GA3 and metal chelate EDTA on enhancing the remediation of Pb contaminated soil, and the detoxification mechanism of Lolium perenne grown on Pb contaminated soil at 250 and 500 mg · kg(-1). The results showed that cell wall deposition and vacuolar compartmentalization played important roles in the detoxification of Pb in L. perenne shoot. The addition of EDTA alone increased Pb concentration in plants and Pb proportions in soluble fraction and organelles fraction, and enhanced the toxicity of Pb to plant, leading to the significant reduction of the plant biomass (P < 0.05). Foliar spray of lower concentration of GA3 (1 μmol · L(-1) or 10 μmol · L(-1)) alone significantly increased Pb accumulation by L. perenne (P < 0.05), but Pb proportions in soluble and organelles fraction were decreased, which alleviated the adverse effects of Pb on plant, thus improving the growth of plants (P < 0.05), with 1 μmol · L(-1) GA3 being the most effective. In contract, the addition of 100 μmol · L(-1) GA3 decreased Pb concentration in L. perenne, but increased the proportions of Pb in soluble fraction and organelles fraction, resulting in the reduction of plant biomass. Lower concen- tration of GA3 might alleviate the adverse effects of Pb and/or EDTA on plant, since the biomass amounts in the different treatments were in order of GA3 alone of lower concentration > GA3 of lower concentration + EDTA > EDTA alone. The combination application of low concentration of GA3 and EDTA showed a synergistic effect on the Pb accumulation in L. perenne (P < 0.05). Especially, Pb concentration in shoot and Pb extraction efficiency reached 1250.6 mg · kg(-1) and 1.1%, respec- tively, under the treatment of EDTA + 1 μmol L(-1) GA3 on the Pb 500 mg · kg(-1) soil. Therefore, the application of 1 μmol · L(-1) GA3 along with EDTA appeared to be a potential approach for phytoremediation of Pb contaminated soil

  8. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].

    PubMed

    Wu, Qiu-Ling; Wang, Wen-Chu; He, Shan-Ying

    2014-10-01

    A pot experiment was conducted to study the effects of plant growth regulator GA3 and metal chelate EDTA on enhancing the remediation of Pb contaminated soil, and the detoxification mechanism of Lolium perenne grown on Pb contaminated soil at 250 and 500 mg · kg(-1). The results showed that cell wall deposition and vacuolar compartmentalization played important roles in the detoxification of Pb in L. perenne shoot. The addition of EDTA alone increased Pb concentration in plants and Pb proportions in soluble fraction and organelles fraction, and enhanced the toxicity of Pb to plant, leading to the significant reduction of the plant biomass (P < 0.05). Foliar spray of lower concentration of GA3 (1 μmol · L(-1) or 10 μmol · L(-1)) alone significantly increased Pb accumulation by L. perenne (P < 0.05), but Pb proportions in soluble and organelles fraction were decreased, which alleviated the adverse effects of Pb on plant, thus improving the growth of plants (P < 0.05), with 1 μmol · L(-1) GA3 being the most effective. In contract, the addition of 100 μmol · L(-1) GA3 decreased Pb concentration in L. perenne, but increased the proportions of Pb in soluble fraction and organelles fraction, resulting in the reduction of plant biomass. Lower concen- tration of GA3 might alleviate the adverse effects of Pb and/or EDTA on plant, since the biomass amounts in the different treatments were in order of GA3 alone of lower concentration > GA3 of lower concentration + EDTA > EDTA alone. The combination application of low concentration of GA3 and EDTA showed a synergistic effect on the Pb accumulation in L. perenne (P < 0.05). Especially, Pb concentration in shoot and Pb extraction efficiency reached 1250.6 mg · kg(-1) and 1.1%, respec- tively, under the treatment of EDTA + 1 μmol L(-1) GA3 on the Pb 500 mg · kg(-1) soil. Therefore, the application of 1 μmol · L(-1) GA3 along with EDTA appeared to be a potential approach for phytoremediation of Pb contaminated soil.

  9. Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2015-12-01

    Chicory (Cichorum intybus L.) is a summer-active forage herb which has been proposed as an option to increase summer feed supply, increase dry matter intake, nutrient intake, and milk yield from nonirrigated dairy production systems in southern Australia. Dry matter intake, nutrient intake, milk yield, and yield of milk fat and protein of predominantly Holstein-Friesian dairy cows in late lactation consuming 3 herbage-based diets (4 replicates per treatment) were measured. The 3 grazed herbages were second-year chicory (CHIC) and perennial ryegrass (Lolium perenne L.; PRG) monocultures and a mixed sward (~50:50) of chicory and perennial ryegrass (MIX). All diets (CHIC, PRG, and MIX) were supplemented with alfalfa (Medicago sativa L.) hay (5.5kg of DM/cow per day) and an energy-based concentrate pellet (4.0kg of DM/cow per day). There were no significant differences in milk yield (12.0 to 12.6kg/d across the treatments) or the yield of milk fat (539 to 585g/d) and milk protein (433 to 447g/d) between the 3 herbage-based diets. No differences in DMI (17.9 to 19.2kg/d) or estimated metabolizable energy intake (173 to 185MJ/d) were noted between treatments. Estimated metabolizable energy concentrations in the forages on offer were lower in CHIC than PRG (7.6 vs. 8.2MJ/kg of dry matter), but the concentration in consumed herbage was not different (9.1 vs. 9.2MJ/kg of dry matter); as such, potential for increased milk yield in cows offered CHIC was limited. Increased concentration of polyunsaturated fatty acids was observed in chicory herbage compared with perennial ryegrass. This was associated with increased milk conjugated linoleic acid and milk polyunsaturated fatty acids when chicory formed part of the diet (CHIC compared to PRG and MIX). Chicory could be used as an alternative to perennial ryegrass in summer; however, the developmental stage of chicory will influence concentrations of metabolizable energy and neutral detergent fiber and, therefore, intake and milk

  10. Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2015-12-01

    Chicory (Cichorum intybus L.) is a summer-active forage herb which has been proposed as an option to increase summer feed supply, increase dry matter intake, nutrient intake, and milk yield from nonirrigated dairy production systems in southern Australia. Dry matter intake, nutrient intake, milk yield, and yield of milk fat and protein of predominantly Holstein-Friesian dairy cows in late lactation consuming 3 herbage-based diets (4 replicates per treatment) were measured. The 3 grazed herbages were second-year chicory (CHIC) and perennial ryegrass (Lolium perenne L.; PRG) monocultures and a mixed sward (~50:50) of chicory and perennial ryegrass (MIX). All diets (CHIC, PRG, and MIX) were supplemented with alfalfa (Medicago sativa L.) hay (5.5kg of DM/cow per day) and an energy-based concentrate pellet (4.0kg of DM/cow per day). There were no significant differences in milk yield (12.0 to 12.6kg/d across the treatments) or the yield of milk fat (539 to 585g/d) and milk protein (433 to 447g/d) between the 3 herbage-based diets. No differences in DMI (17.9 to 19.2kg/d) or estimated metabolizable energy intake (173 to 185MJ/d) were noted between treatments. Estimated metabolizable energy concentrations in the forages on offer were lower in CHIC than PRG (7.6 vs. 8.2MJ/kg of dry matter), but the concentration in consumed herbage was not different (9.1 vs. 9.2MJ/kg of dry matter); as such, potential for increased milk yield in cows offered CHIC was limited. Increased concentration of polyunsaturated fatty acids was observed in chicory herbage compared with perennial ryegrass. This was associated with increased milk conjugated linoleic acid and milk polyunsaturated fatty acids when chicory formed part of the diet (CHIC compared to PRG and MIX). Chicory could be used as an alternative to perennial ryegrass in summer; however, the developmental stage of chicory will influence concentrations of metabolizable energy and neutral detergent fiber and, therefore, intake and milk

  11. Perennial vegetation data from permanent plots on the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Webb, Robert H.; Murov, Marilyn B.; Esque, Todd C.; Boyer, Diane E.; DeFalco, Lesley A.; Haines, Dustin F.; Oldershaw, Dominic; Scoles, Sara J.; Thomas, Kathryn A.; Blainey, Joan B.; Medica, Philip A.

    2003-01-01

    Perennial vegetation data from 68 permanent plots on the Nevada Test Site, Nye County, Nevada, are given for the period of 1963 through 2002. Dr. Janice C. Beatley established the plots in 1962 and then remeasured them periodically from 1963 through 1975. We remeasured 67 of these plots between 2000 and 2003; the remaining plot was destroyed at some time between 1975 and 1993. The plots ranged from 935 to 2,274 m in elevation and are representative of common plant associations of the Mojave Desert, the transition to Great Basin Desert, and pinyon-juniper woodlands. The purpose of this report is to describe the complete set of ecological data that Beatley collected from the Nevada Test Site from 1963 through 1975 and to present the data for perennial vegetation collected from 2000 through 2003.

