Structure of the Balmer jump. The isolated hydrogen atom
NASA Astrophysics Data System (ADS)
Calvo, F.; Belluzzi, L.; Steiner, O.
2018-06-01
Context. The spectrum of the hydrogen atom was explained by Bohr more than one century ago. We revisit here some of the aspects of the underlying quantum structure, with a modern formalism, focusing on the limit of the Balmer series. Aims: We investigate the behaviour of the absorption coefficient of the isolated hydrogen atom in the neighbourhood of the Balmer limit. Methods: We analytically computed the total cross-section arising from bound-bound and bound-free transitions in the isolated hydrogen atom at the Balmer limit, and established a simplified semi-analytical model for the surroundings of that limit. We worked within the framework of the formalism of Landi Degl'Innocenti & Landolfi (2004, Astrophys. Space Sci. Lib., 307), which permits an almost straight-forward generalization of our results to other atoms and molecules, and which is perfectly suitable for including polarization phenomena in the problem. Results: We analytically show that there is no discontinuity at the Balmer limit, even though the concept of a "Balmer jump" is still meaningful. Furthermore, we give a possible definition of the location of the Balmer jump, and we check that this location is dependent on the broadening mechanisms. At the Balmer limit, we compute the cross-section in a fully analytical way. Conclusions: The Balmer jump is produced by a rapid drop of the total Balmer cross-section, yet this variation is smooth and continuous when both bound-bound and bound-free processes are taken into account, and its shape and location is dependent on the broadening mechanisms.
NASA Astrophysics Data System (ADS)
Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping
2018-05-01
The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.
Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang
2018-05-01
Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.
Accurate integration over atomic regions bounded by zero-flux surfaces.
Polestshuk, Pavel M
2013-01-30
The approach for the integration over a region covered by zero-flux surface is described. This approach based on the surface triangulation technique is efficiently realized in a newly developed program TWOE. The elaborated method is tested on several atomic properties including the source function. TWOE results are compared with those produced by using well-known existing programs. Absolute errors in computed atomic properties are shown to range usually from 10(-6) to 10(-5) au. The demonstrative examples prove that present realization has perfect convergence of atomic properties with increasing size of angular grid and allows to obtain highly accurate data even in the most difficult cases. It is believed that the developed program can be bridgehead that allows to implement atomic partitioning of any desired molecular property with high accuracy. Copyright © 2012 Wiley Periodicals, Inc.
Metal atom dynamics in superbulky metallocenes: a comparison of (Cp(BIG))2Sn and (Cp(BIG))2Eu.
Harder, Sjoerd; Naglav, Dominik; Schwerdtfeger, Peter; Nowik, Israel; Herber, Rolfe H
2014-02-17
Cp(BIG)2Sn (Cp(BIG) = (4-n-Bu-C6H4)5cyclopentadienyl), prepared by reaction of 2 equiv of Cp(BIG)Na with SnCl2, crystallized isomorphous to other known metallocenes with this ligand (Ca, Sr, Ba, Sm, Eu, Yb). Similarly, it shows perfect linearity, C-H···C(π) bonding between the Cp(BIG) rings and out-of-plane bending of the aryl substituents toward the metal. Whereas all other Cp(BIG)2M complexes show large disorder in the metal position, the Sn atom in Cp(BIG)2Sn is perfectly ordered. In contrast, (119)Sn and (151)Eu Mößbauer investigations on the corresponding Cp(BIG)2M metallocenes show that Sn(II) is more dynamic and loosely bound than Eu(II). The large displacement factors in the group 2 and especially in the lanthanide(II) metallocenes Cp(BIG)2M can be explained by static metal disorder in a plane parallel to the Cp(BIG) rings. Despite parallel Cp(BIG) rings, these metallocenes have a nonlinear Cpcenter-M-Cpcenter geometry. This is explained by an ionic model in which metal atoms are polarized by the negatively charged Cp rings. The extent of nonlinearity is in line with trends found in M(2+) ion polarizabilities. The range of known calculated dipole polarizabilities at the Douglas-Kroll CCSD(T) level was extended with values (atomic units) for Sn(2+) 15.35, Sm(2+)(4f(6) (7)F) 9.82, Eu(2+)(4f(7) (8)S) 8.99, and Yb(2+)(4f(14) (1)S) 6.55. This polarizability model cannot be applied to predominantly covalently bound Cp(BIG)2Sn, which shows a perfectly ordered structure. The bent geometry of Cp*2Sn should therefore not be explained by metal polarizability but is due to van der Waals Cp*···Cp* attraction and (to some extent) to a small p-character component in the Sn lone pair.
2017-09-05
metamaterial perfect absorber behaves as a meta-cavity bounded between a resonant metasurface and a metallic thin- film reflector. The perfect absorption...cavity quantum electrodynamics devices. 15. SUBJECT TERMS Metamaterial; meta-cavity; metallic thin- film reflector; Fabry-Perot cavity resonance...metamaterial perfect absorber behaves as a meta-cavity bounded between a resonant metasurface and a metallic thin- film reflector. The perfect absorption is
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1979-01-01
The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.
High-speed cylindrical collapse of two perfect fluids
NASA Astrophysics Data System (ADS)
Sharif, M.; Ahmad, Zahid
2007-09-01
In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.
Quantized edge modes in atomic-scale point contacts in graphene
NASA Astrophysics Data System (ADS)
Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
Experimental observation of edge transport in graphene nanostructures
NASA Astrophysics Data System (ADS)
Kinikar, Amogh; Sai, T. Phanindra; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam
The zizzag edges of graphene, whether single or few layers, host zero energy gapless states and are perfect 1D ballistic conductors. Conclusive observations of electrical conduction through edge states has been elusive. We report the observation of edge bound transport in atomic-scale constrictions of single and multilayer suspended graphene created stochastically by nanomechanical exfoliation of graphite. We observe that the conductance is quantized in near multiples of e2/h. Non-equilibrium transport shows a split zero bias anomaly and, the magneto-conductance is hysteretic; indicating that the electron transport is through spin polarized edge states in the presence of electron-electron interaction. Atomic force microscope scans on the graphite surface post exfoliation reveal that the final constriction is usually a single layer graphene with a constricting angle of 30o. Tearing along crystallographic angles suggests the tears occur along zigzag and armchair configurations with high fidelity of the edge morphology. We acknowledge the financial support from the DST, Government of India. SS acknowledges support from the NSF (DMR-1508680).
Quantized edge modes in atomic-scale point contacts in graphene.
Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0 = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
Squeezing via two-photon transitions
NASA Astrophysics Data System (ADS)
Savage, C. M.; Walls, D. F.
1986-05-01
The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.
Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A
2014-12-01
A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.
NASA Astrophysics Data System (ADS)
Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.
2016-09-01
The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.
First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface
NASA Astrophysics Data System (ADS)
She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng
2018-06-01
The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.
On subgame perfect equilibria in quantum Stackelberg duopoly
NASA Astrophysics Data System (ADS)
Frąckiewicz, Piotr; Pykacz, Jarosław
2018-02-01
Our purpose is to study the Stackelberg duopoly with the use of the Li-Du-Massar quantum duopoly scheme. The result of Lo and Kiang has shown that the correlation of players's quantities caused by the quantum entanglement enlarges the first-mover advantage in the quantum Stackelberg duopoly. However, the interval of entanglement parameters for which this result is valid is bounded from above. It has been an open question what the equilibrium result is over the upper bound, in particular when the entanglement parameter goes to infinity. Our work provides complete analysis of subgame perfect equilibria of the game for all the values of the entanglement parameter.
Water-walled microfluidics for high-optical finesse cavities
NASA Astrophysics Data System (ADS)
Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal
2016-01-01
In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ~99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.
2014-12-15
A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report themore » use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.« less
Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han
2014-06-24
The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin
2012-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .
Hong, Ie-Hong; Liao, Yung-Cheng; Tsai, Yung-Feng
2013-11-05
The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process.
2013-01-01
The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process. PMID:24188092
NASA Astrophysics Data System (ADS)
De Raedt, Hans; Michielsen, Kristel; Hess, Karl
2016-12-01
Using Einstein-Podolsky-Rosen-Bohm experiments as an example, we demonstrate that the combination of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a counterexample to John Bell's remarkable "proof" that any theory of physics, which is both Einstein-local and "realistic" (counterfactually definite), results in a strong upper bound to the correlations that are being measured in Einstein-Podolsky-Rosen-Bohm experiments. Our counterexample, which is free of the so-called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully agrees with the predictions of quantum theory for Einstein-Podolsky-Rosen-Bohm experiments.
Computational experience with a parallel algorithm for tetrangle inequality bound smoothing.
Rajan, K; Deo, N
1999-09-01
Determining molecular structure from interatomic distances is an important and challenging problem. Given a molecule with n atoms, lower and upper bounds on interatomic distances can usually be obtained only for a small subset of the 2(n(n-1)) atom pairs, using NMR. Given the bounds so obtained on the distances between some of the atom pairs, it is often useful to compute tighter bounds on all the 2(n(n-1)) pairwise distances. This process is referred to as bound smoothing. The initial lower and upper bounds for the pairwise distances not measured are usually assumed to be 0 and infinity. One method for bound smoothing is to use the limits imposed by the triangle inequality. The distance bounds so obtained can often be tightened further by applying the tetrangle inequality--the limits imposed on the six pairwise distances among a set of four atoms (instead of three for the triangle inequalities). The tetrangle inequality is expressed by the Cayley-Menger determinants. For every quadruple of atoms, each pass of the tetrangle inequality bound smoothing procedure finds upper and lower limits on each of the six distances in the quadruple. Applying the tetrangle inequalities to each of the (4n) quadruples requires O(n4) time. Here, we propose a parallel algorithm for bound smoothing employing the tetrangle inequality. Each pass of our algorithm requires O(n3 log n) time on a REW PRAM (Concurrent Read Exclusive Write Parallel Random Access Machine) with O(log(n)n) processors. An implementation of this parallel algorithm on the Intel Paragon XP/S and its performance are also discussed.
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshipura, K.N.; Mohanan, S.
1988-08-01
A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.
Nearly Perfect Fluidity in a High Temperature Superconductor
Rameau, J. D.; Reber, T. J.; Yang, H. -B.; ...
2014-10-13
Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature T c.
Nearly perfect fluidity in a high-temperature superconductor
NASA Astrophysics Data System (ADS)
Rameau, J. D.; Reber, T. J.; Yang, H.-B.; Akhanjee, S.; Gu, G. D.; Johnson, P. D.; Campbell, S.
2014-10-01
Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η /s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η /s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
NASA Astrophysics Data System (ADS)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team
2014-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.
Gravitational Wave Detection with Single-Laser Atom Interferometers
NASA Technical Reports Server (NTRS)
Yu, Nan; Tinto, Massimo
2011-01-01
A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.
Atomic kinetic energy, momentum distribution, and structure of solid neon at zero temperature
NASA Astrophysics Data System (ADS)
Cazorla, C.; Boronat, J.
2008-01-01
We report on the calculation of the ground-state atomic kinetic energy Ek and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51(6)K , which agrees perfectly with the recent prediction made by Timms , 41(2)K , based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4-20K , and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid He4 in terms of the Debye model in order to assess the relevance of anharmonic effects in Ne.
Gold atoms and clusters on MgO(100) films; an EPR and IRAS study
NASA Astrophysics Data System (ADS)
Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.
2009-06-01
Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.
Teleporting entanglements of cavity-field states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Geisa; Baseia, B.; Almeida, N.G. de
2004-08-01
We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.
NASA Astrophysics Data System (ADS)
Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping
2017-02-01
To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.
Thomson scattering in the average-atom approximation.
Johnson, W R; Nilsen, J; Cheng, K T
2012-09-01
The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.
Spontaneous evolution of rydberg atoms into an ultracold plasma
Robinson; Tolra; Noel; Gallagher; Pillet
2000-11-20
We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.
Coulomb bound states of strongly interacting photons
Maghrebi, M. F.; Gullans, Michael J.; Bienias, P.; ...
2015-09-16
We show that two photons coupled to Rydberg states via electromagnetically induced transparency (EIT) can interact via an effective Coulomb potential. The interaction then gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb problem, thus obtaining a photonic analogue of the hydrogen atom. These states propagate with a negative group velocity in the medium, which allows for a simple preparation and detection scheme, before they slowlymore » decay to pairs of bound Rydberg atoms. As a result, we verify the metastability and backward propagation of these Coulomb bound states with exact numerical simulations.« less
Collisional-radiative nonequilibrium in partially ionized atomic nitrogen
NASA Technical Reports Server (NTRS)
Kunc, J. A.; Soon, W. H.
1989-01-01
A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.
Heterogeneous losses of externally generated I atoms for OIL
NASA Astrophysics Data System (ADS)
Torbin, A. P.; Mikheyev, P. A.; Ufimtsev, N. I.; Voronov, A. I.; Azyazov, V. N.
2012-01-01
Usage of an external iodine atom generator can improve energy efficiency of the oxygen-iodine laser (OIL) and expand its range of operation parameters. However, a noticeable part of iodine atoms may recombine or undergo chemical bonding during transportation from the generator to the injection point. Experimental results reported in this paper showed that uncoated aluminum surfaces readily bounded iodine atoms, while nickel, stainless steel, Teflon or Plexiglas did not. Estimations based on experimental results had shown that the upper bound of probability of surface iodine atom recombination for materials Teflon, Plexiglas, nickel or stainless steel is γrec <= 10-5.
Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria
2013-03-13
We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au-O-TiO(x) sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this "excess" gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.
NASA Astrophysics Data System (ADS)
Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun
2016-05-01
Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.
Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo
2017-01-01
Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Topological bound states of a quantum walk with cold atoms
NASA Astrophysics Data System (ADS)
Mugel, Samuel; Celi, Alessio; Massignan, Pietro; Asbóth, János K.; Lewenstein, Maciej; Lobo, Carlos
2016-08-01
We suggest a method for engineering a quantum walk, with cold atoms as walkers, which presents topologically nontrivial properties. We derive the phase diagram, and show that we are able to produce a boundary between topologically distinct phases using the finite beam width of the applied lasers. A topologically protected bound state can then be observed, which is pinned to the interface and is robust to perturbations. We show that it is possible to identify this bound state by averaging over spin sensitive measures of the atom's position, based on the spin distribution that these states display. Interestingly, there exists a parameter regime in which our system maps on to the Creutz ladder.
Precision bounds for gradient magnetometry with atomic ensembles
NASA Astrophysics Data System (ADS)
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
Constraining the generalized uncertainty principle with the atomic weak-equivalence-principle test
NASA Astrophysics Data System (ADS)
Gao, Dongfeng; Wang, Jin; Zhan, Mingsheng
2017-04-01
Various models of quantum gravity imply the Planck-scale modifications of Heisenberg's uncertainty principle into a so-called generalized uncertainty principle (GUP). The GUP effects on high-energy physics, cosmology, and astrophysics have been extensively studied. Here, we focus on the weak-equivalence-principle (WEP) violation induced by the GUP. Results from the WEP test with the 85Rb-87Rb dual-species atom interferometer are used to set upper bounds on parameters in two GUP proposals. A 1045-level bound on the Kempf-Mangano-Mann proposal and a 1027-level bound on Maggiore's proposal, which are consistent with bounds from other experiments, are obtained. All these bounds have huge room for improvement in the future.
Upper bound on the efficiency of certain nonimaging concentrators in the physical-optics model
NASA Astrophysics Data System (ADS)
Welford, W. T.; Winston, R.
1982-09-01
Upper bounds on the performance of nonimaging concentrators are obtained within the framework of scalar-wave theory by using a simple approach to avoid complex calculations on multiple phase fronts. The approach consists in treating a theoretically perfect image-forming device and postulating that no non-image-forming concentrator can have a better performance than such an ideal image-forming system. The performance of such a system can be calculated according to wave theory, and this will provide, in accordance with the postulate, upper bounds on the performance of nonimaging systems. The method is demonstrated for a two-dimensional compound parabolic concentrator.
NASA Astrophysics Data System (ADS)
Ibrahim, Adyda; Saaban, Azizan; Zaibidi, Nerda Zura
2017-11-01
This paper considers an n-firm oligopoly market where each firm produces a single homogenous product under a constant unit cost. Nonlinearity is introduced into the model of this oligopoly market by assuming the market has an isoelastic demand function. Furthermore, instead of the usual assumption of perfectly rational firms, they are assumed to be boundedly rational in adjusting their outputs at each period. The equilibrium of this n discrete dimensional system is obtained and its local stability is calculated.
Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles
NASA Technical Reports Server (NTRS)
Han, Jie; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
We investigate energetics and structure of circular and polygonal single wall carbon nanotubes (SWNTs) using large scale molecular simulations on NAS SP2, motivated by their unusual electronic and magnetic properties. The circular tori are formed by bending tube (no net whereas the polygonal tori are constructed by turning the joint of two tubes of (n, n), (n+1, n-1) and (n+2, n-2) with topological pentagon-heptagon defect, in which n =5, 8 and 10. The strain energy of circular tori relative to straight tube decreases by I/D(sup 2) where D is torus diameter. As D increases, these tori change from buckling to an energetically stable state. The stable tori are perfect circular in both toroidal and tubular geometry with strain less than 0. 03 eV/atom when D greater than 10, 20 and 40 nm for torus (5,5), (8,8) and (10, 10). Polygonal tori, whose strain is proportional to the number of defects and I/D are energetically stable even for D less than 10 nm. However, their strain is higher than that of perfect circular tori. In addition, the local maximum strain of polygonal tori is much higher than that of perfect circular tori. It is approx. 0.03 eV/atom or less for perfect circular torus (5,5), but 0.13 and 0.21 eV/atom for polygonal tori (6,4)/(5,5) and (7,3)/(5,5). Therefore, we conclude that the circular tori with no topological defects are more energetically stable and kinetically accessible than the polygonal tori containing the pentagon-heptagon defects for the laser-grown SWNTs and Fullerene crop circles.
Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion
Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth
2000-01-17
We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.
Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji
2016-07-13
Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia
Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
Fast Atom Ionization in Strong Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Apostol, M.
2018-05-01
The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua
2015-04-15
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less
Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.
Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel
2016-11-04
Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min
2015-02-01
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.
Repulsive Casimir-Polder potential by a negative reflecting surface
NASA Astrophysics Data System (ADS)
Yuan, Qi-Zhang
2015-07-01
We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hua; Zhang, Jialin, E-mail: jialinzhang@hunnu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn
We study the geometric phase of a uniformly accelerated two-level atom coupled with vacuum fluctuations of electromagnetic fields in the presence of a perfectly reflecting plane. We find that the geometric phase difference between the accelerated and inertial atoms which can be observed by atom interferometry crucially depends on the polarizability of the atom and the distance to the boundary and it can be dramatically manipulated with anisotropically polarizable atoms. In particular, extremely close to the boundary, the phase difference can be increased by two times as compared to the case without any boundary. So, the detectability of the effectsmore » associated with acceleration using an atom interferometer can be significantly increased by the presence of a boundary using atoms with anisotropic polarizability.« less
Near-field excitation exchange between motionless point atoms located near the conductive surface
NASA Astrophysics Data System (ADS)
Kuraptsev, Aleksei S.; Sokolov, Igor M.
2018-04-01
On the basis of quantum microscopic approach we study the excitation dynamics of two motionless point atoms located near the perfectly conducting mirror. We have analyzed the spontaneous decay rate of individual atoms near the mirror as well as the strength of dipole-dipole interaction between different atoms. It is shown that the spontaneous decay rate of an excited atom significantly depends on the distance from this atom to the mirror. In the case when the interatomic separation is less or comparable with the wavelength of resonant radiation, the spontaneous decay dynamics of an excited atom is described by multi-exponential law. It depends both the interatomic separation and the spatial orientation of diatomic quasimolecule.
Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, Riccardo; Vasile, Ruggero; Passante, Roberto
2010-12-15
We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.
Lifetime of a Chemically Bound Helium Compound
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.
Reconstruction of refractive index profile of a stratified medium
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Ferwerda, H. A.; Yevick, D.
In this paper, a method for determining the permittivity profile of a stratified medium terminated by a perfect conductor from the (complex) reflectivity is presented. The calculations are based on the Gelfand-Levitan and the Marchenko equations. The bound modes of the system are explicitly taken into account.
Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature
NASA Astrophysics Data System (ADS)
Gupta, Pradeep; Yedla, Natraj
2017-12-01
In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.
Two photon excitation of atomic oxygen
NASA Technical Reports Server (NTRS)
Pindzola, M. S.
1977-01-01
A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium
NASA Astrophysics Data System (ADS)
Bharti, Vineet; Wasan, Ajay
We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.
Observation of three-photon bound states in a quantum nonlinear medium
NASA Astrophysics Data System (ADS)
Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan
2018-02-01
Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.
Coherent control of the formation of cold heteronuclear molecules by photoassociation
NASA Astrophysics Data System (ADS)
de Lima, Emanuel F.
2017-01-01
We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.
Fisher, S. Zoë; Aggarwal, Mayank; Kovalevsky, Andrey Y.; Silverman, David N.; McKenna, Robert
2012-01-01
Carbonic anhydrases (CAs) catalyze the hydration of CO2 forming HCO3− and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM, or hydrogen (H) atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target. PMID:22928733
Self-Stabilizing Measurement of Phase
NASA Astrophysics Data System (ADS)
Vinjanampathy, Sai
2014-05-01
Measuring phase accurately constitutes one of the most important task in precision measurement science. Such measurements can be deployed to measure everything from fundamental constants to measuring detuning and tunneling rates of atoms more precisely. Quantum mechanics enhances the ultimate bounds on the precision of such measurements possible, and exploit coherence and entanglement to reduce the phase uncertainty. In this work, we will describe a method to stabilize a decohering two-level atom and use the stabilizing measurements to learn the unknown phase acquired by the atom. Such measurements will employ a Bayesian learner to do active feedback control on the atom. We will discuss some ultimate bounds employed in precision metrology and an experimental proposal for the implementation of this scheme. Financial support from Ministry of Education, Singapore.
Xu, Lu T; Dunning, Thom H
2015-06-09
The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.
Local electronic effects and irradiation resistance in high-entropy alloys
Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...
2015-08-14
High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.
ERIC Educational Resources Information Center
Vaidhyanathan, Siva
2005-01-01
For some, it seems that the dream of a perfect research machine is almost within reach. Google announced late last year that it would digitize millions of bound books, making available online the full text of public-domain books and excerpts from works still in copyright. Thrilling and dazzling as the potential for research and distribution…
Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state
NASA Technical Reports Server (NTRS)
Eaves, J. O.; Walsh, B. C.; Steiner, E.
1974-01-01
Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Parallel algorithms for the molecular conformation problem
NASA Astrophysics Data System (ADS)
Rajan, Kumar
Given a set of objects, and some of the pairwise distances between them, the problem of identifying the positions of the objects in the Euclidean space is referred to as the molecular conformation problem. This problem is known to be computationally difficult. One of the most important applications of this problem is the determination of the structure of molecules. In the case of molecular structure determination, usually only the lower and upper bounds on some of the interatomic distances are available. The process of obtaining a tighter set of bounds between all pairs of atoms, using the available interatomic distance bounds is referred to as bound-smoothing . One method for bound-smoothing is to use the limits imposed by the triangle inequality. The distance bounds so obtained can often be tightened further by applying the tetrangle inequality---the limits imposed on the six pairwise distances among a set of four atoms (instead of three for the triangle inequalities). The tetrangle inequality is expressed by the Cayley-Menger determinants. The sequential tetrangle-inequality bound-smoothing algorithm considers a quadruple of atoms at a time, and tightens the bounds on each of its six distances. The sequential algorithm is computationally expensive, and its application is limited to molecules with up to a few hundred atoms. Here, we conduct an experimental study of tetrangle-inequality bound-smoothing and reduce the sequential time by identifying the most computationally expensive portions of the process. We also present a simple criterion to determine which of the quadruples of atoms are likely to be tightened the most by tetrangle-inequality bound-smoothing. This test could be used to enhance the applicability of this process to large molecules. We map the problem of parallelizing tetrangle-inequality bound-smoothing to that of generating disjoint packing designs of a certain kind. We map this, in turn, to a regular-graph coloring problem, and present a simple, parallel algorithm for tetrangle-inequality bound-smoothing. We implement the parallel algorithm on the Intel Paragon X/PS, and apply it to real-life molecules. Our results show that with this parallel algorithm, tetrangle inequality can be applied to large molecules in a reasonable amount of time. We extend the regular graph to represent more general packing designs, and present a coloring algorithm for this graph. This can be used to generate constant-weight binary codes in parallel. Once a tighter set of distance bounds is obtained, the molecular conformation problem is usually formulated as a non-linear optimization problem, and a global optimization algorithm is then used to solve the problem. Here we present a parallel, deterministic algorithm for the optimization problem based on Interval Analysis. We implement our algorithm, using dynamic load balancing, on a network of Sun Ultra-Sparc workstations. Our experience with this algorithm shows that its application is limited to small instances of the molecular conformation problem, where the number of measured, pairwise distances is close to the maximum value. However, since the interval method eliminates a substantial portion of the initial search space very quickly, it can be used to prune the search space before any of the more efficient, nondeterministic methods can be applied.
NASA Astrophysics Data System (ADS)
D'Incao, Jose; Williams, Jason
2017-04-01
NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.
Magnesium-based methods, systems, and devices
Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum
2017-12-12
An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.
Investigation of matter-antimatter interaction for possible propulsion applications
NASA Technical Reports Server (NTRS)
Morgan, D. L., Jr.
1974-01-01
Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.
Quantum simulation of ultrafast dynamics using trapped ultracold atoms.
Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M
2018-05-25
Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.
Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)
Coplen, Tyler B.; Shrestha, Yesha
2016-01-01
There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.
Deduced catalytic mechanism of d-amino acid amidase from Ochrobactrum anthropi SV3
Okazaki, Seiji; Suzuki, Atsuo; Komeda, Hidenobu; Asano, Yasuhisa; Yamane, Takashi
2008-01-01
d-Amino acid amidase (DAA) from Ochrobactrum anthropi SV3 catalyzes d-stereospecific hydrolysis of amino acid amides. DAA has attracted attention as a catalyst for the stereospecific production of d-amino acids, although the mechanism that drives the reaction has not been clear. Previously, the structure of DAA was classified into two types, a substrate-bound state with an ordered Ω loop, and a ground state with a disordered Ω loop. Because the binding of the substrate facilitates ordering, this transition was regarded to be induced fit motion. The angles and distances of hydrogen bonds at Tyr149 Oη, Ser60 Oγ and Lys63 Nζ revealed that Tyr149 Oη donates an H atom to a water molecule in the substrate-bound state, and that Tyr149 Oη donates an H atom to Ser60 Oγ or Lys63 Nζ in the ground state. Taking into consideration the locations of the H atoms of Tyr149 Oη, Ser60 Oγ and Lys63 Nζ, a catalytic mechanism of DAA activity is presented, wherein a shift of an H atom at Tyr149 Oη in the substrate-bound versus the ground state plays a significant role in the reaction. This mechanism explains well why acylation proceeds and deacylation does not proceed in the substrate-bound state. PMID:18421151
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
Rydberg blockade in three-atom systems
NASA Astrophysics Data System (ADS)
Barredo, Daniel; Ravets, Sylvain; Labuhn, Henning; Beguin, Lucas; Vernier, Aline; Chicireanu, Radu; Nogrette, Florence; Lahaye, Thierry; Browaeys, Antoine
2014-05-01
The control of individual neutral atoms in arrays of optical tweezers is a promising avenue for quantum science and technology. Here we demonstrate unprecedented control over a system of three Rydberg atoms arranged in linear and triangular configurations. The interaction between Rydberg atoms results in the observation of an almost perfect van der Waals blockade. When the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction energy, we directly observe the anisotropy of the interaction between nD-states. Using the independently measured two-body interaction energy shifts we fully reproduce the dynamics of the three-atom system with a model based on a master equation without any adjustable parameter. Combined with our ability to trap single atoms in arbitrary patterns of 2D arrays of up to 100 traps separated by a few microns, these results are very promising for a scalable implementation of quantum simulation of frustrated quantum magnetism with Rydberg atoms.
Long-range sound-mediated dark-soliton interactions in trapped atomic condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A. J.; Jackson, D. P.; Barenghi, C. F.
2011-01-15
A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double-well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
Critical screening in the one- and two-electron Yukawa atoms
NASA Astrophysics Data System (ADS)
Montgomery, H. E.; Sen, K. D.; Katriel, Jacob
2018-02-01
The one- and two-electron Yukawa atoms, also referred to as the Debye-Hückel or screened Coulomb atoms, have been topics of considerable interest both for intrinsic reasons and because of their relevance to terrestrial and astrophysical plasmas. At sufficiently high screening the one-electron Yukawa atom ceases to be bound. Some calculations appeared to suggest that as the screening increases in the ground state of the two-electron Yukawa atom (in which both the one-particle attraction and the interparticle repulsion are screened) the two electrons are detached simultaneously, at the same screening constant at which the one-electron atom becomes unbound. Our results rule this scenario out, offering an alternative that is not less interesting. In particular, it is found that for Z <1 a mild amount of screening actually increases the binding energy of the second electron. At the nuclear charge Zc≈0.911028 ... , at which the bare Coulomb two-electron atom becomes unbound, and even over a range of lower nuclear charges, an appropriate amount of screening gives rise to a bound two-electron system.
Stadnik, Y V; Dzuba, V A; Flambaum, V V
2018-01-05
In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including ^{133}Cs, ^{205}Tl, ^{129}Xe, ^{199}Hg, ^{171}Yb^{19}F, ^{180}Hf^{19}F^{+}, and ^{232}Th^{16}O, we constrain the P, T-violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for m_{a}≳10^{-2} eV. We also place constraints on CP violation in certain types of relaxion models.
Measurement of magnetic field gradients using Raman spectroscopy in a fountain
NASA Astrophysics Data System (ADS)
Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.
2017-02-01
In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.
Radiation force on a single atom in a cavity
NASA Technical Reports Server (NTRS)
Kim, M. S.
1992-01-01
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Camargo, F.; Schmidt, R.; Whalen, J. D.; Ding, R.; Woehl, G.; Yoshida, S.; Burgdörfer, J.; Dunning, F. B.; Sadeghpour, H. R.; Demler, E.; Killian, T. C.
2018-02-01
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p -wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n . Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.
Crystal structure of rubidium methyl-diazo-tate.
Grassl, Tobias; Korber, Nikolaus
2017-02-01
The title compound, Rb + ·H 3 CN 2 O - , has been crystallized in liquid ammonia as a reaction product of the reductive ammonolysis of the natural compound streptozocin. Elemental rubidium was used as reduction agent as it is soluble in liquid ammonia, forming a blue solution. Reductive bond cleavage in biogenic materials under kinetically controlled conditions offers a new approach to gain access to sustainably produced raw materials. The anion is nearly planar [dihedral angle O-N-N-C = -0.4 (2)°]. The Rb + cation has a coordination number of seven, and coordinates to five anions. One anion is bound via both its N atoms, one by both O and N, two anions are bound by only their O atoms, and the last is bound via the N atom adjacent to the methyl group. The diazo-tate anions are bridged by cations and do not exhibit any direct contacts with each other. The cations form corrugated layers that propagate in the (-101) plane.
Regulation of the protein-conducting channel by a bound ribosome
Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus
2009-01-01
Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480
Decoding communities in networks
NASA Astrophysics Data System (ADS)
Radicchi, Filippo
2018-02-01
According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.
Decoding communities in networks.
Radicchi, Filippo
2018-02-01
According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb
In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of the atomic excited state. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption lineshapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
NASA Astrophysics Data System (ADS)
Chan, J. A.; Liu, J. Z.; Zunger, Alex
2010-07-01
The atomic microstructure of alloys is rarely perfectly random, instead exhibiting differently shaped precipitates, clusters, zigzag chains, etc. While it is expected that such microstructural features will affect the electronic structures (carrier localization and band gaps), theoretical studies have, until now, been restricted to investigate either perfectly random or artificial “guessed” microstructural features. In this paper, we simulate the alloy microstructures in thermodynamic equilibrium using the static Monte Carlo method and study their electronic structures explicitly using a pseudopotential supercell approach. In this way, we can bridge atomic microstructures with their electronic properties. We derive the atomic microstructures of InGaN using (i) density-functional theory total energies of ˜50 ordered structures to construct a (ii) multibody cluster expansion, including strain effects to which we have applied (iii) static Monte Carlo simulations of systems consisting of over 27000 atoms to determine the equilibrium atomic microstructures. We study two types of alloy thermodynamic behavior: (a) under lattice incoherent conditions, the formation enthalpies are positive and thus the alloy system phase-separates below the miscibility-gap temperature TMG , (b) under lattice coherent conditions, the formation enthalpies can be negative and thus the alloy system exhibits ordering tendency. The microstructure is analyzed in terms of structural motifs (e.g., zigzag chains and InnGa4-nN tetrahedral clusters). The corresponding electronic structure, calculated with the empirical pseudopotentials method, is analyzed in terms of band-edge energies and wave-function localization. We find that the disordered alloys have no electronic localization but significant hole localization, while below the miscibility gap under the incoherent conditions, In-rich precipitates lead to strong electron and hole localization and a reduction in the band gap.
Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.
2015-01-01
This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273
Zhang, Changzhe; Bu, Yuxiang
2016-09-14
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
Math in Motion: Origami in the Classroom. A Hands-On Creative Approach to Teaching Mathematics. K-8.
ERIC Educational Resources Information Center
Pearl, Barbara
This perfect bound teacher's guide presents techniques and activities to teach mathematics using origami paper folding. Part 1 includes a history of origami, mathematics and origami, and careers using mathematics. Parts 2 and 3 introduce paper-folding concepts and teaching techniques and include suggestions for low-budget paper resources. Part 4…
NASA Astrophysics Data System (ADS)
Singal, Tanmay; Rahaman, Ramij; Ghosh, Sibasish; Kar, Guruprasad
2017-10-01
The (im)possibility of local distinguishability of orthogonal multipartite quantum states still remains an intriguing question. Beyond C3⊗C3 , the problem remains unsolved even for maximally entangled states (MESs). So far, the only known condition for the local distinguishability of states is the well-known orthogonality preservation (OP). Using an upper bound on the locally accessible information for bipartite states, we derive a very simple necessary condition for any set of pairwise orthogonal MESs in Cd⊗Cd to be perfectly locally distinguishable. It is seen that particularly when the number of pairwise orthogonal MES states in Cd⊗Cd is equal to d , then this necessary condition, along with the OP condition, imposes more constraints (for said states to be perfectly locally distinguishable) than the OP condition does. When testing this condition for the local distinguishability of all sets of four generalized Bell states in C4⊗C4 , we find that it is not only necessary but also sufficient to determine their local distinguishability. This demonstrates that the aforementioned upper bound may play a significant role in the general scenario of local distinguishability of bipartite states.
Impact of jammer side information on the performance of anti-jam systems
NASA Astrophysics Data System (ADS)
Lim, Samuel
1992-03-01
The Chernoff bound parameter, D, provides a performance measure for all coded communication systems. D can be used to determine upper-bounds on bit error probabilities (BEPs) of Viterbi decoded convolutional codes. The impact on BEP bounds of channel measurements that provide additional side information can also be evaluated with D. This memo documents the results of a Chernoff bound parameter evaluation in optimum partial-band noise jamming (OPBNJ) for both BPSK and DPSK modulation schemes. Hard and soft quantized receivers, with and without jammer side information (JSI), were examined. The results of this analysis indicate that JSI does improve decoding performance. However, a knowledge of jammer presence alone achieves a performance level comparable to soft decision decoding with perfect JSI. Furthermore, performance degradation due to the lack of JSI can be compensated for by increasing the number of levels of quantization. Therefore, an anti-jam system without JSI can be made to perform almost as well as a system with JSI.
Thorwart, Michael
2018-01-01
Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing. PMID:29756034
Kim, Howon; Palacio-Morales, Alexandra; Posske, Thore; Rózsa, Levente; Palotás, Krisztián; Szunyogh, László; Thorwart, Michael; Wiesendanger, Roland
2018-05-01
Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing.
Viscocapillary Response of Gas Bubbles Probed by Thermal Noise Atomic Force Measurement.
Wang, Yuliang; Zeng, Binglin; Alem, Hadush Tedros; Zhang, Zaicheng; Charlaix, Elisabeth; Maali, Abdelhamid
2018-01-30
We present thermal noise measurements of a vibrating sphere close to microsized air bubbles in water with an atomic force microscope. The sphere was glued at the end of a cantilever with a resonance frequency of few kHz. The subangstrom thermal motion of the microsphere reveals an elastohydrodynamic coupling between the sphere and the air bubble. The results are in perfect agreement with a model incorporating macroscopic capillarity and fluid flow on the bubble surface with full slip boundary conditions.
Carozo, Victor; Wang, Yuanxi; Fujisawa, Kazunori; Carvalho, Bruno R.; McCreary, Amber; Feng, Simin; Lin, Zhong; Zhou, Chanjing; Perea-López, Néstor; Elías, Ana Laura; Kabius, Bernd; Crespi, Vincent H.; Terrones, Mauricio
2017-01-01
Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm−2) than in the interior (0.33 ± 0.11 nm−2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide. PMID:28508048
Lattice structures and electronic properties of CIGS/CdS interface: First-principles calculations
NASA Astrophysics Data System (ADS)
Tang, Fu-Ling; Liu, Ran; Xue, Hong-Tao; Lu, Wen-Jiang; Feng, Yu-Dong; Rui, Zhi-Yuan; Huang, Min
2014-07-01
Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
NASA Astrophysics Data System (ADS)
Maghari, A.; Kermani, M. M.
2018-04-01
A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.
Data Needs for Stellar Atmosphere and Spectrum Modeling
NASA Technical Reports Server (NTRS)
Short, C. I.
2006-01-01
The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.
All-optical transistor based on Rydberg atom-assisted optomechanical system.
Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian
2018-04-30
We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.
Zero-dynamics principle for perfect quantum memory in linear networks
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki; James, Matthew R.
2014-07-01
In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like.
Quantum dynamics modeled by interacting trajectories
NASA Astrophysics Data System (ADS)
Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.
2018-03-01
We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.
Pursuit of the Kramers-Henneberger atom
NASA Astrophysics Data System (ADS)
Wei, Qi; Wang, Pingxiao; Kais, Sabre; Herschbach, Dudley
2017-09-01
Superstrong femtosecond pulsed lasers can profoundly alter electronic structure of atoms and molecules. The oscillating laser field drives one or more electrons almost free. When averaged over, the rapid oscillations combine with the static Coulomb potential to create an effective binding potential. The consequent array of bound states comprises the ;Kramers-Henneberger Atom;. Theorists have brought forth many properties of KH atoms, yet convincing experimental evidence is meager. We examine a remarkable experiment accelerating atoms (Eichmann et al., 2009). It offers tantalizing evidence for the KH atom, with prospects for firm confirmation by adjustment of laser parameters.
Thermodynamics in variable speed of light theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racker, Juan; Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N; Sisterna, Pablo
2009-10-15
The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for themore » change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.« less
Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming
2014-10-28
Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant.
Galano-Frutos, Juan J; Morón, M Carmen; Sancho, Javier
2015-11-21
Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.
Defect-induced magnetism in two-dimensional NbSe2
NASA Astrophysics Data System (ADS)
Manchanda, P.; Skomski, R.
2017-01-01
The energetics and magnetism of perfect and vacancy-containing two-dimensional NbSe2 monolayers is investigated by first-principle calculations. It has been found the single Se vacancy has the lowest formation energy. Perfect NbSe2 monolayers, as well as monolayers containing single-selenium and double-selenium vacancies, are nonmagnetic metallic. However, Nb vacancies create a magnetic moment of 1.5 μB per vacancy. The moment is highly localized, confined nearly exclusively on the Se atoms adjacent to the vacancy, and mainly originates from the Se 4p electrons. The moment distribution indicates strongly anisotropic exchange bonds between vacancy moments.
Searching for the rules that govern hadron construction
Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.
2016-06-22
Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.
Tetramers of Two Heavy and Two Light Bosons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-07-01
This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.
Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, Daniel Beom Soo
We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.
EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field
NASA Astrophysics Data System (ADS)
Bondar', I. I.; Suran, V. V.
1990-08-01
An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.
Fundamental limitations of cavity-assisted atom interferometry
NASA Astrophysics Data System (ADS)
Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.
2017-11-01
Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.
Bound and resonance states of positronic copper atoms
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Umair, Muhammad; Kino, Yasushi
2017-10-01
We report a theoretical calculation for the bound and S-wave resonance states of the positronic copper atom (e+Cu). A positron is a positively charged particle; therefore, a positronic atom has an attractive correlation between the positron and electron. A Gaussian expansion method is adopted to directly describe this correlation as well as the strong repulsive interaction with the nucleus. The correlation between the positron and electron is much more important than that between electrons in an analogous system of Cu-, although the formation of a positronium (Ps) in e+Cu is not expressed in the ground state structure explicitly. Resonance states are calculated with a complex scaling method and identified above the first excited state of the copper atom. Resonance states below Ps (n = 2) + Cu+ classified to a dipole series show agreement with a simple analytical law. Comparison of the resonance energies and widths of e+Cu with those of e+K, of which the potential energy of the host atom resembles that of e+Cu, reveals that the positions of the resonance for the e+Cu dipole series deviate equally from those of e+K.
Alania, M; Lobato, I; Van Aert, S
2018-01-01
In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.
2018-01-01
In the presence of P , T -violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including
Peculiar bonding associated with atomic doping and hidden honeycombs in borophene
NASA Astrophysics Data System (ADS)
Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke
2018-02-01
Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.
Isotopic effects in the muon transfer from pmu and dmu to heavier atoms.
Dupays, Arnaud
2004-07-23
The results of accurate hyperspherical calculations of the muon-transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen, and neon are reported. Very good agreement with measured rates is obtained and, for the three systems, the isotopic effect is perfectly reproduced. The transfer rate is higher for deuterium in the cases of nitrogen and neon due to constructive interferences between two transfer paths. The lower transfer rate for deuterium in the case of oxygen results from a large resonant contribution. Copyright 2004 The American Physical Society
Focusing of noncircular self-similar shock waves.
Betelu, S I; Aronson, D G
2001-08-13
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.
NASA Technical Reports Server (NTRS)
Drachman, Richard J.
2006-01-01
Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.
Farag, I S Ahmed; Girgis, Adel S; Ramadan, A A; Moustafa, A M; Tiekink, Edward R T
2014-01-01
The title compound, C34H38ClN5O2, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methyl-ene C atom is the flap in the envelope conformation for the pyrrolidine ring. In the crystal, supra-molecular chains are sustained by alternating eight-membered {⋯HNCO}2 and 14-membered {⋯HC5O}2 synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenyl-meth-yl)C-H⋯π(pyrrolidine-bound phen-yl) edge-to-face inter-actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda
The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystalsmore » as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.« less
V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions
NASA Astrophysics Data System (ADS)
Mewe, R.
1999-07-01
This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.
Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo
2016-05-16
The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
Jiang, Xiaoyun; Wang, Tao; Xiao, Shuyuan; Yan, Xicheng; Cheng, Le; Zhong, Qingfang
2018-08-17
A simple perfect absorption structure is proposed to achieve the high efficiency light absorption of monolayer molybdenum disulfide (MoS 2 ) by the critical coupling mechanism of guided resonances. The results of numerical simulation and theoretical analysis show that the light absorption in this atomically thin layer can be as high as 98.3% at the visible wavelengths, which is over 12 times more than that of a bare monolayer MoS 2 . In addition, the operating wavelength can be tuned flexibly by adjusting the radius of the air hole and the thickness of the dielectric layers, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS 2 . The novel idea of using critical coupling to enhance the light-MoS 2 interaction can be also adopted in other atomically thin materials. The meaningful improvement and tunability of the absorption in monolayer MoS 2 provides a good prospect for the realization of high-performance MoS 2 -based optoelectronic applications, such as photodetection and photoluminescence.
Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Karim, Ayman M.; Wang, Yong
2011-04-06
Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways ofmore » the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Astrophysics Data System (ADS)
Tomaschitz, R.
2005-02-01
The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.
The elusive Heisenberg limit in quantum-enhanced metrology
Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin
2012-01-01
Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859
Self-Bound Quantum Droplets of Atomic Mixtures in Free Space
NASA Astrophysics Data System (ADS)
Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M.
2018-06-01
Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this Letter, we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015), 10.1103/PhysRevLett.115.155302], using an attractive bosonic mixture. In this system, spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement, we observe self-bound droplets in free space, and we characterize the conditions for their formation as well as their size and composition. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum to the exploration of their superfluid nature.