  12. Host Status of Herbaceous Perennials to Meloidogyne incognita and M. arenaria

    PubMed Central

    Walker, J. T.; Melin, J. B.

    1998-01-01

    Twenty-two different herbaceous perennials were studied for their reaction to separate inoculations of Meloidogyne arenaria and M. incognita under greenhouse conditions. Perennial taxa that did not develop root-galls following inoculation, and therefore are considered as nonhosts of both nematode species, included species and cultivars of Aethionema, Fragaria, Phlox, and Polygonum. Echinacea, Monarda, and Patrinia developed only a few galls. Root-galls developed on species and cultivars of Achillea, Geranium, Heuchera, Heucherella, Linaria, Nepeta, Nierembergia, Penstemon, and Salvia. There was no difference in the number of root-galls caused by M. arenaria or M. incognita on most plants except for Penstemon cultivars. Plant heights and dry weights varied between species and nematode density. PMID:19274254

  13. Effect of Contamination with Perennial Permafrost Microorganisms on the Outcome of Closed Brain Neurotrauma.

    PubMed

    Malchevskii, V A; Subbotin, A M; Nemkov, A G; Petrov, S A

    2016-07-01

    We studied the effect of contamination with Bacillus genus microorganisms isolated from perennial permafrost samples on the outcome of closed brain neurotrauma in Wistar rats. It was found that contamination with different Bacillus strains produced different effects on the mortality of experimental animals with closed neurotrauma. The complex of metabolites from strain Ch2/9 - Bacillus spp. (pumilus) produced a protective effect in experimental closed brain neurotrauma. PMID:27492402

  14. PERPHECLIM ACCAF Project - Perennial fruit crops and forest phenology evolution facing climatic changes

    NASA Astrophysics Data System (ADS)

    Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team

    2015-04-01

    Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public

  15. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.

    PubMed

    Smith, Candice M; David, Mark B; Mitchell, Corey A; Masters, Michael D; Anderson-Teixeira, Kristina J; Bernacchi, Carl J; Delucia, Evan H

    2013-01-01

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotation (corn fertilized at 168-202 kg N ha). Nitrous oxide emissions, soil N mineralization, mid-profile nitrate leaching, and tile flow and nitrate concentrations were measured. Perennial crops quickly reduced nitrate leaching at a 50-cm soil depth as well as concentrations and loads from the tile systems (year 1 tile nitrate concentrations of 10-15 mg N L declined significantly by year 4 in all perennial crops to <0.6 mg N L, with losses of <0.8 kg N ha yr). Nitrous oxide emissions were 2.2 to 7.7 kg N ha yr in the corn-corn-soybean rotation but were <1.0 kg N ha yr by year 4 in the perennial crops. Overall N balances (atmospheric deposition + fertilization + soybean N fixation - harvest, leaching losses, and NO emissions) were positive for corn and soybean (22 kg N ha yr) as well as switchgrass (9.7 kg N ha yr) but were -18 and -29 kg N ha yr for prairie and miscanthus, respectively. Our results demonstrate rapid tightening of the N cycle as perennial biofuel crops established on a rich Mollisol soil.

  16. Roguing with replacement in perennial crops: conditions for successful disease management.

    PubMed

    Sisterson, Mark S; Stenger, Drake C

    2013-02-01

    Replacement of diseased plants with healthy plants is commonly used to manage spread of plant pathogens in perennial cropping systems. This strategy has two potential benefits. First, removing infected plants may slow pathogen spread by eliminating inoculum sources. Second, replacing infected plants with uninfected plants may offset yield losses due to disease. The extent to which these benefits are realized depends on multiple factors. In this study, sensitivity analyses of two spatially explicit simulation models were used to evaluate how assumptions concerning implementation of a plant replacement program and pathogen spread interact to affect disease suppression. In conjunction, effects of assumptions concerning yield loss associated with disease and rates of plant maturity on yields were simultaneously evaluated. The first model was used to evaluate effects of plant replacement on pathogen spread and yield on a single farm, consisting of a perennial crop monoculture. The second model evaluated effects of plant replacement on pathogen spread and yield in a 100 farm crop growing region, with all farms maintaining a monoculture of the same perennial crop. Results indicated that efficient replacement of infected plants combined with a high degree of compliance among farms effectively slowed pathogen spread, resulting in replacement of few plants and high yields. In contrast, inefficient replacement of infected plants or limited compliance among farms failed to slow pathogen spread, resulting in replacement of large numbers of plants (on farms practicing replacement) with little yield benefit. Replacement of infected plants always increased yields relative to simulations without plant replacement provided that infected plants produced no useable yield. However, if infected plants produced useable yields, inefficient removal of infected plants resulted in lower yields relative to simulations without plant replacement for perennial crops with long maturation periods

  17. Implementing Perennial Kitchen Garden Model to Improve Diet Diversity in Melghat, India

    PubMed Central

    Birdi, Tannaz J.; Shah, Shimoni U.

    2016-01-01

    Lack of diet diversity causing micronutrient deficiency is common in developing countries and is gaining attention due to the hidden consequences of impaired physical and cognitive development. This paper describes the propagation of a sustainable perennial kitchen garden (KG) model to address household (HH) diet diversity in Melghat. Nutrient dense plants, comprising of minimum one tree (perennial) and one green leafy vegetable (GLV) were given to participating HHs along with qualitative interventions. Baseline survey was conducted in winter 2011 followed by seasonal surveys over 2 years to record changes in KG practices, dietary intake and childcare practices. Marked increase from 4% at baseline to 95% at endline was seen in the KG maintainance. Increased diversity was seen in all food categories other than cereals and pulses. Variety of GLVs consumed increased over the two winters as well as the 2 summers. However, no change in the quantity of GLV consumed was noted which was attributed to the duration of the study period being insufficient for the trees to grow and provide adequate leaves for consumption. Notably, livelihood component was not promoted and HHs were encouraged to harvest and distribute excess seeds to relatives and neighbours. The study generated huge demand from HHs within the intervention and neighbouring villages. It concludes that a well designed perennial KG along with imparting adequate knowledge can be a sustainable practice to increase diet diversity and GLV intake which would help address micronutrient deficiencies in the community. PMID:26573040

  18. Classification of ephemeral, intermittent, and perennial stream reaches using a TOPMODEL-based approach

    USGS Publications Warehouse

    Williamson, Tanja N.; Agouridis, Carmen T.; Barton, Christopher D.; Villines, Jonathan A.; Lant, Jeremiah G.

    2015-01-01

    Whether a waterway is temporary or permanent influences regulatory protection guidelines, however, classification can be subjective due to a combination of factors, including time of year, antecedent moisture conditions, and previous experience of the field investigator. Our objective was to develop a standardized protocol using publically available spatial information to classify ephemeral, intermittent, and perennial streams. Our hypothesis was that field observations of flow along the stream channel could be compared to results from a hydrologic model, providing an objective method of how these stream reaches can be identified. Flow-state sensors were placed at ephemeral, intermittent, and perennial stream reaches from May to December 2011 in the Appalachian coal basin of eastern Kentucky. This observed flow record was then used to calibrate the simulated saturation deficit in each channel reach based on the topographic wetness index used by TOPMODEL. Saturation deficit values were categorized as flow or no-flow days, and the simulated record of streamflow was compared to the observed record. The hydrologic model was more accurate for simulating flow during the spring and fall seasons. However, the model effectively identified stream reaches as intermittent and perennial in each of the two basins.

  19. Evidence of deep circulation in two perennially ice-covered Antarctic lakes

    USGS Publications Warehouse

    Tyler, S.W.; Cook, P.G.; Butt, A.Z.; Thomas, J.M.; Doran, P.T.; Lyons, W.B.

    1998-01-01

    The perennial ice covers found on many of the lakes in the McMurdo Dry Valley region of the Antarctic have been postulated to severely limit mixing and convective turnover of these unique lakes. In this work, we utilize chlorofluorocarbon (CFC) concentration profiles from Lakes Hoare and Fryxell in the McMurdo Dry Valley to determine the extent of deep vertical mixing occurring over the last 50 years. Near the ice-water interface, CFC concentrations in both lakes were well above saturation, in accordance with atmospheric gas supersaturations resulting from freezing under the perennial ice covers. Evidence of mixing throughout the water column at Lake Hoare was confirmed by the presence of CFCs throughout the water column and suggests vertical mixing times of 20-30 years. In Lake Fryxell, CFC-11, CFC-12, and CFC-113 were found in the upper water column; however, degradation of CFC-11 and CFC-12 in the anoxic bottom waters appears to be occurring with CFC-113 only present in these bottom waters. The presence of CFC-113 in the bottom waters, in conjunction with previous work detecting tritium in these waters, strongly argues for the presence of convective mixing in Lake Fryxell. The evidence for deep mixing in these lakes may be an important, yet overlooked, phenomenon in the limnology of perennially ice-covered lakes.