Coherent perfect absorption in one-sided reflectionless media
Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2016-01-01
In optical experiments one-sided reflectionless (ORL) and coherent perfect absorption (CPA) are unusual scattering properties yet fascinating for their fundamental aspects and for their practical interest. Although these two concepts have so far remained separated from each other, we prove that the two phenomena are indeed strictly connected. We show that a CPA–ORL connection exists between pairs of points lying along lines close to each other in the 3D space-parameters of a realistic lossy atomic photonic crystal. The connection is expected to be a generic feature of wave scattering in non-Hermitian optical media encompassing, as a particular case, wave scattering in parity-time (PT) symmetric media. PMID:27759020
The bound states of ultracold KRb molecules
NASA Astrophysics Data System (ADS)
Julienne, Paul; Hanna, Thomas
2009-03-01
Recently ultracold vibrational ground state ^40K^87Rb polar molecules have been made using magnetoassociation of two cold atoms to a weakly bound Feshbach molecule, followed by a two-color optical STIRAP process to transfer molecules to the molecular ground state [1]. We have used accurate potential energy curves for the singlet and triplet states of the KRb molecule [2] with coupled channels calculations to calculate all of the bound states of the ^40K^87Rb molecule as a function of magnetic field from the cold atom collision threshold to the v=0 ground state. We have also developed approximate models for understanding the changing properties of the molecular bound states as binding energy increases. Some overall conclusions from these calculations will be presented. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231--235. [2] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Kn"ockel, and E. Tiemann, Phys. Rev. A, 2007, 76, 022511.
Yap, Foong Ha; Chu, Patrick Chun Kau; Yiu, Emily Sze Man; Wong, Stella Fay; Kwan, Stella Wing Man; Matthews, Stephen; Tan, Li Hai; Li, Ping; Shirai, Yasuhiro
2009-07-01
Temporal information is important in the construction of situation models, and many languages make use of perfective and imperfective aspect markers to distinguish between completed situations (e.g., He made a cake) and ongoing situations (e.g., He is making a cake). Previous studies in which the effect of grammatical aspect has been examined have shown that perfective sentences are often processed more quickly than imperfective ones (e.g., Chan, Yap, Shirai, & Matthews, 2004; Madden & Zwaan, 2003; Yap et al., 2004; Yap et al., 2006). However, these studies used only accomplishment verbs (i.e., verbs with an inherent endpoint, such as bake a cake). The present study on the processing of Cantonese includes activity verbs (i.e., durative verbs with no inherent endpoint, such as play the piano), and the results indicate a strong interaction between lexical aspect (i.e., verb type) and grammatical aspect. That is, perfective sentences were processed more quickly with accomplishment verbs, consistent with previous findings, but imperfective sentences were processed more quickly with activity verbs. We suggest that these different aspectual asymmetries emerge as a result of the inherent associations between accomplishment verbs and the bounded features of perfective aspect and between activity verbs and the unbounded features of imperfective aspect. The sentence stimuli from this study may be downloaded from mc.psychonomic-journals.org/content/supplemental.
An Extended Hardness Limit in Bulk Nanoceramics
2014-01-01
spinel as an archetypal hard ceramic, the hardness of this transparent ceramic armor is shown to rigorously follow the Hall–Petch relationship down...as a result of complex phenomena related to an unconven- tionally high ratio of atoms on interfaces, or grain bound- aries, to atoms in the grain
Laser-Free Cold-Atom Gymnastics
NASA Astrophysics Data System (ADS)
Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi
2017-01-01
We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.
Quantum defect theory for the orbital Feshbach resonance
NASA Astrophysics Data System (ADS)
Cheng, Yanting; Zhang, Ren; Zhang, Peng
2017-01-01
In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.
Autoionization following nanoplasma formation in atomic and molecular clusters
NASA Astrophysics Data System (ADS)
Schütte, Bernd; Lahl, Jan; Oelze, Tim; Krikunova, Maria; Vrakking, Marc J. J.; Rouzée, Arnaud
2016-05-01
Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.
2010-01-01
Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10–20% nucleotide deviation from the canonical ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966
Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B
2010-04-01
Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10-20% nucleotide deviation from the canonical ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Robustifying twist-and-turn entanglement with interaction-based readout
NASA Astrophysics Data System (ADS)
Mirkhalaf, Safoura S.; Nolan, Samuel P.; Haine, Simon A.
2018-05-01
The use of multiparticle entangled states has the potential to drastically increase the sensitivity of atom interferometers and atomic clocks. The twist-and-turn (TNT) Hamiltonian can create multiparticle entanglement much more rapidly than the ubiquitous one-axis twisting Hamiltonian in the same spin system. In this paper, we consider the effects of detection noise—a key limitation in current experiments—on the metrological usefulness of nonclassical states generated under TNT dynamics. We also consider a variety of interaction-based readouts to maximize their performance. Interestingly, the optimum interaction-based readout is not the obvious case of perfect time reversal.
NASA Technical Reports Server (NTRS)
Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund
2012-01-01
Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.
NASA Astrophysics Data System (ADS)
Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan
2018-01-01
We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001
An upper bound on the radius of a highly electrically conducting lunar core
NASA Technical Reports Server (NTRS)
Hobbs, B. A.; Hood, L. L.; Herbert, F.; Sonett, C. P.
1983-01-01
Parker's (1980) nonlinear inverse theory for the electromagnetic sounding problem is converted to a form suitable for analysis of lunar day-side transfer function data by: (1) transforming the solution in plane geometry to that in spherical geometry; and (2) transforming the theoretical lunar transfer function in the dipole limit to an apparent resistivity function. The theory is applied to the revised lunar transfer function data set of Hood et al. (1982), which extends in frequency from 10 to the -5th to 10 to the -3rd Hz. On the assumption that an iron-rich lunar core, whether molten or solid, can be represented by a perfect conductor at the minimum sampled frequency, an upper bound of 435 km on the maximum radius of such a core is calculated. This bound is somewhat larger than values of 360-375 km previously estimated from the same data set via forward model calculations because the prior work did not consider all possible mantle conductivity functions.
Stable and 'bounded excursion' gravastars, and black holes in Einstein's theory of gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, P; Da Silva, M F A; Wang, Anzhong
2008-11-15
Dynamical models of prototype gravastars are constructed and studied. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1-{gamma}){sigma} divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. When {gamma}<1 and {Lambda}{ne}0, it is found that in some cases the models represent stable gravastars, and in some cases they represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in some other cases they collapse until themore » formation of black holes occurs. However, when {gamma}{>=}1, even with {Lambda}{ne}0, only black holes are found. In the phase space, the region for both stable gravastars and 'bounded excursion' gravastars is very small in comparison to that for black holes, although it is not completely empty.« less
Stability chart of small mixed 4He-3He clusters
NASA Astrophysics Data System (ADS)
Guardiola, R.; Navarro, J.
2003-11-01
A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2013-10-15
Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less
Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO
NASA Astrophysics Data System (ADS)
Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.
2009-12-01
The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a compressional strain field the vacancies become less stable than those in perfect MgO. In contrast, the region with a dilatational strain field hosts vacancies which are stabilized compared to the perfect crystal. This is in agreement with the previously observed tendency for increasing pressure to decrease the stability of vacancies in MgO. The most stable position for a magnesium vacancy was found to be 1.7 eV more stable than the vacancy in the bulk crystal, suggesting that vacancies will strongly partition to dislocations in MgO. Finally, the energy profile traced out by a vacancy moving through the bulk crystal was compared with that experienced by a vacancy moving along the dislocation core. A low energy pathway for vacancy migration along the dislocation line was found with a migration energy of 1.6 eV compared with a migration energy in the perfect crystal of 1.9 eV. This shows that vacancies segregated to the dislocation line will be significantly more mobile than vacancies in the perfect crystal. Dislocations will act as pipes, allowing material to be rapidly transported through crystals of MgO.
NASA Astrophysics Data System (ADS)
Kelley, M.; Buathong, S.; Dunning, F. B.
2017-05-01
Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3NO2-ions, the data provide no evidence for production of long-lived K+⋯ CH3
Energy of Atoms and Molecules, Science (Experimental): 5316.05.
ERIC Educational Resources Information Center
Buffaloe, Jacquelin F.
This third unit in chemistry is considered for any chemistry student and particularly the college-bound student. An understanding of the material included should enable the student to understand better the concepts in the Dynamic Nature of Atoms and Molecules which are essential for Organic Chemistry, the Chemistry of Carbon and Its Compounds and…
El Gabaly, Farid; Schmid, Andreas K.
2013-03-19
A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
Cooperative resonances in light scattering from two-dimensional atomic arrays
NASA Astrophysics Data System (ADS)
Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne
2017-04-01
We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can shape the emission pattern from an individual quantum emitter into a well-defined, collimated beam, and operate as a nearly perfect mirror for a wide range of incident angles and frequencies. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics. We acknowledge the financial support of the NSF and the MIT-Harvard Center for Ultracold Atoms.
Spherically symmetric Einstein-aether perfect fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Alan A.; Latta, Joey; Leon, Genly
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less
ITFITS model for vibration--translation energy partitioning in atom-- polyatomic molecule collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shobatake, K.; Rice, S.A.; Lee, Y.T.
1973-09-01
A model for vibration-translation energy partitioning in the collinear collision of an atom and an axially symmetric polyatonaic molecule is proposed. The model is based on an extension of the ideas of Mahan and Heidrich, Wilson, and Rapp. Comparison of energy transfers computed from classical trajesctory calculations and the model proposed indicate good agreement when the mass of the free atom is small relative to the mass of the bound atom it strikes. The agreement is less satisfactory when that mass ratio becomes large. (auth)
NASA Technical Reports Server (NTRS)
Reynaud, F.
1988-01-01
In electron diffraction patterns of nickel-rich beta-NiAl alloys, many anomalies are observed. One of these is the appearance of diffuse intensity maxima between the reflexions of the B2 structure. This is explained by the short-range ordering of the excess nickel atoms on the simple cubic sublattice occupied only by aluminum atoms in the stoichiometric, perfectly ordered NiAl alloy. After annealing Ni 37.5 atomic percent Al and Ni 37.75 atomic percent Al for 1 week at 300 and 400 C, the diffuse intensity maxima transformed into sharp superstructure reflexions. These reflexions are explained by the formation of the four possible variants of an ordered hexagonal superstructure corresponding to the Ni2Al composition. This structure is closely related to the Ni2Al3 structure (same space group) formed by the ordering of vacancies on the nickel sublattice in aluminum-rich beta-NiAl alloys.
An estimator for the standard deviation of a natural frequency. I.
NASA Technical Reports Server (NTRS)
Schiff, A. J.; Bogdanoff, J. L.
1971-01-01
A brief review of mean-square approximate systems is given. The case in which the masses are deterministic is considered first in the derivation of an estimator for the upper bound of the standard deviation of a natural frequency. Two examples presented include a two-degree-of-freedom system and a case in which the disorder in the springs is perfectly correlated. For purposes of comparison, a Monte Carlo simulation was done on a digital computer.
Nouvelles bornes et estimations pour les milieux poreux à matrice rigide parfaitement plastique
NASA Astrophysics Data System (ADS)
Bilger, Nicolas; Auslender, François; Bornert, Michel; Masson, Renaud
We derive new rigorous bounds and self-consistent estimates for the effective yield surface of porous media with a rigid perfectly plastic matrix and a microstructure similar to Hashin's composite spheres assemblage. These results arise from a homogenisation technique that combines a pattern-based modelling for linear composite materials and a variational formulation for nonlinear media. To cite this article: N. Bilger et al., C. R. Mecanique 330 (2002) 127-132.
The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.
2004-11-01
We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.
Analytical and numerical treatment of resistive drift instability in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.
An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear inmore » unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.« less
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-01-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011
Zeng, Jiaolong; Yuan, Jianmin
2007-08-01
Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms
NASA Astrophysics Data System (ADS)
Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.
2018-05-01
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms.
Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A
2018-05-11
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Short Range Photoassociation of Rb2 by a high power fiber laser
NASA Astrophysics Data System (ADS)
Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis
2016-05-01
Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.
Di-tert-butyl-chlorido(N,N-dibenzyl-dithio-carbamato)tin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T
2011-02-26
The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)(C(15)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former.
C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.
Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng
2018-01-24
Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.
Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber
NASA Astrophysics Data System (ADS)
Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.
2018-03-01
We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.
Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maj, Michał; Oh, Younjun; Park, Kwanghee
2014-06-21
The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysiamore » Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.« less
Evidence of β-antimonene at the Sb/Bi2Se3 interface.
Flammini, R; Colonna, S; Hogan, C; Mahatha, S K; Papagno, M; Barla, A; Sheverdyaeva, P M; Moras, P; Aliev, Z S; Babanly, M B; Chulkov, E V; Carbone, C; Ronci, F
2018-01-10
We report a study of the interface between antimony and the prototypical topological insulator Bi 2 Se 3 . Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene.
Evidence of β-antimonene at the Sb/Bi2Se3 interface
NASA Astrophysics Data System (ADS)
Flammini, R.; Colonna, S.; Hogan, C.; Mahatha, S. K.; Papagno, M.; Barla, A.; Sheverdyaeva, P. M.; Moras, P.; Aliev, Z. S.; Babanly, M. B.; Chulkov, E. V.; Carbone, C.; Ronci, F.
2018-02-01
We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene.
Electron beam detection of a Nanotube Scanning Force Microscope.
Siria, Alessandro; Niguès, Antoine
2017-09-14
Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.
The Design, Synthesis, and Characterization of Open Sites on Metal Clusters
NASA Astrophysics Data System (ADS)
Nigra, Michael Mark
Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of undercoordinated sites led me to synthesize small gold clusters consisting of a high fraction of coordinatively unsaturated open sites. This was enabled through an approach that utilized bulky calix[4]arene ligands that are bound to a gold core. Since the size of the calix[4]arene ligand is commensurate with the size of the gold cluster core, the calix[4]arene ligand does not pack closely together on the gold cluster surface. This in turn results in areas of accessible gold atom sites between ligands. Additionally, these calix[4]arene ligands prevent cluster aggregation and electronically tune the gold core in a manner conceptually similar to enzymes affecting reactivity through organic side-chains acting as ligands. I quantified the number of open sites that result from this packing problem on the gold cluster surface, using fluorescence probe chemisorption experiments. The results of these chemisorption measurements support the mechanical model of accessibility whereby accessibility is not dependent on the identity of the functional group, whether it be calixarene phosphines or N-heterocyclic carbenes, bound to the gold surface, but rather to the relative radii of curvature of bound ligands and the gold cluster core. Additional materials characterization was completed with transmission electron microscopy in both bright-field imaging of zeolites, in MCM-22 and delaminated ITQ-2 and UCB-1 materials, and in dark field imaging of glucan coatings on oxide particles. These materials could prove to be interesting materials as to use as supports for the calixarene-bound metal clusters described above or for other metal clusters.
Neumann, Piotr; Tittmann, Kai
2014-12-01
Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crystal structures of two mixed-valence copper cyanide complexes with N-methylethylenediamine
Sabatino, Alexander
2017-01-01
The crystal structures of two mixed-valence copper cyanide compounds involving N-methylethylenediamine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3 C:C:N)tris(μ2-cyanido-κ2 C:N)bis(N-methylethane-1,2-diamine-κ2 N,N′)tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link CuI atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetrahedrally bound CuI atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound CuI atoms link these units together to form the network. The CuII atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the molecular compound (II), [(N-methylethylenediamine-κ2 N,N′)copper(II)]-μ2-cyanido-κ2 C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a CuII atom coordinated by two meen groups with a trigonal–planar CuI atom coordinated by CN groups. The molecules are linked into centrosymmetric dimers via hydrogen bonds to two water molecules. In both compounds, the bridging cyanide between the CuII and CuI atoms has the N atom bonded to CuII and the C atom bonded to CuI, and the CuII atoms are in a square-pyramidal coordination. PMID:28217329
Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi
2015-08-03
A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Double absorbing boundaries for finite-difference time-domain electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
Solution Methods for Stochastic Dynamic Linear Programs.
1980-12-01
16, No. 11, pp. 652-675, July 1970. [28] Glassey, C.R., "Dynamic linear programs for production scheduling", OR 19, pp. 45-56. 1971 . 129 Glassey, C.R...Huang, C.C., I. Vertinsky, W.T. Ziemba, ’Sharp bounds on the value of perfect information", OR 25, pp. 128-139, 1977. [37 Kall , P., ’Computational... 1971 . [701 Ziemba, W.T., *Computational algorithms for convex stochastic programs with simple recourse", OR 8, pp. 414-431, 1970. 131 UNCLASSI FIED
Quantum key distribution with passive decoy state selection
NASA Astrophysics Data System (ADS)
Mauerer, Wolfgang; Silberhorn, Christine
2007-05-01
We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.
A numerical procedure for solving the inverse scattering problem for stratified dielectric media
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Yevick, D.; Ferwerda, H. A.
1983-05-01
In this paper the refractive index profile of a dielectric stratified medium, terminated by a perfect conductor, is calculated from the complex reflection coefficient for monochromatic plane waves, incident from different directions. The advantage of this approach is that the dispersion of the refractive index does not enter the calculations. The calculation is based on the Marchenko and Gelfand-Levitan equations taking into account the bound modes of the layer. Some illustrative numerical examples are presented.
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1976-01-01
The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.
NASA Astrophysics Data System (ADS)
Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in
Enhanced Atom Mobility on the Surface of a Metastable Film
NASA Astrophysics Data System (ADS)
Picone, A.; Riva, M.; Fratesi, G.; Brambilla, A.; Bussetti, G.; Finazzi, M.; Duò, L.; Ciccacci, F.
2014-07-01
A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.
Enhanced atom mobility on the surface of a metastable film.
Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F
2014-07-25
A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.
Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.
Schoenhalz, Aline L; Dalpian, Gustavo M
2013-10-14
Cobalt-doped ZnO nanocrystals were studied through ab initio methods based on the Density Functional Theory. Both quantum confinement and surface effects were explicitly taken into account. When only quantum confinement effects are considered, Co atoms interact through a superexchange mechanism, stabilizing an antiferromagnetic ground state. Usually, this is the case for high quality nanoparticles with perfect surface saturation. When the surfaces were considered, a strong hybridization between the Co atoms and surfaces was observed, strongly changing their electronic and magnetic properties. Our results indicated that the surfaces might qualitatively change the properties of impurities in semiconductor nanocrystals.
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
Benchmark quality total atomization energies of small polyatomic molecules
NASA Astrophysics Data System (ADS)
Martin, Jan M. L.; Taylor, Peter R.
1997-05-01
Successive coupled-cluster [CCSD(T)] calculations in basis sets of spdf, spdfg, and spdfgh quality, combined with separate Schwartz-type extrapolations A+B/(l+1/2)α of the self-consistent field (SCF) and correlation energies, permit the calculations of molecular total atomization energies (TAEs) with a mean absolute error of as low as 0.12 kcal/mol. For the largest molecule treated, C2H4, we find ∑D0=532.0 kcal/mol, in perfect agreement with experiment. The aug-cc-pV5Z basis set recovers on average about 99% of the valence correlation contribution to the TAE, and essentially the entire SCF contribution.
Antiproton-impact ionization of hydrogen atom with Yukawa interaction
NASA Astrophysics Data System (ADS)
Jakimovski, Dragan; Grozdanov, Tasko P.; Janev, Ratko K.
2018-01-01
The process of ionization of hydrogen atom by antiproton impact is studied when the interparticle interactions in the system are described by screened interactions of Yukawa type. The collision dynamics is described by the semiclassical atomic-orbital close-coupling method in which the bound atomic states and positive energy continuum pseudostates are determined by diagonalization of target Hamiltonian in a sufficiently large even-tempered basis to ensure convergence of the results at each value of the screening length λ of the interaction. With decreasing the screening length, the bound states in the Yukawa potential become unbound, thus increasing the number of continuum pseudostates. At low collision energies, this leads to the increase of the ionization cross section. It is observed that the energies of pseudostates, generated by the exit of nl bound states in the continuum, at certain critical values λ nl c exhibit series of avoided crossings when λ is varied. The avoided crossings appear between the ( n + k) l and ( n + k + 1) l ( n = 1, 2, 3, … ; k = 0, 1, 2, …) states at screening lengths close to the critical screening length λ nl c . The avoided crossings become increasingly less pronounced with increasing n, k and l. The matrix elements for the ( n + k) l - ( n + k + 1) l transitions at the avoided crossings λ x,(n+k)l (n+k+1)l exhibit maxima and are reflected in the structure of the cross sections for population of the lower nl pseudostates. These structures are, however, smeared out in the total ionization cross section.
Recent Development on O(+) - O Collision Frequency and Ionosphere-Thermosphere Coupling
NASA Technical Reports Server (NTRS)
Omidvar, K.; Menard, R.
1999-01-01
The collision frequency between an oxygen atom and its singly charged ion controls the momentum transfer between the ionosphere and the thermosphere. There has been a long standing discrepancy, extending over a decade, between the theoretical and empirical determination of this frequency: the empirical value of this frequency exceeded the theoretical value by a factor of 1.7. Recent improvements in theory were obtained by using accurate oxygen ion-oxygen atom potential energy curves, and partial wave quantum mechanical calculations. We now have applied three independent statistical methods to the observational data, obtained at the MIT/Millstone Hill Observatory, consisting of two sets A and B. These methods give results consistent with each other, and together with the recent theoretical improvements, bring the ratio close to unity, as it should be. The three statistical methods lead to an average for the ratio of the empirical to the theoretical values equal to 0.98, with an uncertainty of +/-8%, resolving the old discrepancy between theory and observation. The Hines statistics, and the lognormal distribution statistics, both give lower and upper bounds for the Set A equal to 0.89 and 1.02, respectively. The related bounds for the Set B are 1.06 and 1.17. The average values of these bounds thus bracket the ideal value of the ratio which should be equal to unity. The main source of uncertainties are errors in the profile of the oxygen atom density, which is of the order of 11%. An alternative method to find the oxygen atom density is being suggested.
Are there any narrow K--nuclear states?
NASA Astrophysics Data System (ADS)
Hrtánková, Jaroslava; Mareš, Jiří
2017-07-01
We performed self-consistent calculations of K--nuclear quasi-bound states using a single-nucleon K- optical potential derived from chiral meson-baryon coupled-channel interaction models, supplemented by a phenomenological K- multinucleon potential introduced recently to achieve good fits to kaonic atom data [1]. Our calculations show that the effect of K- multinucleon interactions on K- widths in nuclei is decisive. The resulting widths are considerably larger than corresponding binding energies. Moreover, when the density dependence of the K--multinucleon interactions derived in the fits of kaonic atoms is extended to the nuclear interior, the only two models acceptable after imposing as additional constraint the single-nucleon fraction of K- absorption at rest do not yield any kaonic nuclear bound state in majority of considered nuclei.