  20. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    PubMed Central

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies. PMID:26791578

  1. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1-2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5-2 years and represented 62-87% of total root biomass, thus dominating annual root turnover (60%-81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  2. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  3. Implementing Perennial Kitchen Garden Model to Improve Diet Diversity in Melghat, India.

    PubMed

    Birdi, Tannaz J; Shah, Shimoni U

    2015-07-30

    Lack of diet diversity causing micronutrient deficiency is common in developing countries and is gaining attention due to the hidden consequences of impaired physical and cognitive development. This paper describes the propagation of a sustainable perennial kitchen garden (KG) model to address household (HH) diet diversity in Melghat. Nutrient dense plants, comprising of minimum one tree (perennial) and one green leafy vegetable (GLV) were given to participating HHs along with qualitative interventions. Baseline survey was conducted in winter 2011 followed by seasonal surveys over 2 years to record changes in KG practices, dietary intake and childcare practices. Marked increase from 4% at baseline to 95% at endline was seen in the KG maintainance. Increased diversity was seen in all food categories other than cereals and pulses. Variety of GLVs consumed increased over the two winters as well as the 2 summers. However, no change in the quantity of GLV consumed was noted which was attributed to the duration of the study period being insufficient for the trees to grow and provide adequate leaves for consumption. Notably, livelihood component was not promoted and HHs were encouraged to harvest and distribute excess seeds to relatives and neighbours. The study generated huge demand from HHs within the intervention and neighbouring villages. It concludes that a well designed perennial KG along with imparting adequate knowledge can be a sustainable practice to increase diet diversity and GLV intake which would help address micronutrient deficiencies in the community.

  4. Can exotic phytoseiids be considered 'benevolent invaders' in perennial cropping systems?

    PubMed

    Palevsky, Eric; Gerson, Uri; Zhang, Zhi-Qiang

    2013-02-01

    Numerous natural enemies were adopted worldwide for the control of major pests, including exotic phytoseiid species (Acari: Mesostigmata: Phytoseiidae) that had been moved from continent to continent in protected and perennial agricultural systems. However, relatively fewer successes were recorded in perennial agricultural systems. In this manuscript we focus on the question: Can and will exotic phytoseiids provide better pest control than indigenous species in perennial agricultural systems? To answer this question, we review the efficacy of biological control efforts with phytoseiids in several case studies, where exotic and indigenous species were used against pests on indigenous host plants and some crops that were historically or recently introduced. Related factors affecting predator establishment, such as intraguild predation and pesticide effects are discussed, as well as the potential negative effects of exotic species releases on biological control and their impact on the indigenous natural fauna. On citrus, apple, grape and cassava exotic phytoseiids have enhanced biological control without negatively affecting indigenous species of natural enemies, except for the case of Euseius stipulatus (Athias-Henriot) on citrus that displaced Euseius hibisci (Chant) in a limited region of coastal California, USA, the latter considered to be an inferior biocontrol agent of Panonychus citri Koch. Phytoseiulus persimilis Athias-Henriot on gorse, an invasive weed, is perhaps the only recorded case of a negative effect of an established exotic phytoseiid on biological control.

  5. Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subterranean rhizome branches facilitate vegetative dispersal, survival, and regrowth of perennial grasses. Developmental differences between upright, prostrate, and subterranean stem branching patterns may involve auxin-mediated responses to gravity or light, but genetic mechanisms controlling the...

  6. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops.

    PubMed

    Abalos, Diego; Brown, Shannon E; Vanderzaag, Andrew C; Gordon, Robert J; Dunfield, Kari E; Wagner-Riddle, Claudia

    2016-03-01

    Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2 O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3-year field experiment with a perennial grass-legume mixture and an annual corn monoculture. Given that N2 O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2 O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2 O emissions increased tenfold for the perennial after ploughing. The percentage of N2 O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2 O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2 O emissions depending on environmental variables. The number of freeze-thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2 O emissions of perennial crops deserve further research attention and must be considered in future land-use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2 O emissions. PMID:26491961

  7. A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.

    2006-01-01

    A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial

  8. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation.

    PubMed

    Uellendahl, H; Wang, G; Møller, H B; Jørgensen, U; Skiadas, I V; Gavala, H N; Ahring, B K

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops. The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy crops competitive to the use of corn and this combination will make the production of biogas from energy crops more sustainable. PMID:19029727

  9. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    SciTech Connect

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  10. Purification and Characterization of Acetyl-Coenzyme A Carboxylase from Diclofop-Resistant and -Susceptible Lolium multiflorum.

    PubMed

    Evenson, K. J.; Gronwald, J. W.; Wyse, D. L.

    1994-06-01

    Acetyl-coenzyme A carboxylase (ACCase) was purified >100-fold (specific activity 3.5 units mg-1) from leaf tissue of diclofopresistant and -susceptible biotypes of Lolium multiflorum. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified fractions from both biotypes contained a single 206-kD biotinylated polypeptide. The molecular mass of the native enzyme from both biotypes was approximately 520 kD. In some cases the native dimer from both biotypes dissociated during gel filtration to form a subunit of approximately 224 kD. The inclusion of 5% (w/v) polyethylene glycol 3350 (PEG) in the elution buffer prevented this dissociation. Steady-state substrate kinetics were analyzed in both the presence and absence of 5% PEG. For ACCase from both biotypes, addition of PEG increased the velocity 22% and decreased the apparent Km values for acetyl-coenzyme A (acetyl-CoA), but increased the Km values for bicarbonate and ATP. In the presence of PEG, the Km values for bicarbonate and ATP were approximately 35% higher for the enzyme from the susceptible biotype compared with the resistant enzyme. In the absence of PEG, no differences in apparent Km values were observed for the enzymes from the two biotypes. Inhibition constants (Ki app) were determined for CoA, malonyl-CoA, and diclofop. CoA was an S-hyperbolic (slope replots)-I-hyperbolic (intercept replots) noncompetitive inhibitor with respect to acetyl-CoA, with Ki app values of 711 and 795 [mu]M for enzymes from the resistant and susceptible biotypes, respectively. Malonyl-CoA competitively inhibited both enzymes (versus acetyl-CoA) with Ki app values of 140 and 104 [mu]M for ACCase from resistant and susceptible biotypes, respectively. Diclofop was a linear noncompetitive inhibitor of ACCase from the susceptible biotype and a nonlinear, or S-hyperbolic-I-hyperbolic, noncompetitive inhibitor of ACCase from the resistant biotype. For ACCase from the susceptible biotype the slope (Kis) and

  11. Comparing Soil Organic Carbon Dynamics in Perennial Grasses and Shrubs in a Saline-Alkaline Arid Region, Northwestern China

    PubMed Central

    Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Background Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. Methodology/Principal Findings A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr−1 for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m−2) than in the shrubs (1.12 Kg C m−2) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Conclusions/Significance Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition. PMID:22900067

  12. Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye.

    PubMed

    Yun, Lan; Larson, Steve R; Mott, Ivan W; Jensen, Kevin B; Staub, Jack E

    2014-06-01

    Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens). PMID:24509730

  13. Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye.

    PubMed

    Yun, Lan; Larson, Steve R; Mott, Ivan W; Jensen, Kevin B; Staub, Jack E

    2014-06-01

    Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens).

  14. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene

    PubMed Central

    Nester, Peter L.; Gayó, Eugenia; Latorre, Claudio; Jordan, Teresa E.; Blanco, Nicolás

    2007-01-01

    A large fraction of the vital groundwater in the Atacama Desert of northern Chile is likely composed of “fossil” or “ancient” reserves that receive little or no recharge in today's hyperarid climate. Here, we present evidence for latest Pleistocene perennial streamflow in canyons from the hyperarid core of the Atacama Desert in northern Chile. Fluvial terraces in the Pampa del Tamarugal (PdT) basin (21°S) contain widespread fossil wood, in situ roots, and well preserved leaf litter deposits indicative of perennial surface flow currently absent in these channels. Nineteen radiocarbon dates on these deposits from four separate drainages within this endorheic basin indicate ages from 16,380 to 13,740 cal yr BP, synchronous with paleolake Tauca on the Bolivian Altiplano and other regional evidence for wetter conditions during the latest Pleistocene. Groundwater-fed riparian ecosystems and associated fluvial deposits abound today in the absence of direct rainfall in northern Atacama canyons with perennial discharge. Our relict riparian ecosystems from the PdT basin are indicative of conditions similar to these northern canyons. Given that discharge was higher than present during this time, we propose that these deposits represent the most important groundwater recharge events of the last 18,000 years. A lesser recharge event occurred during the Holocene, when phreatophytic trees also grew in these drainages between 1,070 and 700 cal yr BP, during the Medieval Climatic Anomaly. Taken together, our evidence lends further support for gradient changes in the equatorial Pacific as a major driver of hydrologic change in the Atacama on both centennial and millennial time scales. PMID:18056645

  15. Key Plant Structural and Allocation Traits Depend on Relative Age in the Perennial Herb Pimpinella saxifraga

    PubMed Central

    NIINEMETS, ÜLO

    2005-01-01

    • Background and Aims Perennial plant formations always include a mixture of various-aged individuals of community-creating species, but the physiological and competitive potentials of plants of differing age and the importance on whole community functioning are still not entirely known. The current study tested the hypothesis that ontogenetically old plants have limited biomass investments in leaves and enhanced foliage support costs. • Methods Leaf structure, size and biomass allocation were studied in the perennial herb Pimpinella saxifraga during plant ontogeny from seedling to senile phases to determine age-dependent controls on key plant structural traits. The average duration of the full ontogenetic cycle is approx. 5–10 years in this species. Plants were sampled from shaded and open habitats. • Key Results Leaflet dry mass per unit area (MA) increased, and the fraction of plant biomass in leaflets (FL) decreased with increasing age, leading to a 5- to 11-fold decrease in leaf area ratio (LAR = FL/MA) between seedlings and senescent plants. In contrast, the fraction of below-ground biomass increased with increasing age. Leaflet size and number per leaf increased with increasing age. This was not associated with enhanced support cost in older plants as age-dependent changes in leaf shape and increased foliage packing along the rachis compensated for an overall increase in leaf size. Age-dependent trends were the same in habitats with various irradiance, but the LAR of plants of varying age was approx. 1·5-fold larger in the shade due to lower MA and larger FL. • Conclusions As plant light interception per unit total plant mass scales with LAR, these data demonstrate major age-dependent differences in plant light-harvesting efficiency that are further modified by site light availability. These ontogenetic changes reduce the differences among co-existing species in perennial communities, and therefore need consideration in our understanding of how

  16. Preliminary Mineralogical and Geological Characterization of the Lost Hammer Perennial Spring, Axel Heiberg Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Battler, M.; Osinski, G. R.; Banerjee, N.; Izawa, M.

    2009-05-01

    Understanding past potential hydrological processes is fundamental in the search for past life on Mars. Despite the lack of liquid water on the Martian surface today, there is evidence of past upwelling and evaporation of groundwater [e.g., 1]. Cold, saline, perennial spring systems, in which water would have been able to flow to the Martian surface year round, may be of particular interest. Analogous systems on Earth are pertinent to better understand how they might have functioned, and possibly preserved biosignatures, on Mars. Several sets of cold saline springs have been documented in the region surrounding the McGill Arctic Research Station on Axel Heiberg Island, NU; these represent the highest latitude perennial springs on Earth, flow through 600 m of permafrost, and are not associated with any volcanic heat sources. Primitive life thrives in these springs year round [2]. Here, first results of mineralogical analyses and geological field observations are presented for the Lost Hammer spring site. Spring deposits cover an area approximately 150 m x 30 m. The main vent is roughly 2.5 m tall and 3 m in diameter, and is covered in a layer several mm thick of a very fine, white, powdery mineral, overlying several cm of fine grey material. Preliminary XRD analysis has revealed the mineralogy of the white material to be thenardite (a dehydrated Na-sulphate; original mirabitite suspected) and halite, with trace amounts of quartz. The grey material is interpreted to be predominantly thenardite, mirabitite, and halite, with traces of other minerals. Hard white crusts on dried channel beds are thenardite and halite, and thicker crusts on pebbles are composed of halite and gypsum. Refs: [1] Allen, C.C, and Oehler, D.Z. 2008, A Case for Ancient Springs in Arabia Terra, Mars: Astrobiology, 8: 1093-1112. [2] Perreault, N.N. et al. 2007, Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic: Appl. Environ. Microbiol., 73

  17. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  18. A comparison of canopy evapotranspiration between perennial rhizomatous grasses and Zea mays

    NASA Astrophysics Data System (ADS)

    Hickman, G.; Bernacchi, C.; Dohleman, F.

    2008-12-01

    Perennial rhizomatous C4 grasses are currently considered one of the most promising vegetation types to accommodate a cellulosic feedstock based liquid fuel economy. The current focus on using these vegetation types as a source of renewable fuel has sparked numerous concerns associated with environmental impacts. Of particular interest is the impact that altering the composition of vegetation at the landscape scale would have on local and regional hydrological cycles. We hypothesize that evapotranspiration, ET, will be higher for perennial grasses relative to maize as a result higher leaf area, higher above-ground biomass and prolonged growing seasons. To test this hypothesis, a technique in which ET is estimated as the residual in the energy balance equation from measurements of net radiation and sensible and latent heat fluxes was employed. Measurements were made during the 2007 growing season for three replicate plots of the perennial rhizomatous grasses Miscanthus giganteus and Panicum virgatum, as well as for Zea mays planted at the University of Illinois South Farms. When averaged across the entire growing season, ET for M. giganteus was double relative to Z. mays, and 130% of P. virgatum ET. When compared over the periods in which all three species experienced mature and closed canopies (from day of year 200 to 250), M. giganteus still showed higher rates of ET compared with Z. mays, however, the increase was only ~15%. We conclude that ET associated with perennial alternative energy crops are higher relative to annual row crop; with most ET disparity, particularly for P. virgatum, being driven by phenology, quicker canopy closure and a prolonged growing season. Physiological rates of ET were highest for M. giganteus, followed by Z. mays, followed P. virgatum. Differences in phenology were more important than those of physiology for ET overshadowing effects from increased biomass associated with M. giganteus and/or a physiological difference between these

  19. Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content.

    PubMed

    de Koff, J P; Lee, B D; Dungan, R S; Santini, J B

    2010-01-01

    To prevent the 7 to 11 million metric tons of waste foundry sand (WFS) produced annually in the USA from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by planting perennial ryegrass (Lolium perenne L.) and tall fescue (Schedonorus phoenix (Scop.) Holub) in different blends containing WFS. Blends of WFS were created with compost or acid-washed sand (AWS) at varying percent by volume with WFS or by amendment with gypsum (9.6 g gypsum kg(-1) WFS). Measurements of soil strength, shoot and root dry weight, plant surface coverage, and micronutrients (Al, Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca, Mg) were performed for each blend and compared with pure WFS and with a commercial potting media control. Results showed that strength was not a factor for any of the parameters studied, but the K/Na base saturation ratio of WFS:compost mixes was highly correlated with total shoot dry weight for perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). This was further substantiated because total shoot dry weight was also correlated with shoot K/Na concentration of perennial ryegrass (r = 0.99) and tall fescue (r = 0.95). A compost blend containing 40% WFS was determined to be the optimal amendment for the reuse of WFS because it incorporated the greatest possible amount of WFS without major reduction in turfgrass growth. PMID:20048325

  20. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species.

    PubMed

    Baldacci-Cresp, Fabien; Sacré, Pierre-Yves; Twyffels, Laure; Mol, Adeline; Vermeersch, Marjorie; Ziemons, Eric; Hubert, Philippe; Pérez-Morga, David; El Jaziri, Mondher; de Almeida Engler, Janice; Baucher, Marie

    2016-07-01

    Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions. PMID:27135257

  1. Modelling the perennial energy crop market: the role of spatial diffusion

    PubMed Central

    Alexander, Peter; Moran, Dominic; Rounsevell, Mark D. A.; Smith, Pete

    2013-01-01

    Biomass produced from energy crops, such as Miscanthus and short rotation coppice is expected to contribute to renewable energy targets, but the slower than anticipated development of the UK market implies the need for greater understanding of the factors that govern adoption. Here, we apply an agent-based model of the UK perennial energy crop market, including the contingent interaction of supply and demand, to understand the spatial and temporal dynamics of energy crop adoption. Results indicate that perennial energy crop supply will be between six and nine times lower than previously published, because of time lags in adoption arising from a spatial diffusion process. The model simulates time lags of at least 20 years, which is supported empirically by the analogue of oilseed rape adoption in the UK from the 1970s. This implies the need to account for time lags arising from spatial diffusion in evaluating land-use change, climate change (mitigation or adaptation) or the adoption of novel technologies. PMID:24026474

  2. Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional drought.