Mobile bound states of Rydberg excitations in a lattice
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Petrosyan, David
2018-04-01
Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
Carrier-envelope phase-dependent atomic coherence and quantum beats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Ying; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071; Yang Xiaoxue
2007-07-15
It is shown that the carrier-envelope phase (CEP) of few-cycle laser pulses has profound effects on the bound-state atomic coherence even in the weak-field regime where both tunneling and multiphoton ionization hardly take place. The atomic coherence thus produced is shown to be able to be mapped onto the CEP-dependent signal of quantum beats (and other quantum-interference phenomena) and hence might be used to extract information about and ultimately to measure the carrier-envelope phase.
Laser modified processes: bremsstrahlung and inelastic photon atom scattering
NASA Astrophysics Data System (ADS)
Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica
2007-08-01
We consider the influence of a low-frequency monochromatic external electromagnetic field (the laser) on two basic atomic processes: electron Coulomb bremsstrahlung and inelastic photon scattering on an electron bound in the ground state of a hydrogenic atom. We briefly describe the approximations adopted and illustrate in figures how the laser parameters modify the shape of the differential cross-sections and extend the energy domain for emitted electrons, due to simultaneous absorption or emission of a large number (hundreds) of laser photons.
Di-tert-butylchlorido(N,N-dibenzyldithiocarbamato)tin(IV)
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.
2011-01-01
The SnIV atom in the title diorganotin dithiocarbamate, [Sn(C4H9)2(C15H14NS2)Cl], is pentacoordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. PMID:21522304
Carrier Envelope Phase Effect of a Long Duration Pulse in the Low Frequency Region
NASA Astrophysics Data System (ADS)
Zhao, Xi; Yang, Yu-Jun; Liu, Xue-Shen; Wang, Bing-Bing
2014-04-01
Using the characteristic of small energy difference between two high Rydberg states, we theoretically investigate the carrier envelope phase (CEP) effect in a bound-bound transition of an atom in a low-frequency long laser pulse with tens of optical cycles. Particularly, we first prepare a Rydberg state of a hydrogen-like atom by a laser field with the resonant frequency between this state and the ground state. Then by using a low-frequency long laser pulse interacting with this Rydberg atom, we calculate the population of another Rydberg state nearby this Rydberg state at the end of the laser pulse and find that the population changes dramatically with the CEP of the low-frequency pulse. This CEP effect is attributed to the interference between the positive-frequency and negative-frequency components in one-photon transition. These results may provide a method to measure the CEP value of a long laser pulse with low frequency.
CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings
Schmidt, Joel E.; Xie, Dan; Rea, Thomas; ...
2015-01-23
A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [4 25 46 2] mtw building unit and a previously unreported [4 45 2] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected withmore » oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less
Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.
Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U
2018-03-23
Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.
Perturbation theory of a superconducting 0 - π impurity quantum phase transition.
Žonda, M; Pokorný, V; Janiš, V; Novotný, T
2015-03-06
A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.
Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves
NASA Astrophysics Data System (ADS)
Chang, Yu-Hsuan; Lin, De-Hone
2014-01-01
Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.
Ultralong-range Rydberg Molecules: Investigation of a Novel Binding Mechanism
NASA Astrophysics Data System (ADS)
Butscher, Björn; Bendkowsky, Vera; Nipper, Johannes; Balewski, Jonathan; Shaffer, James P.; Löw, Robert; Pfau, Tilman
2010-03-01
For highly excited Rydberg atoms, the scattering of the Rydberg electron from a nearby polarizable ground state atom can generate an attractive mean-field potential which is able to bind the ground state atom to the Rydberg atom within the Rydberg electron wave function at binding energies ranging from a few MHz to hundreds of MHz[1]. We present spectroscopic data on the observation of various bound states including the vibrational ground and excited states of rubidium dimers Rb(5S)-Rb(nS) as well as those of trimer states. Furthermore, we show calculations that reproduce the observed binding energies remarkably well and reveal that some of the excited states are purely bound by quantum reflection at a shape resonance for p-wave scattering [2]. To further characterize the coherent excitation of the molecular states, we performed echo experiments. [0pt] [1] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, T. Pfau, Nature 458, 1005 (2009); [2] V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl,and J. M. Rost, arXiv:0912.4058 (2009)
Charge renormalization at the large-D limit for N-electron atoms and weakly bound systems
NASA Astrophysics Data System (ADS)
Kais, S.; Bleil, R.
1995-05-01
We develop a systematic way to determine an effective nuclear charge ZRD such that the Hartree-Fock results will be significantly closer to the exact energies by utilizing the analytically known large-D limit energies. This method yields an expansion for the effective nuclear charge in powers of (1/D), which we have evaluated to the first order. This first order approximation to the desired effective nuclear charge has been applied to two-electron atoms with Z=2-20, and weakly bound systems such as H-. The errors for the two-electron atoms when compared with exact results were reduced from ˜0.2% for Z=2 to ˜0.002% for large Z. Although usual Hartree-Fock calculations for H- show this to be unstable, our results reduce the percent error of the Hartree-Fock energy from 7.6% to 1.86% and predicts the anion to be stable. For N-electron atoms (N=3-18, Z=3-28), using only the zeroth order approximation for the effective charge significantly reduces the error of Hartree-Fock calculations and recovers more than 80% of the correlation energy.
Anomalous diffusion of single metal atoms on a graphene oxide support
Furnival, Tom; Leary, Rowan K.; Tyo, Eric C.; ...
2017-04-21
Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. As a result, we discover that individual atoms exhibit anomalous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of singlemore » metal atoms.« less
Optimal atomic structure of amorphous silicon obtained from density functional theory calculations
NASA Astrophysics Data System (ADS)
Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes
2017-06-01
Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Rafael I.; Valencia, Felipe; Mella, José
The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role ofmore » nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.« less
Compton spectra of atoms at high x-ray intensity
NASA Astrophysics Data System (ADS)
Son, Sang-Kil; Geffert, Otfried; Santra, Robin
2017-03-01
Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Raghurama P.; Fedorov, Alexander A.; Sauder, J. Michael
Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms withZ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drivede novostructure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74more » Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ~1.0 Å wavelength, where thef'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed thatSHELXDwas capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mnetc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structurede novoor in accurately assigning surface-bound atoms.« less
Ground state energies from converging and diverging power series expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, C.; Norris, S.; Pelphrey, R.
2016-10-15
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thylwe, Karl-Erik; McCabe, Patrick
2013-05-15
It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.
NASA Astrophysics Data System (ADS)
Stephan, Cody J.; Fortenberry, Ryan C.
2017-07-01
The sheer interstellar abundance of helium makes any bound molecules or complexes containing it of potential interest for astrophysical observation. This work utilizes high-level and trusted quantum chemical techniques to predict the rotational, vibrational and rovibrational traits of HeHHe+, HeHNe+ and HeHAr+. The first two are shown to be strongly bound, while HeHAr+ is shown to be more of a van der Waals complex of argonium with a helium atom. In any case, the formation of HeHHe+ through reactions of HeH+ with HeH3+ is exothermic. HeHHe+ exhibits the quintessentially bright proton-shuttle motion present in all proton-bound complexes in the 7.4 micron range making it a possible target for telescopic observation at the mid-/far-Infrared crossover point and a possible tracer for the as-of-yet unobserved helium hydride cation. Furthermore, a similar mode in HeHNe+ can be observed to the blue of this close to 6.9 microns. The brightest mode of HeHAr+ is dimmed due the reduced interaction of the helium atom with the central proton, but this fundamental frequency can be found slightly to the red of the Ar-H stretch in the astrophysically detected argonium cation.
Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins
de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin
2016-01-01
Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381
Majorana bound states in the finite-length chain
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2015-08-01
Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.
The engine of microtubule dynamics comes into focus.
Mitchison, T J
2014-05-22
In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history. Copyright © 2014 Elsevier Inc. All rights reserved.
Photodissociation Studies of Metal-Containing Clusters and Complexes
NASA Astrophysics Data System (ADS)
Pilgrim, Jeffrey Scott
1995-01-01
There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met-cars formed from second-row transition metal atoms. Larger metal-carbon clusters are found to be face-centered-cubic nanocrystals. Photodissociation of these nanocrystals causes fragmentation into smaller nanocrystals. In addition, nanocrystals also dissociatively rearrange into the met -car structure. Two of the metal-carbon nanocrystals ( rm Ti_{14}C_{13 }^+ and rm V_{14 }C_{13}^+) fragment into the met-car with a trapped carbon atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk
Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin tomore » cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities and their refined occupancies, with the fourth bound atom being a Cl atom (in the cisplatin case) or a portion of the CBDC moiety (in the carboplatin case)« less
Atomic density functional and diagram of structures in the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.
2016-02-15
The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less
Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M., E-mail: p.m.koenraad@tue.nl
2015-11-30
We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10{sup 20 }cm{sup −3} obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants,more » disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.« less
NASA Astrophysics Data System (ADS)
McDonald, Mickey Patrick
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics. Finally, we discuss the measurement of photofragment angular distributions produced by photodissociation, leading to an exploration of quantum-state-resolved ultracold chemistry.
Stabilization of very rare tautomers of uracil by an excess electron.
Bachorz, Rafał A; Rak, Janusz; Gutowski, Maciej
2005-05-21
We characterized valence-type and dipole-bound anionic states of uracil using various electronic structure methods. We found that the most stable anion is related to neither the canonical 2,4-dioxo nor a rare imino-hydroxy tautomer. Instead, it is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion is characterized by an electron vertical detachment energy (VDE) of 1267 meV and it is adiabatically stable with respect to the canonical neutral by 3.93 kcal mol(-1). It is also more stable by 2.32 and 5.10 kcal mol(-1) than the dipole-bound and valence anion, respectively, of the canonical tautomer. The VDE values for the former and the latter are 73 and 506 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2499 meV has a proton transferred from N3H to C5. It is less stable than the neutral canonical tautomer by 1.38 kcal mol(-1). The mechanism of formation of anionic tautomers with the carbon C5 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of anionic tautomers with carbon atoms protonated might be unstable upon an excess electron detachment. Indeed, the neutral systems resulting from electron detachment from anionic tautomers with carbon atoms protonated evolve along barrier-free decomposition pathways to a linear or a bicyclo structure, which might be viewed as lesions to RNA. Within the PCM hydration model, the low-lying valence anions become adiabatically bound with respect to the canonical neutral and the two most stable tautomers have carbon atoms protonated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz
Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of themore » domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.« less
Bax, Ben; Chung, Chun Wa; Edge, Colin
2017-02-01
There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.
NASA Astrophysics Data System (ADS)
Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin
2016-03-01
The evolution of the atomic structure and the vibrational and electronic transport properties of gold atomic junctions incorporating molecular and atomic hydrogen upon elongation have been investigated with the nonequilibrium Green's function formalism combined with density functional theory. Our calculations show that for the case of gold junctions doped with a single H2 molecule the low-bias conductance drops rapidly with the electrodes' separation, while it remains almost constant if a single H atom replaces the molecule. In contrast, when one considers two H atoms adsorbed on a gold monatomic chain forming an Au-H-Au-H-Au double-bridge structure, the low-bias conductance increases first and then shows a plateau upon stretching the junction, in perfect agreement with experiments on gold nanocontacts in hydrogen environment. Furthermore, also the distribution of the calculated vibrational energies of the two H atoms is consistent with the experimental result in the low-conductance region, demonstrating clear evidence that hydrogen molecules can dissociate on stretched gold monatomic chains. These findings are helpful to improve our understanding of the structure-property relation of gold nanocontacts and also provide a new prospect for gold nanowires being used as chemical sensors and catalysts.
Dynamics of solvation and desolvation of rubidium attached to He nanodroplets
NASA Astrophysics Data System (ADS)
von Vangerow, J.; John, O.; Stienkemeier, F.; Mudrich, M.
2015-07-01
The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb*) desorb off the He droplets, Rb+ photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb+ solvation to full Rb* desorption is found to occur at a delay time τ ˜ 600 fs for Rb* in the 6pΣ-state and τ ˜ 1200 fs for the 6pΠ-state. Rb+He ions are found to be created by directly exciting bound Rb*He exciplex states as well as by populating bound Rb+He-states in a photoassociative ionization process.
Polymer blend compositions and methods of preparation
Naskar, Amit K.
2016-09-27
A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...
2016-10-12
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less
Probing New Long-Range Interactions by Isotope Shift Spectroscopy.
Berengut, Julian C; Budker, Dmitry; Delaunay, Cédric; Flambaum, Victor V; Frugiuele, Claudia; Fuchs, Elina; Grojean, Christophe; Harnik, Roni; Ozeri, Roee; Perez, Gilad; Soreq, Yotam
2018-03-02
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca^{+} data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.
2016-01-01
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric; ...
2018-02-26
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
Equivalence principle and bound kinetic energy.
Hohensee, Michael A; Müller, Holger; Wiringa, R B
2013-10-11
We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.
Mixing properties of the one-atom maser
NASA Astrophysics Data System (ADS)
Bruneau, Laurent
2014-06-01
We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5-6):1071-1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.
Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yotis, W.W.; Zeb, M.; McNulty, J.
1983-07-01
The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly.more » The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.« less
Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel
Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie
2015-01-01
Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-03-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, H.; Qiu, Y; Philo, J
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666
NASA Astrophysics Data System (ADS)
White, Gary D.
2014-01-01
"I would never teach the Bohr model!" he exclaimed. "I don't believe in teaching things that are just wrong." He was a respected teacher, and I knew I should listen to what he had to say, but in the end I wasn't convinced that his view was right for me and my classes. In fact, I do believe in teaching things that are "just wrong"—selectively. For example, I like my introductory physics students to learn the planetary model of Hydrogen, and not only so that we can discuss why it is deficient. It's a great opportunity to "spiral back" to Newton's second law, circular motion, conservation of energy, and the origin of electromagnetic radiation—and it does get the ionization energy right if you assume an empirically determined radius for the atom! In addition, knowing specifically when, why, and how a model is wrong is one of the hallmarks that distinguishes science from other endeavors. Furthermore, one might argue that there really are no perfect models (models that successfully incorporate gravitational and quantum effects in one philosophically cohesive whole, for example), so every model is "just wrong" in some sense. Finally, even if there was a "perfect" model of the atom to teach, it does not follow that good pedagogy involves teaching it. Let me explain.
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Coherent exciton transport in dendrimers and continuous-time quantum walks
NASA Astrophysics Data System (ADS)
Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander
2006-03-01
We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.
Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment
Zhang, X.; Shen, Z.; Liu, J.; ...
2017-10-10
Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less
Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.; Shen, Z.; Liu, J.
Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less
Positron annihilation in transparent ceramics
NASA Astrophysics Data System (ADS)
Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.
2016-01-01
Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
NASA Astrophysics Data System (ADS)
Massioni, Paolo; Massari, Mauro
2018-05-01
This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.
The covariant entropy conjecture and concordance cosmological models
NASA Astrophysics Data System (ADS)
He, Song; Zhang, Hongbao
2008-10-01
Recently a covariant entropy conjecture has been proposed for dynamical horizons. We apply this conjecture to concordance cosmological models, namely, those cosmological models filled with perfect fluids, in the presence of a positive cosmological constant. As a result, we find that this conjecture has a severe constraint power. Not only does this conjecture rule out those cosmological models disfavored by the anthropic principle, but also it imposes an upper bound 10-60 on the cosmological constant for our own universe, which thus provides an alternative macroscopic perspective for understanding the long-standing cosmological constant problem.
Metal-nanotube composites as radiation resistant materials
NASA Astrophysics Data System (ADS)
González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.
2016-07-01
The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2015-10-01
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less
Low, R; Pothérat, A
2015-05-01
We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
Monomethylioarsenicals are substratres for human arsenic (+3 oxidation state) methyltransferase
Monomethylthioarsenicals are substrates for human arsenic (+3 oxida1tion state) methyltransferase Methylated thioarsenicals are structural analogs of methylated oxyarsenic in which one or more oxygen atom bound t...
Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S
2016-11-01
In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Atomization of Wall-Bounded Two-Phase Flows (Preprint)
2006-11-07
are given in Fig. 2. In the Rayleigh mode hydrodynamic instabilities produced by surface tension cause the jet surface to undulate [16]. Eventually...18], hydrodynamic instabilities [16] or the interaction of vortices in the gas phase [19]. Various mechanisms, discussed in the Atomization...width of the leading edge of the sheet. This regime is analogous to the Rayleigh mode in jets— hydrodynamic instabilities cause the surface of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2008-12-12
The local energy defined by H{psi}/{psi} must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the {psi} under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized {psi}, defined by {sigma}{sup 2}{identical_to}<{psi}|(H-E){sup 2}|{psi}>, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schroedinger equation.more » Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903 724 377 034 119 598 311 159 245 194 4 a.u., which is correct to 32 digits.« less
Surface-confined Ullmann coupling of thiophene substituted porphyrins
NASA Astrophysics Data System (ADS)
Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.
2015-09-01
The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.
Li, Baode; Yang, Dachun; Yuan, Wen
2014-01-01
Let φ : ℝn × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H A φ(ℝn), via the grand maximal function. The authors then obtain some real-variable characterizations of H A φ(ℝn) in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy space H A p(ℝn) with p ∈ (0,1] and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization of H A φ(ℝn), and, as an application, the authors prove that, for a given admissible triplet (φ, q, s), if T is a sublinear operator and maps all (φ, q, s)-atoms with q < ∞ (or all continuous (φ, q, s)-atoms with q = ∞) into uniformly bounded elements of some quasi-Banach spaces ℬ, then T uniquely extends to a bounded sublinear operator from H A φ(ℝn) to ℬ. These results are new even for anisotropic Orlicz-Hardy spaces on ℝn. PMID:24757418
Li, Baode; Yang, Dachun; Yuan, Wen
2014-01-01
Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H(A)(φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H(A)(φ)(ℝ(n)) in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy space H(A)(p) (ℝ(n)) with p ∈ (0,1] and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization of H(A)(φ)(ℝ(n)), and, as an application, the authors prove that, for a given admissible triplet (φ, q, s), if T is a sublinear operator and maps all (φ, q, s)-atoms with q < ∞ (or all continuous (φ, q, s)-atoms with q = ∞) into uniformly bounded elements of some quasi-Banach spaces ℬ, then T uniquely extends to a bounded sublinear operator from H(A)(φ)(ℝ(n)) to ℬ. These results are new even for anisotropic Orlicz-Hardy spaces on ℝ(n).
Variation in the terrestrial isotopic composition and atomic weight of argon
Böhlke, John Karl
2014-01-01
The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.
Information-theoretic measures of hydrogen-like ions in weakly coupled Debye plasmas
NASA Astrophysics Data System (ADS)
Zan, Li Rong; Jiao, Li Guang; Ma, Jia; Ho, Yew Kam
2017-12-01
Recent development of information theory provides researchers an alternative and useful tool to quantitatively investigate the variation of the electronic structure when atoms interact with the external environment. In this work, we make systematic studies on the information-theoretic measures for hydrogen-like ions immersed in weakly coupled plasmas modeled by Debye-Hückel potential. Shannon entropy, Fisher information, and Fisher-Shannon complexity in both position and momentum spaces are quantified in high accuracy for the hydrogen atom in a large number of stationary states. The plasma screening effect on embedded atoms can significantly affect the electronic density distributions, in both conjugate spaces, and it is quantified by the variation of information quantities. It is shown that the composite quantities (the Shannon entropy sum and the Fisher information product in combined spaces and Fisher-Shannon complexity in individual space) give a more comprehensive description of the atomic structure information than single ones. The nodes of wave functions play a significant role in the changes of composite information quantities caused by plasmas. With the continuously increasing screening strength, all composite quantities in circular states increase monotonously, while in higher-lying excited states where nodal structures exist, they first decrease to a minimum and then increase rapidly before the bound state approaches the continuum limit. The minimum represents the most reduction of uncertainty properties of the atom in plasmas. The lower bounds for the uncertainty product of the system based on composite information quantities are discussed. Our research presents a comprehensive survey in the investigation of information-theoretic measures for simple atoms embedded in Debye model plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.B. Jr.
Various methods for the calculation of lower bounds for eigenvalues are examined, including those of Weinstein, Temple, Bazley and Fox, Gay, and Miller. It is shown how all of these can be derived in a unified manner by the projection technique. The alternate forms obtained for the Gay formula show how a considerably improved method can be readily obtained. Applied to the ground state of the helium atom with a simple screened hydrogenic trial function, this new method gives a lower bound closer to the true energy than the best upper bound obtained with this form of trial function. Possiblemore » routes to further improved methods are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armour, E.A.G.
1982-06-07
It has been known since the work of Aronson, Kleinman and Spruch, and Armour that, if the proton is considered to be infinitely massive, no bound state of a system made up of a positron and a hydrogen atom can exist. In this Letter a new method is introduced for taking into account finite nuclear mass. With use of this method it is shown that the inclusion of the finite mass of the proton does not result in the appearance of a bound state. This is the first time that this result has been established.
Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hebin; Welch, George R.; Sautenkov, Vladimir A.
2010-03-12
We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency. The phase difference between the carrier and the envelope of the pulses has a significant effect on the excitation of atomic coherence and population transfer. We provide a theoretical description of this phenomenon using density matrix equations. Wemore » discuss the implications and possible applications of our results.« less
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harak, B. A. de; Ladino, L.; MacAdam, K. B.
We report measurements of the scattering of electrons by helium atoms in the presence of 1.17 eV photons from a Nd:YAG laser. The incident energy of the electrons was in the range 50-350 eV, and the polarization of the laser was arranged to be parallel to electrons scattered through 135 deg. Energy-shifted peaks corresponding both to one- and two-photon emission were observed. Calculations using the Kroll-Watson approximation are perfectly consistent with the data.
Magnetophotoluminescence de dyades d'azote uniques dans le gallium arsenide
NASA Astrophysics Data System (ADS)
Ouellet-Plamondon, Clauderic
On the goal to achieve an efficient quantum light source, there are many possibilities ranging from lasers to quantum dots. One of those candiate is to use a single nitrogen dyad in GaAs. This nanostructure is composed of two nitrogen atoms in nearest neigbors subsituting for two arsenic atoms. Since both of those atoms have the same valence, the combined effet of the electronegativity and the small size of the nitrogen atoms form a potential well which attracts an electron. A hole is then bound to the electron via coulomb interaction, creating a bound exciton at the dyad from which the luminescence can be studied. In this work, we present an experimental study of the fine structure of the emission from single nitrogen dyads. The photoluminescence measurements are realised using a high resolution confocal microscope and under a magnetic field of up to 7 T. The spatial resolution combined with the sample's surface density of nitrogen dyads allows studying the properties of individual dyads. Since the C2v symmetry of the dyad lifts the degeneracy of the excitonic levels without magnetic field, four or five transitions are observed, depending on the orientation of the dyad with respect to the observation axis. Using a Hamiltonian taking into account the exchange interaction, the local crystal field and the Zeeman effect, the energie of excitonic states as well as their transition probabilites are modelised. This model reproduce the linear polarization of the emmited photons and is used to determine a range of acceptable value for the g-factor of the bound electron as well as the isotropic and anisotropic factors of the interaction of the weakly-bound hole with the magnetic field. Furthermore, from the diamagnetic shift, the radius of the wavefunction of the electron is evalutated at 16.2 °A, confirming that it is strongly localized to the dyad. Of all the dyads studied, a certain number of them had an emission strickingly different from the ones usually observed. In a first case, the environment perturbed the excitonic states making only the two states at higher energy observable. In a second case, an additional depolarised transition is observed at lower energy. We show that this transition is associated to a charged exciton, indicating for the first time that these nanotructures can bind multiple charges like their larger epitaxial and colloidal counterpart. This work gives a better comprehension of excitons bound to a nitrogen dyad and opens the way to many applications.
Spontaneous emission near the edge of a photonic band gap
NASA Astrophysics Data System (ADS)
John, Sajeev; Quang, Tran
1994-08-01
The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.
Photoluminescence Study of N-Type Thermal Conversion in Semi-Insulating GaAs.
1982-12-01
free electron to the crystal. For example, in GaAs, a tellurium atom on an arsenic site (TeAs) or a silicon atom on a gallium site (SiGa) are donor atoms...Photoconductivity Photoluminescenc Silicon, SiGa 5.81 6.80 Germanium, GeGa 6.08 Sulfur, SAs 6.10 Selenium, SeAs 5.89 6.10 Tellurium , TeAs When an electron...34 to the neutral donor or acceptor (Ref 16:15). The following excitonic com- plexes have been observed in GaAs: (i) exciton bound to a neutron donor at
Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms
NASA Astrophysics Data System (ADS)
Noel, Michael W.; Griffith, W. M.; Gallagher, T. F.
2000-12-01
We have studied the ionization of lithium Rydberg atoms by pulsed microwave fields in the regime in which the microwave frequency is equal to or a subharmonic of the classical Kepler frequency of the two-body Coulomb problem. We have observed a series of resonances where the atom is relatively stable against ionization. The resonances are similar to those seen previously in hydrogen, but with significant quantitative differences. We also present measurements of the distribution of states that remain bound after the microwave interaction for initial states near one of the classical subharmonic resonances.
FY16 Status Report on Development of Integrated EPP and SMT Design Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetter, R. I.; Sham, T. -L.; Wang, Y.
2016-08-01
The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less
Energy loss and inelastic diffraction of fast atoms at grazing incidence
NASA Astrophysics Data System (ADS)
Roncin, Philippe; Debiossac, Maxime; Oueslati, Hanene; Raouafi, Fayçal
2018-07-01
The diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD) was first interpreted only in terms of elastic diffraction from a perfectly periodic rigid surface with atoms fixed at equilibrium positions. Recently, a new approach has been proposed, referred here as the quantum binary collision model (QBCM). The QBCM takes into account both the elastic and inelastic momentum transfers via the Lamb-Dicke probability. It suggests that the shape of the inelastic diffraction profiles are log-normal distributions with a variance proportional to the nuclear energy loss deposited on the surface. For keV Neon atoms impinging on a LiF(0 0 1) surface under an incidence angle θ , the predictions of the QBCM in its analytic version are compared with numerical trajectory simulations. Some of the assumptions such as the planar continuous form, the possibility to neglect the role of lithium atoms and the influence of temperature are investigated. A specific energy loss dependence ΔE ∝θ7 is identified in the quasi-elastic regime merging progressively to the classical onset ΔE ∝θ3 . The ratio of these two predictions highlights the role of quantum effects in the energy loss.
Exact results for the Floquet coin toss for driven integrable models
NASA Astrophysics Data System (ADS)
Bhattacharya, Utso; Maity, Somnath; Banik, Uddipan; Dutta, Amit
2018-05-01
We study an integrable Hamiltonian reducible to free fermions, which is subjected to an imperfect periodic driving with the amplitude of driving (or kicking), randomly chosen from a binary distribution like a coin-toss problem. The randomness present in the driving protocol destabilizes the periodic steady state reached in the limit of perfectly periodic driving, leading to a monotonic rise of the stroboscopic residual energy with the number of periods (N ) for such Hamiltonians. We establish that a minimal deviation from the perfectly periodic driving in the present case using such protocols would always result in a bounded heating up of the system with N to an asymptotic finite value. Exploiting the completely uncorrelated nature of the randomness and the knowledge of the stroboscopic Floquet operator in the perfectly periodic situation, we provide an exact analytical formalism to derive the disorder averaged expectation value of the residual energy through a disorder operator. This formalism not only leads to an immense numerical simplification, but also enables us to derive an exact analytical form for the residual energy in the asymptotic limit which is universal, i.e., independent of the bias of coin-toss and the protocol chosen. Furthermore, this formalism clearly establishes the nature of the monotonic growth of the residual energy at intermediate N while clearly revealing the possible nonuniversal behavior of the same.
NASA Astrophysics Data System (ADS)
Pal'Chikov, V. G.
2000-08-01
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less
Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.
Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V
2018-02-28
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.
Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber
Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido
2016-01-01
We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160
Effective conductivity of suspensions of overlapping spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, I.C.; Torquato, S.
1992-03-15
An accurate first-passage simulation technique formulated by the authors (J. Appl. Phys. {bold 68}, 3892 (1990)) is employed to compute the effective conductivity {sigma}{sub {ital e}} of distributions of penetrable (or overlapping) spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1}. Clustering of particles in this model results in a generally intricate topology for virtually the entire range of sphere volume fractions {phi}{sub 2} (i.e., 0{le}{phi}{sub 2}{le}1). Results for the effective conductivity {sigma}{sub {ital e}} are presented for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0), andmore » for a wide range of volume fractions. The data are shown to lie between rigorous three-point bounds on {sigma}{sub {ital e}} for the same model. Consistent with the general observations of Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) regarding the utility of rigorous bounds, one of the bounds provides a good estimate of the effective conductivity, even in the extreme contrast cases ({alpha}{much gt}1 or {alpha}{congruent}0), depending upon whether the system is below or above the percolation threshold.« less
Hydrodynamic & Transport Properties of Dirac Materials in the Quantum Limit
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, its two dimensional version in graphene, is the focus of this work. We seek a deeper understanding of the interactions in the quantum limit within graphene. Specifically, we derive hydrodynamic and transport properties, such as the conductivity, viscosity, and spin diffusion, in the low temperature regime where electron-electron scattering is dominant. To conclude, we look at the so-called universal lower bound conjectured by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence for the ratio of shear viscosity to entropy density ratio. The lower bound, given by η / s >= ℏ / (4 πkB) , is supposedly obeyed by all quantum fluids. This leads us to ask whether or not graphene can be considered a quantum fluid and perhaps a ''nearly perfect fluid''(NPF) if this is the case, is it possible to find a violation of this bound at low temperatures.
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
Lousada, Cláudio M; Korzhavyi, Pavel A
2016-04-05
We investigated the performance of the density functional theory (DFT) functionals PBE, PBE0, M06, and M06-L for describing the molecular and dissociative adsorption of O2 onto pure and doped Al(111) surfaces. Adsorption of O2 was studied at the perfect Al(111) surface and compared with the case where an additional Al atom was present as an adatom. Additionally, we studied how these functionals perform when different dopants are present at the Al(111) surface in two distinct geometries: as an adatom or as a substitutional atom replacing an Al atom. The performance of the different functionals is greatly affected by the surface geometry. The inclusion of Hartree-Fock exchange in the functional leads to slight differences in adsorption energies for molecular adsorption of O2 . These differences become very pronounced for dissociative adsorption, with the hybrids PBE0 and M06 predicting more exergonic adsorption than PBE and M06-L. Furthermore, PBE0 and M06 predicted trends in adsorption energies for defective and perfect surfaces which are in line with the experimental knowledge of the effects of surface defects in adsorption energies. The predictions of the non-hybrids PBE and M06-L point in the opposite direction. The analysis of the contributions of the van der Waals (vdW) forces to the adsorption energies reveals that the PBE and PBE0 functionals have similar difficulties in describing vdW interactions for molecular adsorption of O2 while the M06 functional can give a description of these forces with an accuracy which is at least similar to that of the correction of the D3 type. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Babb, James F.
2015-08-01
The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.
Tunable zero-line modes via magnetic field in bilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Ke; Qiao, Zhenhua
Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.
Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.
Nishikawa, Osamu; Taniguchi, Masahiro
2017-04-01
In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto
2018-04-01
We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.
Structure determination in 55-atom Li-Na and Na-K nanoalloys.
Aguado, Andrés; López, José M
2010-09-07
The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.
Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.C.; Reynaud, G.W.; Botto, D.J.
1979-05-01
An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)
NASA Astrophysics Data System (ADS)
Machner, H.
2011-10-01
The η meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp→3Heη and dd→4Heη. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: In a two-nucleon transfer reaction under quasi-free conditions, p27Al→3HeX, was investigated. The system X can be the bound 25Mg⊗η at rest. When a possible decay of an intermediate N*(1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3±1.6 MeV and a width of σ = 4.4±1.3 MeV.
Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes
NASA Astrophysics Data System (ADS)
Abramyan, Andrey K.; Bessonov, Nick M.; Mirantsev, Leonid V.; Chevrychkina, Anastasiia A.
2018-03-01
Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls.
Nearly Supersymmetric Dark Atoms
Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; ...
2011-01-01
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less
NASA Astrophysics Data System (ADS)
Zhou, Bo; Trinajstić, Nenad
2008-03-01
We report lower bounds for the Kirchhoff index of a connected (molecular) graph in terms of its structural parameters such as the number of vertices (atoms), the number of edges (bonds), maximum vertex degree (valency), connectivity and chromatic number.
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Kurylov; G. C. McLaughlin; M.J. Ramsey-Musolf
2001-03-01
We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarios under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of {sup 199}Hgmore » are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.« less
NASA Technical Reports Server (NTRS)
Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.
2016-01-01
For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Krivvii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTEmodel-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Krivvii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high SN ultraviolet (UV)observations of the hot white dwarf RE 0503.
Exospheric perturbations by radiation pressure. II - Solution for orbits in the ecliptic plane
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1980-01-01
A previous study (Chamberlain, 1979) gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure; each element was assumed to behave independently. In the present paper, the instantaneous rates of changes for three elements (e, Omega, and phi = omega + Omega) are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tighly bound to the planet, and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the earth's atmosphere.
NASA Astrophysics Data System (ADS)
Hungerford, Aimee; Fontes, Christopher J.
2018-06-01
Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.
Scanning Tunneling Microscopy Observation of Phonon Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Schmidt, Richard
2017-04-01
In this talk we review the theory of various types of Bose polarons that can be realized in ultracold atomic systems. We then report the spectroscopic observation of Rydberg polarons in a Bose gas which is in excellent agreement with theoretical predictions. This novel type of polaron is created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate and it is distinguished by the occupation of a large number bound molecular states. The cross-over from few-body bound molecular oligomers to many-body polaron features is described with a functional determinant theory that solves an extended Froehlich Hamiltonian for an impurity in a Bose gas. The detailed analysis of the red-detuned tail of the excitation spectrum describes the contribution from the region of highest density in the condensate and provides a clear signature of Rydberg polarons. This work has been performed in collaboration with groups at Rice University, Harvard University, and the TU Vienna.
Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing
2015-07-01
The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.
NASA Astrophysics Data System (ADS)
Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing
2018-05-01
Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.
Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers
2009-11-04
vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4
NASA Astrophysics Data System (ADS)
Choi, Deung-Jang; Fernández, Carlos García; Herrera, Edwin; Rubio-Verdú, Carmen; Ugeda, Miguel M.; Guillamón, Isabel; Suderow, Hermann; Pascual, José Ignacio; Lorente, Nicolás
2018-04-01
We show that the magnetic ordering of coupled atomic dimers on a superconductor is revealed by their intragap spectral features. Chromium atoms on the superconductor β -Bi2Pd surface display Yu-Shiba-Rusinov bound states, detected as pairs of intragap excitations in tunneling spectra. By means of atomic manipulation with a scanning tunneling microscope's tip, we form Cr dimers with different arrangements and find that their intragap features appear either shifted or split with respect to single atoms. These spectral variations are associated with the magnetic coupling, ferromagnetic or antiferromagnetic, of the dimer, as confirmed by density functional theory simulations. The striking qualitative differences between the observed tunneling spectra prove that intragap Shiba states are extremely sensitive to the magnetic ordering on the atomic scale.
A tour about existence and uniqueness of dg enhancements and lifts
NASA Astrophysics Data System (ADS)
Canonaco, Alberto; Stellari, Paolo
2017-12-01
This paper surveys the recent advances concerning the relations between triangulated (or derived) categories and their dg enhancements. We explain when some interesting triangulated categories arising in algebraic geometry have a unique dg enhancement. This is the case, for example, for the unbounded derived category of quasi-coherent sheaves on an algebraic stack or for its full triangulated subcategory of perfect complexes. Moreover we give an account of the recent results about the possibility to lift exact functors between the bounded derived categories of coherent sheaves on smooth schemes to dg (quasi-)functors.
Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections
NASA Astrophysics Data System (ADS)
Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.
2017-02-01
To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.
NASA Astrophysics Data System (ADS)
Ishiuchi, Shun-ichi; Sakai, Makoto; Tsuchida, Yuji; Takeda, Akihiro; Kawashima, Yasutake; Dopfer, Otto; Müller-Dethlefs, Klaus; Fujii, Masaaki
2007-09-01
IR spectra of phenol-Arn (PhOH-Arn) clusters with n =1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus π bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, νOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH -Ar2 as well as cationic PhOH +-Ar have a π-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH +-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This π →H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The π-bound νOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound νOH band. The analysis of the picosecond IR spectra demonstrates that (i) the π →H site switching is an elementary reaction with a time constant of ˜7ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100cm-1), (iii) both the position and the width of the H-bound νOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from π bonding to H bonding in the PhOH +-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.
NASA Technical Reports Server (NTRS)
Glover, R. M.; Weinhold, F.
1977-01-01
Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.
Study of thermal scattering for organic tissues through molecular dynamics
NASA Astrophysics Data System (ADS)
Ramos, Ricardo; Cantargi, Florencia; Marquez Damian, Jose Ignacio; Gonçalves-Carralves, Manuel Sztejnberg
2017-09-01
Boron Neutron Capture Therapy (BNCT) is an experimental therapy for tumors which is based on the nuclear reaction that occurs when 10B is irradiated with thermal neutrons. Calculations for BNCT with Monte Carlo N-Particle (MCNP) take into account the thermal scattering treatment for hydrogen bound in bulk water for any organic tissue. However, in these tissues, hydrogen is also present in macromolecules (protein, lipids, etc.) and in confined water. Thermal scattering cross section for hydrogen in an organic tissue can be determined by calculating the scattering law S(α,β). This function can be obtained with the nuclear data processing system NJOY from the vibrational frequency spectrum of an atom in a molecular system. We performed calculations of the frequency spectrum from molecular dynamics simulations using the program GROMACS. Systems composed of a peptide in a water box were considered, with different proportions of water molecules. All-atom potentials for modeling this molecules were used in order to represent the internal vibrational normal modes for the atoms of hydrogen. The results showed several internal normal modes that in the case of hydrogen bound in bulk water do not appear.
Schmidt, Joel E.; Xie, Dan; Rea, Thomas
2015-01-01
A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (∼7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants. PMID:29163872
Antibody-gold cluster conjugates
Hainfeld, J.F.
1988-06-28
Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.
Cosmology beyond the Standard Model
NASA Astrophysics Data System (ADS)
Wells, Christopher M.
The Standard Model of Cosmology, like its particle physics counterpart, is incomplete in its present form theoretically and observationally. Additional structure, in the form of an early period of accelerated expansion (inflation), is suggested by the special initial conditions required to produce the visible universe. Furthermore, a wide variety of indirect observations indicate that 80% of the mass in the universe is dark. In this thesis, we construct a class of inflation models free from the usual pathologies. In particular, we build a novel realization of hybrid inflation, in which both the inflaton and waterfall degrees of freedom are moduli of a higher dimensional compactification. Because the inflationary fields are realized as global degrees of freedom in the extra dimension, they are protected from the 4D quantum corrections that would otherwise spoil inflation. Via the Ads/CFT correspondence we can relate our construction to a dual theory of composite inflationary degrees of freedom. We then turn to studying the problem of missing matter in the Standard Cosmology. Despite an abundance of indirect observations of dark matter, direct detection experiments have produced conflicting results which seem to point to a more complicated dark sector. In this thesis, we propose that dark matter be made up primarily of non-relativistic bound states, i.e. dark atoms. We explore the atomic parameter space allowed by the demands that dark matter is predominantly atomic and that the dark atoms and ions satisfy observational bounds on dark matter self-interactions. We then study possible interactions between dark matter and normal matter such that dark atoms scatter inelastically from nuclei in direct detection experiments.
Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D
2011-01-03
The synthesis, structure, and bonding of BaTl(4) are described [C2/m, Z = 4, a = 12.408(3), b = 5.351(1), c = 10.383(2) Å, β = 116.00(3)°]. Pairs of edge-sharing Tl pentagons are condensed to generate a network of pentagonal biprisms along b that encapsulate Ba atoms. Alternating levels of prisms along c afford six more bifunctional Tl atoms about the waists of the biprisms, giving Ba a coordination number of 16. Each Tl atom is bonded to five to seven other Tl atoms and to three to five Ba atoms. There is also strong evidence that Hg substitutes preferentially in the shared edges of the Tl biprisms in BaHg(0.80)Tl(3.20) to generate more strongly bound Hg(2) dimers. Cations that are too small relative to the dimensions of the surrounding polyanionic network make this BaTl(4) structure (and for SrIn(4) and perhaps EuIn(4) as well) one stable alternative to tetragonal BaAl(4)-type structures in which cations are bound in larger hexagon-faced nets, as for BaIn(4) and SrGa(4). Characteristic condensation and augmentation of cation-centered prismatic units is common among many relatively cation- and electron-poor, polar derivatives of Zintl phases gain stability. At the other extreme, the large family of Frank-Kasper phases in which the elements exhibit larger numbers of bonded neighbors are sometimes referred to as orbitally rich.
NASA Astrophysics Data System (ADS)
Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.
2017-11-01
We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.
Theory of molecular rate processes in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.
1979-01-01
The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.
Stabilization and Structure of wave packets in Rydberg atoms ionized by a strong light field.
Fedorov, M; Fedorov, S
1998-09-28
New features of the phenomenon of interference stabilization of Rydberg atoms are found to exist. The main of them are: (i) dynamical stabilization, which means that in case of pulses with a smooth envelope the time-dependent residual probability for an atom to survive in bound states remains almost constant in the middle part of a pulse (at the strongest fields); (ii) existence of the strong-field stabilization of the after-pulse residual probability in case of pulses longer than the classical Kepler period; and (iii) pulsation of the time-dependent Rydberg wave packet formed in the process of photoionization.
The nuclear size and mass effects on muonic hydrogen-like atoms embedded in Debye plasma
NASA Astrophysics Data System (ADS)
Poszwa, A.; Bahar, M. K.; Soylu, A.
2016-10-01
Effects of finite nuclear size and finite nuclear mass are investigated for muonic atoms and muonic ions embedded in the Debye plasma. Both nuclear charge radii and nuclear masses are taken into account with experimentally determined values. In particular, isotope shifts of bound state energies, radial probability densities, transition energies, and binding energies for several atoms are studied as functions of Debye length. The theoretical model based on semianalytical calculations, the Sturmian expansion method, and the perturbative approach has been constructed, in the nonrelativistic frame. For some limiting cases, the comparison with previous most accurate literature results has been made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.
We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, asmore » well as applications for electrons bound to a 2D surface.« less
Reformulation of the relativistic conversion between coordinate time and atomic time
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1975-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring 'earth-bound' proper time or atomic time). After an interpretation in terms of relatively well-known concepts, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th, is used to explain the conventions required in the synchronization of a worldwide clock network and to analyze two synchronization techniques - portable clocks and radio interferometry. Finally, pertinent experimental tests of relativity are briefly discussed in terms of the reformulated time conversion.
NASA Astrophysics Data System (ADS)
Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.
2014-03-01
Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Shengmei
2017-04-01
Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.
Interpretation of the MEG-MUSIC scan in biomagnetic source localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Lewis, P.S.; Leahy, R.M.
1993-09-01
MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak atmore » unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.« less
NASA Astrophysics Data System (ADS)
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
Dark State Optical Lattice with a Subwavelength Spatial Structure
NASA Astrophysics Data System (ADS)
Wang, Y.; Subhankar, S.; Bienias, P.; ŁÄ cki, M.; Tsui, T.-C.; Baranov, M. A.; Gorshkov, A. V.; Zoller, P.; Porto, J. V.; Rolston, S. L.
2018-02-01
We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 1 05 times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings.
NASA Astrophysics Data System (ADS)
Lai, Tang-Yu; Wang, Kuan-Yu; Fang, Te-Hua; Huang, Chao-Chun
2018-02-01
Bismuth telluride (Bi2Te3) is a type of thermoelectric material used for energy generation that does not cause pollution. Increasing the thermoelectric conversion efficiency (ZT) is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the mechanical properties and thermal conductivity of quintuple layers of Bi2Te3 nanofilms with different atomic arrangements at the interface and study the effects of varying layers, angles, and grain boundaries. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity, and the maximum yield stress is observed for a thickness of ∼90 Å. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. The results of this investigation are helpful for the application of Bi2Te3 nanofilms as thermoelectric materials.
Structural refinement of vitreous silica bilayers
NASA Astrophysics Data System (ADS)
Sadjadi, Mahdi; Wilson, Mark; Thorpe, M. F.
The importance of glasses resides not only in their applications but in fundamental questions that they put forth. The continuous random network model can successfully describe the glass structure, but determining details, like ring statistics, has always been difficult using only diffraction data. But recent atomic images of 2D vitreous silica bilayers can offer valuable new insights which are hard to be observed directly in 3D silica models/experiments (for references see). However, the experimental results are prone to uncertainty in atomic positions, systematic errors, and being finite. We employ special boundary conditions developed for such networks to refine the experimental structures. We show the best structure can be found by using various potentials to maximize information gained from the experimental samples. We find a range of densities, the so-called flexibility window, in which tetrahedra are perfect. We compare results from simulations using harmonic potentials, MD with atomic polarizabilities included and DFT. We should thank David Drabold and Bishal Bhattarai for useful discussions. Support through NSF Grant # DMS 1564468 is gratefully acknowledged.
Goldstone and Higgs modes of photons inside a cavity
NASA Astrophysics Data System (ADS)
Yi-Xiang, Yu; Ye, Jinwu; Liu, Wu-Ming
2013-12-01
Goldstone and Higgs modes have been detected in various condensed matter, cold atom and particle physics experiments. Here, we demonstrate that the two modes can also be observed in optical systems with only a few (artificial) atoms inside a cavity. We establish this connection by studying the U(1)/Z2 Dicke model where N qubits (atoms) coupled to a single photon mode. We determine the Goldstone and Higgs modes inside the super-radiant phase and their corresponding spectral weights by performing both 1/J = 2/N expansion and exact diagonalization (ED) study at a finite N. We find nearly perfect agreements between the results achieved by the two approaches when N gets down even to N = 2. The quantum finite size effects at a few qubits make the two modes quite robust against an effectively small counterrotating wave term. We present a few schemes to reduce the critical coupling strength, so the two modes can be observed in several current available experimental systems by just conventional optical measurements.
Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders
2018-04-12
Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.
Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7
NASA Astrophysics Data System (ADS)
Ortigoza, M. Alcántara; Rahman, T. S.
2008-04-01
Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.
Bound states, scattering states, and resonant states in PT -symmetric open quantum systems
NASA Astrophysics Data System (ADS)
Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi
2015-08-01
We study a simple open quantum system with a PT -symmetric defect potential as a prototype in order to illustrate a number of general features of PT -symmetric open quantum systems; however, the potential itself could be mimicked by a number of PT systems that have been experimentally studied quite recently. One key feature is the resonance in continuum (RIC), which appears in both the discrete spectrum and the scattering spectrum of such systems. The RIC wave function forms a standing wave extending throughout the spatial extent of the system and in this sense represents a resonance between the open environment associated with the leads of our model and the central PT -symmetric potential. We also illustrate that as one deforms the system parameters, the RIC may exit the continuum by splitting into a bound state and a virtual bound state at the band edge, a process which should be experimentally observable. We also study the exceptional points appearing in the discrete spectrum at which two eigenvalues coalesce; we categorize these as either EP2As, at which two real-valued solutions coalesce before becoming complex-valued, and EP2Bs, for which the two solutions are complex on either side of the exceptional point. The EP2As are associated with PT -symmetry breaking; we argue that these are more stable against parameter perturbation than the EP2Bs. We also study complex-valued solutions of the discrete spectrum for which the wave function is nevertheless spatially localized, something that is not allowed in traditional open quantum systems; we illustrate that these may form quasibound states in continuum under some circumstances. We also study the scattering properties of the system, including states that support invisible propagation and some general features of perfect transmission states. We finally use our model as a prototype for the construction of scattering states that satisfy PT -symmetric boundary conditions; while these states do not conserve the traditional probability current, we introduce the PT current which is preserved. The perfect transmission states appear as a special case of the PT -symmetric scattering states.
Zavou, Christina; Kkoushi, Antria; Koutsou, Achilleas; Christodoulou, Chris
2017-11-01
The aim of the current work is twofold: firstly to adapt an existing method measuring the input synchrony of a neuron driven only by excitatory inputs in such a way so as to account for inhibitory inputs as well and secondly to further appropriately adapt this measure so as to be correctly utilised on experimentally-recorded data. The existing method uses the normalized pre-spike slope (NPSS) of the membrane potential, resulting from observing the slope of depolarization of the membrane potential of a neuron prior to the moment of crossing the threshold within a short period of time, to identify the response-relevant input synchrony and through it to infer the operational mode of a neuron. The first adaptation of NPSS is made such that its upper bound calculation accommodates for the higher possible slope values caused by the lower average and minimum membrane potential values due to inhibitory inputs. Results indicate that when the input spike trains arrive randomly, the modified NPSS works as expected inferring that the neuron is operating as a temporal integrator. When the input spike trains arrive in perfect synchrony though, the modified NPSS works as expected only when the level of inhibition is much higher than the level of excitation. This suggests that calculation of the upper bound of the NPSS should be a function of the ratio between excitatory and inhibitory inputs in order to be able to correctly capture perfect synchrony at a neuron's input. In addition, we effectively demonstrate a process which has to be followed when aiming to use the NPSS on real neuron recordings. This process, which relies on empirical observations of the slope of depolarisation for estimating the bounds for the range of observed interspike interval lengths, is successfully applied to experimentally-recorded data showing that through it both a real neuron's operational mode and the amount of input synchrony that caused its firing can be inferred. Copyright © 2017 Elsevier B.V. All rights reserved.
Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy
NASA Astrophysics Data System (ADS)
Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian
2017-08-01
Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.
Defects and oxidation of group-III monochalcogenide monolayers
NASA Astrophysics Data System (ADS)
Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun
2017-09-01
Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.
Zhang, Yu-Min; Wang, Jian-Ru; Zhang, Nai-Li; Liu, Xiao-Ming; Zhou, Mo; Ma, Shao-Ying; Yang, Ting; Li, Bao-Xing
2014-09-01
Before 1986, the development of tissue banking in China has been slow and relatively uncoordinated. Under the support of International Atomic Energy Agency (IAEA), Tissue Banking in China experienced rapid development. In this period, China Institute for Radiation Protection tissue bank mastered systematic and modern tissue banking technique by IAEA training course and gradually developed the first regional tissue bank (Shanxi Provincial Tissue Bank, SPTB) to provide tissue allograft. Benefit from training course, SPTB promoted the development of tissue transplantation by ways of training, brochure, advertisement and meeting. Tissue allograft transplantation acquired recognition from clinic and supervision and administration from government. Quality system gradually is developing and perfecting. Tissue allograft transplantation and tissue bank are developing rapidly and healthy.
Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...
2014-11-10
Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less
Electro-Optic Quantum Memory for Light Using Two-Level Atoms
NASA Astrophysics Data System (ADS)
Hétet, G.; Longdell, J. J.; Alexander, A. L.; Lam, P. K.; Sellars, M. J.
2008-01-01
We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.
Electro-optic quantum memory for light using two-level atoms.
Hétet, G; Longdell, J J; Alexander, A L; Lam, P K; Sellars, M J
2008-01-18
We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.
Emergent gauge field for a chiral bound state on curved surface
NASA Astrophysics Data System (ADS)
Shi, Zhe-Yu; Zhai, Hui
2017-09-01
Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.
Ranking Enzyme Structures in the PDB by Bound Ligand Similarity to Biological Substrates.
Tyzack, Jonathan D; Fernando, Laurent; Ribeiro, Antonio J M; Borkakoti, Neera; Thornton, Janet M
2018-04-03
There are numerous applications that use the structures of protein-ligand complexes from the PDB, such as 3D pharmacophore identification, virtual screening, and fragment-based drug design. The structures underlying these applications are potentially much more informative if they contain biologically relevant bound ligands, with high similarity to the cognate ligands. We present a study of ligand-enzyme complexes that compares the similarity of bound and cognate ligands, enabling the best matches to be identified. We calculate the molecular similarity scores using a method called PARITY (proportion of atoms residing in identical topology), which can conveniently be combined to give a similarity score for all cognate reactants or products in the reaction. Thus, we generate a rank-ordered list of related PDB structures, according to the biological similarity of the ligands bound in the structures. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Structural and dynamical properties of recombining ultracold neutral plasma
NASA Astrophysics Data System (ADS)
Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.
2017-10-01
An ultracold plasma (UCP) is an evolving collection of free charges and bound charges (Rydberg atoms). Over time, bound species concentration increases due to recombination. We present the structural and dynamical properties of an evolving UCP using classical molecular dynamics simulation. Coulomb collapse is avoided using a repulsive core with the attractive Coulomb potential. The repulsive core size controls the concentration of bound states, as it determines the depth of the potential well between opposite charges. We vary the repulsive core size to emulate the quasi-static state of plasma at different time during the evolution. Binary, chain and ring-like bound states are observed in the simulation carried out at different coupling strengths and repulsive core size. The effect of bound states can be seen as molecular peaks in the radial distribution function (RDF). The thermodynamic properties associated with the free charges can be analyzed from RDF by separating free from bound states. These bound states also change the dynamical properties of the plasma. The electron velocity auto-correlation displays oscillations due to the orbital motion in bound states. These bound states act like a neutral species, damping electron plasmon modes and broadening the ion acoustic mode. This work is supported by AFOSR Grant Number FA9550-16-1-0221. It used computational resources by XSEDE, which is supported by NSF Grant Number ACI-1053575.
7-Chloro-4-[(7-chloroquinolin-4-yl)sulfanyl]quinoline dihydrate
Wardell, James L.; Tiekink, Edward R. T.
2012-01-01
In the title thioether dihydrate, C18H10Cl2N2S·2H2O, the S-bound quinolinyl residues are almost orthogonal, forming a dihedral angle of 72.36 (4)°. In the crystal, the four water molecules are connected via an eight-membered {⋯OH}4 synthon with each of the four pendent water H atoms hydrogen bonded to a pyridine N atom to stabilize a three-dimensional architecture. PMID:22589973
NASA Astrophysics Data System (ADS)
Aleksandrov, D. G.; Filipov, F. I.
1988-11-01
A method is proposed for calculation of the electron band structure of multicomponent semiconductor solid solutions. Use is made of virtual atomic orbitals formed from real orbitals. The method represents essentially an approximation of a multicomponent solid solution by a binary one. The matrix elements of the Hamiltonian are obtained in the methods of linear combinations of atomic and bound orbitals. Some approximations used in these methods are described.
Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dervishi, Enkeleda
2015-05-14
Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, ćaǧlar Ö.; Zettl, A.
2007-11-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, Caglar; Zettl, Alex
2008-03-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
NASA Astrophysics Data System (ADS)
Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy
2015-03-01
In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.
Fitting power-laws in empirical data with estimators that work for all exponents
Hanel, Rudolf; Corominas-Murtra, Bernat; Liu, Bo; Thurner, Stefan
2017-01-01
Most standard methods based on maximum likelihood (ML) estimates of power-law exponents can only be reliably used to identify exponents smaller than minus one. The argument that power laws are otherwise not normalizable, depends on the underlying sample space the data is drawn from, and is true only for sample spaces that are unbounded from above. Power-laws obtained from bounded sample spaces (as is the case for practically all data related problems) are always free of such limitations and maximum likelihood estimates can be obtained for arbitrary powers without restrictions. Here we first derive the appropriate ML estimator for arbitrary exponents of power-law distributions on bounded discrete sample spaces. We then show that an almost identical estimator also works perfectly for continuous data. We implemented this ML estimator and discuss its performance with previous attempts. We present a general recipe of how to use these estimators and present the associated computer codes. PMID:28245249
DOE Office of Scientific and Technical Information (OSTI.GOV)
König, Johannes; Merle, Alexander; Totzauer, Maximilian
We investigate the early Universe production of sterile neutrino Dark Matter by the decays of singlet scalars. All previous studies applied simplifying assumptions and/or studied the process only on the level of number densities, which makes it impossible to give statements about cosmic structure formation. We overcome these issues by dropping all simplifying assumptions (except for one we showed earlier to work perfectly) and by computing the full course of Dark Matter production on the level of non-thermal momentum distribution functions. We are thus in the position to study a broad range of aspects of the resulting settings and applymore » a broad set of bounds in a reliable manner. We have a particular focus on how to incorporate bounds from structure formation on the level of the linear power spectrum, since the simplistic estimate using the free-streaming horizon clearly fails for highly non-thermal distributions. Our work comprises the most detailed and comprehensive study of sterile neutrino Dark Matter production by scalar decays presented so far.« less
The Spacing of Strongly Meandering Jets in Quasigeostrophic Turbulence
NASA Astrophysics Data System (ADS)
Scott, R.
2017-12-01
Based on an assumption of inhomogeneous potential vorticity mixing,estimates are obtained for kinetic and potential energies inquasigeostrophic β -plane turbulence with strongly meanderingjets and in the limit of small Rossby deformation length. Theestimates provide, inter alia, a means to predict the jetspacing based on knowledge of either the kinetic or potential energy,which, in situations where the flow is forced with a uniform totalenergy input, are known a priori in the case of frictional orthermal damping, respectively. The estimates are lower bounds for thejet spacing, achieved in the limit of perfect mixing between regularlyspaced jets with simple meanders. These lower bounds are sharp in astrict mathematical sense but are likely to substantiallyunderestimate jet spacing in actual flows, which exhibit a remarkablediversity of structures and irregularities. The latter areillustrated numerically in direct integrations of the forced system.A convenient description of the forced system is presented in terms ofa number of independent length scales of the problem, anddimensionless ratios of these.
NASA Astrophysics Data System (ADS)
Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed
2017-01-01
This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.
Continuum Mechanics at the Atomic Scale.
1977-01-01
an infinite hoop stress at the tip of the crack (Figure 9 ). Because of this singularity a perfectly good criterion of brittle fracture, the maximum...for brittle fracture, we will arrive at the Griffith criterion with the extra benefit that the Griffith constant is now fully determined. As a result...crack tip. From (5.9) it now follows that 2 2 2toZ - [a/2 C (v)] t = C (5.10) 0c Alas, this is the Griffith fracture criterion for brittle fracture with
Finite-nuclear-size contribution to the g factor of a bound electron: Higher-order effects
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.
2018-02-01
A precision comparison of theory and experiments on the g factor of an electron bound in a hydrogenlike ion with a spinless nucleus requires a detailed account of finite-nuclear-size contributions. While the relativistic corrections to the leading finite-size contribution are known, the higher-order effects need an additional consideration. Two results are presented in the paper. One is on the anomalous-magnetic-moment correction to the finite-size effects and the other is due to higher-order effects in Z α m RN . We also present here a method to relate the contributions to the g factor of a bound electron in a hydrogenlike atom to its energy within a nonrelativistic approach.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]- anionic complex
NASA Astrophysics Data System (ADS)
Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Kim, Seong K.; Bowen, Kit H.
2015-11-01
The [Co(Pyridine)(CO2)]- anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)]- in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)](-) anionic complex.
Graham, Jacob D; Buytendyk, Allyson M; Zhang, Xinxing; Kim, Seong K; Bowen, Kit H
2015-11-14
The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)](-) in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Atomically resolved scanning force studies of vicinal Si(111)
NASA Astrophysics Data System (ADS)
Pérez León, Carmen; Drees, Holger; Wippermann, Stefan Martin; Marz, Michael; Hoffmann-Vogel, Regina
2017-06-01
Well-ordered stepped semiconductor surfaces attract intense attention owing to the regular arrangements of their atomic steps that makes them perfect templates for the growth of one-dimensional systems, e.g., nanowires. Here, we report on the atomic structure of the vicinal Si (111 ) surface with 10∘ miscut investigated by a joint frequency-modulation scanning force microscopy (FM-SFM) and ab initio approach. This popular stepped surface contains 7 ×7 -reconstructed terraces oriented along the Si (111 ) direction, separated by a stepped region. Recently, the atomic structure of this triple step based on scanning tunneling microscopy (STM) images has been subject of debate. Unlike STM, SFM atomic resolution capability arises from chemical bonding of the tip apex with the surface atoms. Thus, for surfaces with a corrugated density of states such as semiconductors, SFM provides complementary information to STM and partially removes the dependency of the topography on the electronic structure. Our FM-SFM images with unprecedented spatial resolution on steps coincide with the model based on a (7 7 10 ) orientation of the surface and reveal structural details of this surface. Two different FM-SFM contrasts together with density functional theory calculations explain the presence of defects, buckling, and filling asymmetries on the surface. Our results evidence the important role of charge transfers between adatoms, restatoms, and dimers in the stabilisation of the structure of the vicinal surface.
NASA Astrophysics Data System (ADS)
Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng
2018-05-01
The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
NASA Astrophysics Data System (ADS)
Liberman, Mikhail A.; Johansson, B.
1995-02-01
The physical properties of atoms, molecules, and solids in ultrahigh magnetic fields B gg 109 G that are believed to exist on the surface of neutron stars are discussed. In these fields, atoms are strongly deformed and elongated along the magnetic field lines; the binding energy and ionizing energy of the atoms are substantially increased and the interatomic interaction is dramatically changed. This strongly modifies the properties of matter at the surface of magnetic neutron stars which are crucial for modelling the pulsar magnetosphere. A scenario for magnetosphere evolution is proposed which suggests free emission for a young pulsar and strong binding of the matter to the surface at a later stage. This later stage is due to strongly bound chains of alternate heavy atoms and light atoms accreted on the surface of the star.
NASA Astrophysics Data System (ADS)
Vukičević, Damir; Đurđević, Jelena
2011-10-01
Bond incident degree index is a descriptor that is calculated as the sum of the bond contributions such that each bond contribution depends solely on the degrees of its incident vertices (e.g. Randić index, Zagreb index, modified Zagreb index, variable Randić index, atom-bond connectivity index, augmented Zagreb index, sum-connectivity index, many Adriatic indices, and many variable Adriatic indices). In this Letter we find tight upper and lower bounds for bond incident degree index for catacondensed fluoranthenes with given number of hexagons.
Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes
NASA Astrophysics Data System (ADS)
Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng
2016-06-01
Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19-centered-2-electron (19c-2e) π bond, 10 π electrons in total. This perfectly planar structure reveals the viability of creating a new class of hetero-borophenes and metallo-borophenes by doping metal atoms into the plane of monolayer boron atoms. This gives a new approach to design perspective hetero-borophenes and metallo-borophenes materials with tunable chemical, magnetic and optical properties.
Changing optical band structure with single photons
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.
2017-11-01
Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713
Scalable L-infinite coding of meshes.
Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter
2010-01-01
The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-06-11
Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.
Four Cu(II) complexes with the RR,SS-Edds{sup 4-} and SS-HEdds{sup 3-} anions are synthesized, and their crystal structures are studied. In the compounds [Cu2(RR,SS-Edds)] . 6H{sub 2}O (I) and Ba2[Cu(RR,SS-Edds)](ClO{sub 4}){sub 2} . 8H{sub 2}O (II), the ligand forms hexacoordinate chelate [Cu(Edds)]{sup 2-} complexes with the N atoms and O atoms of the propionate groups in the equatorial positions and the O atoms of the acetate groups in the axial vertices. In the compounds Ba[Cu(SS-HEdds)]ClO{sub 4} . 2H{sub 2}O (III) and Ba3[Cu2(RR,SS-Edds){sub 2}](ClO{sub 4}){sub 2} . 6H{sub 2}O (IV), one of the propionate arms, the protonated arm in III and themore » deprotonated arm in IV, does not enter into the coordination sphere of the Cu atom. An acetate arm moves to its position in the equatorial plane, and the free axial vertex is occupied by an O atom of the perchlorate ion. In I-IV, the lengths of the equatorial Cu-N and Cu-O bonds fall in the ranges 1.970-2.014 and 1.921-1.970 A, respectively. The axial Cu-O bonds with the acetate groups and ClO{sub 4}{sup -} anions are elongated to 2.293-2.500 and 2.727-2.992 A, respectively. In structure I, the second Cu atom acts as a counterion forming bonds with the O atoms of two water molecules and three O atoms of the Edds ligands. In II-IV, the Ba{sup 2+} cations are hydrated and bound to the O atoms of the anionic complexes and (except for one of the cations in IV) ClO{sub 4}{sup -} anions. The coordination number of the Ba cations is nine. The structural units in I-IV are connected into layers. In I, an extended system of hydrogen bonds links the layers into a framework. In II and III, the layers are linked only by weak hydrogen bonds, one bond per structural unit. In IV, ClO{sub 4}{sup -} anions are bound to the Ba and Cu atoms of neighboring layers, thus serving as bridges between the layers.« less
González, I; Sosa, A N; Trejo, A; Calvino, M; Miranda, A; Cruz-Irisson, M
2018-05-23
Theoretical studies on the effect of Li on the electronic properties of porous silicon are still scarce; these studies could help us in the development of Li-ion batteries of this material which overcomes some limitations that bulk silicon has. In this work, the effect of interstitial and surface Li on the electronic properties of porous Si is studied using the first-principles density functional theory approach and the generalised gradient approximation. The pores are modeled by removing columns of atoms of an otherwise perfect Si crystal, dangling bonds of all surfaces are passivated with H atoms, and then Li is inserted on interstitial positions on the pore wall and compared with the replacement of H atoms with Li. The results show that the interstitial Li creates effects similar to n-type doping where the Fermi level is shifted towards the conduction band with band crossings of the said level thus acquiring metallic characteristics. The surface Li introduces trap-like states in the electronic band structures which increase as the number of Li atom increases with a tendency to become metallic. These results could be important for the application of porous Si nanostructures in Li-ion batteries technology.
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
Bound-free Spectra for Diatomic Molecules
NASA Technical Reports Server (NTRS)
Schwenke, David W.
2012-01-01
It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
Bozeman, Trevor C; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J; Zaleski, Paul A; Wilson, W David; Hecht, Sidney M
2012-10-31
Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe·BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B(2) binding to a strongly bound hairpin DNA, to define the effects of Fe(3+), salt, and temperature on BLM-DNA interaction. One strong primary DNA binding site, and at least one much weaker site, were documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus, enhanced binding to a given site does not necessarily result in increased DNA degradation at that site; i.e., for strongly bound DNAs, the facility of DNA cleavage must involve other parameters in addition to the intrinsic rate of C-4' H atom abstraction from DNA sugars.
Rydberg States of Alkali Metal Atoms on Superfluid Helium Droplets - Theoretical Considerations
NASA Astrophysics Data System (ADS)
Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.
2017-06-01
The bound states of electrons on the surface of superfluid helium have been a research topic for several decades. One of the first systems treated was an electron bound to an ionized helium cluster. Here, a similar system is considered, which consists of a helium droplet with an ionized dopant inside and an orbiting electron on the outside. In our theoretical investigation we select alkali metal atoms (AK) as central ions, stimulated by recent experimental studies of Rydberg states for Na, Rb, and Cs attached to superfluid helium nanodroplets. Experimental spectra , obtained by electronic excitation and subsequent ionization, showed blueshifts for low lying electronic states and redshifts for Rydberg states. In our theoretical treatment the diatomic AK^+-He potential energy curves are first computed with ab initio methods. These potentials are then used to calculate the solvation energy of the ion in a helium droplet as a function of the number of atoms. Additional potential terms, derived from the obtained helium density distribution, are added to the undisturbed atomic pseudopotential in order to simulate a 'modified' potential felt by the outermost electron. This allows us to compute a new set of eigenstates and eigenenergies, which we compare to the experimentally observed energy shifts for highly excited alkali metal atoms on helium nanodroplets. A. Golov and S. Sekatskii, Physica B, 1994, 194, 555-556 E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A, 2011, 115, 6779-6788 F. Lackner, G. Krois, M. Koch, and W. E. Ernst, J. Phys. Chem. Lett., 2012, 3, 1404-1408 F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys., 2011, 13, 18781-18788
Standard Model in multiscale theories and observational constraints
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David
2016-08-01
We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*<10-23 s . For the natural choice α0=1 /2 of the fractional exponent in the measure, this bound is strengthened to t*<10-29 s , corresponding to ℓ*<10-20 m and E*>28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*<10-13 s and E*>35 MeV . For α0=1 /2 , the Lamb shift alone yields t*<10-27 s , ℓ*<10-19 m and E*>450 GeV .
Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling
2017-02-28
Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke
2016-04-11
The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of themore » (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.« less
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Precise calibration of few-cycle laser pulses with atomic hydrogen
NASA Astrophysics Data System (ADS)
Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.
2017-12-01
Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.
Side-channel-free quantum key distribution.
Braunstein, Samuel L; Pirandola, Stefano
2012-03-30
Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2012-07-24
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2014-09-23
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to (36) Ru and (6) Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
Physical basis of destruction of concrete and other building materials
NASA Astrophysics Data System (ADS)
Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.
2018-03-01
In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.
Constitutive Modeling of the Mechanical Properties of Optical Fibers
NASA Technical Reports Server (NTRS)
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.
Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad
2014-09-01
The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.
Mesoscopic structure formation in condensed matter due to vacuum fluctuations
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.
2015-10-01
An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.
Lindquist, Beth A; Woon, David E; Dunning, Thom H
2014-07-31
Recoupled pair bonds (RPBs) are conditional bonds-they only form for selected central atoms and ligands. A complete theoretical description of RPBs requires an understanding of the properties of the central atom and ligands that enable such bonds to be formed. In this work, we show that ligand electronegativity is positively correlated with recoupled pair bond strength for a variety of ligands interacting with the 3p(2) pair of sulfur. We also describe substituent (X) effects on the SF(a(4)Σ(-)) state by investigating X2SF species. These effects generally mirror those observed for covalently bound analogues, but we found that recoupled pair bonding can lead to breakdowns in the expected relationships among bond length, strength, and force constant for some of these species. Finally, we compare the properties of two molecules of practical interest that are bound by recoupled pair bonds: the dimethyl sulfur fluoride and hydroxide radicals (DMS-F and DMS-OH).
Atomic Resolution Cryo-EM Structure of β-Galactosidase.
Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram
2018-05-10
The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.
Detecting many-body-localization lengths with cold atoms
NASA Astrophysics Data System (ADS)
Guo, Xuefei; Li, Xiaopeng
2018-03-01
Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.
Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO
NASA Astrophysics Data System (ADS)
Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.
2001-05-01
The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.
Preparation and analysis of particulate metal deposits
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, D.; Heinemann, K.
1985-01-01
Small particles and clusters of palladium were grown by deposition from the vapor phase under ultrahigh vacuum conditions. Amorphous and crystalline support films of Al2O3 and ultrathin amorphous carbon films were used as substrate materials. The growth of the metal deposit was monitored in situ by scanning transmission diffraction of energy-filtered 100 kV electrons and high resolution transmission electron microscopy (TEM) analysis was performed in a separate instrument. It was established by in situ TEM, however, that the transfer of specimens in this case did not unduly affect the size and distribution of deposit particles. It was found that the cleanness, stoichiometry, crystallinity and structural perfection of the support surface play an essential role in determining the crystalline perfection and structure of the particles. The smallest palladium clusters reproducibly prepared contained not more than six atoms but size determinations below 1 nm average particle diameter are very problematic with conventional TEM. Palladium particles grown on carbon supports feature an impurity-stabilized mosaic structure.
Alloyed surfaces: New substrates for graphene growth
NASA Astrophysics Data System (ADS)
Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.
2017-11-01
We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.
Anti-site disorder and improved functionality of Mn₂NiX (X = Al, Ga, In, Sn) inverse Heusler alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip, E-mail: subhra@iitg.ernet.in
2014-10-07
Recent first-principles calculations have predicted Mn₂NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn₂NiGa and Mn₂NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn₂NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizingmore » martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.« less
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry
Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.
2012-01-01
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377
Dependence of the quantum speed limit on system size and control complexity
NASA Astrophysics Data System (ADS)
Lee, Juneseo; Arenz, Christian; Rabitz, Herschel; Russell, Benjamin
2018-06-01
We extend the work in 2017 New J. Phys. 19 103015 by deriving a lower bound for the minimum time necessary to implement a unitary transformation on a generic, closed quantum system with an arbitrary number of classical control fields. This bound is explicitly analyzed for a specific N-level system similar to those used to represent simple models of an atom, or the first excitation sector of a Heisenberg spin chain, both of which are of interest in quantum control for quantum computation. Specifically, it is shown that the resultant bound depends on the dimension of the system, and on the number of controls used to implement a specific target unitary operation. The value of the bound determined numerically, and an estimate of the true minimum gate time are systematically compared for a range of system dimension and number of controls; special attention is drawn to the relationship between these two variables. It is seen that the bound captures the scaling of the minimum time well for the systems studied, and quantitatively is correct in the order of magnitude.
Ensemble-based characterization of unbound and bound states on protein energy landscape
Ruvinsky, Anatoly M; Kirys, Tatsiana; Tuzikov, Alexander V; Vakser, Ilya A
2013-01-01
Physicochemical description of numerous cell processes is fundamentally based on the energy landscapes of protein molecules involved. Although the whole energy landscape is difficult to reconstruct, increased attention to particular targets has provided enough structures for mapping functionally important subspaces associated with the unbound and bound protein structures. The subspace mapping produces a discrete representation of the landscape, further called energy spectrum. We compiled and characterized ensembles of bound and unbound conformations of six small proteins and explored their spectra in implicit solvent. First, the analysis of the unbound-to-bound changes points to conformational selection as the binding mechanism for four proteins. Second, results show that bound and unbound spectra often significantly overlap. Moreover, the larger the overlap the smaller the root mean square deviation (RMSD) between the bound and unbound conformational ensembles. Third, the center of the unbound spectrum has a higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric states for most of the proteins. This suggests that the unbound states often have larger entropy than the bound states. Fourth, the exhaustively long minimization, making small intrarotamer adjustments (all-atom RMSD ≤ 0.7 Å), dramatically reduces the distance between the centers of the bound and unbound spectra as well as the spectra extent. It condenses unbound and bound energy levels into a thin layer at the bottom of the energy landscape with the energy spacing that varies between 0.8–4.6 and 3.5–10.5 kcal/mol for the unbound and bound states correspondingly. Finally, the analysis of protein energy fluctuations showed that protein vibrations itself can excite the interstate transitions, including the unbound-to-bound ones. PMID:23526684
Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A
2004-01-01
A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.
Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji
2016-12-13
Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.
Atomic structure considerations for the low-temperature opacity of Sn
Colgan, J.; Kilcrease, D. P.; Abdallah, J.; ...
2017-03-31
Here, we have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ~ 18 times ionized). We also find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requiresmore » full configuration-interaction to properly describe the strong mixing between the various n=4 sub-shells that give rise to the Δn= 0 transitions that dominate the opacity spectrum at low temperatures. Furthermore, since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.« less
Electronic Structure of Helium Atom in a Quantum Dot
NASA Astrophysics Data System (ADS)
Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.
2016-03-01
Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India
Atomic structure considerations for the low-temperature opacity of Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Kilcrease, D. P.; Abdallah, J.
Here, we have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ~ 18 times ionized). We also find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requiresmore » full configuration-interaction to properly describe the strong mixing between the various n=4 sub-shells that give rise to the Δn= 0 transitions that dominate the opacity spectrum at low temperatures. Furthermore, since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.« less
Material platforms for spin-based photonic quantum technologies
NASA Astrophysics Data System (ADS)
Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg
2018-05-01
A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.
NASA Astrophysics Data System (ADS)
Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao
2017-12-01
Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.
X-ray fluorescence analysis of wear metals in used lubricating oils
NASA Technical Reports Server (NTRS)
Maddox, W. E.; Kelliher, W. C.
1986-01-01
Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.
Visualizing buried silicon atoms at the Cd-Si(111)-7 ×7 interface with localized electrons
NASA Astrophysics Data System (ADS)
Tao, Min-Long; Xiao, Hua-Fang; Sun, Kai; Tu, Yu-Bing; Yuan, Hong-Kuan; Xiong, Zu-Hong; Wang, Jun-Zhong; Xue, Qi-Kun
2017-09-01
We report the atomic-scale imaging of the buried Cd-Si(111)-7 ×7 interface with a low temperature scanning tunneling microscopy (STM). The Cd(0001) films grown on Si(111)-7 ×7 reveal the electronic growth mode, and manifest a series of quantum-well states. In the low-bias STM images, not only the 7 ×7 reconstruction but also individual Si adatoms buried by thick Cd islands are clearly visible. The two successive layers of Cd islands exhibit the distinct contrasts due to the quantum size effect. Moreover, we found a small gap appeared at Fermi level owing to the Anderson localization induced by interface scattering. The perfect transparency of Cd films can be attributed to the anisotropic electron motion, i.e., lateral electron localization and transverse motion like free-electron.
Near optimal discrimination of binary coherent signals via atom–light interaction
NASA Astrophysics Data System (ADS)
Han, Rui; Bergou, János A.; Leuchs, Gerd
2018-04-01
We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.
Harvey, Miguel Angel; Suarez, Sebastián; Doctorovich, Fabio; Baggio, Ricardo
2013-01-01
The asymmetric unit of the title complex, [Ni(C12H8N2)3]S2O8·2C3H7NO·H2O, consists of a complex [Ni(phen)3]2+ cation and one isolated pds anion, with two DMF molecules and one water molecule as solvates (where phen is 1,10-phenanthroline, pds is the hexaoxido-μ-peroxoido-disulfate dianion and DMF is dimethylformamide). The [Ni(phen)3]2+ cation is regular, with an almost ideal NiII bond-valence sum of 2.07 v.u. The group, as well as the water solvent molecule, are well behaved in terms of crystallographic order, but the remaining three molecules in the structure display different kinds of disorder, viz. the two DMF molecules mimic a twofold splitting and the pds anion has both S atoms clamped at well-determined positions but with a not-too-well-defined central part. These peculiar behaviours are a consequence of the hydrogen-bonding interactions: the outermost SO3 parts of the pds anion are heavily connected to the complex cations via C—H⋯O hydrogen bonding, generating an [Ni(phen)3]pds network and providing for the stability of the terminal pds sites. Also, the water solvent molecule is strongly bound to the structure (being a donor of two strong bonds and an acceptor of one) and is accordingly perfectly ordered. The peroxide O atoms in the pds middle region, instead, appear as much less restrained into their sites, which may explain their tendency to disorder. The cation–anion network leaves large embedded holes, amounting to about 28% of the total crystal volume, which are occupied by the DMF molecules. The latter are weakly interacting with the rest of the structure, which renders them much more labile and, accordingly, prone to disorder. PMID:23476355
Holland, Joseph G; Geiger, Franz M
2012-06-07
The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.
Cao, Xiaoji; Zhang, Feifei; Zhu, Kundan; Ye, Xuemin; Shen, Lingxiao; Chen, Jiaoyu; Mo, Weimin
2014-05-15
Esomeprazole analogs are a class of important proton pump inhibitors for the treatment of gastro-esophageal reflux diseases. Understanding the fragmentation reaction mechanism of the protonated esomeprazole analogs will facilitate the characterization of their complex metabolic fate in humans. In this paper, the kinetic method and theoretical calculations were applied to evaluate the fragmentation of protonated esomeprazole analogs. All collision-induced dissociation (CID) mass spectrometry experiments were carried out using electrospray ionization (ESI) ion trap mass spectrometry in positive ion mode. Also the accurate masses of fragments were measured on by ESI quadrupole time-of-flight (QTOF) MS in positive ion mode. Theoretical calculations were carried out by the density functional theory (DFT) method with the 6-31G(d) basis set in the Gaussian 03 program. In the fragmentation of the protonated esomeprazole analogs, C-S bond breakage is observed, which gives rise to protonated 2-(sulfinylmethylene)pyridines and protonated benzimidazoles. DFT calculations demonstrate that the nitrogen atom of the pyridine part is the thermodynamically most favorable protonation site, and the C-S bond cleavage is triggered by the transfer of this ionizing proton from the nitrogen atom of the pyridine part to the carbon atom of the benzimidazole part to which the sulfinyl is attached. Moreover, with the kinetic plot, the intensity ratios of two protonated product ions yield a linear relationship with the differences in proton affinities of the corresponding neutral molecules, which provides strong experimental evidence that the reaction proceeds via proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complex intermediates. The kinetic method combined with theoretical calculations was successfully applied to probe the proton transfer reaction by proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complexes in the fragmentation of protonated esomeprazole analogs by ESI CID MS, which is a strong evidence that the kinetic method can be applied in identifying a proton-bound dimeric intermediate in the fragmentation of protonated ions. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dey, Prasenjit
Atomically thin, semiconducting transition metal dichalogenides (TMDs), a special class of layered semiconductors, that can be shaped as a perfect two dimensional material, have garnered a lot of attention owing to their fascinating electronic properties which are achievable at the extreme nanoscale. In contrast to graphene, the most celebrated two-dimensional (2D) material thus far; TMDs exhibit a direct band gap in the monolayer regime. The presence of a non-zero bandgap along with the broken inversion symmetry in the monolayer limit brands semiconducting TMDs as the perfect candidate for future optoelectronic and valleytronics-based device application. These remarkable discoveries demand exploration of different materials that possess similar properties alike TMDs. Recently, III-VI layered semiconducting materials (example: InSe, GaSe etc.) have also emerged as potential materials for optical device based applications as, similar to TMDs, they can be shaped into a perfect two-dimensional form as well as possess a sizable band gap in their nano-regime. The perfect 2D character in layered materials cause enhancement of strong Coulomb interaction. As a result, excitons, a coulomb bound quasiparticle made of electron-hole pair, dominate the optical properties near the bandgap. The basis of development for future optoelectronic-based devices requires accurate characterization of the essential properties of excitons. Two fundamental parameters that characterize the quantum dynamics of excitons are: a) the dephasing rate, gamma, which represents the coherence loss due to the interaction of the excitons with their environment (for example- phonons, impurities, other excitons, etc.) and b) excited state population decay rate arising from radiative and non-radiative relaxation processes. The dephasing rate is representative of the time scale over which excitons can be coherently manipulated, therefore accurately probing the source of exciton decoherence is crucial for understanding the basic unexplored science as well as creating technological developments. The dephasing dynamics in semiconductors typically occur in the picosecond to femtosecond timescale, thus the use of ultrafast laser spectroscopy is a potential route to probe such excitonic responses. The focus of this dissertation is two-fold: firstly, to develop the necessary instrumentation to accurately probe the aforementioned parameters and secondly, to explore the quantum dynamics and the underlying many-body interactions in different layered semiconducting materials. A custom-built multidimensional optical non-linear spectrometer was developed in order to perform two-dimensional spectroscopic (2DFT) measurements. The advantages of this technique are multifaceted compared to regular one-dimensional and non-linear incoherent techniques. 2DFT technique is based on an enhanced version of Four wave mixing experiments. This powerful tool is capable of identifying the resonant coupling, probing the coherent pathways, unambiguously extracting the homogeneous linewidth in the presence of inhomogeneity and decomposing a complex spectra into real and imaginary parts. It is not possible to uncover such crucial features by employing one dimensional non-linear technique. Monolayers as well as bulk TMDs and group III-VI bulk layered materials are explored in this dissertation. The exciton quantum dynamics is explored with three pulse four-wave mixing whereas the phase sensitive measurements are obtained by employing two-dimensional Fourier transform spectroscopy. Temperature and excitation density dependent 2DFT experiments unfold the information associated with the many-body interactions in the layered semiconducting samples.
On Atom-Bond Connectivity Index
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xing, Rundan
2011-02-01
The atom-bond connectivity (ABC) index, introduced by Estrada et al. in 1998, displays an excellent correlation with the formation heat of alkanes. We give upper bounds for this graph invariant using the number of vertices, the number of edges, the Randíc connectivity indices, and the first Zagreb index. We determine the unique tree with the maximum ABC index among trees with given numbers of vertices and pendant vertices, and the n-vertex trees with the maximum, and the second, the third, and the fourth maximum ABC indices for n ≥ 6.
The free jet microwave spectrum of 2-phenylethylamine-water.
Melandri, Sonia; Maris, Assimo; Giuliano, Barbara M; Favero, Laura B; Caminati, Walther
2010-09-21
We observed the rotational spectrum of the 1:1 molecular adduct between 2-phenylethylamine and water (normal and H(2)(18)O species) by free jet absorption microwave spectroscopy in the frequency region 60-78 GHz. The dominant spectrum belongs to the structure where the PEA moiety is in the most stable gauche conformation and the water molecule is hydrogen bound to the nitrogen lone pair. The orientation of the water molecule is such that the oxygen atom is almost equidistant (ca. 2.5 A) from the closest methylenic and aromatic hydrogen atoms.
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Derivatized gold clusters and antibody-gold cluster conjugates
Hainfeld, James F.; Furuya, Frederic R.
1994-11-01
Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.
(N-Benzyl-N-ethyl-dithio-carbamato)di-tert-butyl-chloridotin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T
2011-02-26
The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)Cl(C(10)H(12)NS(2))], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C-H⋯π contacts link centrosymmetrically related mol-ecules into dimeric aggregates.
Colloquium: Laser probing of neutron-rich nuclei in light atoms
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.
2013-10-01
The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
Interactions of NO and CO with Pd and Pt atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.W.; Carter, E.A.
1991-03-21
The authors report ab initio generalized valence bond and correlation-consistent configuration interaction studies of CO and NO interacting with Pd and Pt atoms. They find dramatically different bonding mechanisms for the two ligands, which are easily understood in terms of changes in the electronic structure of the metal and the ligand. CO bonds to both Pd and pt by a {sigma} donor/{pi} back-bonding mechanism, yielding linear geometries. Their calculations predict that the ground ({sup 1}{Sigma}{sup +}) state of PdCO is bound by 27 kcal/mol, while the ground ({sup 1}{Sigma}{sup +}) state of PtCO is bound by only 18.5 kcal/mol. Bymore » contrast, PdNO and PtNO are both bent, with the dominant bonding involving a covalent {sigma} bond between a singly occupied metal d{sigma} orbital and the singly occupied NO 2{pi}* orbital. While the ground ({sup 2}A{prime}) state of PtNO is strongly bound (D{sub e}(Pt-NO) {approximately} 20 kcal/mol), NO binds very weakly to Pd (D{sub e}(Pd-NO) {le} 4 kcal/mol). Linear excited states ({sup 2}{Sigma} and {sup 2}{Pi}) of PtNO and PdNO are predicted to be only weakly bound or unbound. However, corresponding linear cationic states ({sup 1}{Sigma}{sup +} and {sup 3}{Pi}) are strongly bound, but the cationic bent ({sup 1}A{prime}) states are still the ground states of PtNO{sup +} and PdNO{sup +}. These stark contrasts, in which NO binds strongly to Pt but weakly to Pd while CO binds much more strongly to Pd, are due to the preference for closed-shell species to bind strongly to other closed-shell species (e.g., CO to Pd) and for radicals to bind strongly to other radicals (e.g., NO to Pt).« less
Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
Sarkar, Ranja
2018-01-01
SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi
2015-12-01
A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence of β-antimonene at the Sb/Bi2Se3 interface.
Flammini, Roberto; Colonna, Stefano; Hogan, Conor; Mahatha, Sanjoy; Papagno, Marco; Barla, Alessandro; Sheverdyaeva, Polina; Moras, Paolo; Aliev, Ziya; Babanly, M B; Chulkov, Evgueni V; Carbone, Carlo; Ronci, Fabio
2017-12-19
We report a study of the interface between antimony and the prototypical topological insulator Sb/Bi<sub>2</sub>Se<sub>3</sub>. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene. © 2017 IOP Publishing Ltd.
Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes
NASA Astrophysics Data System (ADS)
Karkare, Siddharth; Bazarov, Ivan
2015-08-01
The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sucheng; Duan, Qian; Li, Shuo
We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.
Plasmonic cloak using graphene at infrared frequencies
NASA Astrophysics Data System (ADS)
Li, Yan Xiu; Kong, Fan Min; Li, Kang; Zhuang, Hua Wei
2015-11-01
A carpet cloak based on graphene is designed and realized by making an approximate hemisphere surface which behaves as a flat surface, and the performances of the cloak are simulated by finite element method. The cloak performs perfectly through tuning conductivity of the graphene. The incident wave can propagate on the curved surface without being disturbed, and an object under the curved surface will be cloaked. It is indicated that graphene can be a platform for "on-atom-thick" cloaks, and the proposed methods can be applied in the practical design.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
NASA Astrophysics Data System (ADS)
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
Protonium production in ATHENA
NASA Astrophysics Data System (ADS)
Venturelli, L.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Rizzini, E. Lodi; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Yamazaki, Y.; Zurlo, N.; Athena Collaboration
2007-08-01
The ATHENA experiment at CERN, after producing cold antihydrogen atoms for the first time in 2002, has synthesised protonium atoms in vacuum at very low energies. Protonium, i.e. the antiproton-proton bound system, is of interest for testing fundamental physical theories. In the nested penning trap of the ATHENA apparatus protonium has been produced as result of a chemical reaction between an antiproton and the simplest matter molecule, H2+. The formed protonium atoms have kinetic energies in the range 40-700 meV and are metastable with mean lifetimes of the order of 1 μs. Our result shows that it will be possible to start measurements on protonium at low energy antiproton facilities, such as the AD at CERN or FLAIR at GSI.
(N-Benzyl-N-isopropyl-dithio-carbamato)chloridodiphenyl-tin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Ng, Seik Weng; Tiekink, Edward R T
2010-08-11
The Sn(IV) atom in the title organotin dithio-carbamate, [Sn(C(6)H(5))(2)(C(11)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intra-molecular C-H⋯Cl and C-H⋯S contacts precludes the Cl and S atoms from forming significant inter-molecular contacts. The presence of C-H⋯π contacts leads to the formation of supra-molecular arrays that stack along the b axis.
Clustered atom-replaced structure in single-crystal-like metal oxide
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi
2018-06-01
By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.
Non-destructive monitoring of Bloch oscillations in an optical cavity
NASA Astrophysics Data System (ADS)
Klinder, Jens; Kessler, Hans; Venkatesh, B. Prasanna; Georges, Christoph; Vargas, Jose; Hemmerich, Andreas
2017-04-01
Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. We show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes. This work was partially supported by DFG-SFB925 and the Hamburg centre of ultrafast imaging (CUI).
Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity
NASA Astrophysics Data System (ADS)
Tassone, A.; Nobili, M.; Caruso, G.
2017-11-01
The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20; 40) and M = (10; 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M = 50 and perfectly conducting pipe as a result of the modified currents distribution.
The Physics of Coupled Atomic-Molecular Condensate System
2010-10-09
electric dipoles represents a novel state of matter with long-range and anisotropic dipole-dipole interactions, that are highly amenable to the...free-bound FC factor. Simultaneously, a series of laser �elds of (molecular) Rabi frequency i (i 2) are applied to move the molecules from the
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt
NASA Astrophysics Data System (ADS)
Cao, Hao; Russell, Christopher T.; Christensen, Ulrich R.; Dougherty, Michele K.; Burton, Marcia E.
2011-04-01
Saturn is the only planet in the solar system whose observed magnetic field is highly axisymmetric. At least a small deviation from perfect symmetry is required for a dynamo-generated magnetic field. Analyzing more than six years of magnetometer data obtained by Cassini close to the planet, we show that Saturn's observed field is much more axisymmetric than previously thought. We invert the magnetometer observations that were obtained in the "current-free" inner magnetosphere for an internal model, varying the assumed unknown rotation rate of Saturn's deep interior. No unambiguous non-axially symmetric magnetic moment is detected, with a new upper bound on the dipole tilt of 0.06°. An axisymmetric internal model with Schmidt-normalized spherical harmonic coefficients g10 = 21,191 ± 24 nT, g20 = 1586 ± 7 nT. g30 = 2374 ± 47 nT is derived from these measurements, the upper bounds on the axial degree 4 and 5 terms are 720 nT and 3200 nT respectively. The secular variation for the last 30 years is within the probable error of each term from degree 1 to 3, and the upper bounds are an order of magnitude smaller than in similar terrestrial terms for degrees 1 and 2. Differentially rotating conducting stable layers above Saturn's dynamo region have been proposed to symmetrize the magnetic field (Stevenson, 1982). The new upper bound on the dipole tilt implies that this stable layer must have a thickness L >= 4000 km, and this thickness is consistent with our weak secular variation observations.
Neutrino Photoproduction on the Electron of a Hydrogen-Like Atom
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-10-01
The process of interaction of a photon with the bound electron of a hydrogen-like atom with creation of a neutrino pair γ +{(Ze)}^{\\ast \\ast}\\to \\overline{νν}+{(Ze)}^{\\ast } is considered here for the first time. This process can take place with and without a change in the energy of the pair relative to the energy of the "initial" photon due to atomic transitions. It is shown that in the case when the system of atoms is located in an equilibrium radiation field with temperature T << m e this process can be neglected in comparison with spontaneous emission of the hydrogen-like atom {(Ze)}^{\\ast}\\to (Ze)+ν\\overline{ν} , despite the smaller power of the expansion parameter ( Zα) < < 1, α = e 2/ ℏc ≈ 1/137 in the expressions for the cross sections and probabilities. Calculations have been performed for the first time using the density matrix, introduced in the previous paper, of the electron in the field of the nucleus in the leading approximation in (Zα).
Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.
Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank
2016-09-26
Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.
Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Lei; Mei, Donghai; Xiong, Haifeng
While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sizedmore » Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.« less
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Usami, N.; Sasaki, I.; Frohlich, H.; Le Sech, C.
2003-01-01
Complexes made of DNA and Cyclo-Pt bound to plasmid DNA, were placed in aqueous solution and irradiated with monochromatic X-rays in the range E=8.5-13 keV, including the resonant photoabsorption energy of the L III shell of the platinum atom. The number of single- and double-strand breaks (ssb and dsb) induced by irradiation on a supercoiled DNA plasmid was measured by the production of circular-nicked and linear forms. In order to disentangle the contribution of the direct effects imparted to ionization, and the indirect effects due to a free radical attack, experiments have been performed in the presence of a small concentration (64 mmol l -1) of hydroxyl free radical scavenger dimethyl sulfoxide (DMSO). An enhancement of the number of ssb and dsb is observed when the plasmids contain the Pt intercalating molecules. Even when off-resonant X-rays are used, the strand break efficiency remains higher than expected based upon the absorption cross-section, as if the Pt bound to DNA is increasing the yield of strand breaks. A mechanism is suggested, involving photoelectrons generated from the ionization of water which efficiently ionize Pt atoms. This observation may provide an insight to understanding the effects of new radiotherapy protocols, associated chemotherapeutic agents such as cisplatin and ordinary radiotherapy for tumoral treatments.
Spectra of helium clusters with up to six atoms using soft-core potentials
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2011-11-01
In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.
An improved limit on the charge of antihydrogen from stochastic acceleration.
Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-21
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Peatross, J; Johansen, J
2014-01-13
Strong-field laser-atom interactions provide extreme conditions that may be useful for investigating the de Broglie-Bohm quantum interpretation. Bohmian trajectories representing bound electrons in individual atoms exhibit both even and odd harmonic motion when subjected to a strong external laser field. The phases of the even harmonics depend on the random initial positions of the trajectories within the wave function, making the even harmonics incoherent. In contrast, the phases of odd harmonics remain for the most part coherent regardless of initial position. Under the conjecture that a Bohmian point particle plays the role of emitter, this suggests an experiment to determine whether both even and odd harmonics are produced at the atomic level. Estimates suggest that incoherent emission of even harmonics may be detectable out the side of an intense laser focus interacting with a large number of atoms.
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.
Roberts, B M; Flambaum, V V; Gribakin, G F
2016-01-15
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.
NASA Technical Reports Server (NTRS)
Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.
1997-01-01
The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Jing; Chen Shaohao; Jaron-Becker, Agnieszka
We theoretically study the control of two-photon excitation to bound and dissociative states in a molecule induced by trains of laser pulses, which are equivalent to certain sets of spectral phase modulated pulses. To this end, we solve the time-dependent Schroedinger equation for the interaction of molecular model systems with an external intense laser field. Our numerical results for the temporal evolution of the population in the excited states show that, in the case of an excited dissociative state, control schemes, previously validated for the atomic case, fail due to the coupling of electronic and nuclear motion. In contrast, formore » excitation to bound states the two-photon excitation probability is controlled via the time delay and the carrier-envelope phase difference between two consecutive pulses in the train.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Zhong; He, Na; Qin, Xuwei; Ip, W. H.; Wu, C. H.; Yung, K. L.
2018-07-01
The emergence of online group-buying provides a new consumption pattern for consumers in e-commerce era. However, many consumers realize that their own interests sometimes can't be guaranteed in the group-buying market due to the lack of being regulated. This paper aims to develop effective regulation strategies for online group-buying market. To the best of our knowledge, most existing studies assume that three parties in online group-buying market, i.e. the retailer, the group-buying platform and the consumer, are perfectly rational. To better understand the decision process, in this paper, we incorporate the concept of bounded rationality into consideration. Firstly, a three-parties evolutionary game model is established to study each player's game strategy based on bounded rationality. Secondly, the game model is simulated as a whole by adopting system dynamics to analyze its stability. Finally, theoretical analysis and extensive computational experiments are conducted to obtain the managerial insights and regulation strategies for online group-buying market. Our results clearly demonstrate that a suitable bonus-penalty measure can promote the healthy development of online group-buying market.
Exact Fundamental Limits of the First and Second Hyperpolarizabilities
NASA Astrophysics Data System (ADS)
Lytel, Rick; Mossman, Sean; Crowell, Ethan; Kuzyk, Mark G.
2017-08-01
Nonlinear optical interactions of light with materials originate in the microscopic response of the molecular constituents to excitation by an optical field, and are expressed by the first (β ) and second (γ ) hyperpolarizabilities. Upper bounds to these quantities were derived seventeen years ago using approximate, truncated state models that violated completeness and unitarity, and far exceed those achieved by potential optimization of analytical systems. This Letter determines the fundamental limits of the first and second hyperpolarizability tensors using Monte Carlo sampling of energy spectra and transition moments constrained by the diagonal Thomas-Reiche-Kuhn (TRK) sum rules and filtered by the off-diagonal TRK sum rules. The upper bounds of β and γ are determined from these quantities by applying error-refined extrapolation to perfect compliance with the sum rules. The method yields the largest diagonal component of the hyperpolarizabilities for an arbitrary number of interacting electrons in any number of dimensions. The new method provides design insight to the synthetic chemist and nanophysicist for approaching the limits. This analysis also reveals that the special cases which lead to divergent nonlinearities in the many-state catastrophe are not physically realizable.
Determination of N epsilon-(carboxymethyl)lysine in foods and related systems.
Ames, Jennifer M
2008-04-01
The sensitive and specific determination of advanced glycation end products (AGEs) is of considerable interest because these compounds have been associated with pro-oxidative and proinflammatory effects in vivo. AGEs form when carbonyl compounds, such as glucose and its oxidation products, glyoxal and methylglyoxal, react with the epsilon-amino group of lysine and the guanidino group of arginine to give structures including N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxyethyl)lysine, and hydroimidazolones. CML is frequently used as a marker for AGEs in general. It exists in both the free or peptide-bound forms. Analysis of CML involves its extraction from the food (including protein hydrolysis to release any peptide-bound adduct) and determination by immunochemical or instrumental means. Various factors must be considered at each step of the analysis. Extraction, hydrolysis, and sample clean-up are all less straight forward for food samples, compared to plasma and tissue. The immunochemical and instrumental methods all have their advantages and disadvantages, and no perfect method exists. Currently, different procedures are being used in different laboratories, and there is an urgent need to compare, improve, and validate methods.
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
NASA Astrophysics Data System (ADS)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.
2017-10-01
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernysheva, L. V.
2018-01-01
We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix
Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less
Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.
Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A
2014-12-10
Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.
The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surfacemore » (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.« less
Imaging atomic-level random walk of a point defect in graphene
NASA Astrophysics Data System (ADS)
Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.
2014-05-01
Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.
Smoothing Motion Estimates for Radar Motion Compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
2017-07-01
Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc.more » (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.« less
Self-assembly of a binodal metal-organic framework exhibiting a demi-regular lattice.
Yan, Linghao; Kuang, Guowen; Zhang, Qiushi; Shang, Xuesong; Liu, Pei Nian; Lin, Nian
2017-10-26
Designing metal-organic frameworks with new topologies is a long-standing quest because new topologies often accompany new properties and functions. Here we report that 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene molecules coordinate with Cu atoms to form a two-dimensional framework in which Cu adatoms form a nanometer-scale demi-regular lattice. The lattice is articulated by perfectly arranged twofold and threefold pyridyl-Cu coordination motifs in a ratio of 1 : 6 and features local dodecagonal symmetry. This structure is thermodynamically robust and emerges solely when the molecular density is at a critical value. In comparison, we present three framework structures that consist of semi-regular and regular lattices of Cu atoms self-assembled out of 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene and trispyridylbenzene molecules. Thus a family of regular, semi-regular and demi-regular lattices can be achieved by Cu-pyridyl coordination.
A generalized complexity measure based on Rényi entropy
NASA Astrophysics Data System (ADS)
Sánchez-Moreno, Pablo; Angulo, Juan Carlos; Dehesa, Jesus S.
2014-08-01
The intrinsic statistical complexities of finite many-particle systems (i.e., those defined in terms of the single-particle density) quantify the degree of structure or patterns, far beyond the entropy measures. They are intuitively constructed to be minima at the opposite extremes of perfect order and maximal randomness. Starting from the pioneering LMC measure, which satisfies these requirements, some extensions of LMC-Rényi type have been published in the literature. The latter measures were shown to describe a variety of physical aspects of the internal disorder in atomic and molecular systems (e.g., quantum phase transitions, atomic shell filling) which are not grasped by their mother LMC quantity. However, they are not minimal for maximal randomness in general. In this communication, we propose a generalized LMC-Rényi complexity which overcomes this problem. Some applications which illustrate this fact are given.
Fast and error-resilient coherent control in an atomic vapor
NASA Astrophysics Data System (ADS)
He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun
2017-04-01
Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.
Quantum memory with a controlled homogeneous splitting
NASA Astrophysics Data System (ADS)
Hétet, G.; Wilkowski, D.; Chanelière, T.
2013-04-01
We propose a quantum memory protocol where an input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal electromagnetically induced transparency is only formal because no ground state coherence-based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time; the protocols are perfectly efficient and noise free. We compare the technique with other quantum memories, and propose atomic systems where the experiment can be realized.
Site-Resolved Imaging with the Fermi Gas Microscope
NASA Astrophysics Data System (ADS)
Huber, Florian Gerhard
The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.
Yang, Zhi; Xiong, Shi-Jie
2008-09-28
The geometries stability, electronic properties, and magnetism of Y(n)O clusters up to n=14 are systematically studied with density functional theory. In the lowest-energy structures of Y(n)O clusters, the equilibrium site of the oxygen atom gradually moves from an outer site of the cluster, via a surface site, and finally, to an interior site as the number of the Y atoms increases from 2 to 14. Starting from n=12, the O atom falls into the center of the cluster with the Y atoms forming the outer frame. The results show that clusters with n=2, 4, 8, and 12 are more stable than their respective neighbors, and that the total magnetic moments of Y(n)O clusters are all quite small except Y(12)O cluster. The lowest-energy structure of Y(12)O cluster is a perfect icosahedron with a large magnetic moment 6mu(B). In addition, we find that the total magnetic moments are quenched for n=2, 6, and 8 due to the closed-shell electronic configuration. The calculated ionization potentials and electron affinities are in good agreement with the experimental results, which imply that the present theoretical treatments are satisfactory.
A theoretical perspective on road safety communication campaigns.
Elvik, Rune
2016-12-01
This paper proposes a theoretical perspective on road safety communication campaigns, which may help in identifying the conditions under which such campaigns can be effective. The paper proposes that, from a theoretical point of view, it is reasonable to assume that road user behaviour is, by and large, subjectively rational. This means that road users are assumed to behave the way they think is best. If this assumption is accepted, the best theoretical prediction is that road safety campaigns consisting of persuasive messages only will have no effect on road user behaviour and accordingly no effect on accidents. This theoretical prediction is not supported by meta-analyses of studies that have evaluated the effects of road safety communication campaigns. These analyses conclude that, on the average, such campaigns are associated with an accident reduction. The paper discusses whether this finding can be explained theoretically. The discussion relies on the distinction made by many modern theorists between bounded and perfect rationality. Road user behaviour is characterised by bounded rationality. Hence, if road users can gain insight into the bounds of their rationality, so that they see advantages to themselves of changing behaviour, they are likely to do so. It is, however, largely unknown whether such a mechanism explains why some road safety communication campaigns have been found to be more effective than others. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers
NASA Astrophysics Data System (ADS)
Li, Xiao; Li, Xinming; Zang, Xiaobei; Zhu, Miao; He, Yijia; Wang, Kunlin; Xie, Dan; Zhu, Hongwei
2015-04-01
Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials.Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials. Electronic supplementary information (ESI) available: Low-magnification optical images; Raman spectra of 0% and 5% H2 samples; AFM characterization; Schematic of the film before and after sulfurization annealing; Schematic illustrations of two typical Raman-active phonon modes (E12g, A1g); Raman (mapping) spectra for 40% and 80% H2 samples before and after sulfurization annealing; PL spectra. See DOI: 10.1039/c5nr00904a
Volume dependence of N-body bound states
NASA Astrophysics Data System (ADS)
König, Sebastian; Lee, Dean
2018-04-01
We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.
NASA Astrophysics Data System (ADS)
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo
2008-06-01
We propose a cheat sensitive quantum protocol to perform a private search on a classical database which is efficient in terms of communication complexity. It allows a user to retrieve an item from the database provider without revealing which item he or she retrieved: if the provider tries to obtain information on the query, the person querying the database can find it out. The protocol ensures also perfect data privacy of the database: the information that the user can retrieve in a single query is bounded and does not depend on the size of the database. With respect to the known (quantum and classical) strategies for private information retrieval, our protocol displays an exponential reduction in communication complexity and in running-time computational complexity.
Complete spectrum of long operators in Script N = 4 SYM at one loop
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Kazakov, Vladimir A.; Sakai, Kazuhiro; Zarembo, Konstantin
2005-07-01
We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop Script N = 4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spectral curve of classical strings on AdS5 × S5 derived in [64]. To complete the comparison we introduce stacks, novel bound states of roots of different flavors which arise in the thermodynamic limit of the corresponding Bethe ansatz equations. We furthermore show the equivalence of various types of Bethe equations for the underlying fraktur sfraktur u(2,2|4) superalgebra, in particular of the type ``Beauty'' and ``Beast''.
Petković, Milena; Nakarada, Đura; Etinski, Mihajlo
2018-05-25
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jia, E-mail: jia-zhu@jxnu.edu.cn, E-mail: zhangyf@fzu.edu.cn; Zhang, Hui; Tong, Yawen
The structures and electronic properties of bimetallic oxide CrW{sub 2}O{sub 9} clusters supported on the perfect and defective MgO(001) surfaces with three different color centers, F{sub S}{sup 0}, F{sub S}{sup +}, and F{sub S}{sup 2+} centers, respectively, have been investigated by density functional theory calculations. Our results show that the configurations, adsorption energies, charge transfers, and bonding modes of dispersed CrW{sub 2}O{sub 9} clusters are sensitive to the charge states of the F{sub S} centers. Compared with the gas-phase configuration, the CrW{sub 2}O{sub 9} clusters supported on the defective surfaces are distorted dramatically, which exhibit different chain structures. On themore » perfect MgO surface, the depositions of clusters do not involve obvious charge transfer, while the situation is quite different on the defective MgO(001) surfaces in which significant electron transfer occurs from the surface to the cluster. Interestingly, this effect becomes more remarkable for electron-rich oxygen vacancies (F{sub S}{sup 0} center) than that for electron-poor oxygen vacancies (F{sub S}{sup +} and F{sub S}{sup 2+} centers). Furthermore, our work reveals a progressive Brønsted acid sites where spin density preferentially localized around the Cr atoms not the W atoms for all kinds of F{sub S}-centers, indicating the better catalytic activities can be expected for CrW{sub 2}O{sub 9} cluster on defective MgO(001) surfaces with respect to the W{sub 3}O{sub 9} cluster.« less
Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer
NASA Astrophysics Data System (ADS)
Yu, Dindi; Ruangchaithaweesuk, Songtham; Yao, Li; Xu, Shoujun
2012-09-01
The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.
NASA Astrophysics Data System (ADS)
Ji, Bing; Tsai, Chin-Chun; Stwalley, William C.
1995-04-01
A modified internuclear distance criterion, RLR- m, as the lower bound for the region of validity of the inverse-power expansion of the diatomic long-range potential is proposed. This new criterion takes into account the spatial orientation of the atomic orbitals while retaining the simplicity of the traditional Le Roy radius, RLR for the interaction of S state atoms. Recent experimental and theoretical results for various excited states in Na 2 suggest that this proposed RLR- m is an appropriate generalization of RLR.
A relativistic analysis of clock synchronization
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1974-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.
Derivatized gold clusters and antibody-gold cluster conjugates
Hainfeld, J.F.; Furuya, F.R.
1994-11-01
Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.
(N-Benzyl-N-ethyldithiocarbamato)di-tert-butylchloridotin(IV)
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.
2011-01-01
The SnIV atom in the title diorganotin dithiocarbamate, [Sn(C4H9)2Cl(C10H12NS2)], is pentacoordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C—H⋯π contacts link centrosymmetrically related molecules into dimeric aggregates. PMID:21522295
Faraday diamagnetism under slowly oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke
2018-04-01
Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.
Corfield, Peter W R; Cleary, Emma; Michalski, Joseph F
2016-07-01
In the title compound, {(C6H16NO)[Cu2(CN)3]} n , the cyanide groups link the Cu(I) atoms into an open three-dimensional anionic network, with the mol-ecular formula Cu2(CN)3 (-). One Cu(I) atom is tetra-hedrally bound to four CN groups, and the other Cu(I) atom is bonded to three CN groups in an approximate trigonal-planar coordination. The tetra-hedrally coordinated Cu(I) atoms are linked into centrosymmetric dimers by the C atoms of two end-on bridging CN groups which bring the Cu(I) atoms into close contact at 2.5171 (7) Å. Two of the cyanide groups bonded to the Cu(I) atoms with trigonal-planar surrounding link the dimeric units into columns along the a axis, and the third links the columns together to form the network. The N,N-di-ethyl-ethano-lamine mol-ecules used in the synthesis have become protonated at the N atoms and are situated in cavities in the network, providing charge neutrality, with no covalent inter-actions between the cations and the anionic network.
Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas
Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix; ...
2016-08-10
Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less
Quantum localization and bound-state formation in Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2010-12-15
We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity andmore » a bounded energy spectrum.« less
Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro
2006-06-02
We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.
Exciton Rydberg series in mono- and few-layer WS2
NASA Astrophysics Data System (ADS)
Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.
2014-03-01
Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.
NASA Astrophysics Data System (ADS)
McDonald, Mickey
2017-04-01
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.