    PubMed

    Baer, Alex; Wheeler, James K; Pittermann, Jarmila

    2016-04-01

    The understory of the redwood forests of California's coast harbors perennial ferns, including Polystichum munitum and Dryopteris arguta. Unusual for ferns, these species are adapted to the characteristic Mediterranean-type dry season, but the mechanisms of tolerance have not been studied. The water relations of P. munitum and D. arguta were surveyed for over a year, including measures of water potential (Ψ), stomatal conductance (gs) and frond stipe hydraulic conductivity (K). A dehydration and re-watering experiment on potted P. munitum plants corroborated the field data. The seasonal Ψ varied from 0 to below -3 MPa in both species, with gs and K generally tracking Ψ; the loss of K rarely exceeded 80%. Quantile regression analysis showed that, at the 0.1 quantile, 50% of K was lost at -2.58 and -3.84 MPa in P. munitum and D. arguta, respectively. The hydraulic recovery of re-watered plants was attributed to capillarity. The seasonal water relations of P. munitum and D. arguta are variable, but consistent with laboratory-based estimates of drought tolerance. Hydraulic and Ψ recovery following rain allows perennial ferns to survive severe drought, but prolonged water deficit, coupled with insect damage, may hamper frond survival. The legacy effects of drought on reproductive capacity and community dynamics are unknown.

  3. Does a decade of elevated [CO2] affect a desert perennial plant community?

    PubMed

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. PMID:24117700

  4. Perennial crop growth in oil-contaminated soil in a boreal climate.

    PubMed

    Yan, Lijuan; Penttinen, Petri; Simojoki, Asko; Stoddard, Frederick L; Lindström, Kristina

    2015-11-01

    Soil contamination by petroleum hydrocarbons is a global problem. Phytoremediation by plants and their associated microorganisms is a cost-effective strategy to degrade soil contaminants. In boreal regions the cool climate limits the efficiency of phytoremediation. The planting of oil-tolerant perennial crops, especially legumes, in oil-contaminated soil holds promise for great economic benefits for bioenergy and bio-fertilizer production while accelerating the oil degradation process. We established a multi-year field experiment to study the ecological and agronomic feasibility of phytoremediation by a legume (fodder galega) and a grass (smooth brome) in a boreal climate. In 40 months, soil oil content decreased by 73%-92%, depending on the crop type. The oil degradation followed first-order kinetics with the reduction rates decreasing as follows: bare fallow > galega-brome grass mixture > brome grass > galega. Surprisingly, the presence of oil enhanced crop dry matter and nitrogen yield, particularly in the fourth year. The unfertilized galega-brome grass mixture out-yielded the N-fertilized pure grass swards over years by an average of 33%. Thus, a perennial legume-grass mixture is both ecologically and agronomically sustainable as a cropping system to alleviate soil contamination in the boreal zone, with considerable potential for bioenergy and bio-fertilizer production.

  5. Role of antioxidants on the clinical outcome of patients with perennial allergic rhinitis

    PubMed Central

    Gupta, Manish; Chauhan, Komal

    2016-01-01

    Background: Antioxidants have a preventive or therapeutic role in oxygen free radical–mediated cell and tissue damage. The study aimed to investigate the therapeutic effects of antioxidants and intranasal steroid fluticasone furoate (FF) on the clinical outcome of patients with perennial allergic rhinitis. Methods: Subjects with perennial allergic rhinitis (n = 61) were randomly divided into two groups, group A (n = 30) received FF and group B (n = 31) received FF with antioxidants for 6 weeks. Nasal and ocular symptoms were evaluated weekly by using a four-point categoric scale. The efficacy of the study drug was assessed based on the mean change from baseline of the total daytime nasal symptom scores, total nighttime nasal symptom scores, and the composite symptom scores. Results: The combined therapy (FF with antioxidants) resulted in marked improvements (p ≤ 0.05) in the mean total daytime nasal symptom scores, total nighttime nasal symptom scores, and composite symptom scores of subjects compared with ones treated with intranasal steroid (FF) alone, which highlighted the therapeutic effect of antioxidants in allergic rhinitis. Conclusion: Significant improvement in clinical outcome was observed in subjects who received antioxidants along with FF. However, because this was an open-label study, the results must be interpreted with caution, and further double-blind, placebo-controlled, dose-ranging trials supplemented with different antioxidants together with intranasal steroids are suggested. PMID:27658183

  6. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses

    PubMed Central

    Hlavsová, Adéla; Raclavská, Helena; Juchelková, Dagmar; Škrobánková, Hana; Frydrych, Jan

    2014-01-01

    A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial) grasses (NHG) and hybrid (perennial) grasses (HG). Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i) H2 yield and lignin content, (ii) H2 yield and potassium content, and (iii) CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs) of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg), hybrid Becva (FB, 16.45 MJ/kg), and tall fescue (TF, 17.43 MJ/kg). The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3. PMID:25101320

  7. Syngas production from pyrolysis of nine composts obtained from nonhybrid and hybrid perennial grasses.

    PubMed

    Hlavsová, Adéla; Corsaro, Agnieszka; Raclavská, Helena; Juchelková, Dagmar; Škrobánková, Hana; Frydrych, Jan

    2014-01-01

    A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial) grasses (NHG) and hybrid (perennial) grasses (HG). Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i) H2 yield and lignin content, (ii) H2 yield and potassium content, and (iii) CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs) of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg), hybrid Becva (FB, 16.45 MJ/kg), and tall fescue (TF, 17.43 MJ/kg). The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3.

  8. Yearlong, Daily Assessments of Bio-Optical Distributions under Perennial Ice Cover in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Laney, S. R.; Toole, J. M.; Krishfield, R. A.

    2013-12-01

    Over the past three years eight Ice-Tethered Profilers have been outfitted with a new bio-optical sensor suite and have been deployed under perennial ice cover in the Arctic Ocean. This sensor suite enables the measurement of chlorophyll (a proxy for algal biomass), colored dissolved organic matter concentration, and particular backscatter intensities throughout the entire upper 750 m of the under-ice water column. An irradiance sensor additionally provides concurrent measurements of the light field underneath ice cover during times of the year that receive insolation. Two of these profilers have operated for a full year, returning multiple daily profiles of these basic biogeochemical optical properties with sub-meter vertical resolution. These observations provide unprecedented insight into the basic optical seasonality of the pelagic ocean environment under perennial ice cover, including the timing of important biogeochemical events in the Arctic such as periods of high under-ice productivity and the subsequent export of organic matter to the deep ocean.

  9. PypeTree: a tool for reconstructing tree perennial tissues from point clouds.

    PubMed

    Delagrange, Sylvain; Jauvin, Christian; Rochon, Pascal

    2014-01-01

    The reconstruction of trees from point clouds that were acquired with terrestrial LiDAR scanning (TLS) may become a significant breakthrough in the study and modelling of tree development. Here, we develop an efficient method and a tool based on extensive modifications to the skeletal extraction method that was first introduced by Verroust and Lazarus in 2000. PypeTree, a user-friendly and open-source visual modelling environment, incorporates a number of improvements into the original skeletal extraction technique, making it better adapted to tackle the challenge of tree perennial tissue reconstruction. Within PypeTree, we also introduce the idea of using semi-supervised adjustment tools to address methodological challenges that are associated with imperfect point cloud datasets and which further improve reconstruction accuracy. The performance of these automatic and semi-supervised approaches was tested with the help of synthetic models and subsequently validated on real trees. Accuracy of automatic reconstruction greatly varied in terms of axis detection because small (length < 3.5 cm) branches were difficult to detect. However, as small branches account for little in terms of total skeleton length, mean reconstruction error for cumulated skeleton length only reached 5.1% and 1.8% with automatic or semi-supervised reconstruction, respectively. In some cases, using the supervised tools, a perfect reconstruction of the perennial tissue could be achieved.

  10. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    PubMed Central

    Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.

    2014-01-01

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  11. Biomass, decomposition and nutrient cycling in a SW Atlantic Sarcocornia perennis marsh

    NASA Astrophysics Data System (ADS)

    Negrin, Vanesa L.; Pratolongo, Paula D.; de Villalobos, Ana E.; Botté, Sandra E.; Marcovecchio, Jorge E.

    2015-03-01

    Biomass dynamics, decomposition and nutrient cycling were studied in a Sarcocornia perennis salt marsh in the Bahia Blanca estuary (Argentina) to achieve a better understanding of these processes and provide information about a species and a region underrepresented in the literature. Above and belowground biomass stocks and carbon (C), nitrogen (N) and phosphorus (P) concentration in plant tissues were monitored every 2 months during a year. The decomposition rate and the concentration of C, N and P during the process were also estimated in above and belowground tissues. Biomass values were low (mean of 363 ± 43 and 242 ± 27 g m- 2 for aboveground and belowground tissues, respectively), presumably associated with the high salinity of this estuary. The general trend of higher values for aboveground biomass is in agreement with other reports for this species and has an effect on nutrients pools, which are higher for aboveground tissues for C and N. Above and belowground decomposition rates were high (64 and 70% after a year, respectively), meaning this process plays a significant role in the cycling of organic matter. C/N and C/P ratios changed during decomposition, but final ratios were usually higher, suggesting a net release of nutrients. Our results indicate that significant amounts of C, N and P are recycled by S. perennis, highlighting the role of this species and suggesting important consequences of its lost in the study area.

  12. Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional drought.

    PubMed

    Baer, Alex; Wheeler, James K; Pittermann, Jarmila

    2016-04-01

    The understory of the redwood forests of California's coast harbors perennial ferns, including Polystichum munitum and Dryopteris arguta. Unusual for ferns, these species are adapted to the characteristic Mediterranean-type dry season, but the mechanisms of tolerance have not been studied. The water relations of P. munitum and D. arguta were surveyed for over a year, including measures of water potential (Ψ), stomatal conductance (gs) and frond stipe hydraulic conductivity (K). A dehydration and re-watering experiment on potted P. munitum plants corroborated the field data. The seasonal Ψ varied from 0 to below -3 MPa in both species, with gs and K generally tracking Ψ; the loss of K rarely exceeded 80%. Quantile regression analysis showed that, at the 0.1 quantile, 50% of K was lost at -2.58 and -3.84 MPa in P. munitum and D. arguta, respectively. The hydraulic recovery of re-watered plants was attributed to capillarity. The seasonal water relations of P. munitum and D. arguta are variable, but consistent with laboratory-based estimates of drought tolerance. Hydraulic and Ψ recovery following rain allows perennial ferns to survive severe drought, but prolonged water deficit, coupled with insect damage, may hamper frond survival. The legacy effects of drought on reproductive capacity and community dynamics are unknown. PMID:26660879

  13. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species.

    PubMed

    Baldacci-Cresp, Fabien; Sacré, Pierre-Yves; Twyffels, Laure; Mol, Adeline; Vermeersch, Marjorie; Ziemons, Eric; Hubert, Philippe; Pérez-Morga, David; El Jaziri, Mondher; de Almeida Engler, Janice; Baucher, Marie

    2016-07-01

    Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.

  14. Seasonal changes in oleosomic lipids and fatty acids of perennial root nodules of beach pea.

    PubMed

    Chinnasamy, Gurusamy; Davis, Philip James; Bal, Arya Kumar

    2003-04-01

    Seasonal changes in the fatty acid composition of phospholipids (PL), monoglycerides (MG), diglycerides (DG), free fatty acids (FA) and triglycerides (TG) separated from oleosomes (lipid bodies) of perennial root nodules of beach pea (Lathyrus maritimus) were analysed. Thin layer chromatography (TLC) revealed that PL and MG are the major lipids in nodule oleosomes. The fatty acid profile and overall double bond index (DBI) varied among lipid classes depending upon the season. High DBI in PL and MG found during late winter and early spring indicated that they may play a major role in winter survival and regeneration of perennial nodules. The DBI of DG was high at the end of the fall season and the DBI of FA and TG was high in summer months. The dominant fatty acids are C16:0 followed by C18:0 and C18:1. The levels of many unsaturated fatty acids such as C18:1, C18:2 and C18:3 increased while saturated fatty acid C18:0 decreased during winter. These unsaturated fatty acids possibly play an important role in the protection of nodule cells from cold stress. Nodules seem to retain some fatty acids and selectively utilize specific fatty acids to survive the winter and regenerate in spring. PMID:12756915

  15. Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California

    SciTech Connect

    Unruh, J.R.; Davisson, M.L.; Criss, R.E.; Moores, E.M. )

    1992-05-01

    Perennial saline springs in the Rumsey Hills area, southwestern Sacramento Valley, California, locally discharge at high elevations and near ridgetops. The springs are cold, are commonly associated with natural gas seeps, and typically emerge along west-vergent thrust faults. Stable isotope analyses indicate that the spring waters are similar to oil-field formation fluids and they have had a significant residence time in the subsurface at moderate temperatures. The nonmeteoric character of the springs demonstrates that they are not being fed by perched water tables. The authors propose that these subsurface formation waters are being forced to the surface by anomalously high porefluid pressures. The Rumsey Hills area is one of Quaternary uplift, thrusting, and crustal shortening, and prospect wells drilled there have encountered anomalously high fluid pressures at shallow depths. They attribute these high fluid pressures to active tectonic compression and shortening of Cretaceous marine sedimentary rocks. The widespread occurrence of anomalously high pore-fluid pressures and perennial saline springs in the Coast Ranges and western Great Valley suggests that much of western California may be characterized as a seismically active, overpressured thrust belt. The emergence of formation waters along thrust faults further suggests that patterns of subsurface fluid flow in western California may be similar to those in overpressured accretionary prisms, and that excess fluid pressures may also play a role in the distribution of seismicity.

  16. Role of antioxidants on the clinical outcome of patients with perennial allergic rhinitis

    PubMed Central

    Gupta, Manish; Chauhan, Komal

    2016-01-01

    Background: Antioxidants have a preventive or therapeutic role in oxygen free radical–mediated cell and tissue damage. The study aimed to investigate the therapeutic effects of antioxidants and intranasal steroid fluticasone furoate (FF) on the clinical outcome of patients with perennial allergic rhinitis. Methods: Subjects with perennial allergic rhinitis (n = 61) were randomly divided into two groups, group A (n = 30) received FF and group B (n = 31) received FF with antioxidants for 6 weeks. Nasal and ocular symptoms were evaluated weekly by using a four-point categoric scale. The efficacy of the study drug was assessed based on the mean change from baseline of the total daytime nasal symptom scores, total nighttime nasal symptom scores, and the composite symptom scores. Results: The combined therapy (FF with antioxidants) resulted in marked improvements (p ≤ 0.05) in the mean total daytime nasal symptom scores, total nighttime nasal symptom scores, and composite symptom scores of subjects compared with ones treated with intranasal steroid (FF) alone, which highlighted the therapeutic effect of antioxidants in allergic rhinitis. Conclusion: Significant improvement in clinical outcome was observed in subjects who received antioxidants along with FF. However, because this was an open-label study, the results must be interpreted with caution, and further double-blind, placebo-controlled, dose-ranging trials supplemented with different antioxidants together with intranasal steroids are suggested.

  17. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.

    PubMed

    Werling, Ben P; Dickson, Timothy L; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L; Liere, Heidi; Malmstrom, Carolyn M; Meehan, Timothy D; Ruan, Leilei; Robertson, Bruce A; Robertson, G Philip; Schmidt, Thomas M; Schrotenboer, Abbie C; Teal, Tracy K; Wilson, Julianna K; Landis, Douglas A

    2014-01-28

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.

  18. Modelling the perennial energy crop market: the role of spatial diffusion.

    PubMed

    Alexander, Peter; Moran, Dominic; Rounsevell, Mark D A; Smith, Pete

    2013-11-01

    Biomass produced from energy crops, such as Miscanthus and short rotation coppice is expected to contribute to renewable energy targets, but the slower than anticipated development of the UK market implies the need for greater understanding of the factors that govern adoption. Here, we apply an agent-based model of the UK perennial energy crop market, including the contingent interaction of supply and demand, to understand the spatial and temporal dynamics of energy crop adoption. Results indicate that perennial energy crop supply will be between six and nine times lower than previously published, because of time lags in adoption arising from a spatial diffusion process. The model simulates time lags of at least 20 years, which is supported empirically by the analogue of oilseed rape adoption in the UK from the 1970s. This implies the need to account for time lags arising from spatial diffusion in evaluating land-use change, climate change (mitigation or adaptation) or the adoption of novel technologies.

  19. Establishment of the invasive perennial herb Bunias orientalis L.: An experimental approach

    NASA Astrophysics Data System (ADS)

    Dietz, Hansjörg; Steinlein, Thomas; Ullmann, Isolde

    1999-11-01

    A 2-year field experiment was performed to assess regeneration, establishment and growth of the invasive polycarpic perennial Brassicaceae Bunias orientalis L. from transplanted juveniles and propagules (seeds, fruits and root fragments). Further treatments were: different planting depths of the propagules, different root fragment sizes and a varied competition intensity by the matrix vegetation. In contrast to a high number of individuals established from planted juveniles (ca. 90 %), only relatively few propagules gave rise to seedlings or regenerating plants (0-16 %). However, upon emergence, all plants showed low mortality. Although the number of regenerated or recruited plants was affected by all treatments, only one treatment level (the use of very small root fragments of 1 cm length) completely failed in establishing plants. Plants experiencing low competition intensity attained high aboveground performance and reproductive output as well as reproductive success within two growth periods. Under high competition intensity recruitment, regeneration and growth were strongly negatively affected. The high morphological plasticity of rosette growth of B. orientalis seems to be advantageous for persistence in such situations. The results show that young B. orientalis plants are robust and can efficiently sequester and translate elevated resources into rapid growth and early reproductive output although the species is a rather long-lived iteroparous perennial. In addition, population foundation or regeneration can be based on both seeds and root fragments, even when buried under a thick soil layer. This seems to be a very efficient adaption to habitats which are subject to anthropogenic soil perturbations.

  20. PypeTree: a tool for reconstructing tree perennial tissues from point clouds.

    PubMed

    Delagrange, Sylvain; Jauvin, Christian; Rochon, Pascal

    2014-01-01

    The reconstruction of trees from point clouds that were acquired with terrestrial LiDAR scanning (TLS) may become a significant breakthrough in the study and modelling of tree development. Here, we develop an efficient method and a tool based on extensive modifications to the skeletal extraction method that was first introduced by Verroust and Lazarus in 2000. PypeTree, a user-friendly and open-source visual modelling environment, incorporates a number of improvements into the original skeletal extraction technique, making it better adapted to tackle the challenge of tree perennial tissue reconstruction. Within PypeTree, we also introduce the idea of using semi-supervised adjustment tools to address methodological challenges that are associated with imperfect point cloud datasets and which further improve reconstruction accuracy. The performance of these automatic and semi-supervised approaches was tested with the help of synthetic models and subsequently validated on real trees. Accuracy of automatic reconstruction greatly varied in terms of axis detection because small (length < 3.5 cm) branches were difficult to detect. However, as small branches account for little in terms of total skeleton length, mean reconstruction error for cumulated skeleton length only reached 5.1% and 1.8% with automatic or semi-supervised reconstruction, respectively. In some cases, using the supervised tools, a perfect reconstruction of the perennial tissue could be achieved. PMID:24599190

  1. Complete Plastome Sequences from Glycine syndetika and Six Additional Perennial Wild Relatives of Soybean

    PubMed Central

    Sherman-Broyles, Sue; Bombarely, Aureliano; Grimwood, Jane; Schmutz, Jeremy; Doyle, Jeff

    2014-01-01

    Organelle sequences have a long history of utility in phylogenetic analyses. Chloroplast sequences when combined with nuclear data can help resolve relationships among flowering plant genera, and within genera incongruence can point to reticulate evolution. Plastome sequences are becoming plentiful because they are increasingly easier to obtain. Complete plastome sequences allow us to detect rare rearrangements and test the tempo of sequence evolution. Chloroplast sequences are generally considered a nuisance to be kept to a minimum in bacterial artificial chromosome libraries. Here, we sequenced two bacterial artificial chromosomes per species to generate complete plastome sequences from seven species. The plastome sequences from Glycine syndetika and six other perennial Glycine species are similar in arrangement and gene content to the previously published soybean plastome. Repetitive sequences were detected in high frequencies as in soybean, but further analysis showed that repeat sequence numbers are inflated. Previous chloroplast-based phylogenetic trees for perennial Glycine were incongruent with nuclear gene–based phylogenetic trees. We tested whether the hypothesis of introgression was supported by the complete plastomes. Alignment of complete plastome sequences and Bayesian analysis allowed us to date putative hybridization events supporting the hypothesis of introgression and chloroplast “capture.” PMID:25155272

  2. Water-quality effects of incorporating poultry litter into perennial grassland soils.

    PubMed

    Pote, D H; Kingery, W L; Aiken, G E; Han, F X; Moore, P A; Buddington, K

    2003-01-01

    Poultry litter provides a rich source of nutrients for perennial forages, but the usual practice of surface-applying litter to pastures can degrade water quality by allowing nutrients to be transported from fields in surface runoff, while much of the NH4-N volatilizes. Incorporating litter into the soil can minimize such problems in tilled systems, but has not been used for perennial forage systems. In this study, we minimized disturbance of the crop, thatch, and soil structure by using a knifing technique to move litter into the root zone. Our objective was to determine effects of poultry litter incorporation on quantity and quality of runoff water. Field plots were constructed on a silt loam soil with well-established bermudagrass [Cynodon dactylon (L.) Pers.] and mixed grass forage. Each plot had 8 to 10% slopes, borders to isolate runoff, and a downslope trough with sampling pit. Poultry litter was applied (5.6 Mg ha(-1)) by one of three methods: surface-applied, incorporated, or surface-applied on soil-aeration cuts. There were six treatment replications and three controls (no litter). Nutrient concentrations and mass losses in runoff from incorporated litter were significantly lower (generally 80-95% less) than in runoff from surface-applied litter. By the second year of treatment, litter-incorporated soils had greater rain infiltration rates, water-holding capacities, and sediment retention than soils receiving surface-applied litter. Litter incorporation also showed a strong tendency to increase forage yield. PMID:14674565

  3. PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds

    PubMed Central

    Delagrange, Sylvain; Jauvin, Christian; Rochon, Pascal

    2014-01-01

    The reconstruction of trees from point clouds that were acquired with terrestrial LiDAR scanning (TLS) may become a significant breakthrough in the study and modelling of tree development. Here, we develop an efficient method and a tool based on extensive modifications to the skeletal extraction method that was first introduced by Verroust and Lazarus in 2000. PypeTree, a user-friendly and open-source visual modelling environment, incorporates a number of improvements into the original skeletal extraction technique, making it better adapted to tackle the challenge of tree perennial tissue reconstruction. Within PypeTree, we also introduce the idea of using semi-supervised adjustment tools to address methodological challenges that are associated with imperfect point cloud datasets and which further improve reconstruction accuracy. The performance of these automatic and semi-supervised approaches was tested with the help of synthetic models and subsequently validated on real trees. Accuracy of automatic reconstruction greatly varied in terms of axis detection because small (length < 3.5 cm) branches were difficult to detect. However, as small branches account for little in terms of total skeleton length, mean reconstruction error for cumulated skeleton length only reached 5.1% and 1.8% with automatic or semi-supervised reconstruction, respectively. In some cases, using the supervised tools, a perfect reconstruction of the perennial tissue could be achieved. PMID:24599190

  4. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed

    SciTech Connect

    Chen, W.P.; Anderson, A.W.

    1980-03-01

    The hemicellulose fraction of ryegrass straw was extracted with NaOH and used for the production of glucose isomerase by Streptomyces flavogriseus. The level of hemicellulose extracted increased proportionately with increasing NaOH concentration up to about 4%, then the rate of increase slowed down. Hemicellulose extraction was facilitated by the combined application of heat and NaOH. Approximately 15% hemicellulose (12% as pentosan) could be obtained by treating straw with 4% NaOH for either 3 hours at 90/sup 0/C or 24 hour at room temperature. The highest level (3.04 units/ml culture) of intracellular glucose isomerase was obtained when the organism was grown at 30 degrees Centigrade for two days on 2% straw hemicellulose. The organism also produced a high yield of glucose isomerase on xylose or xylan. The NaOH treated straw residue, after removal of hemicellulose, had approximately 75% higher digestibility and 20% higher feed efficiency for weanling meadow voles than untreated straw, but almost the equivalent to that obtained by NaOH treatment without removal of the hemicellulose. Thus, the residue could be used as animal feed. A process for the production of glucose isomerase and animal feed from ryegrass straw was also proposed.

  5. Elimination of ergovaline from a grass–Neotyphodium endophyte symbiosis by genetic modification of the endophyte

    PubMed Central

    Panaccione, Daniel G.; Johnson, Richard D.; Wang, Jinghong; Young, Carolyn A.; Damrongkool, Prapassorn; Scott, Barry; Schardl, Christopher L.

    2001-01-01

    The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133–141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass–endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock. PMID:11592979

  6. Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene

    SciTech Connect

    Siciliano, S.D.; Greer, C.W.

    2000-02-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of concern at abandoned manufacturing and military sites because of its mobility and toxicity. Phytoremediation may play a role in natural attenuation scenarios by reducing TNT levels at point sources. The purpose of this study was to develop a phytoremediation system suitable for use in soils contaminated with high TNT levels. Sixteen grasses were screened for their tolerance to 41 g TNT kg{sup 1} soil. Meadow bromegrass (Bromus erectus Huds.), perennial ryegrass (Lolium perenne L.) and sweet vernalgrass (Anthoxanthum odoratum L.) grew in this soil. Inoculating these grasses with Pseudomonas sp. Strain 14, capable of transforming TNT into mono- and di-amino metabolites, increased the growth of meadow bromegrass but was lethal to perennial ryegrass and sweet vernalgrass. Meadow bromegrass inoculated with strain 14 reduced TNT levels by 30% compared with the control soil and had 50% more plant biomass than noninoculated plants. Meadow bromegrass, combined with strain 14, increased the percentage of the culturable soil heterotrophic population containing the genes involved in 2-nitrotoluene (ntdAa) metabolism 3-fold, as well as the population containing the genes involved in 4-nitrotoluene (ntnM) metabolism 14-fold. strain 14 inoculation of meadow bromegrass altered the portion of the rhizosphere community involved in nitroaromatic metabolism and led to a reduction in soil TNT levels.

  7. Effects of Temperature on Rate of Feeding of the Plant Parasitic Nematodes Rotylenchus robustus, Xiphinema diversicaudatum, and Hemicycliophora conida.

    PubMed

    Boag, B

    1980-07-01

    Rotylenchus robustus, Xiphinema diversicaudatum, and Hemicycgiophora conida were observed feeding over a range of temperatures on perennial rye-grass (Lolium perenne) seedlings grown on agar plates. R. robustus fed between 0.5 and 42.5 C, X. diversicaudatum between 5.0 and 37.0 C and H. conida between 5.0 and 34.0 C. Between 10 and 25 C there was a direct relationship between temperature and rate of esophageal bulb contractions. Above 25 C the number of esophageal contractions/min did not increase at the same rate and eventually decreased. At the extremes of temperature range, abnormal feeding behaviour was observed. Rates of esophageal bulb contraction did not differ in the different nematode life stages and sexes, or at different feeding sites on the roots.

  8. Identification of a gene involved in the regulation of hyphal growth of Epichloë festucae during symbiosis.

    PubMed

    Bassett, Shalome A; Johnson, Richard D; Simpson, Wayne R; Laugraud, Aurelie; Jordan, T William; Bryan, Gregory T

    2016-10-01

    Secreted proteins, those involved in cell wall biogenesis, are likely to play a role in communication in the symbiotic interaction between the fungal endophyte Epichloë festucae with perennial ryegrass (Lolium perenne), particularly given the close association between fungal hyphae and the plant cell wall. Our hypothesis was that secreted proteins are likely to be responsible for establishing and maintaining a normal symbiotic relationship. We analyzed an endophyte EST database for genes with predicted signal peptide sequences. Here, we report the identification and characterization of rhgA; a gene involved in the regulation of hyphal growth in planta In planta analysis of ΔrhgA mutants showed that disruption of rhgA resulted in extensive unregulated hyphal growth. This phenotype was fully complemented by insertion of the rhgA gene and suggests that rhgA is important for maintaining normal hyphal growth during symbiosis. PMID:27624305

  9. A novel grass hybrid to reduce flood generation in temperate regions

    PubMed Central

    Macleod, Christopher (Kit) J. A.; Humphreys, Mike W.; Whalley, W. Richard; Turner, Lesley; Binley, Andrew; Watts, Chris W.; Skøt, Leif; Joynes, Adrian; Hawkins, Sarah; King, Ian P.; O'Donovan, Sally; Haygarth, Phil M.

    2013-01-01

    We report on the evaluation of a novel grass hybrid that provides efficient forage production and could help mitigate flooding. Perennial ryegrass (Lolium perenne) is the grass species of choice for most farmers, but lacks resilience against extremes of climate. We hybridised L. perenne onto a closely related and more stress-resistant grass species, meadow fescue Festuca pratensis. We demonstrate that the L. perenne × F. pratensis cultivar can reduce runoff during the events by 51% compared to a leading UK nationally recommended L. perenne cultivar and by 43% compared to F. pratensis over a two year field experiment. We present evidence that the reduced runoff from this Festulolium cultivar was due to intense initial root growth followed by rapid senescence, especially at depth. Hybrid grasses of this type show potential for reducing the likelihood of flooding, whilst providing food production under conditions of changing climate. PMID:23619058

  10. Use of pruning waste compost as a component in soilless growing media.

    PubMed

    Benito, Marta; Masaguer, Alberto; De Antonio, Roberto; Moliner, Ana

    2005-03-01

    The objective of this work was to study the use of pruning wastes compost (PWC) as a growing media component for ornamental plants. The main physical, chemical and biological characteristics of PWC were analysed in order to evaluate its suitability for use in soil-less cultivation. Six growth substrates were prepared by mixing PWC with peat (P), ground leaves (GL), sand (S) and spent mushroom compost (SMC) in different proportions. Two different pot experiments were carried out to test its characteristics of production using perennial ryegrass (Lolium perenne L.) and cypress (Cupressus sempervirens L.) as indicators and the different media as treatments. The growth experiments showed that PWC required mixing with a nutrient-richer material to produce higher results. Therefore, substrates containing SMC (PWC+P+SMC and PWC+SMC) seems to be the most adequate growing media. After the statistical analysis, we concluded that the PWC could be used as a growing media component.

  11. PERENNIAL CROP NURSERIES TREATED WITH METHYL BROMIDE AND ALTERNATIVE FUMIGANTS: EFFECTS ON WEED SEED VIABILITY, WEED DENSITIES, AND TIME REQUIRED FOR HAND WEEDING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control provided by alternative fumigants to methyl bromide (MeBr) needs to be tested in perennial crop nurseries in California because MeBr is being phased out in accordance with the Montreal Protocol, few herbicides are registered for perennial nursery use, and costs of other control measures...

  12. Initial in Situ Measurements of Perennial Meltwater Storage in the Greenland Firn Aquifer

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Miege, Clement; Forster, Richard R.; Brucker, Ludovic

    2014-01-01

    A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics.

  13. A LANDSAT study of ephemeral and perennial rangeland vegetation and soils

    NASA Technical Reports Server (NTRS)

    Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.

    1976-01-01

    The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.

  14. Using the Model Perennial Grass Brachypodium sylvaticum to Engineer Resistance to Multiple Abiotic Stresses

    SciTech Connect

    Gordon, Sean; Reguera, Maria; Sade, Nir; Cartwright, Amy; Tobias, Christian; Thilmony, Roger; Blumwald, Eduardo; Vogel, John

    2015-03-20

    We are using the perennial model grass Brachypodium sylvaticum to identify combinations of transgenes that enhance tolerance to multiple, simultaneous abiotic stresses. The most successful transgene combinations will ultimately be used to create improved switchgrass (Panicum virgatum L.) cultivars. To further develop B. sylvaticum as a perennial model grass, and facilitate our planned transcriptional profiling, we are sequencing and annotating the genome. We have generated ~40x genome coverage using PacBio sequencing of the largest possible size selected libraries (18, 22, 25 kb). Our initial assembly using only long-read sequence contained 320 Mb of sequence with an N50 contig length of 315 kb and an N95 contig length of 40 kb. This assembly consists of 2,430 contigs, the largest of which was 1.6 Mb. The estimated genome size based on c-values is 340 Mb indicating that about 20 Mb of presumably repetitive DNA remains yet unassembled. Significantly, this assembly is far superior to an assembly created from paired-end short-read sequence, ~100x genome coverage. The short-read-only assembly contained only 226 Mb of sequence in 19k contigs. To aid the assembly of the scaffolds into chromosome-scale assemblies we produced an F2 mapping population and have genotyped 480 individuals using a genotype by sequence approach. One of the reasons for using B. sylvaticum as a model system is to determine if the transgenes adversely affect perenniality and winter hardiness. Toward this goal, we examined the freezing tolerance of wild type B. sylvaticum lines to determine the optimal conditions for testing the freezing tolerance of the transgenics. A survey of seven accessions noted significant natural variation in freezing tolerance. Seedling or adult Ain-1 plants, the line used for transformation, survived an 8 hour challenge down to -6 oC and 50% survived a challenge down to -9 oC. Thus, we will be able to easily determine if the transgenes compromise freezing tolerance. In the

  15. Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants.

    PubMed

    Rimbaud, Loup; Dallot, Sylvie; Gottwald, Tim; Decroocq, Véronique; Jacquot, Emmanuel; Soubeyrand, Samuel; Thébaud, Gaël

    2015-01-01

    Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, Plum pox virus (PPV; genus Potyvirus), has been classified as a quarantine pathogen in numerous countries. As a result, various management strategies have been implemented in different regions of the world, depending on the epidemiological context and on the objective (i.e., eradication, suppression, containment, or resilience). These strategies have exploited virus-free planting material, varietal improvement, surveillance and removal of trees in orchards, and statistical models. Variations on these management options lead to contrasted outcomes, from successful eradication to widespread presence of PPV in orchards. Here, we present management strategies in the light of sharka epidemiology to gain insights from this worldwide experience. Although focused on sharka, this review highlights more general levers and promising approaches to optimize disease control in perennial plants. PMID:26047559

  16. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant.

    PubMed

    Wagner, Maggie R; Lundberg, Derek S; Del Rio, Tijana G; Tringe, Susannah G; Dangl, Jeffery L; Mitchell-Olds, Thomas

    2016-01-01

    Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome is evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments. PMID:27402057

  17. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop.

    PubMed

    Tian, Yang; Zeng, Yan; Zhang, Jing; Yang, ChengGuang; Yan, Liang; Wang, XuanJun; Shi, ChongYing; Xie, Jing; Dai, TianYi; Peng, Lei; Zeng Huan, Yu; Xu, AnNi; Huang, YeWei; Zhang, JiaJin; Ma, Xiao; Dong, Yang; Hao, ShuMei; Sheng, Jun

    2015-07-01

    The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera's high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.

  18. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant

    PubMed Central

    Wagner, Maggie R.; Lundberg, Derek S; del Rio, Tijana G.; Tringe, Susannah G.; Dangl, Jeffery L.; Mitchell-Olds, Thomas

    2016-01-01

    Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotyp