NASA Astrophysics Data System (ADS)
Bolden, Marsha Gail
Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.
MIT-KSC space life sciences telescience testbed
NASA Technical Reports Server (NTRS)
1989-01-01
A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.
NASA Technical Reports Server (NTRS)
Stenzel, Ch.
2012-01-01
Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.
Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa
2014-07-01
Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all medical students. © 2014 John Wiley & Sons Ltd.
Life science experiments performed in space in the ISS/Kibo facility and future research plans
Ohnishi, Takeo
2016-01-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2002-01-01
The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.
Helping Your Child in Reading in Science.
ERIC Educational Resources Information Center
Ediger, Marlow
Parents can help students learn science in a variety of ways. Taking advantage of children's natural curiosity, parents can take short walks with their child to notice interesting things in the environment. Parents can also help students perform science experiments at home that are related to school science experiments. In addition, parents can…
Life science experiments performed in space in the ISS/Kibo facility and future research plans.
Ohnishi, Takeo
2016-08-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Technical Reports Server (NTRS)
Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce
1989-01-01
A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.
Life science research objectives and representative experiments for the space station
NASA Technical Reports Server (NTRS)
Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)
1989-01-01
A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.
NASA Astrophysics Data System (ADS)
George, Anna Ray Bayless
A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.
Teaching School Science within the Cognitive and Affective Domains
ERIC Educational Resources Information Center
Tan, Kok Siang; Heng, Chong Yong; Tan, Shuhui
2013-01-01
In classrooms, science is usually taught within the cognitive domain while the psychomotor learning domain is achieved through performing science experiments in the laboratory. Although students attend civic and moral education and pastoral care classes where values and life skills are often taught directly, learning experiences in most school…
Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics
NASA Astrophysics Data System (ADS)
Jacobs, Karin; Brinkmann, Martin; Müller, Frank
2015-03-01
Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.
The Impact of Agricultural Science Education on Performance in a Biology Course
NASA Astrophysics Data System (ADS)
Ernest, Byron L.
The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.
ERIC Educational Resources Information Center
Schulze, Salomé; Lemmer, Eleanor
2016-01-01
Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…
ERIC Educational Resources Information Center
Conradson, Diane R.
Reported is a study on effects of early classroom teaching experience upon the attitudes and performance of teacher candidates from a student group primarily composed of science majors or minors. The subjects were paired mainly on their choice of a credential or noncredential program. One of each pair was randomly assigned to the experimental…
ERIC Educational Resources Information Center
McLeod, Poppy Lauretta; Orta-Ramirez, Alicia
2018-01-01
The relationship between past teamwork and task-related experiences, attitude toward teamwork, collective efficacy, and task performance among undergraduates (N = 298) assigned to group projects (N = 48) in 2 different Food Science courses was examined. The results of survey data collected at the beginning and end of the projects showed that past…
Uncovering the lived experiences of junior and senior undergraduate female science majors
NASA Astrophysics Data System (ADS)
Adornato, Philip
The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.
Experiment facilities for life science experiments in space.
Uchida, Satoko
2004-11-01
To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.
Skylab experiments. Volume 4: Life sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The life sciences experiments conducted during Skylab missions are discussed. The general categories of the experiments are as follows: (1) mineral and hormonal balance, (2) hematology and immunology, (3) cardiovascular status, (4) energy expenditure, (5) neurophysiology, and (7) biology. Each experiment within the general category is further identified with respect to the scientific objectives, equipment used, performance, and data to be obtained.
The Demonstration and Science Experiments (DSX) Mission
NASA Astrophysics Data System (ADS)
McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.
2015-12-01
In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.
How to Teach High-School Students "How Science Really Works?"
NASA Astrophysics Data System (ADS)
Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena
2016-04-01
One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting terrestrial glaciers and Martian North Polar Residual Cap. 3) Students were responsible for physically preparing scientific equipment (within a given budget). 4) Students prepared detailed procedures which were used during the experiment. The experiment was performed by the Austrian Space Forum analog astronauts during the Mars Analog Mission AMADEE-15 between 2nd and 14th of August 2015 at the Kaunertal Glacier in Austria. 5) During and after the mission students analyzed data collected during the experiment. 6) Students presented their findings during the regional science fair (Dolnoslaski Festiwal Nauki). Despite the fact the quality of the data produced during the experiment was not satisfactory, the project was a success in terms of explaining students "How Science Really Works" (e.g., how much depends on the properly designed and executed procedures).
NASA Astrophysics Data System (ADS)
Minger, Mark Austin
Having fears and frustrations while studying science topics can lead to science anxiety for some individuals. For those who experience science learning anxiety, the reality is often poor performance, lowered self-esteem, anger, and avoidance of further science courses. Using an interpretive approach, this study captures the experiences of five self-reported science anxious students as they participate in an interdisciplinary science course at the University of Minnesota. A series of three in-depth interviews were conducted with five students who were enrolled in the "Our Changing Planet" course offered at the University of Minnesota. The interviews were transcribed verbatim, coded, and analyzed thematically. Four major themes emerged from the interviews. Two of the themes involve the realities of being a science anxious student. These focus on participants' experiences of feeling frustrated, anxious and incompetent when studying both math and science; and the experiences of trying to learn science content that does not seem relevant to them. The last two themes highlight the participants' perceptions of their experiences during the "Our Changing Planet" course, including how the course seemed different from previous science courses as well as their learning experiences in cooperative groups. After presenting the themes, with supporting quotations, each theme is linked to the related literature. The essence of the participants' science anxiety experiences is presented and practical implications regarding science anxious students are discussed. Finally, insights gained and suggestions for further research are provided.
Space Station and the life sciences
NASA Technical Reports Server (NTRS)
White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.
1983-01-01
Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.
Sanchez, Christopher A
2012-02-01
Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.
Swedish materials science experiment equipment
NASA Astrophysics Data System (ADS)
Jonsson, R.
1982-09-01
Details of the apparatus and experimentation performed with the Swedish MURMEC (multi-purpose Rocket-borne Materials science Experiment Carrier) and other materials science equipment for sounding rocket and airborne trials are presented. The MURMEC science modules contain four isothermal furnaces, 12 pore formation experiment furnaces, and two gradient furnaces. The modules feature a power system, experimental control, and monitoring sensors. Design details and operational features of each of the furnaces are provided, and results of the first MURMEC flight on-board a Swedish sounding rocket with the PIRAT (Pointed IR Astronomical Telescope) are discussed. Additional tests were performed using a modified NASA F-104 aircraft flown in a parabolic trajectory to produce a 0.3-0.1 g environment for 50-60 sec. Films were made of melting and resolidification processes during nine different flights using three different samples.
The International Microgravity Laboratory, a Spacelab for materials and life sciences
NASA Technical Reports Server (NTRS)
Snyder, Robert S.
1992-01-01
The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).
An integrated biochemistry and genetics outreach program designed for elementary school students.
Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A
2012-02-01
Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.
Facing page test for the astronaut science advisor presentation
NASA Technical Reports Server (NTRS)
Compton, Michael M.
1991-01-01
The goal of the Astronaut Science Advisor (ASA) project is to improve the scientific return of experiments performed in space by providing astronaut experimenters with an 'intelligent assistant' that encapsulates much of the domain- and experiment-related knowledge commanded by the Principal Investigator (PI) on the ground. By using expert systems technology and the availability of flight-qualified personal computers, it is possible to encode the requisite knowledge and make it available to astronauts as they perform experiments in space. The system performs four major functions: diagnosis and troubleshooting of experiment apparatus, data collection, protocol management, and detection of interesting data. The experiment used for development of the system measures human adaptation to weightlessness in the context of the neurovestibular system. This so-called 'Rotating Dome' experiment was flown on the recent Spacelab Life Sciences One (SLS-1) Mission. This mission was used as an opportunity to test some of the system's functionality. Experiment data was downlinked from the orbiter, and the system then captured the data and analyzed it in real time. The system kept track of the time being used by the experiment, recognized occurrences of interesting data, summarized data statistically and generated potential new protocols that could be used to optimize the course of the experiment.
Narrative Experiments and Imaginative Inquiry
ERIC Educational Resources Information Center
Gough, Noel
2008-01-01
In this semi-autobiographical essay I explore the representation and performance of imaginative inquiry practices in educational inquiry and other disciplines, with particular reference to "thought experiments" in the natural sciences and comparable practices in the arts, humanities, and social sciences. I share a number of experiences…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J F
2007-01-31
This final report will cover work performed over the period of November 11, 2005 to September 30, 2006 on the contract to develop technologies using laser sources for radiation effects sciences. The report will discuss four topic areas; the laser source experiments on the Gekko Laser at Osaka, Japan, planning for the Charge State Freeze Out experiments to be performed in calendar year 2007, a review of previous xenon gasbags on the LANL Trident laser to provide planning support to the May-June 2007 HELEN experiments.
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.
Physical experience enhances science learning.
Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L
2015-06-01
Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.
Materials science experiments in space
NASA Technical Reports Server (NTRS)
Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.
1978-01-01
The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.
Novel Therapeutic Targets to Treat Social Behavior Deficits in Autism and Related Disorders
2016-06-01
INVESTIGATOR: Georgianna G. Gould, M.S., Ph.D. CONTRACTING ORGANIZATION: The University of Texas Health Science Center at San Antonio San Antonio, TX...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The University of Texas Health Science Center at San Antonio 7703...Collaborating Consultants are at the University of Texas Health Science Center Facility, and all experiments will be performed on-site, so there were
ERIC Educational Resources Information Center
Boddey, Kerrie; de Berg, Kevin
2018-01-01
Twenty-seven first-year nursing students, divided across six focus groups formed on the basis of their past chemistry experience, were interviewed about their chemistry experience as a component of a Health Science unit. Information related to learning and academic performance was able to be established from student conversations resulting in…
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
The National Ignition Facility: Transition to a User Facility
NASA Astrophysics Data System (ADS)
Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.
2016-03-01
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.
Understanding the science-learning environment: A genetically sensitive approach.
Haworth, Claire M A; Davis, Oliver S P; Hanscombe, Ken B; Kovas, Yulia; Dale, Philip S; Plomin, Robert
2013-02-01
Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000 pairs of 14-year-old twins from the UK Twins Early Development Study reported on their experiences of the science-learning environment and were assessed for their performance in science using a web-based test of scientific enquiry. Multivariate twin analyses were used to investigate the genetic and environmental links between environment and outcome. The most surprising result was that the science-learning environment was almost as heritable (43%) as performance on the science test (50%), and showed negligible shared environmental influence (3%). Genetic links explained most (56%) of the association between learning environment and science outcome, indicating gene-environment correlation.
How to reconcile the multiculturalist and universalist approaches to science education
NASA Astrophysics Data System (ADS)
Hansson, Sven Ove
2017-06-01
The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved rationality, a careful distinction between facts and values, a search for shared, well-founded judgments in empirical matters, and strivings for continuous improvement of these judgments. Prominent examples are hunters' discussions when tracking a prey, systematic agricultural experiments performed by indigenous farmers, and remarkably advanced experiments performed by craftspeople long before the advent of modern science. When the continuities between science and these prescientific practices are taken into account, it becomes obvious that the traditional forms of both multiculturalism and universalism should be replaced by a new approach that dissolves the alleged conflict between adherence to modern science and respect for traditional cultures.
Amory, Jonathan
2014-01-01
Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students’ confidence in maths and improve students’ academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials. PMID:25024925
van Veggel, Nieky; Amory, Jonathan
2014-01-01
Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.
Second United States Microgravity Laboratory: One Year Report. Volume 1
NASA Technical Reports Server (NTRS)
Vlasse, M (Editor); McCauley, D. (Editor); Walker, C. (Editor)
1998-01-01
This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
Second United States Microgravity Laboratory: One Year Report. Volume 2
NASA Technical Reports Server (NTRS)
Vlasse, M. (Editor); McCauley, D. (Editor); Walker, C. (Editor)
1998-01-01
This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
Vibration Isolation Technology (VIT) ATD Project
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.
1994-01-01
A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report.
ERIC Educational Resources Information Center
Boddey, Kerrie; de Berg, Kevin
2015-01-01
Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…
NASA Astrophysics Data System (ADS)
Wong, Billy
2012-01-01
This paper provides an in-depth, 'case study' style analysis of the experiences of two 13-year-old British Asian girls from a larger qualitative study investigating minority ethnic students' aspirations in science. Through the lens of identity as performativity and Bourdieu's notions of habitus and capital, the ways in which two girls engage with the field of science is examined. Samantha is British Indian and Fay is British Bangladeshi and they are both 'top set' students in science, but only one aspired to study triple science, while the other desired to be 'famous'. The experiences of the two girls are explicated in this paper, teasing out their experiences and constructions of science. It is argued that cultural discourses of family, peers and teacher expectations can shape students' perceptions of science and education.
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.
Spacelab Life Sciences 1 results
NASA Technical Reports Server (NTRS)
Seddon, Rhea
1992-01-01
Results are presented from the experiments conducted by the first Shuttle/Spacelab mission dedicated entirely to the life sciences, the Spacelab Life Sciences 1, launched on June 5, 1991. The experiments carried out during the 9-day flight included investigations of changes in the human cardiovascular, pulmonary, renal/endocrine, blood, and vestibular systems that were brought about by microgravity. Results were also obtained from the preflight and postflight complementary experiments performed on rats, which assessed the suitability of rodents as animal models for humans. Most results verified, or expanded on, the accepted theories of adaptation to zero gravity.
The influence of retrieval practice on memory and comprehension of science texts
NASA Astrophysics Data System (ADS)
Hinze, Scott R.
The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not fill-in-the-blank tests, improved performance on new memory items. Experiment 2 manipulated test expectancy and extended cued recall benefits to inference items. Test expectancies established prior to retrieval altered processing to either be ineffective (when expecting a memory test) or effective (when expecting an inference test). In Experiment 3, the processing task engaged in during retrieval practice was manipulated. Explanation during retrieval practice led to more effective transfer than free recall instructions, especially when participants were compliant and effective in their explanations. These experiments demonstrate that some, but not all, processing during retrieval practice can influence both memory and understanding of science texts.
ERIC Educational Resources Information Center
DeArmond, A. R.; Oster, A. D.; Overhauser, E. A.; Palos, M. K.; Powell, S. M.; Sago, K. K.; Schelling, L. R.
2009-01-01
Science librarianship is a rapidly changing professional specialization that requires unique skills and experiences for science librarians to perform at the highest level. A content analysis of recent job advertisements was conducted to determine the most desirable qualifications for science librarians. It was found that the most frequently cited…
The Influence of Retrieval Practice on Memory and Comprehension of Science Texts
ERIC Educational Resources Information Center
Hinze, Scott R.
2010-01-01
The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not…
Indigenous Cultural Contexts for STEM Experiences: Snow Snakes' Impact on Students and the Community
ERIC Educational Resources Information Center
Miller, Brant G.; Roehrig, Gillian
2018-01-01
Opportunities for American Indian youth to meaningfully engage in school-based science, technology, engineering, and mathematics (STEM) experiences have historically been inadequate. As a consequence, American Indian students perform lower on standardized assessments of science education than their peers. In this article we describe the emergence…
Impact of Service-Learning Experiences in Culinary Arts and Nutrition Science
ERIC Educational Resources Information Center
Daugherty, Jamie B.
2015-01-01
A grant from a regional nonprofit organization for the 2012-2013 academic year facilitated the revision of an existing course learning objective in a Culinary Nutrition lab course--performing effective culinary demonstrations--to include a service-learning experience. This course is a graduation requirement in a research- and science-based…
Improving STEM Program Quality in Out-of-School-Time: Tool Development and Validation
ERIC Educational Resources Information Center
Shah, Ashima Mathur; Wylie, Caroline; Gitomer, Drew; Noam, Gil
2018-01-01
In and out-of-school time (OST) experiences are viewed as complementary in contributing to students' interest, engagement, and performance in science, technology, engineering, and mathematics (STEM). While tools exist to measure quality in general afterschool settings and others to measure structured science classroom experiences, there is a need…
NASA Astrophysics Data System (ADS)
Chu, Man-Wai; Fung, Karen
2018-04-01
Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.
The Workshop Program on Authentic Assessment for Science Teachers
NASA Astrophysics Data System (ADS)
Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.
2017-02-01
A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.
Guerilla Science: Outreach at music and art festival
NASA Astrophysics Data System (ADS)
Rosin, Mark
2012-10-01
Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.
Contexts, concepts and cognition: principles for the transfer of basic science knowledge.
Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey
2017-02-01
Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise conceptual structure. This means teaching must focus on conserved basic science knowledge and de-emphasise superficial features. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi
2004-03-01
Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.
NASA Astrophysics Data System (ADS)
Webb-Williams, Jane
2017-04-01
Self-efficacy has been shown to influence student engagement, effort and performance as well as course selection and future career choice. Extending our knowledge regarding the development of self-efficacy has important implications for educators and for those concerned about the international uptake of science careers. Previous research has identified four sources that may contribute towards self-efficacy: mastery experiences, vicarious experiences, verbal persuasion and physiological/affective states. Very little research has been conducted within the school environment that looks at the formation of these sources and yet early school experiences have been posited to be a key factor in girls' lack of engagement in post compulsory science education. This paper investigates children's self-efficacy beliefs in science and reports on findings from mixed method research conducted with 182 children aged between 10 and 12 years. Classroom data were collected through focus groups, individual interviews and surveys. Findings revealed that although girls and boys held similar levels of academic performance in science, many girls underestimated their capability. The four sources of self-efficacy identified by Bandura (1997) plus self-regulation as an additional source, were evident in the children's descriptions, with boys being more influenced by mastery experience and girls by a combination of vicarious experience and physiological/affective states. Girl's appraisal of information appeared to operate through a heuristic process whereby girls disregarded salient information such as teacher feedback in favour of reliance on social comparison. Contextual factors were identified. Implications for science teachers are discussed.
Social Science Research Serving Rural America.
ERIC Educational Resources Information Center
Miron, Mary, Ed.
This collection of articles provides an overview of some of the recent social science research projects performed by state agricultural experiment stations. The examples highlight social science's contribution to problem-solving in rural business, industry, farming, communities, government, education, and families. The following programs are…
NASA Johnson Space Center Life Sciences Data System
NASA Technical Reports Server (NTRS)
Rahman, Hasan; Cardenas, Jeffery
1994-01-01
The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.
An experience of science theatre: Earth Science for children
NASA Astrophysics Data System (ADS)
Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana
2015-04-01
The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks
Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur
2016-01-01
Students’ academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. PMID:27856549
NASA Astrophysics Data System (ADS)
Tonnis, Dorothy Ann
The goals of this interpretive study were to examine selected Wisconsin science teachers' perceptions of teaching and learning science, to describe the scope of classroom performance assessment practices, and to gain an understanding of teachers' personal and professional experiences that influenced their belief systems of teaching, learning and assessment. The study was designed to answer the research questions: (1) How does the integration of performance assessment relate to the teachers' views of teaching and learning? (2) How are the selected teachers integrating performance assessment in their teaching? (3) What past personal and professional experiences have influenced teachers' attitudes and beliefs related to their classroom performance assessment practices? Purposeful sampling was used to select seven Wisconsin elementary, middle and high school science teachers who participated in the WPADP initiative from 1993-1995. Data collection methods included a Teaching Practices Inventory (TPI), semi-structured interviews, teacher developed portfolios, portfolio conferences, and classroom observations. Four themes and multiple categories emerged through data analysis to answer the research questions and to describe the results. Several conclusions were drawn from this research. First, science teachers who appeared to effectively integrate performance assessment, demonstrated transformational thinking in their attitudes and beliefs about teaching and learning science. In addition, these teachers viewed assessment and instructional practices as interdependent. Third, transformational teachers generally used well defined criteria to judge student work and made it public to the students. Transformational teachers provided students with real-world performance assessment tasks that were also learning events. Furthermore, student task responses informed the transformational teachers about effectiveness of instruction, students' complex thinking skills, quality of assessment instruments, students' creativity, and students' self-assessment skills. Finally, transformational teachers maintained integration of performance assessment practices through sustaining teacher support networks, engaging in professional development programs, and reflecting upon past personal and professional experiences related to teaching, learning and assessment. Salient conflicts overcome or minimized by transformational teachers include the conflict between assessment scoring and grading issues, validity and reliability concerns about the performance assessment tasks used, and the difficulty for teachers to consistently provide public criteria to students before task administration.
Managerial Accounting in Library and Information Science Education.
ERIC Educational Resources Information Center
Hayes, Robert M.
1983-01-01
Explores meaning of managerial accounting in libraries and discusses instructional program for students of library and information science based on experience in School of Library and Information Science at University of California, Los Angeles. Management decision making (budgeting, performance evaluation, overhead, resource allocation,…
Third United States Microgravity Payload: One Year Report
NASA Technical Reports Server (NTRS)
Currieri, P. A. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)
1998-01-01
This document reports the one year science results for the Third United States Microgravity Payload (USMP-3). The USMP-3 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about seven major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive space station era.
Fourth United States Microgravity Payload: One Year Report
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C. (Compiler); Curreri, Peter A. (Compiler); McCauley, D. E. (Compiler)
1999-01-01
This document reports the one year science results for the Fourth United States Microgravity Payload (USMP-4). The USMP-4 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about eight major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
An overview of Korean astronaut’s space experiments
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.
2010-10-01
The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments
NASA Technical Reports Server (NTRS)
Torrez, Jonathan
2009-01-01
The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.
Bromothymol Blue: The Demo We All Do!
ERIC Educational Resources Information Center
Rutherford, Sandra; Coffman, Margaret
2005-01-01
Often science teachers perform demonstrations only to discover that students have already seen the experiment in a previous course. Teachers should take advantage of these opportunities to showcase the interconnectedness of different science disciplines. One example of a demonstration used across most science disciplines and grade levels involves…
ERIC Educational Resources Information Center
Cacciatore, Kristen L.; Sevian, Hannah
2009-01-01
Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…
LANSCE: Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.
Motor Sensory Performance - Skylab Student Experiment ED-41
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Research Experiences for Science Teachers: The Impact On Their Students
NASA Astrophysics Data System (ADS)
Dubner, J.
2005-12-01
Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods of time than more conventionally trained teachers. Most importantly, the performance of their students improves; students of participating teachers have a higher pass rate on New York State Science Regents examinations than students in classes of non-participating teachers in the same schools. Student outcomes data will be presented for both Columbia's program and from a multi-site study, which Columbia's program headed up.
Realtime Decision Making on EO-1 Using Onboard Science Analysis
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu
2004-01-01
Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.
ERIC Educational Resources Information Center
Liu, Tsung-Yu
2016-01-01
This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…
STS 61-A crewmembers in Spacelab D-1 science module
1985-10-30
61A-01-030 (30 Oct.-6 Nov. 1985) --- Mission specialist Guion S. Bluford prepares to perform a physics experiment onboard the D-1 science module in the cargo bay of the earth-orbiting Space Shuttle Challenger. In the backgroud, three European payload specialists busy themselves with experiment chores: (L-R) Wubbo J. Ockels (partially obscured), Reinhard Furrer and Ernst Messerschmid.
Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates
ERIC Educational Resources Information Center
Pelter, Michael W.; McQuade, Jennifer
2005-01-01
The experiments that mimic the actual brewing process to explain the science to the nonscience majors is performed using malted barley as the source for both the starch and the amylase enzyme. The experiment introduces the concept of monitoring the progress of chemical reaction and was able to show the chemical breakdown of the starch to simple…
ERIC Educational Resources Information Center
Moore, Randy; Jensen, Philip A.
2008-01-01
Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…
Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.
MIT-NASA/KSC space life science experiments - A telescience testbed
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.
1990-01-01
Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1993-01-01
Current plans indicate that there will be a large number of life science experiments carried out during the thirty year-long mission of the Biological Flight Research Laboratory (BFRL) on board Space Station Freedom (SSF). Non-human life science experiments will be performed in the BFRL. Two distinct types of activities have already been identified for this facility: (1) collect, store, distribute, analyze and manage engineering and science data from the Habitats, Glovebox and Centrifuge, (2) perform a broad range of remote science activities in the Glovebox and Habitat chambers in conjunction with the remotely located principal investigator (PI). These activities require extensive video coverage, viewing and/or recording and distribution to video displays on board SSF and to the ground. This paper concentrates mainly on the second type of activity. Each of the two BFRL habitat racks are designed to be configurable for either six rodent habitats per rack, four plant habitats per rack, or a combination of the above. Two video cameras will be installed in each habitat with a spare attachment for a third camera when needed. Therefore, a video system that can accommodate up to 12-18 camera inputs per habitat rack must be considered.
NASA Astrophysics Data System (ADS)
Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad
2017-05-01
This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.
The perspectives of Caribbean high school students' experiences in American science classrooms
NASA Astrophysics Data System (ADS)
Ferguson, Renae Luenell
The purpose of this study was to describe the perspectives of Caribbean high school students' experiences in American science classrooms. Research suggests that psychological, cultural, and socioeconomic perspectives influence the science experiences of African Americans or Blacks; the result of which is under-representation (Lewis et al., 2000). Nonetheless, what is uncertain is if these and other perspectives are similar to the science experiences of Caribbeans who also are majority black by race and rank as the 3 rd largest immigrant population in America's schools (Suarez-Orozco, 2000). Questions guiding this study were: (1) What are the perspectives of Caribbean high school students' experiences in American science classrooms? (2) What can we learn from the perspectives of Caribbean high school students' science experiences that may address issues of participation and interest; consequently, influencing the overall performance of ethnic minorities in school science? Sociocultural theory provides the framework for the analysis of the study. Four Caribbean born students in an American high school participated in this naturalistic qualitative research. A constant comparative method was used to categorize and analyze the data and uncover meaningful patterns that emerged from the four interviews and written documents. Although there were similarities between African Americans' science experiences as documented in the literature and that of Caribbeans in this study, the Caribbean participants relied on prior native experiences to dictate their perspectives of their science experiences in America. According to Caribbean students, American science high schools classrooms utilize an objective style of assessments; are characterized by a lack of teacher support; allow behavioral problems in the classroom; and function through different communication styles than the native Caribbean science classroom environment. This study implies science educators should be sensitive to the sociocultural nuances of Caribbeans, as well as to all other students. Educators should also understand and value students' individual backgrounds, cultural patterns, and specific influences which impinge students in science and may result in underachievement. In addition, educators should not only discuss issues of under-representation in science but also they should begin to initiate the implementation of strategies addressed in this study in order to bring awareness and resolution to these pressing issues.
NASA Technical Reports Server (NTRS)
Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.
2000-01-01
The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.
Field and Experience Influences on Ethical Decision-Making in the Sciences
Mumford, Michael D.; Connelly, Shane; Murphy, Stephen T.; Devenport, Lynn D.; Antes, Alison L.; Brown, Ryan P.; Hill, Jason H.; Waples, Ethan P.
2009-01-01
Differences across fields and experience levels are frequently considered in discussions of ethical decision-making and ethical behavior. In the present study, doctoral students in the health, biological, and social sciences completed measures of ethical decision-making. The effects of field and level of experience with respect to ethical decision-making, metacognitive reasoning strategies, social-behavioral responses, and exposure to unethical events were examined. Social and biological scientists performed better than health scientists with respect to ethical decision-making. Furthermore, the ethical decision-making of health science students decreased as experience increased. Moreover, these effects appeared to be linked to the specific strategies underlying participants' ethical decision-making. The implications of these findings for ethical decision-making are discussed. PMID:19750129
ERIC Educational Resources Information Center
Touchton, Michael
2015-01-01
I administer a quasi-experiment using undergraduate political science majors in statistics classes to evaluate whether "flipping the classroom" (the treatment) alters students' applied problem-solving performance and satisfaction relative to students in a traditional classroom environment (the control). I also assess whether general…
Preservice science teachers' experiences with repeated, guided inquiry
NASA Astrophysics Data System (ADS)
Slack, Amy B.
The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry, increased their understanding of how they might use SI in their classroom, increased their understanding of why variables are used in experiments, and did not increase their physics content knowledge. These conclusions suggest that preservice science teachers having repeated, guided experiences with inquiry increase their abilities to conduct SI and consider how inquiry could be used in their future science classrooms.
ERIC Educational Resources Information Center
Rodriguez, Brandon; Jaramillo, Veronica; Wolf, Vanessa; Bautista, Esteban; Portillo, Jennifer; Brouke, Alexandra; Min, Ashley; Melendez, Andrea; Amann, Joseph; Pena-Francesch, Abdon; Ashcroft, Jared
2018-01-01
A multidisciplinary science experiment was performed in K-12 classrooms focusing on the interconnection between technology with geology and chemistry. The engagement and passion for science of over eight hundred students across twenty-one classrooms, utilizing a combination of hands-on activities using relationships between Earth and space rock…
Construct-a-Boat. Science by Design Series.
ERIC Educational Resources Information Center
Baroway, William
This book is one of four books in the Science-by-Design Series created by TERC and funded by the National Science Foundation (NSF). It challenges high school students to investigate the physics of boat performance and work with systems and modeling. Through research, design, testing, and evaluation of a model boat, students experience the…
ERIC Educational Resources Information Center
Liu, Ou Lydia; Lee, Hee-Sun; Linn, Marcia C.
2010-01-01
Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous…
Science Subject Knowledge of Pre-Service Postgraduate Science Teachers.
ERIC Educational Resources Information Center
Ratcliffe, Mary
For the past eight years postgraduate science teachers in training (approximately 50 each year) have been given Assessment of Performance Unit (APU) questions under strict test conditions as part of an initial learning experience in an education course. The APU questions were originally devised to explore the range of understanding of 15-year-old…
The International Space Station human life sciences experiment implementation process
NASA Technical Reports Server (NTRS)
Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.
2001-01-01
The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
del Carmen Gomez, María
2018-03-01
The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
Merging the Machines of Modern Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Laura; Collins, Jim
Two recent projects have harnessed supercomputing resources at the US Department of Energy’s Argonne National Laboratory in a novel way to support major fusion science and particle collider experiments. Using leadership computing resources, one team ran fine-grid analysis of real-time data to make near-real-time adjustments to an ongoing experiment, while a second team is working to integrate Argonne’s supercomputers into the Large Hadron Collider/ATLAS workflow. Together these efforts represent a new paradigm of the high-performance computing center as a partner in experimental science.
The microgravity environment of the D1 mission
NASA Technical Reports Server (NTRS)
Hamacher, H.; Merbold, U.; Jilg, R.
1990-01-01
Some characteristic features and results of D1 microgravity measurements are discussed as performed in the Material Science Double Rack (MSDR) and the Materials Science Double Rack for Experiment Modules and Apparatus (MEDEA). Starting with a brief review of the main potential disturbances, the payload aspects of interest to the analysis and the accelerometer measuring systems are described. The microgravity data are analyzed with respect to selected mission events such as thruster firings for attitude control, operations of Spacelab experiment facilities, vestibular experiments and crew activities. The origins are divided into orbit, vehicle, and experiment induced perturbations. It has been found that the microgravity-environment is dictated mainly by payload-induced perturbations. To reduce the microgravity-level, the design of some experiment facilities has to be improved by minimizing the number of moving parts, decoupling of disturbing units from experiment facilities, by taking damping measures, etc. In addition, strongly disturbing experiments and very sensitive investigations should be performed in separate mission phases.
An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences
ERIC Educational Resources Information Center
Mirchin, Robert Douglas
2012-01-01
This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…
Apollo 14: Science at Fra Mauro.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The many scientific activities and experiments performed during the Apollo 14 Mission are presented in a descriptive, non-technical format. Content relates to experiments on the lunar surface and to those performed while traveling in space, and provides a great deal of information about the flight. Many photographs from the journey, a map of the…
ERIC Educational Resources Information Center
Sorensen, Carole G.
1992-01-01
Presents a biographical sketch of Wanda Belgarde, a Native American (Turtle Mountain Chippewa) science teacher and mentor to minority teachers in Clark County School District, Nevada. Discusses her family, athletic and academic experiences in high school, exchange student experience to Norway during college, and multifaceted teaching experiences.…
Teacher Research Experience Programs = Increase in Student Achievement
NASA Astrophysics Data System (ADS)
Dubner, J.
2010-12-01
Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
Asmar, Sami
1997-01-01
Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.
STS 61-A crewmembers in Spacelab D-1 science module
NASA Technical Reports Server (NTRS)
1985-01-01
West German payload specialist Ernst Messerschmid, foreground, opens a door on the materials science double rack (MSDR) to begin an experiment while Dutch payload specialist Wubbo J. Ockels performs a 'run' on the vestibular sled in the background.
ERIC Educational Resources Information Center
Kane, Justine M.
2012-01-01
In this paper, I offer a framework for exploring the academic and disciplinary identities young African American children construct in urban science classrooms. Using interviews, fieldnotes, and videotapes of classroom lessons, I juxtapose the ways in which two children tell about their experiences in school and science with their performances of…
ERIC Educational Resources Information Center
Wang, Ye
2011-01-01
Deaf and hard of hearing students, who cannot successfully access and utilize information in print, experience various difficulties in conventional science instruction, which heavily relies on lectures and textbooks. The purpose of the present review is threefold. First, an overview of inquiry-based science instruction reform, including the…
The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations
ERIC Educational Resources Information Center
Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina
2016-01-01
The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…
NASA Astrophysics Data System (ADS)
Hasegawa, Makoto; Tokumitsu, Seika
2016-09-01
The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.
Student perceptions of secondary science: A performance technology application
NASA Astrophysics Data System (ADS)
Small, Belinda Rusnak
The primary purpose of this study was to identify influences blocking or promoting science performance from the lived K-12 classroom experience. Human Performance Technology protocols were used to understand factors promoting or hindering science performance. The goal was to gain information from the individual students' perspective to enhance opportunities for stakeholders to improve the current state of performance in science education. Individual perspectives of 10 secondary science students were examined using grounded theory protocols. Findings include students' science learning behaviors are influenced by two major themes, environmental supports and individual learning behaviors. The three environmental support factors identified include the methods students receive instruction, students' opportunities to access informal help apart from formal instruction, and students' feelings of teacher likability. Additionally, findings include three major factors causing individual learners to generate knowledge in science. Factors reported include personalizing information to transform data into knowledge, customizing learning opportunities to maximize peak performance, and tapping motivational opportunities to persevere through complex concepts. The emergent theory postulated is that if a performance problem exists in an educational setting, then integrating student perspectives into the cause analysis opens opportunity to align interventions for influencing student performance outcomes. An adapted version of Gilbert's Behavioral Engineering Model is presented as an organizational tool to display the findings. The boundaries of this Performance Technology application do not extend to the identification, selection, design, or implementation of solutions to improved science performance. However, as stakeholders begin to understand learner perspectives then aligned decisions may be created to support learners of science in a direct, cost effective manner.
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
A role of decision-making competency in science learning utilizing a social valuation framework
NASA Astrophysics Data System (ADS)
Katsuo, Akihito
2005-11-01
The role of decision-making in learning performance has been an occasional topic in the research literature in science education, but rarely has it been a central issue in the field. Nonetheless, recent studies regarding the topic in several fields other than education, such as cognitive neuroscience and social choice theory, indicate the fundamental importance(s) of the topic. This study focuses on a possible role of decision-making in science learning. Initially the study was designed to probe the decision-making ability of elementary school children with a modified version of the Iowa Gambling Task (IGT). The experiment involved six Montessori 3rd and 4th grade students as the experimental group and eight public school 3rd and 4th grade students as the control group. The result of the modified IGT revealed a tendency in choice trajectories favoring children at the Montessori school. However, the probabilistic value went below the statistically significant level set by the U test. A further study focused on the impact of better decision-making ability revealed in the first experiment on performances with a science learning module that emphasized collective reasoning. The instruction was based on a set of worksheets with multiple choices on which students were asked to make predictions with and to provide supportive arguments regarding outcomes of experiments introduced in the worksheet. Then the whole class was involved with a real experiment to see which choice was correct. The findings in the study indicated that the Montessori students often obtained higher scores than non-Montessori students in making decision with a tendency of consistency in terms of their choices of the alternatives on the worksheets. The findings of the experiments were supported by a correlational analysis that was performed at the end of study. Although no statistically significant correlations were found, there was a tendency for positively associative shifts between the scores of the modified IGT and the scores for the performances on the science module for the Montessori students.
The CTD Science Practical Survey.
ERIC Educational Resources Information Center
Bathory, Zoltan
1985-01-01
As part of Hungary's Curriculum Theory Department (CTD-80) assessment, 1,543 14-year-olds were tested in the performance of science experiments in physics and chemistry. Skills included observing, measuring, hypothesizing, and drawing conclusions. Results are presented, and implications for curriculum are suggested. (GDC)
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud, we named as OneSpaceNet (OSN), is the first open cloud system for scientists who are going to carry out their informatics for their own science. The science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings. Figure (not shown here) is a schematic picture of the NICT science cloud. Both types of data from observation and simulation are stored in the storage system in the science cloud. It should be noted that there are two types of data in observation. One is from archive site out of the cloud: this is a data to be downloaded through the Internet to the cloud. The other one is data from the equipment directly connected to the science cloud. They are often called as sensor clouds. In the present talk, we first introduce the NICT science cloud. We next demonstrate the efficiency of the science cloud, showing several scientific results which we achieved with this cloud system. Through the discussions and demonstrations, the potential performance of sciences cloud will be revealed for any research fields.
NASA Technical Reports Server (NTRS)
Garrett, David
1972-01-01
This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.
Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K
2016-01-01
Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.
NASA Astrophysics Data System (ADS)
Hazari, Zahra Sana
The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family's belief that science is a series of courses to pass. This study is a unique and noteworthy addition to the literature. The results paint a dynamic picture of the factors from high school physics and within the affective domain that influence students' future physics performance. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be beneficial to females and males in university.
The Oil Drop Experiment: Do Physical Chemistry Textbooks Refer to Its Controversial Nature?
ERIC Educational Resources Information Center
Niaz, Mansoor; Rodriguez, Maria A.
2005-01-01
Most general chemistry textbooks consider the oil drop experiment as a classic experiment, characterized by its simplicity and precise results. A review of the history and philosophy of science literature shows that the experiment is difficult to perform (even today!) and generated a considerable amount of controversy. Acceptance of the…
ERIC Educational Resources Information Center
Niemann, Marilyn A.; Miller, Michael L.; Davis, Thelma
2004-01-01
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what…
Climbing the Slope of Enlightenment during NASA's Arctic Boreal Vulnerability Experiment
NASA Astrophysics Data System (ADS)
Griffith, P. C.; Hoy, E.; Duffy, D.; McInerney, M.
2015-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is a new field campaign sponsored by NASA's Terrestrial Ecology Program and designed to improve understanding of the vulnerability and resilience of Arctic and boreal social-ecological systems to environmental change (http://above.nasa.gov). ABoVE is integrating field-based studies, modeling, and data from airborne and satellite remote sensing. The NASA Center for Climate Simulation (NCCS) has partnered with the NASA Carbon Cycle and Ecosystems Office (CCEO) to create a high performance science cloud for this field campaign. The ABoVE Science Cloud combines high performance computing with emerging technologies and data management with tools for analyzing and processing geographic information to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage for "big data" with integrated data management, and integration of core variables from in-situ networks. The ABoVE Science Cloud is a collaboration that is accelerating the pace of new Arctic science for researchers participating in the field campaign. Specific examples of the utilization of the ABoVE Science Cloud by several funded projects will be presented.
NASA Astrophysics Data System (ADS)
Tai, Robert H.
Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
The contributions of instructional design to cognitive science are discussed. It is argued that both sciences have their own object of study, but share a common interest in human cognition and performance as part of instructional systems. From a case study based on experience in teaching introductory computer programming, it is concluded that both…
NASA Technical Reports Server (NTRS)
1977-01-01
The joint U.S.-USSR experiments and the U.S. conducted unilateral experiments performed during the Apollo Soyuz Test Project are described. Scientific concepts and experiment design and operation are discussed along with scientific results of postflight analysis.
STEM enrichment programs and graduate school matriculation: the role of science identity salience
Serpe, Richard T.
2013-01-01
Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606
STEM enrichment programs and graduate school matriculation: the role of science identity salience.
Merolla, David M; Serpe, Richard T
2013-12-01
Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.
Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies
NASA Technical Reports Server (NTRS)
Gat, Nahum
1993-01-01
The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.
Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium
NASA Astrophysics Data System (ADS)
Yu, K. C.; Grinspoon, D.
2013-04-01
Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.
NASA Technical Reports Server (NTRS)
Campana, Sharon E.; Melendez, David T.
2011-01-01
The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.
NASA Technical Reports Server (NTRS)
Ross, Howard (Compiler)
2000-01-01
This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.
Pletser, Vladimir
2004-11-01
Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations. c2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghatty, Sundara L.
Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking as well as interests in performing experiments in virtual laboratories. No gender differences were observed in learning outcomes or self-efficacy. The results of the study indicated that virtual laboratories may be a substitute for traditional laboratories to some extent, and may play a vital role in online science courses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Xiaoqing; Deng, Z. T.
2009-11-10
This is the final report for the Department of Energy (DOE) project DE-FG02-06ER25746, entitled, "Continuing High Performance Computing Research and Education at AAMU". This three-year project was started in August 15, 2006, and it was ended in August 14, 2009. The objective of this project was to enhance high performance computing research and education capabilities at Alabama A&M University (AAMU), and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. AAMU has successfully completed all the proposed research and educational tasks. Through the support of DOE, AAMU was able tomore » provide opportunities to minority students through summer interns and DOE computational science scholarship program. In the past three years, AAMU (1). Supported three graduate research assistants in image processing for hypersonic shockwave control experiment and in computational science related area; (2). Recruited and provided full financial support for six AAMU undergraduate summer research interns to participate Research Alliance in Math and Science (RAMS) program at Oak Ridge National Lab (ORNL); (3). Awarded highly competitive 30 DOE High Performance Computing Scholarships ($1500 each) to qualified top AAMU undergraduate students in science and engineering majors; (4). Improved high performance computing laboratory at AAMU with the addition of three high performance Linux workstations; (5). Conducted image analysis for electromagnetic shockwave control experiment and computation of shockwave interactions to verify the design and operation of AAMU-Supersonic wind tunnel. The high performance computing research and education activities at AAMU created great impact to minority students. As praised by Accreditation Board for Engineering and Technology (ABET) in 2009, ?The work on high performance computing that is funded by the Department of Energy provides scholarships to undergraduate students as computational science scholars. This is a wonderful opportunity to recruit under-represented students.? Three ASEE papers were published in 2007, 2008 and 2009 proceedings of ASEE Annual Conferences, respectively. Presentations of these papers were also made at the ASEE Annual Conferences. It is very critical to continue the research and education activities.« less
NASA Technical Reports Server (NTRS)
Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul
2000-01-01
The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.
Missing the Party: Political Categorization and Reasoning in the Absence of Party Label Cues.
Heit, Evan; Nicholson, Stephen P
2016-07-01
This research addressed theoretical approaches in political science arguing that the American electorate is either poorly informed or dependent on party label cues, by assessing performance on political judgment tasks when party label information is missing. The research materials were created from the results of a national opinion survey held during a national election. The experiments themselves were run on nationally representative samples of adults, identified from another national electoral survey. Participants saw profiles of simulated individuals, including information about demographics and issue positions, but omitting party labels. In Experiment 1, participants successfully judged the likelihood of party membership based on the profiles. In Experiment 2, participants successfully voted based on their party interests. The results were mediated by participants' political knowledge. Conclusions are drawn with respect to theories from political science and issues in cognitive science regarding categorization and reasoning. Copyright © 2016 Cognitive Science Society, Inc.
Skylab Experiments, Volume 4, Life Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fourth volume is concerned with experiments designed to improve man's understanding of…
Consumer-Oriented Laboratory Activities: A Manual for Secondary Science Students.
ERIC Educational Resources Information Center
Anderson, Jacqueline; McDuffie, Thomas E., Jr.
This document provides a laboratory manual for use by secondary level students in performing consumer-oriented laboratory experiments. Each experiment includes an introductory question outlining the purpose of the investigation, a detailed discussion, detailed procedures, questions to be answered upon completing the experiment, and information for…
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
NASA Astrophysics Data System (ADS)
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-01-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments. PMID:23794777
Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur
2016-01-01
Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. © 2016 E. Jeffery et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
Publication ethics from the perspective of PhD students of health sciences: a limited experience.
Arda, Berna
2012-06-01
Publication ethics, an important subtopic of science ethics, deals with determination of the misconducts of science in performing research or in the dissemination of ideas, data and products. Science, the main features of which are secure, reliable and ethically obtained data, plays a major role in shaping the society. As long as science maintains its quality by being based on reliable and ethically obtained data, it will be possible to maintain its role in shaping the society. This article is devoted to the presentation of opinions of PhD candidate students in health sciences in Ankara concerning publication ethics. The data obtained from 143 PhD students from the fields of medicine, dentistry, pharmacy and veterinary reveal limited but unique experiences. It also shows that plagiarism is one of the worst issues in the publication ethics from the perspective of these young academics.
Flight equipment supporting metabolic experiments on SLS-1
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Inners, L. D.
1991-01-01
Five experiments in different aspects of human metabolism will be performed on Spacelab Life Sciences-1. Nine items of equipment from the Life Sciences Laboratory Equipment inventory will be used: the rack-mounted centrifuge, the hematocrit centrifuge, the low-gravity centrifuge, a body-mass measurement device, a urine monitoring system, the Spacelab refrigerator/freezer, the Orbiter refrigerator, an in-flight blood collection system, and a pocket voice recorder. In addition, each experiment will require some specialized equipment such as incubators and culture blocks for an immunology experiment, and tracers for a fluid and electrolyte experiment and a hematology experiment. The equipment for these experiments has been developed over many years, in some cases since the Skylab program in the early 1970s, and has been certified for use on the Space Shuttle.
ERIC Educational Resources Information Center
Wang, Li-Chun; Chen, Ming-Puu
2010-01-01
Learning to program is difficult for novices, even for those undergraduates who have majored in computer science. The study described in this paper has investigated the effects of game strategy and preference-matching on novice learners' flow experience and performance in learning to program using an experiential gaming activity. One hundred and…
NASA Technical Reports Server (NTRS)
Armstrong, J.; Asmar, S.; Caetta, J; Connally, M.; Devereaux, A.; Eshe, P.; Gonzalez, G.; Herrera, R.; Horton, R.; Morabito, D.;
1993-01-01
From March 21 to April 11, 1993, the Galileo, Mars Observer, and Ulysses spacecraft were tracked almost continuously in a coincidence experiment to search for low-frequency (millihertz) gravitational radiation. We report here a first statistical assessment of the noise characteristics of the data, with particular attention to the performance of the radio science instrumentation itself.
NASA Astrophysics Data System (ADS)
Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.
2016-02-01
With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.
Life and Microgravity Spacelab (LMS)
NASA Technical Reports Server (NTRS)
Downey, James Patton (Compiler)
1998-01-01
This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
Creating contextually authentic science in a low-performing urban elementary school
NASA Astrophysics Data System (ADS)
Buxton, Cory A.
2006-09-01
This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.
NASA Astrophysics Data System (ADS)
Li, Bo; Dong, Hui; Huang, Xiao-Lei; Qiu, Yang; Tao, Quan; Zhu, Jian-Ming
2018-02-01
Not Available Project supported in part by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200) and in part by the National Natural Science Foundation of China (Grant No. 11204339).
Health Hazards in the Science Classroom.
ERIC Educational Resources Information Center
Trenk, Barbara Scherr
Designed for high school science teachers, the document warns of potential health threats of performing certain experiments and using certain chemicals or chemical combinations in their courses. Following a rationale for more carefully considering health dangers, the document gives suggestions on what can be done by teachers. Reports such as a…
Materials Science Research | Materials Science | NREL
Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple
Microgravity Science Laboratory (MSL-1)
NASA Technical Reports Server (NTRS)
Robinson, M. B. (Compiler)
1998-01-01
The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
NASA Astrophysics Data System (ADS)
Kubasko, Dennis S., Jr.
The purpose of this study was to investigate whether students' learning experiences were similar or different with an interactive, live connection via the Internet in real-time to an Atomic Force Microscope (AFM) versus a stored replay of AFM experiments. Did the two treatments influence students' attitudes towards the learning experience? Are there differences in students' understandings of viruses and science investigations? In addition, this study investigated treatment effects on students' understandings of the nature of science. The present study drew upon the research that examined students' attitudes toward science, students' views of the nature of science, instructional technology in education, and prior research on the nanoManipulator. Specific efforts have been made to address reform efforts in science education throughout the literature review. Eighty-five high school biology students participated in the nanoManipulator experience (44 males, 41 females, 64 Euro-American, 16 African-American, and 5 of other ethnicities). Two high school classes were randomly selected and administered the interactive, real-time treatment. Two different high school classes were randomly selected and administered the limited-interaction, experimental replay treatment. The intervention occurred over a one-week period. Qualitative and quantitative measures were used to examine the differences between two treatment conditions. Experiential, affective, cognitive, and the nature of science domains were assessed. Findings show that the questions and statements made in synchronous time by the live treatment group were significantly different than students' questions and statements in asynchronous communication. Students in the replay treatment made more statements about what they learned or knew about the experience than did students in the live experience. Students in both groups showed significant gains in understanding viruses (particularly viral dimensionality and shape). Students' attitudes towards learning about science concepts weren't different from one group to the other, but all students changed their views independent of treatment condition. Across treatment groups students performed similarly on all assessment instruments used to measure the nature of science domain. Furthermore, there were no significant differences, pre-test to post-test between groups or due to interaction. These findings show that students' investigations using the Internet and stored replay experiences can assist science educators in providing student with more inquiry-based experiences.
Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science
NASA Astrophysics Data System (ADS)
Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth
2011-12-01
The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the Spaceship Earth Scientist (SES) Module, featuring an Earth Scientist expert discussing the science seen in the presentation. Hands-on activities such as sea ice melting simulations will be held with participants. Results from these first pilot education experiences will be presented at the 2011 AGU.
Advanced user support programme—TEMPUS IML-2
NASA Astrophysics Data System (ADS)
Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.
1995-05-01
The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Is Science Built on the Shoulders of Women? A Study of Gender Differences in Contributorship.
Macaluso, Benoit; Larivière, Vincent; Sugimoto, Thomas; Sugimoto, Cassidy R
2016-08-01
Women remain underrepresented in the production of scientific literature, and relatively little is known regarding the labor roles played by women in the production of knowledge. This study examined labor roles by gender using contributorship data from science and medical journals published by the Public Library of Science (PLOS), which require each author to indicate their contribution to one or more of the following tasks: (1) analyzed the data, (2) conceived and designed the experiments, (3) contributed reagents/materials/analysis tools, (4) performed the experiments, and (5) wrote the paper. The authors analyzed contribution data from more than 85,000 articles published between 2008 and 2013 in PLOS journals with respect to gender using both descriptive and regression analyses. Gender was a significant variable in determining the likelihood of performing a certain task associated with authorship. Women were significantly more likely to be associated with performing experiments, and men were more likely to be associated with all other authorship roles. This holds true controlling for academic age: Although experimentation was associated with academically younger scholars, the gap between male and female contribution to this task remained constant across academic age. Inequalities were observed in the distribution of scientific labor roles. These disparities have implications for the production of scholarly knowledge, the evaluation of scholars, and the ethical conduct of science. Adopting the practice of identifying contributorship rather than authorship in scientific journals will allow for greater transparency, accountability, and equitable allocation of resources.
Fundamentals of Microgravity Vibration Isolation
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. This presentation provides a tutorial discussion of microgravity vibration isolation technology with the objective of elaborating on the relative merits of passive and active isolation approaches. The concepts of control bandwidth, isolation performance, and robustness will be addressed with illustrative examples. Concluding the presentation will be a suggested roadmap for future technology development activities to enhance the acceleration environment for microgravity science experiments.
Payload specialist Merbold performing experiment in Spacelab
1983-11-28
STS009-13-699 (28 Nov - 8 Dec 1983) --? Ulf Merbold, Spacelab 1 payload specialist, carries out one of the experiments using the gradient heating facility on the materials science double rack facility in the busy science module aboard the Earth-orbiting Space Shuttle Columbia. Representing the European Space Agency, Dr. Merbold comes from Max-Planck Institute in Stuttgart, the Federal Republic of Germany. He is a specialist in crystal lattice defects and low temperature physics. The photograph was made with a 35mm camera.
The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab
ERIC Educational Resources Information Center
Beussman, Douglas J.
2007-01-01
A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…
Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study
NASA Technical Reports Server (NTRS)
Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)
1996-01-01
The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.
Preliminary Findings from the SHERE ISS Experiment
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.
2009-01-01
The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments
NASA Technical Reports Server (NTRS)
Taeusch, D. R.
1976-01-01
The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
NASA Astrophysics Data System (ADS)
Blockus, Linda Helen
The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models and African American faculty, as well as peers dropping out of science majors. Although experiences with racism were frequently cited, encounters with racism alone are not cause for African American science majors to consider changing majors or career plans. Approximately one third of the students have participated in undergraduate research projects or internships with faculty mentors; however, these experiences do not have substantial impact for most students. College grade point average was associated with research project participation. Approximately one-fourth of the students are engaged in some kind of science-oriented activity (e.g., club) that provided them with a sense of belonging and connection. Theoretical and conceptual implications as well as suggestions for study replication are provided.
2013-07-24
ISS036-E-025489 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025487 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025484 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025491 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
NASA Astrophysics Data System (ADS)
Dubner, J.
2008-12-01
U.S. high school students perform markedly less well in science, technology, engineering and math (STEM) than students in other economically advanced countries. This low level of STEM performance endangers our democracy and economy. The President's Council of Advisors in Science and Technology's 2004 report attributed the shortfall of students attracted to the sciences is a result of the dearth of teachers sufficiently conversant with science and scientists to enable them to communicate to their students the excitement of scientific exploration and discovery, and the opportunities science provides for highly rewarding and remunerative careers. Nonetheless, the United States has made little progress in correcting these deficiencies. Studies have shown that high-quality teaching matters more to student achievement than anything else schools do. This belief is buttressed by evidence from Columbia University's Summer Research Program for Science Teachers (SRP) that highly motivated, in-service science teachers require professional development to enable them and their students to perform up to their potential. Columbia's Summer Research Program is based on the premise that to teach science effectively requires experience in using the tools of contemporary science to answer unsolved questions. From its inception, SRP's goal has been to enhance interest and improve performance in science of students. It seeks to achieve this goal by increasing the professional competence of teachers. The reports of Elmore, Sanders and Rivers, and our own studies, show that professional development is a "key lever for improving student outcomes." While most middle and high school science teachers have taken college science courses that include cookbook laboratory exercises, the vast majority of them have never attempted to answer an unsolved question. Just as student learning depends on the expertise of teachers, the expertise of teachers depends on the quality of their professional development. Columbia University's teacher research program is a very effective form of professional development for pre- college science teachers and has a direct correlation to increased student motivation and achievement in science. The Program is premised on the beliefs that hands-on experience in the practice of science improves the quality and authenticity of science teaching, and that improved science teaching is correlated with increased student interest and achievement in science. The author will present the methodology of the program's evaluation citing statistically significant findings. The author will also show the economic benefits of teacher participation in a well-designed research program.
Selection for Accelerated Basic Combat Training
2008-09-01
Conscientiousness predicted performance across job types and Extraversion related to 3 sales and managerial performance . However... traits and job performance described previously. Conscientiousness and Openness to Experience predicted training performance for all of the five...Behavioral and Social Sciences . Ree, M.J., Earles, J.A., Teachout, M.S. (1994). Predicting job performance : Not much more than g, Journal of
NASA Technical Reports Server (NTRS)
Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.
NASA Astrophysics Data System (ADS)
Naidoo, Kara
Elementary teachers are criticized for failing to incorporate meaningful science instruction in their classrooms or avoiding science instruction altogether. The lack of adequate science instruction in elementary schools is partially attributed to teacher candidates' anxiety, poor content and pedagogical preparation, and low science teaching self-efficacy. The central premise of this study was that many of these issues could be alleviated through course modifications designed to address these issues. The design tested and presented here provided prospective elementary educators' authentic science teaching experiences with elementary students in a low-stakes environment with the collaboration of peers and science teacher educators. The process of comprehensive reflection was developed for and tested in this study. Comprehensive reflection is individual and collective, written and set in dialogic discourse, focused on past and future behavior, and utilizes video recordings from shared teaching experiences. To test the central premise, an innovative science methods course was designed, implemented and evaluated using a one-group mixed-method design. The focus of the analysis was on changes in self-efficacy, identity and teaching practices as a function of authentic science teaching experiences and comprehensive reflection. The quantitative tools for analysis were t-tests and repeated-measures ANOVA on the Science Teaching Efficacy Belief Instrument-B (STEBI-B) and weekly self-rating on confidence as a learner and a teacher of science, respectively. The tools used to analyze qualitative data included thematic analysis and interpretative phenomenological analysis. In addition, theoretically grounded tools were developed and used in a case study to determine the ways one prospective educator's science teaching identity was influenced by experiences in the course. The innovative course structure led the development of teacher candidates' science teaching identity, supported science teaching self-efficacy development, positioned teachers as agents in their learning and development, provided the opportunity for teacher candidates to problematize teaching experiences to improve practice, developed teacher candidates who were able to critically question and create science curricula with the primary purpose of mediating student learning, and improved teacher candidates questioning skills and assistance with student performance in order to better mediate student learning. Implications for teacher education and future directions for research are discussed.
Inquiry Science: The Gateway to English Language Proficiency
NASA Astrophysics Data System (ADS)
Zwiep, Susan Gomez; Straits, William J.
2013-12-01
This paper presents findings from a 4-year project that developed and implemented a blended inquiry science and English Language Development (ELD) program in a large urban California school district. The sample included over 2,000 students in Kindergarten through 5th grade. Participating students' English and science achievement was compared to a similar group of students who were using the district's established English language development curriculum. Student performance on statemandated English and science assessments were analyzed using Mann-Whitney U tests for overall performance and by number of years of treatment. Modest but statistically significant improvement was found for students who participated in the blended program. Results from this study suggest that restricting instructional minutes for science to provide additional time for ELD and English language arts may be unnecessary. Rather, allowing consistent time for science instruction that incorporates ELD instruction along with inquiry science experiences may provide the authentic and purposeful context students need to develop new language without restricting access to science content.
ERIC Educational Resources Information Center
Kusch, Peter
2014-01-01
An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…
Changing Images of the Inclined Plane: A Case Study of a Revolution in American Science Education
ERIC Educational Resources Information Center
Turner, Steven C.
2012-01-01
Between 1880 and 1920 the way science was taught in American High Schools changed dramatically. The old "lecture/demonstration" method, where information was presented to essentially passive students, was replaced by the "laboratory" method, where students performed their own experiments in specially constructed student laboratories. National…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during May at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental for (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during September 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
Teaching Science Problem Solving: An Overview of Experimental Work.
ERIC Educational Resources Information Center
Taconis, R.; Ferguson-Hessler, M. G. M.; Broekkamp, H.
2001-01-01
Performs analysis on a number of articles published between 1985 and 1995 describing experimental research into the effectiveness of a wide variety of teaching strategies for science problem solving. Identifies 22 articles describing 40 experiments that met standards for meta-analysis. Indicates that few of the independent variables were found to…
Shen, Weifeng; Jiang, Libing; Zhang, Mao; Ma, Yuefeng; Jiang, Guanyu; He, Xiaojun
2014-01-01
To review the research methods of mass casualty incident (MCI) systematically and introduce the concept and characteristics of complexity science and artificial system, computational experiments and parallel execution (ACP) method. We searched PubMed, Web of Knowledge, China Wanfang and China Biology Medicine (CBM) databases for relevant studies. Searches were performed without year or language restrictions and used the combinations of the following key words: "mass casualty incident", "MCI", "research method", "complexity science", "ACP", "approach", "science", "model", "system" and "response". Articles were searched using the above keywords and only those involving the research methods of mass casualty incident (MCI) were enrolled. Research methods of MCI have increased markedly over the past few decades. For now, dominating research methods of MCI are theory-based approach, empirical approach, evidence-based science, mathematical modeling and computer simulation, simulation experiment, experimental methods, scenario approach and complexity science. This article provides an overview of the development of research methodology for MCI. The progresses of routine research approaches and complexity science are briefly presented in this paper. Furthermore, the authors conclude that the reductionism underlying the exact science is not suitable for MCI complex systems. And the only feasible alternative is complexity science. Finally, this summary is followed by a review that ACP method combining artificial systems, computational experiments and parallel execution provides a new idea to address researches for complex MCI.
Performance Ethnography as an Approach to Health-Related Education
ERIC Educational Resources Information Center
Carless, David; Douglas, Kitrina
2010-01-01
This article explores the educational potential of an arts-informed performance ethnography entitled "Across the Tamar," which comprises a series of stories, songs and poems. As a classroom action research project--a "teaching experiment"--we gave three performances to undergraduate and postgraduate sport and health science,…
Accommodation requirements for microgravity science and applications research on space station
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Holland, L. R.; Wear, W. O.
1985-01-01
Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.
Science learning through scouting: an understudied context for informal science education
NASA Astrophysics Data System (ADS)
Jarman, Ruth
2005-04-01
Worldwide, voluntary youth organizations such as the Scouts and Guides attract a large following. As part of their programme they provide science experiences for children and young people. From a research perspective, however, this context for informal science education has gone largely unexamined. This study explores the field, focusing on the Cub Scouts that cater, in the UK, for children aged between 8 and 10.5 years. The investigation involved an e-mail survey, in-depth interviews with 10 leaders, short interviews with 10 Cub Scouts and an unscripted role-play performed by the children. Documented is a distinctive and engaging out-of-school science provision for participants. The research revealed this learning experience to have features that, in terms of a continuum spanning formal to informal, lay more toward the informal than anticipated in respect of curriculum and assessment, although not pedagogy. The children's responses, affective and cognitive, suggest a fruitful area for further study.
U.S. EPA High-Field NMR Facility with Remote Accessibility
EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...
Identifying and Addressing Student Difficulties with the Millikan Oil Drop Experiment
NASA Astrophysics Data System (ADS)
Klassen, Stephen
2009-05-01
The Millikan oil drop experiment has been characterized as one of the ‘most beautiful’ physics experiments of all time and, certainly, as one of the most frustrating of all the exercises in the undergraduate physics laboratory. A literature review reveals that work done on addressing student difficulties in performing the oil drop experiment has, to date, not achieved a significant measure of success. The historical background of the oil drop experiment is well established in the literature from the perspective of historians of science, but not so from the perspective of teachers and students of science. A summary of historical details surrounding the original experiment suitable for use in revising the instructional approach is presented. Both Millikan and his graduate student, Fletcher, are featured with the view to emphasizing details that humanize the protagonists and that are likely to raise student interest. The issue of the necessary reliance on presuppositions in doing speculative research is raised, both from the historical account and from the insights of university physics students who heard the historical account and performed the experiment. Difficulties current students have in performing the experiment are discussed from the perspective of Hodson (Stud Sci Educ 22:85-142, 1993) framework and the students’ own observations. Last, further historical materials are outlined that may be used to encourage student insight into the fundamental nature of electricity. It is proposed that these aspects are essential as a basis for identifying and addressing student difficulties with the Millikan oil drop experiment.
ERIC Educational Resources Information Center
Yager, Robert E.; Abd-Hamid, Nor Hashidah; Akcay, Hakan
2005-01-01
The purpose of this study was to examine how different inquiry experiences affect in-service science teachers' performance in terms of their questions and classroom actions. Teachers in a workshop experience proceeded through structured, guided, and full inquiry stations where materials to make foam were provided. Participants were 26 in-service…
Conducting Science with a CubeSat: The Colorado Student Space Weather Experiment (CSSWE)
NASA Astrophysics Data System (ADS)
Palo, Scott; Li, Xinlin; Gerhardt, David; Blum, Lauren; Schiller, Quintin; Kohnert, Rick
2014-06-01
The Colorado Student Space Weather Experiment is a 3-unit (10cm x 10cm x 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with professors and professional engineers, CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 x 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program.The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On January 5, 2013, CSSWE completed 90 days of on-orbit science operations, achieving the baseline goal for full mission success and has been operating since. An overview of the CSSWE system, on-orbit performance and lessons learned will be presented.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Spacelab Life Sciences 1 - The stepping stone
NASA Technical Reports Server (NTRS)
Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.
1988-01-01
The Spacelab Life Sciences (SLS-1) mission scheduled for launch in March 1990 will study the effects of microgravity on physiological parameters of humans and animals. The data obtained will guide equipment design, performance of activities involving the use of animals, and prediction of human physiological responses during long-term microgravity exposure. The experiments planned for the SLS-1 mission include a particulate-containment demonstration test, integrated rodent experiments, jellyfish experiments, and validation of the small-mass measuring instrument. The design and operation of the Research Animal Holding Facility, General-Purpose Work Station, General-Purpose Transfer Unit, and Animal Enclosure Module are discussed and illustrated with drawings and diagrams.
Young children's emotional practices while engaged in long-term science investigation
NASA Astrophysics Data System (ADS)
Zembylas, Michalinos
2004-09-01
In this article, the role of young children's emotional practices in science learning is described and analyzed. From the standpoint of performativity theory and social-constructionist theory of emotion, it is argued that emotion is performative and the expression of emotion in the classroom has its basis in social relationships. Arising from these relationships is the emotional culture of the classroom that plays a key role in the development of classroom emotional rules as well as the legitimation of science knowledge. These relationships are reflected in two levels of classroom dialogue: talking about and doing science, and expressing emotions about science and its learning. The dynamics of the negotiations of classroom emotional rules and science knowledge legitimation may dispose students to act positively or negatively toward science learning. This analysis is illustrated in the experiences of a teacher and her students during a 3-year ethnographic study of emotions in science teaching and learning. This research suggests the importance of the interrelationship between emotions and science learning and the notion that emotional practices can be powerful in nurturing effective and exciting science learning environments.
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Life sciences payload definition and integration study, task C and D. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.
A Research-Based Science Teacher Education Program for a Competitive Tomorrow
NASA Astrophysics Data System (ADS)
Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.
2009-12-01
A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.
1983-01-01
This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.
First Post-Flight Status Report for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Baugher, Charles R., III
2003-01-01
The Microgravity Science Glovebox (MSG) was launched to the International Space Station (ISS) this year on the second Utilization Flight (UF2). After successful on-orbit activation, the facility began supporting an active microgravity research program. The inaugural NASA experiments operated in the unit were the Solidification Using a Baffle in Sealed Ampoules (SUBSA, A. Ostrogorski, PI), and the Pore Formation and Mobility (PFMI, R. Grugel, PI) experiments. Both of these materials science investigations demonstrated the versatility of the facility through extensive use of telescience. The facility afforded the investigators with the capability of monitoring and operating the experiments in real-time and provided several instances in which the unique combination of scientists and flight crew were able to salvage situations which would have otherwise led to the loss of a science experiment in an unmanned, or automated, environment. The European Space Agency (ESA) also made use of the facility to perform a series of four experiments that were carried to the ISS via a Russian Soyuz and subsequently operated by a Belgium astronaut during a ten day Station visit. This imaginative approach demonstrated the ability of the MSG integration team to handle a rapid integration schedule (approximately seven months) and an intensive operations interval. Interestingly, and thanks to aggressive attention from the crew, the primary limitation to experiment thru-put in these early operational phases is proving to be the restrictions on the up-mass to the Station, rather than the availability of science operations.
Performing the Future. On the Use of Drama in Philosophy Courses for Science Students
NASA Astrophysics Data System (ADS)
Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub
2016-10-01
Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; ...
2015-11-24
Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
Overview of NASA's Microgravity Materials Science Program
NASA Technical Reports Server (NTRS)
Downey, James Patton
2012-01-01
The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.
Tethered variable gravity laboratory study: Low gravity process identification report
NASA Technical Reports Server (NTRS)
Briccarello, M.
1989-01-01
Experiments are described performable in the variable gravity environment, and the related compatible/beneficial residual accelerations, both for pure and applied research in the fields of Fluid Mechanics (static and dynamic), Materials Sciences (Crystal Growth, Metal and Alloy Solidification, Glasses, etc.), and Life Sciences, so as to assess the relevance of a variable G-level laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during June, July, and August at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental for (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the data accumulated during February and March 1983 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The data accumulated during November 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma are presented. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the data accumulated during January 1983 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during December 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during October 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.
Putting the Focus on Student Engagement: The Benefits of Performance-Based Assessment
ERIC Educational Resources Information Center
Barlowe, Avram; Cook, Ann
2016-01-01
For more than two decades, the New York Performance Standards Consortium, a coalition of 38 public high schools, has steered clear of high-stakes testing, which superficially assess student learning. Instead, the consortium's approach relies on performance-based assessments--essays, research papers, science experiments, and high-level mathematical…
Low Noise Camera for Suborbital Science Applications
NASA Technical Reports Server (NTRS)
Hyde, David; Robertson, Bryan; Holloway, Todd
2015-01-01
Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.
NASA Astrophysics Data System (ADS)
Botella, J.; Warburton, J.; Bartholow, S.; Reed, L. F.
2014-12-01
The Joint Antarctic School Expedition (JASE) is an international collaboration program between high school students and teachers from the United States and Chile aimed at providing the skills required for establishing the scientific international collaborations that our globalized world demands, and to develop a new approach for science education. The National Antarctic Programs of Chile and the United States worked together on a pilot program that brought high school students and teachers from both countries to Punta Arenas, Chile, in February 2014. The goals of this project included strengthening the partnership between the two countries, and building relationships between future generations of scientists, while developing the students' awareness of global scientific issues and expanding their knowledge and interest in Antarctica and polar science. A big component of the project involved the sharing by students of the acquired knowledge and experiences with the general public. JASE is based on the successful Chilean Antarctic Science Fair developed by Chile´s Antarctic Research Institute. For 10 years, small groups of Chilean students, each mentored by a teacher, perform experimental or bibliographical Antarctic research. Winning teams are awarded an expedition to the Chilean research station on King George Island. In 2014, the Chileans invited US participation in this program in order to strengthen science ties for upcoming generations. On King George Island, students have hands-on experiences conducting experiments and learning about field research. While the total number of students directly involved in the program is relatively small, the sharing of the experience by students with the general public is a novel approach to science education. Research experiences for students, like JASE, are important as they influence new direction for students in science learning, science interest, and help increase science knowledge. We will share experiences with the planning of the pilot program as well as the expedition itself. We also share the results of the assessment report prepared by an independent party. Lastly, we will offer recommendations for initiating international science education collaborations. United States participation was funded by the NSF Division of Polar Programs.
The first dedicated life sciences Spacelab mission
NASA Technical Reports Server (NTRS)
Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.
1984-01-01
JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.
UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; Gonzalez, Daniel
We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.
Team Science: Organizing Classroom Experiments That Develop Group Skills.
ERIC Educational Resources Information Center
Coffin, Marilyn
This book contains classroom experiments designed to promote group skills. Each lesson has 4 parts: a 3-minute set-up; 5-minute warm-up, 25-minute experiment, and 5-minute clean-up. During each part, each member of the group is responsible for performing a specific task. Included are 34 labs that cover a range of topics: observations, physical…
Students' Visual Learning Disabilities and Under-Achievement in Selected Science Subjects.
ERIC Educational Resources Information Center
Rochford, Kevin
Two experiments were conducted to assess the performance of freshmen chemistry students with poor spatial visualization skills. In the first experiment, 31 chemistry students with academically deficient backgrounds completed a diagnostic test of their ability to visualize and interpret pictorial representations of simple molecular structures. At…
Teacher Research Programs Participation Improves Student Achievement in Science
NASA Astrophysics Data System (ADS)
Dubner, J.
2009-12-01
Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.
Lopez-Alegria performs EMCS-EC replace activity in Destiny laboratory module
2006-12-29
ISS014-E-10647 (29 Dec. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, performs the European Modular Cultivation System (EMSC) -- Experiment Container (EC) replacement in the Destiny laboratory of the International Space Station.
Lopez-Alegria performs EMCS-EC replace activity in Destiny laboratory module
2006-12-29
ISS014-E-10639 (29 Dec. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, performs the European Modular Cultivation System (EMSC) -- Experiment Container (EC) replacement in the Destiny laboratory of the International Space Station.
Niemann, Marilyn A; Miller, Michael L; Davis, Thelma
2004-01-01
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what "real" science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a "real" scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting.
2004-01-01
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what “real” science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a “real” scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting. PMID:15526064
NASA Astrophysics Data System (ADS)
Wang, Jeremy Yi-Ming
This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.
NASA Astrophysics Data System (ADS)
Ingram, Samantha Jones
The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest ratings were a result of their prior experiences. This study shows that contextual learning instruction positively influences student motivation, interest, and achievement in science. Student achievement in science improved in the contextual learning classes as a result of increased interest due to learning that emphasized relevancy and purposeful meaning.
Performance analysis of wireless sensor networks in geophysical sensing applications
NASA Astrophysics Data System (ADS)
Uligere Narasimhamurthy, Adithya
Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?
High Energy Physics and Nuclear Physics Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dart, Eli; Bauerdick, Lothar; Bell, Greg
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physicsmore » (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.« less
NASA Astrophysics Data System (ADS)
Kennedy-Hagan, Karla Jean
The purpose of this study was to explore the relationships of gender, ethnicity, past performance in science, experience with teaching pedagogy, and access to a role model/mentor with freshmen college student attitudes toward science. Specifically, the researcher wanted to know the relationship between these variables and incoming attitudes toward science at the beginning of the semester. The sample for this study consisted of 316 freshmen students enrolled in an entry-level chemistry course at a large midwestern university. The results indicate that students who received higher grades in previous science courses possessed more positive attitudes regarding their ability to perform in science compared to less successful students. Similarly, students who had previous exposure to interactive teaching pedagogy possessed more positive attitudes toward the use of interactive teaching pedagogy; felt supported by various people, including their teachers; and had more positive attitudes toward their personal world view of science compared to students that had not been exposed to interactive teaching pedagogy. Finally, the results indicated that attitudes toward science are multidimensional, meaning there is more than one attitude toward science. The results of this study add to the literature regarding attitudes toward science in freshmen students at a large midwestern university. Additional discussion and research is warranted. Specific recommendations for practice and future research are included in the document.
Wang, Ye
2011-01-01
Deaf and hard of hearing students, who cannot successfully access and utilize information in print, experience various difficulties in conventional science instruction, which heavily relies on lectures and textbooks. The purpose of the present review is threefold. First, an overview of inquiry-based science instruction reform, including the so-ciohistorical forces behind the movement, is presented. Then, the author examines the empirical research on science education for students who are deaf or hard of hearing from the 1970s to the present and identifies and rates inquiry-based practice. After discussing the difficulty of using science texts with deaf and hard of hearing students, the author introduces a conceptual framework that integrates inquiry-based instruction and the construct of performance literacy. She suggests that this integration should enable students who are deaf or hard of hearing to access the general education curriculum.
KSC-20170216-MH-LCH01-0001-CRS_10_APH_Apex_4_and_Veggie_processing-3145683(H.265)
2017-02-16
APEX-04, or Advanced Plant Experiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX CRS-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
First Middle East Aircraft Parabolic Flights for ISU Participant Experiments
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene
2017-06-01
Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.
Callaham, Michael L; Tercier, John
2007-01-01
Background Peer review is considered crucial to the selection and publication of quality science, but very little is known about the previous experiences and training that might identify high-quality peer reviewers. The reviewer selection processes of most journals, and thus the qualifications of their reviewers, are ill defined. More objective selection of peer reviewers might improve the journal peer review process and thus the quality of published science. Methods and Findings 306 experienced reviewers (71% of all those associated with a specialty journal) completed a survey of past training and experiences postulated to improve peer review skills. Reviewers performed 2,856 reviews of 1,484 separate manuscripts during a four-year study period, all prospectively rated on a standardized quality scale by editors. Multivariable analysis revealed that most variables, including academic rank, formal training in critical appraisal or statistics, or status as principal investigator of a grant, failed to predict performance of higher-quality reviews. The only significant predictors of quality were working in a university-operated hospital versus other teaching environment and relative youth (under ten years of experience after finishing training). Being on an editorial board and doing formal grant (study section) review were each predictors for only one of our two comparisons. However, the predictive power of all variables was weak. Conclusions Our study confirms that there are no easily identifiable types of formal training or experience that predict reviewer performance. Skill in scientific peer review may be as ill defined and hard to impart as is “common sense.” Without a better understanding of those skills, it seems unlikely journals and editors will be successful in systematically improving their selection of reviewers. This inability to predict performance makes it imperative that all but the smallest journals implement routine review ratings systems to routinely monitor the quality of their reviews (and thus the quality of the science they publish). PMID:17411314
Park, Hee-Young; Berkowitz, Oren; Symes, Karen; Dasgupta, Shoumita
2018-01-01
The goal of this study was to investigate associations between admissions criteria and performance in Ph.D. programs at Boston University School of Medicine. The initial phase of this project examined student performance in the classroom component of a newly established curriculum named "Foundations in Biomedical Sciences (FiBS)". Quantitative measures including undergraduate grade point average (GPA), graduate record examination (GRE; a standardized, computer-based test) scores for the verbal (assessment of test takers' ability to analyze, evaluate, and synthesize information and concepts provided in writing) and quantitative (assessment of test takers' problem-solving ability) components of the examination, previous research experience, and competitiveness of previous research institution were used in the study. These criteria were compared with competencies in the program defined as students who pass the curriculum as well as students categorized as High Performers. These data indicated that there is a significant positive correlation between FiBS performance and undergraduate GPA, GRE scores, and competitiveness of undergraduate institution. No significant correlations were found between FiBS performance and research background. By taking a data-driven approach to examine admissions and performance, we hope to refine our admissions criteria to facilitate an unbiased approach to recruitment of students in the life sciences and to share our strategy to support similar goals at other institutions.
2008-08-29
CAPE CANAVERAL, Fla. – Technicians in the Life Science Building at NASA's Kennedy Space Center work on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – Technicians in the Life Science Building at NASA's Kennedy Space Center work on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – A technician in the Life Science Building at NASA's Kennedy Space Center works on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
Research and technology activities at Ames Research Center's Biomedical Research Division
NASA Technical Reports Server (NTRS)
Martello, N.
1985-01-01
Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.
ERIC Educational Resources Information Center
Gobert, Janice D.; Sao Pedro, Michael; Raziuddin, Juelaila; Baker, Ryan S.
2013-01-01
We present a method for assessing science inquiry performance, specifically for the inquiry skill of designing and conducting experiments, using educational data mining on students' log data from online microworlds in the Inq-ITS system (Inquiry Intelligent Tutoring System; www.inq-its.org). In our approach, we use a 2-step process: First we use…
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'
NASA Technical Reports Server (NTRS)
1979-01-01
An overview of the Voyager mission to Jupiter, Saturn, and possibly Uranus is presented. Scientific instruments onboard the spacecraft are described as well as methods used for their calibration and evaluation during the cruise phase of the mission. Experiments to be performed cover the following areas: imaging science, radio science, cosmic rays, ultraviolet spectroscopy, photopolarimetry, planetary radio astronomy, magnetic fields, low-energy charged particles, plasma science, and infrared radiometry and spectroscopy. A list of the satellites of Jupiter and their diameters, distances, and periods is included.
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg
1995-01-01
This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.
Performing International Outreach: PhUn Week in an Australian Primary School
ERIC Educational Resources Information Center
Halpin, Patricia A.
2017-01-01
Physiology Understanding (PhUn) Week is an annual science outreach program sponsored by the American Physiological Society in which K-12 students learn about physiology through meeting a physiologist and performing an experiment. Performing PhUn Week at an Australian private primary school during a family vacation in 2014 enabled me to receive a…
NASA Technical Reports Server (NTRS)
Saha, Hrishikesh; Palmer, Timothy A.
1996-01-01
Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.
Glovebox in orbit - ESA/NASA Glovebox: A versatile USML-1 experiment facility
NASA Technical Reports Server (NTRS)
Sutherland, Ian A.; Wolff, Heinz; Helmke, Hartmut; Riesselmann, Werner; Nagy, Mike; Voeten, Eduard; Chassay, Roger
1993-01-01
The general purpose experiment facility flown aboard Space Shuttle USML-1 and known as the Glovebox is briefly discussed. Glovebox enabled scientists to perform materials science, fluids, and combustion experiments safely without contaminating the closed environment of Spacelab and endangering the crew. The evolution of Glovebox, its special features, and its hardware are described. The Glovebox experiments are summarized along with postmission and crew debriefing. Future uses of Glovebox are discussed.
Microgravity Experiments On Animals
NASA Technical Reports Server (NTRS)
Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.
1991-01-01
Paper describes experiments on animal subjects planned for Spacelab Life Sciences 1 mission. Laboratory equipment evaluated, and physiological experiments performed. Represents first step in establishing technology for maintaining and manipulating rodents, nonhuman primates, amphibians, and plants during space flight without jeopardizing crew's environment. In addition, experiments focus on effects of microgravity on cardiopulmonary, cardiovascular, and musculoskeletal systems; on regulation of volume of blood and production of red blood cells; and on calcium metabolism and gravity receptors.
Performance Assessment as a Diagnostic Tool for Science Teachers
NASA Astrophysics Data System (ADS)
Kruit, Patricia; Oostdam, Ron; van den Berg, Ed; Schuitema, Jaap
2018-04-01
Information on students' development of science skills is essential for teachers to evaluate and improve their own education, as well as to provide adequate support and feedback to the learning process of individual students. The present study explores and discusses the use of performance assessments as a diagnostic tool for formative assessment to inform teachers and guide instruction of science skills in primary education. Three performance assessments were administered to more than 400 students in grades 5 and 6 of primary education. Students performed small experiments using real materials while following the different steps of the empirical cycle. The mutual relationship between the three performance assessments is examined to provide evidence for the value of performance assessments as useful tools for formative evaluation. Differences in response patterns are discussed, and the diagnostic value of performance assessments is illustrated with examples of individual student performances. Findings show that the performance assessments were difficult for grades 5 and 6 students but that much individual variation exists regarding the different steps of the empirical cycle. Evaluation of scores as well as a more substantive analysis of students' responses provided insight into typical errors that students make. It is concluded that performance assessments can be used as a diagnostic tool for monitoring students' skill performance as well as to support teachers in evaluating and improving their science lessons.
Skylab Experiments, Volume I, Physical Science, Solar Astronomy.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…
Skylab Experiments, Volume 3, Materials Science.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…
Navigating the Turbulent Waters of School Reform Guided by Complexity Theory
ERIC Educational Resources Information Center
White, David G.; Levin, James A.
2016-01-01
The goal of this research study has been to develop, implement, and evaluate a school reform design experiment at a continuation high school with low-income, low-performing underrepresented minority students. The complexity sciences served as a theoretical framework for this design experiment. Treating an innovative college preparatory program as…
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
STS-66 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2004-01-01
The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.
STS-66 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1995-02-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
A Study of Vicon System Positioning Performance.
Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier
2017-07-07
Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.
Promoting interest and performance in high school science classes.
Hulleman, Chris S; Harackiewicz, Judith M
2009-12-04
We tested whether classroom activities that encourage students to connect course materials to their lives will increase student motivation and learning. We hypothesized that this effect will be stronger for students who have low expectations of success. In a randomized field experiment with high school students, we found that a relevance intervention, which encouraged students to make connections between their lives and what they were learning in their science courses, increased interest in science and course grades for students with low success expectations. The results have implications for the development of science curricula and theories of motivation.
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Duffar, Thierry
2007-05-01
A global thermal modelling of a cadmium telluride (CdTe) space experiment has been performed to determine the temperature field within the sample cartridge assembly of the Material Science Laboratory-low gradient furnace (MSL-LGF) apparatus. Heat transfer and phase change have been treated with a commercial CFD software based on a control volume technique. This work underlines the difficult compromise between enhancing the crystal quality and the occurrence of the dewetting phenomenon when using a Cd overpressure or inert gas in the ampoule.
Parabolic aircraft solidification experiments
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan
1996-01-01
A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)
2001-01-01
This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.
NASA Astrophysics Data System (ADS)
Niaz, Mansoor
2000-05-01
Research in science education has recognized the importance of history and philosophy of science. Given this perspective, it is important to analyze how general chemistry textbooks interpret Millikan's oil drop experiment. This study has the following objectives: (a) elaboration of a history and philosophy of science framework based on a rational reconstruction of experimental observations that led to the Millikan-Ehrenhaft controversy; (b) formulation of six criteria based on the framework, which could be useful in the evaluation of chemistry textbooks; and (c) evaluation of 31 chemistry textbooks based on the criteria. Results obtained showed that most textbooks lacked a history and philosophy of science framework and did not deal adequately with the following aspects. (a) The Millikan-Ehrenhaft controversy can open a new window for students, demonstrating how two well-trained scientists can interpret the same set of data in two different ways. (b) Millikan's perseverance with his guiding assumption shows how scientists can overcome difficulties with anomalous data. (c) Millikan's methodology illustrates what modern philosophers of science consider important issues of falsification, confirmation, and suspension of disbelief. (d) The experiment is difficult to perform even today, owing to the incidence of a series of variables. (e) Millikan's major contribution consists of discovering the experiment to provide confirmation for the elementary electrical charge.
Sports-science roundtable: does sports-science research influence practice?
Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert
2006-06-01
As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.
Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission
NASA Technical Reports Server (NTRS)
Hunt, Joseph C., Jr.; Cheng, Leo Y.
2012-01-01
One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
ERIC Educational Resources Information Center
Instructor, 1983
1983-01-01
This collection of 18 learning activities pages focuses on the subject areas of science, language arts, mathematics, and social studies. The science activities pages concern the study of earthquakes, sound, environmental changes, snails and slugs, and friction. Many of the activities are in the form of experiments for the students to perform.…
2000-05-29
Research scientist Vadim Rygalov describes a new low-pressure water-recycling experiment being designed to help simulate plant growth conditions on Mars. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Vadim Rygalov describes a new low-pressure water-recycling experiment being designed to help simulate plant growth conditions on Mars. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Presented are the data accumulated during April 1982 at the photovoltaic project site at the Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated power and environmental (weather) data are presented graphically. Explanations of irregularities are attributable to weather are provided. The system was inoperative all month due to a failed power conditioning unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The data accumulated during April 1982 at the photovoltaic project site at the Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma, are presented. Environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided. Due to a failure of the power conditioning unit, the system was down for the month.
ERIC Educational Resources Information Center
Martinez, Sylvia; Guzman, Stephanie
2013-01-01
While gender and racial/ethnic performance gaps in math and science have been well documented, we know little about how students feel while they are in these courses. Using a sample of 793 high school students who participated in the Experience Sampling Method of the Study of Youth and Social Development, this study examines the gender and…
NASA Astrophysics Data System (ADS)
Winget, Donald
2011-10-01
Astronomy has always been considered an observational science, in contrast with other experimental sciences like physics, chemistry, biology, and geology. This is because it has not been possible to perform experiments on the objects we observe. This situation has changed in a way that is transformational. We are now able to make macroscopic bits of star stuff in the lab: plasmas created under conditions that are the same as the plasmas in stars. Although laboratory astrophysics has long been an important part of astronomical research, what has changed is the ability to produce large enough chunks of a star that we can make measurements and perform experiments. In this way, astronomy joins her sister sciences in becoming an experimental science as well as an observational one. I will describe how this came about, the technology behind it, and the results of recent laboratory experiments. Most importantly, we will discuss how this will change our understanding of the universe and its contents. This work will shed new light on our recent discoveries involving McDonald Observatory: planets around white dwarf stars, massive carbon/oxygen variable white dwarf stars, and white dwarf-white dwarf binaries -- including one detached double eclipsing system with an orbital period of 12 minutes. We should measure the rate of change of the orbital period in this system within a year and we expect it to be the highest S/N source of gravitational radiation, easily detectable with LISA or similar approaches.
Exploring persistence in science in CEGEP: Toward a motivational model
NASA Astrophysics Data System (ADS)
Simon, Rebecca A.
There is currently a shortage of science teachers in North America and continually decreasing rates of enrollment in science programs. Science continues to be the academic domain that sees the highest attrition rates, particularly for women. The purpose of the present study was to examine male and female students' experiences in mathematics and science courses during a crucial time in their academic development in an attempt to explain the high attrition rates in science between the last year of high school and the first year of CEGEP (junior college). In line with self-determination theory (Deci & Ryan, 1985), as well as achievement-goal theory (Pintrich & Schunk, 1996) and research on academic emotions, the study examined the relation between a set of motivational variables (i.e., perceptions of autonomy-support, self-efficacy, achievement goals, and intrinsic motivation), affect, achievement, and persistence. A secondary objective was to test a motivational model of student persistence in science using structural equation modeling (SEM). The sample consisted of 603 male and 706 female students from four English-language CEGEPs in the greater Montreal area. Just prior to beginning CEGEP, participants completed a questionnaire that asked about the learning environment in high school mathematics and science classes as well as student characteristics including sources of motivation, personal achievement goals, and feelings of competence. All students expressed an initial interest in pursuing a career in science by enrolling in optional advanced mathematics and science courses during high school. Multivariate analysis of variance was used to examine differences among male and female students across the variables measured. Structural equation modeling was used to test the validity of a questionnaire designed specifically to gather information about CEGEP students' experiences with mathematics and science, and to evaluate the fit of a model designed to reflect the interactions between the different variables. Students' experiences during high school have an impact on their decisions to pursue or abandon their path toward an eventual science career. Classroom experiences and student characteristics interact to influence their performance and affect, which in turn influence their decisions. Implications for promoting persistence in science are discussed.
NASA Astrophysics Data System (ADS)
Bennett, William Drew
This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century responded to a reorganized curriculum to address misconceptions that were prevalent after direct instruction in the previous year's class. One of the components to the revised curriculum was the addition of a multimodal representation requirement as part of their normal writing assignments. How well students performed in these writing assignments and the relationship they had to student learning the rest of the class formed the principle research interest of this study. Improving science literacy has been a consistent goal of science educators and policy makers for over 50 years (DeBoer, 2000). This study uses the conceptualization of Norris and Phillips (2003) in which science literacy can be organized into both the fundamental sense (reading and writing) and the derived sense (experience and knowledge) of science literacy. The fundamental sense of science literacy was investigated in the students' ability to understand and use multimodal representations as part of their homework writing assignments. The derived sense of science literacy was investigated in how well students were able to apply their previous learning to class assessments found in quizzes and exams. This study uses a mixed-methods correlational design to investigate the relationship that existed between students' writing assignment experiences connected to multimodal representations and their academic performance in classroom assessments. Multimodal representations are pervasive in science literature and communication. These are the figures, diagrams, tables, pictures, mathematical equations, and any other form of content in which scientists and science educators are communicating ideas and concepts to their audience with more than simple text. A focused holistic rubric was designed in this study to score how well students in this class were able to incorporate aspects of multimodality into their writing assignments. Using these scores and factors within the rubric (ex. Number of original modes created) they were correlated with classroom performance scores to determine the strength and direction of the relationship. Classroom observations of lectures and discussion sections along with personal interviews with students and teaching assistants aided the interpretation of the results. The results from the study were surprisingly complex to interpret given the background of literature which suggested a strong relationship between multimodal representations and science learning (Lemke, 2000). There were significant positive correlations between student multimodal representations and quiz scores but not exam scores. This study was also confounded by significant differences between sections at the beginning of the study which may have led to learning effects later. The dissimilarity between the tasks of writing during their homework and working on exams may be the reason for no significant correlations with exams. The power to interpret these results was limited by the number of the participants, the number of modal experiences by the students, and the operationalization of multimodal knowledge through the holistic rubric. These results do show that a relationship does exist between the similar tasks within science writing and quizzes. Students may also gain derived science literacy benefits from modal experiences on distal tasks in exams as well. This study shows that there is still much more research to be known about the interconnectedness of multimodal representational knowledge and use to the development of science literacy.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1980-01-01
The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Creative Turbulence: Experiments in Art and Physics
NASA Astrophysics Data System (ADS)
Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh
2016-11-01
Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.
The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15
NASA Technical Reports Server (NTRS)
Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.
2009-01-01
This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering systems involving capillary interface dynamics.
Teacher Research Programs = Increased Student Achievement
NASA Astrophysics Data System (ADS)
Dubner, J.
2011-12-01
Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.
Spacelab J: Microgravity and life sciences
NASA Technical Reports Server (NTRS)
1992-01-01
Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., Mission Specialist Laurel Blair Salton Clark practices an experiment while Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla observe. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
Soft silicone rubber in phononic structures: Correct elastic moduli
NASA Astrophysics Data System (ADS)
Still, Tim; Oudich, M.; Auerhammer, G. K.; Vlassopoulos, D.; Djafari-Rouhani, B.; Fytas, G.; Sheng, P.
2013-09-01
We report on a combination of experiments to determine the elastic moduli of a soft poly (dimethylsiloxane) rubber that was utilized in a smart experiment on resonant phononic modes [Liu , ScienceSCIEAS0036-807510.1126/science.289.5485.1734 289, 1734 (2000)] and whose reported moduli became widely used as a model system in theoretical calculations of phononic materials. We found that the most peculiar hallmark of these values, an extremely low longitudinal sound velocity, is not supported by our experiments. Anyhow, performing theoretical band structure calculations, we can reproduce the surprising experimental findings of Liu even utilizing the correct mechanical parameters. Thus, the physical conclusions derived in the theoretical works do not require the use of an extremely low longitudinal velocity, but can be reproduced assuming only a low value of the shear modulus, in agreement with our experiments.
The Step to Rationality: The Efficacy of Thought Experiments in Science, Ethics, and Free Will
ERIC Educational Resources Information Center
Shepard, Roger N.
2008-01-01
Examples from Archimedes, Galileo, Newton, Einstein, and others suggest that fundamental laws of physics were--or, at least, could have been--discovered by experiments performed not in the physical world but only in the mind. Although problematic for a strict empiricist, the evolutionary emergence in humans of deeply internalized implicit…
Personal Transformation in RNs Who Recently Graduated from an RN to BSN Program
ERIC Educational Resources Information Center
Becker, Annette L.
2017-01-01
The purpose of this study was to explore experiences of personal transformation and development of self-authorship in registered nurses (RNs) who recently completed an RN to bachelor of science in nursing (BSN) program. A content analysis was performed on the qualitative data obtained from semistructured interviews with 14 RNs. Experiences of…
ORGANIZATION 5, NOVA SCIENCE UNIT 6.
ERIC Educational Resources Information Center
1964
A SERIES OF EXPERIMENTS TO BE PERFORMED WITH SMALL APPARATUS BY STUDENTS IS PRESENTED. PREPARATION OF DATA SHEETS AND ANALYSIS OF FINDINGS ARE ENCOURAGED. IN THE CATEGORY OF MATTER AND MOLECULES, THE CONCEPT TO BE DEVELOPED IS THE DETERMINATION OF WHETHER THERE ARE EMPTY SPACES IN AIR AND IN LIQUIDS. EXPERIMENTS WITH INERTIA, THE LAW OF SPRINGS,…
ERIC Educational Resources Information Center
Kukkonen, Jari; Dillon, Patrick; Kärkkäinen, Sirpa; Hartikainen-Ahia, Anu; Keinonen, Tuula
2016-01-01
Scaffolding helps the novice to accomplish a task goal or solve a problem that otherwise would be beyond unassisted efforts. Scaffolding firstly aims to support the learner in accomplishing the task and secondly in learning from the task and improving future performance. This study has examined pre-service teachers' experiences of…
ERIC Educational Resources Information Center
Raikou, Natassa
2016-01-01
This article addresses an application performed in tertiary education--a department of pedagogical and educational sciences--of a contemporary method, Transformative Learning through Aesthetic Experience. The method is based on the use of art and aims to reinforce and promote the development of critical thinking within educational settings.…
Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.; Green, Robert; Jakupca, Ian
2015-01-01
NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.
NASA Technical Reports Server (NTRS)
Campana, Sharon
2010-01-01
The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.
1983-01-01
This photograph shows the Spacelab-1 module and Spacelab access turnel being installed in the cargo bay of orbiter Columbia for the STS-9 mission. The oribiting laboratory, built by the European Space Agency, is capable of supporting many types of scientific research that can best be performed in space. The Spacelab access tunnel, the only major piece of Spacelab hardware made in the U.S., connects the module with the mid-deck level of the orbiter cabin. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were: astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1, was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.
NASA Astrophysics Data System (ADS)
Sagendorf, Kenneth S.
The purposes of this research were to create an inventory of the research, teaching and service background experiences of and to document the time allocation and time spent on teaching by early-career college science faculty members. This project is presented as three distinct papers. Thirty early-career faculty in the science disciplines from sixteen different institutions in their first year of employment participated in this study. For the first two papers, a new survey was developed asking participants to choose which experiences they had acquired prior to taking their current faculty position and asking them to document their time allocation and time spent on teaching activities in an average work week. In addition, a third component documents the support early-career college faculty in the sciences are receiving from the perspective of faculty members and their respective department chairpersons and identifies areas of disagreement between these two different groups. Twenty early-career college science faculty and their respective department chairpersons completed a newly-designed survey regarding the support offered to new faculty. The survey addressed the areas of feedback on performance, clarity of tenure requirements, mentoring, support for teaching and scholarship and balancing faculty life. This dissertation presents the results from these surveys, accounting for different demographic variables such as science discipline, gender and institutional category.
Toward a Learning Science for Complex Crowdsourcing Tasks
ERIC Educational Resources Information Center
Doroudi, Shayan; Kamar, Ece; Brunskill, Emma; Horvitz, Eric
2016-01-01
We explore how crowdworkers can be trained to tackle complex crowdsourcing tasks. We are particularly interested in training novice workers to perform well on solving tasks in situations where the space of strategies is large and workers need to discover and try different strategies to be successful. In a first experiment, we perform a comparison…
Robust Control for The G-Limit Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.
NASA Astrophysics Data System (ADS)
Aldridge, Jacqueline Nouvelle
The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.
NASA Astrophysics Data System (ADS)
Porro, I.; Dussault, M.; Barros-Smith, R.; Wise, D.; LeBlanc, D.
2012-08-01
It is not unusual for science educators to experience frustration in implementing learning initiatives for teenage youth who are not already hooked with science. Such frustration may lead them to focus their attention on different audiences, missing an opportunity to break the chain of science apathy among these youth. Youth's apparent lack of interest in science is associated with behavior typical of adolescence and the inadequacy of many science programs to adapt to meet the need of this audience. Teenage youth identify effective programs as those that engage them in challenging but fun activities and that contribute to their social development. Youth are looking for opportunities for skills and knowledge development that are otherwise unavailable to them in or out of school, and for positive relationships with adults with unique expertise in science and other fields. The Youth Astronomy Apprenticeship (YAA) has been successful in reaching out to teenage youth through the implementation of a model that incorporates principles of positive youth development in a multidisciplinary approach to science education. The project-based outcome of YAA participation is the creation and implementation of artistic performances, planetarium shows, museum exhibits, and even entertaining PowerPoint presentations.
Association of Health Sciences Reasoning Test scores with academic and experiential performance.
Cox, Wendy C; McLaughlin, Jacqueline E
2014-05-15
To assess the association of scores on the Health Sciences Reasoning Test (HSRT) with academic and experiential performance in a doctor of pharmacy (PharmD) curriculum. The HSRT was administered to 329 first-year (P1) PharmD students. Performance on the HSRT and its subscales was compared with academic performance in 29 courses throughout the curriculum and with performance in advanced pharmacy practice experiences (APPEs). Significant positive correlations were found between course grades in 8 courses and HSRT overall scores. All significant correlations were accounted for by pharmaceutical care laboratory courses, therapeutics courses, and a law and ethics course. There was a lack of moderate to strong correlation between HSRT scores and academic and experiential performance. The usefulness of the HSRT as a tool for predicting student success may be limited.
Reevaluating excess success in psychological science.
van Boxtel, Jeroen J A; Koch, Christof
2016-10-01
Francis (Psychonomic Bulletin Review, 21, 1180-1187, 2014) recently claimed that 82 % of articles with four or more experiments published in Psychological Science between 2009 and 2012 cannot be trusted. We critique Francis' analysis and point out the dependence of his approach on including the appropriate experiments and significance tests. We focus on one of the articles (van Boxtel & Koch, in Psychological Science, 23(4), 410-418, 2012) flagged by Francis and show that the inappropriate inclusion of experiments and tests have led Francis to mistakenly flag this article. We found that decisions about whether to include certain tests potentially affect 34 of the 44 articles analyzed by Francis. We further performed p-curve analyses on the articles discussed in Francis' analysis. We found that 9 of 44 studies showed significant evidential value, 11 studies showed insufficient evidential value, and 1 study showed evidence of p-hacking. Our reevaluation is important, because some researchers may have gained the false impression that none of the quoted articles in Psychological Science can be trusted (as stated by Francis). The analysis by Francis is most likely insufficient to warrant this conclusion for some articles and certainly is insufficient with respect to the study by van Boxtel and Koch (Psychological Science, 23, 410-418, 2012).
NASA Astrophysics Data System (ADS)
Krystyniak, Rebecca A.
2001-12-01
This study explored the effect of participation by second-semester general chemistry students in an extended open-inquiry laboratory investigation on their use of science process skills and confidence in performing specific aspects of laboratory investigations. In addition, verbal interactions of a student lab team among team members and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were investigated. Instruments included the Test of Integrated Skills (TIPS), a 36-item multiple-choice instrument, and the Chemistry Laboratory Survey (CLS), a researcher co-designed 20-item 8-point instrument. Instruments were administered at the beginning and close of the semester to 157 second-semester general chemistry students at the two universities; students at only one university participated in open-inquiry activity. A MANCOVA was performed to investigate relationships among control and experimental students, TIPS, and CLS post-test scores. Covariates were TIPS and CLS pre-test scores and prior high school and college science experience. No significant relationships were found. Wilcoxen analyses indicated both groups showed increase in confidence; experimental-group students with below-average TIPS pre-test scores showed a significant increase in science process skills. Transcribed audio tapes of all laboratory-based verbal interactions were analyzed. Coding categories, developed using the constant comparison method, led to an inter-rater reliability of .96. During open-inquiry activities, the lab team interacted less often, sought less guidance from their instructor, and talked less about chemistry concepts than during non-inquiry activities. Evidence confirmed that students used science process skills and engaged in higher-order thinking during both types of activities. A four-student focus shared their experiences with open-inquiry activities, indicating that they enjoyed the experience, viewed it as worthwhile, and believed it helped them gain understanding of the nature of chemistry research. Research results indicate that participation in open-inquiry laboratory increases student confidence and, for some students, the ability to use science process skills. Evidence documents differences in student laboratory interactions and behavior that are attributable to the type of laboratory experience. Further research into aspects of open-inquiry laboratory experiences is recommended.
NASA Astrophysics Data System (ADS)
Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn
2016-07-01
Application of mathematical and statistical thinking and reasoning, typically referred to as quantitative skills, is essential for university bioscience students. First, this study developed an assessment task intended to gauge graduating students' quantitative skills. The Quantitative Skills Assessment of Science Students (QSASS) was the result, which examined 10 mathematical and statistical sub-topics. Second, the study established an evidential baseline of students' quantitative skills performance and confidence levels by piloting the QSASS with 187 final-year biosciences students at a research-intensive university. The study is framed within the planned-enacted-experienced curriculum model and contributes to science reform efforts focused on enhancing the quantitative skills of university graduates, particularly in the biosciences. The results found, on average, weak performance and low confidence on the QSASS, suggesting divergence between academics' intentions and students' experiences of learning quantitative skills. Implications for curriculum design and future studies are discussed.
Oh, Deborah M; Kim, Joshua M; Garcia, Raymond E; Krilowicz, Beverly L
2005-06-01
There is increasing pressure, both from institutions central to the national scientific mission and from regional and national accrediting agencies, on natural sciences faculty to move beyond course examinations as measures of student performance and to instead develop and use reliable and valid authentic assessment measures for both individual courses and for degree-granting programs. We report here on a capstone course developed by two natural sciences departments, Biological Sciences and Chemistry/Biochemistry, which engages students in an important culminating experience, requiring synthesis of skills and knowledge developed throughout the program while providing the departments with important assessment information for use in program improvement. The student work products produced in the course, a written grant proposal, and an oral summary of the proposal, provide a rich source of data regarding student performance on an authentic assessment task. The validity and reliability of the instruments and the resulting student performance data were demonstrated by collaborative review by content experts and a variety of statistical measures of interrater reliability, including percentage agreement, intraclass correlations, and generalizability coefficients. The high interrater reliability reported when the assessment instruments were used for the first time by a group of external evaluators suggests that the assessment process and instruments reported here will be easily adopted by other natural science faculty.
A TREETOPS Simulation of the STABLE Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Nurre, G. S.; Whorton, M. S.; Kim, Y. K.
1999-01-01
As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. For many micro-gravity science experiments, the ambient acceleration environment on ISS will significantly exceed desirable levels. The ubiquity of acceleration disturbance sources and the difficulty in characterization of these sources precludes source isolation, requiring, vibration isolation to attenuate the disturbances to an acceptable level at the experiment. To provide a more quiescent acceleration environment, a vibration isolation system named STABLE (Suppression of Transient Accelerations By LEvitation) was developed. STABLE was the first successful flight test of an active isolation device for micro-gravity science payloads and was flown on STS-73/USML-2 in October 1995. This report documents the development of the high fidelity, nonlinear, multibody simulation developed using TREETOPS which was used to design the control laws and define the expected performance of the STABLE isolation system.
NASA Astrophysics Data System (ADS)
Bryon, Experience
2017-01-01
Although Embodied Cognition and Performance Practice could be said to have in common that they live in the fields of hermeneutics and epistemology concurrently, and with this are interested in perception, knowledge, experience and agency without privileging any of them or presuming a linear or status relationship among them - there still remains a divisive disciplinary gulf. This paper provides a critical history of the science/humanities divide, exposing prejudices and practices that often impede productive interdisciplinary relationships between Cognitive Science and Performance, and offers suggestions forward towards a more productive middle field allowing for the possibility of new knowledge(s).
A 5MV Tandetron to Universidad Autonoma de Madrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tengblad, Olof
1999-11-16
A 5MV Tandetron accelerator is being projected for the Center of Material Analysis of the Universidad Autonoma de Madrid. The accelerator will be dedicated to Material Science but it meant to be open to all fields of science and industry that can profit from this kind of installations. Estimated construction time and delivery of the accelerator implies that the first experiments can be performed in the spring 2001.
Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2002-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
COLLIDE-2: Collisions Into Dust Experiment-2
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.
2002-01-01
The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.
Interest in STEM is contagious for students in biology, chemistry, and physics classes
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy
2017-01-01
We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678
Interest in STEM is contagious for students in biology, chemistry, and physics classes.
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy
2017-08-01
We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.
The Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Primm, Lowell (Technical Monitor)
2001-01-01
The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.
Cultivation of science identity through authentic science in an urban high school classroom
NASA Astrophysics Data System (ADS)
Chapman, Angela; Feldman, Allan
2017-06-01
This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as well as their perceptions about who can do science. We found that the students believed the experience to be one of authentic science, that their science identity was positively influenced by participation in the experience, and that they demonstrated a shift in perceptions from stereotypical to more diverse views of scientists. Implications for science education are discussed.
Foale works with the Pilot experiment during Expedition 8
2003-10-31
ISS008-E-05181 (31 October 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, works with the Russian biomedical Pilot experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill.
Soil Science self-learning based on the design and conduction of experiments
NASA Astrophysics Data System (ADS)
Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.
2012-04-01
This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the project.
High-energy neutron depth-dose distribution experiment.
Ferenci, M S; Hertel, N E
2003-01-01
A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.
Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1996-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.
Strengthening STEM Education through Community Partnerships
Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.
2017-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512
Strengthening STEM Education through Community Partnerships.
Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R
2016-01-01
California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.
NASA Astrophysics Data System (ADS)
Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.
2015-11-01
This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about their pedagogical transformations following their enactment of a reformed contextualized science curriculum. The outcomes demonstrated that students' emancipated behaviours, learning and performance, qualitatively influenced teacher change and pedagogical reform. Specifically, changes in students, as a result of the ways the science curriculum was implemented, resulted in epiphanies and dilemmas for teachers who subsequently resolved to surrender their tightly held pedagogical control (locus of control) for the betterment of the learning environment and their sense of professional satisfaction.
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
ERIC Educational Resources Information Center
Brittle, Seth W.; Baker, Joshua D.; Dorney, Kevin M.; Dagher, Jessica M.; Ebrahimian, Tala; Higgins, Steven R.; Pavel Sizemore, Ioana E.
2015-01-01
The increased worldwide exploitation of nanomaterials has reinforced the importance of introducing nanoscale aspects into the undergraduate and graduate curriculum. To meet this need, a novel nano-laboratory module was developed and successfully performed by science and engineering students. The main goal of the experiment was to accurately…
Space Processing Applications Rocket (SPAR) project, SPAR 9
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1984-01-01
SPAR 9 (R-17) payload configuration, rocket performance, payload support, science payload instrumentation, and payload recovery are discussed. Directional solidification of magnetic composites, directional solidification of immiscible aluminum-indium alloys, and comparative alloy solidification experiments are reported.
Teachers' participation in research programs improves their students' achievement in science.
Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D
2009-10-16
Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.
Factors related to the decision of men and women to continue taking science courses in college
NASA Astrophysics Data System (ADS)
Deboer, George E.
The purpose of this study was to determine the importance of the transition between a student's initial collegiate science experience and the decision to continue in science, and whether the reasons students give to explain their success or failure in their first course are related to that decision. Attribution theory provided the framework for investigating these factors. The results showed that for unsuccessful students, the plan to continue in science was unrelated to gender, mathematical aptitude, performance in the first science course, or attributions to luck, effort, ability, or task difficulty. For successful students, the plan to continue in science was directly related to attributions to ability, and inversely related to task difficulty. The results demonstrate the importance of a sense of competence for students who continue in science.
Planning Experiments for a Microgravity Environment
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1998-01-01
Prior to performing science experiments in a microgravity environment, scientists must understand and appreciate a variety of issues related to that environment. The microgravity conditions required for optimum performance of the experiment will help define an appropriate carrier, drop facility, sounding rocket, free-flyer, or manned orbiting spacecraft. Within a given carrier, such as the International Space Station, experiment sensitivity to vibrations and quasi-steady accelerations should also influence the location and orientation of the experiment apparatus; the flight attitude of the carrier (if selectable); and the scheduling of experiment operations in conjunction with other activities. If acceptable microgravity conditions are not expected from available carriers or experiment scheduling cannot avoid disruptive activities, then a vibration isolation system should be considered. In order to best interpret the experimental results, appropriate accelerometer data must be collected contemporaneously with the experimental data. All of this requires a good understanding of experiment sensitivity to the microgravity environment.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Rover Soil Experiments Near Yogi
NASA Technical Reports Server (NTRS)
1997-01-01
Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Real-time remote scientific model validation
NASA Technical Reports Server (NTRS)
Frainier, Richard; Groleau, Nicolas
1994-01-01
This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew discuss the experiments in the Spacehab module. Seated, in the foreground, is Mission Specialist Laurel Blair Salton Clark; standing behind her are Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
GSDC: A Unique Data Center in Korea for HEP research
NASA Astrophysics Data System (ADS)
Ahn, Sang-Un
2017-04-01
Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.
Life sciences Spacelab Mission Development test 3 (SMD 3) data management report
NASA Technical Reports Server (NTRS)
Moseley, E. C.
1977-01-01
Development of a permanent data system for SMD tests was studied that would simulate all elements of the shuttle onboard, telemetry, and ground data systems that are involved with spacelab operations. The onboard data system (ODS) and the ground data system (GDS) were utilized. The air-to-ground link was simulated by a hardwired computer-to-computer interface. A patch board system was used on board to select experiment inputs, and the downlink configuration from the ODS was changed by a crew keyboard entry to support each experiment. The ODS provided a CRT display of experiment parameters to enable the crew to monitor experiment performance. An onboard analog system, with recording capability, was installed to handle high rate data and to provide a backup to the digital system. The GDS accomplished engineering unit conversion and limit sensing, and provided realtime parameter display on CRT's in the science monitoring area and the test control area.
Heuristic and algorithmic processing in English, mathematics, and science education.
Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane
2008-01-01
Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.
1999-01-01
The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.
NASA Astrophysics Data System (ADS)
Crismond, David Paul
This thesis studied high school students and adults with varying degrees of design experience doing two technology investigate-and-redesign (I&R) tasks. Each involved subjects investigating products, designing experiments to compare them fairly, and then redesigning the devices. A total of 25 pairs of subjects participated in this investigation and included naive and novice high school designers, as well as naive, novice, and expert adult designers. Subjects of similar age and design experience worked in same-gender teams and met for two 2-hour sessions. The essential research question of this thesis was: "What process skills and concepts do naive, novice and expert designers use and learn when investigating devices, designing experiments, and redesigning the devices?" Three methodologies were used to gather and analyze the data: clinical interviewing (Piaget, 1929/1960), protocol analysis (Ericsson & Simon, 1984) and interaction analysis (Jordan and Henderson, 1995). The thesis provides composite case-studies of 10 of the 50 test sessions, buttressed by descriptions of performance trends for all subjects. Given the small sample sizes involved, the findings are by necessity tentative and not supported by statistical analysis: (1) I&R activities are engaging, less time-intensive complements to design-and-build tasks, which involve simple mechanical devices and carry with them a host of potential "alternative understandings" in science and technology. Much gets learned during these tasks, more involving "device knowledge" and "device inquiry skills" than "big ideas" in science and technology. (2) Redesign tasks scaffold naive and novice designers to improved performance in the multidimensional and context-specific activity of design. The performances of naive and novice designers were more like that of expert designers when redesigning existing devices than when doing start-from-scratch designing. (3) Conceptual redesign involved more analysis- than synthesis-related design strategies, suggesting that opportunities for teaching science and technology during design are present, but underutilized since only experts made frequent connections to key science concepts. (4) Naive subjects focused mostly on product features and functions in their designs and made analogies mostly to concrete objects, while experts focused more on problem-finding, determining appropriate mechanisms, and made connections using analogies and concepts at both abstract and concrete levels.
The effect of site-based preservice experiences on elementary science teaching self-efficacy beliefs
NASA Astrophysics Data System (ADS)
Wingfield, Mary E.
Current reform in science education has focused on the need for improvement of preservice teacher training (National Science Education Standards, 1996). As a situation specific construct (Bandura, 1977), self-efficacy studies have been conducted to investigate factors that impact preservice teachers' sense of confidence as it relates to their ability to become successful science teachers. This descriptive study identified factors in the site based experiences that affected preservice elementary teachers' self-efficacy as measured by the Science Teaching Efficacy Belief Instrument (STEBL-B) (Enochs and Riggs, 1990). The sample consisted of the entire population of undergraduate elementary preservice teachers in the site based teacher education program during the fall semester of 1997 at a large south central urban university. The 131 paired, pretest posttests of the entire STEBL-B and the two constructs were analyzed for significance in mean score gains. Results of the paired t test yielded a t value of 11.52 which was significant at p <.001. An analysis of covariance using the pretest as the covariate yielded an F value of 6.41 which was statistically significant at p <.001. These quantitative results were supported by interviews and by written comments on questionnaires that determined ratings for the extent of impact on self-efficacy from site based experiences. Results of this study indicate that the experiences of the site based program has a significant positive impact on the preservice teachers' self-efficacy. The implication for teacher educators is that this specific affective dimension can be significantly enhanced. The site based program can provide the four factors Bandura identified as sources of information used to determine self-efficacy. These include performance accomplishments through authentic teaching experiences, vicarious experiences through observation of the site based teachers, and verbal persuasion and physiological states from feedback given by the university coordinators. The majority of these preservice teachers started the semester with a negative attitude toward teaching science, but ended the semester with a positive view of themselves as effective science teachers in the future.
Science as Experience, Exploration, and Experiments: Elementary Teachers' Notions of "Doing Science"
ERIC Educational Resources Information Center
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-01-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science--both in and out of schools--throughout their lives. Our work uses…
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
Video- Making a Film of Water Aboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2002-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
A Fresh Look at Internet Protocol Version 6 (IPv6) for Department of Defense (DoD) Networks
2010-08-01
since system administration practices (such as the use of security appliances) depend heavily on tools for network management, diagnosis and protection...are mobile ad hoc networks (MANETs) and yet there is limited practical experience with MANETs and their performance. Further, the interaction between...Systems FCS Future Combat System IETF Internet Engineering Task Force ISAT Information Science and Technology BAST Board on Army Science and
Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'
NASA Astrophysics Data System (ADS)
Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.
2017-11-01
Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.
Materials processing in space: An introduction to the G-480 payload
NASA Technical Reports Server (NTRS)
Butow, Steven J.
1988-01-01
The Space Research and Development Organization at San Jose State University designed and developed a small self-contained payload (designated G-480 by NASA) which will perform four materials science experiments in low Earth orbit aboard the Space Shuttle. These experiments are categorized under two areas of investigation: corrosion and electrodeposition. While none of these experiments have previously been performed in space, both government and industry have expressed great interest in these and related areas of materials processing and engineering. A brief history of the G-480 project development is given along with a description of each experiment, followed by a tour of the G-480 payload. Expected results are discussed along with the function, design and operation of the payload hardware and software.
Scientific field training for human planetary exploration
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.
2010-05-01
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.
NASA Astrophysics Data System (ADS)
Kahle, Jane Butler; Matyas, Marsha Lakes; Cho, Hee-Hyung
Earlier studies of gender differences in science courses and careers have identified three probable causes: numbers of mathematics courses, level of science achievement, and attitudes toward science. Recently, differential science experiences have been suggested as a factor contributing to the gender differences found in science interest and achievement. A study of science activities, both within and outside of school, has been conducted. Although both boys and girls report similar classroom experiences, boys more often than girls report extracurricular science activities. The findings suggest that equal experiences within science classrooms do not overcome the advantage that boys hold due to more extracurricular science activities. Increased experiences in science, however, have led to more positive attitudes toward science among the girls in this study.
Celeste, Letícia Corrêa; Zanoni, Graziela; Queiroga, Bianca; Alves, Luciana Mendonça
2017-03-09
To map the profile of Brazilian Speech Therapists who report acting in Educational Speech Therapy, with regard to aspects related to training, performance and professional experience. Retrospective study, based on secondary database analysis of the Federal Council of Hearing and Speech Sciences on the questionnaires reporting acting with Educational Environment. 312 questionnaires were completed, of which 93.3% by women aged 30-39 years. Most Speech Therapists continued the studies, opting mostly for specialization. Almost 50% of respondents, have worked for less than six years with the speciality, most significantly in the public service (especially municipal) and private area. The profile of the Speech Therapists active in the Educational area in Brazil is a professional predominantly female, who values to continue their studies after graduation, looking mostly for specialization in the following areas: Audiology and Orofacial Motor. The time experience of the majority is up to 10 years of work whose nature is divided mainly in public (municipal) and private schools. The performance of Speech Therapists in the Educational area concentrates in Elementary and Primary school, with varied workload.
MSFC Skylab mission report: Saturn workshop
NASA Technical Reports Server (NTRS)
1974-01-01
The Skylab's Saturn Workshop mission performance is presented. Experiments were conducted to determine man's ability to live and work in space for extended periods, to make sun and earth investigations, and to advance science and technology in several areas of space applications. Performance is compared with design parameters, and problem causes and solutions are treated. The Saturn Workshop successfully performed its role and advanced the technology of space systems design.
NASA Astrophysics Data System (ADS)
Newsome, Demetria Lynn
Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors. Findings of the study have implications for the design of preservice science teacher clinical experiences including providing longer, organized clinical experiences and preferential selection of preservice science teachers for PDS practicum assignments.
ERIC Educational Resources Information Center
William-White, Lisa
2011-01-01
Spoken Word, presented here, is an embodiment of critical theory, where discourse centered on the intersections of race, class, identity, lived experiences, and critical consciousness are named, analyzed, and interpreted in critical performance narratives. Merging the social sciences and the humanities--blending narrative, radical performance…
Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.
Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W
2005-01-01
Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.
Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR
Mitchell, G. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Strelkov, A. V.; Sharapov, E. I.; Shvetsov, V. N.; Chernuhin, Yu. I.; Levakov, B. G.; Litvin, V. I.; Lyzhin, A. E.; Magda, E. P.; Crawford, B. E.; Stephenson, S. L.; Howell, C. R.; Tornow, W
2005-01-01
Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 1018/cm2s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286. PMID:27308126
NASA Astrophysics Data System (ADS)
Papadimitriou, Michael
The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.
(abstract) Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
NASA Astrophysics Data System (ADS)
Nikischer, Andrea B.
This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and science students located in high-poverty, low-performing schools. I further argue that both federal and state accountability-based school reform efforts are failing to improve outcomes for students with proficiency and interest in STEM learning and STEM fields, and in fact, these reforms are harming top performing students and high school STEM opportunity structures. Recommendations for changes in policy and practice, and for further research, are provided.
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), The French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. This photograph shows Astronaut Norman Thagard performing the fluid experiment at the Fluid Experiment System (FES) facility inside the laboratory module. The FES facility had sophisticated optical systems for imaging fluid flows during materials processing, such as experiments to grow crystals from solution and solidify metal-modeling salts. A special laser diagnostic technique recorded the experiments, holograms were made for post-flight analysis, and video was used to view the samples in space and on the ground. Managed by the Marshall Space Flight Center (MSFC), the IML-1 mission was launched on January 22, 1992 aboard the Shuttle Orbiter Discovery (STS-42).
Training for life science experiments in space at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Rodrigues, Annette T.; Maese, A. Christopher
1993-01-01
As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.
HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION.
Harackiewicz, Judith M; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S
2014-01-01
We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values - students' perceptions of the value of academic tasks and students' personal values that shape their experiences in academic contexts. We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. These interventions are exciting for their broad applicability in improving students' academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts.
HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION
Harackiewicz, Judith M.; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S.
2017-01-01
Purpose We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? Design/methodology/approach We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values – students’ perceptions of the value of academic tasks and students’ personal values that shape their experiences in academic contexts. Findings We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. Originality/value These interventions are exciting for their broad applicability in improving students’ academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts. PMID:28890603
Women in STEM: The Effect of Undergraduate Research on Persistence
NASA Astrophysics Data System (ADS)
Wilker, Jodi
The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women in STEM. Most studies on research program development are from 4-year institutions, yet many women start at community colleges. The goal of this study was to fill this gap. Science identity and experiential learning theories provided the framework for this case study at a local institution (LECC). Semistructured interviews determined college science faculty and administrators perceptions of advantages and disadvantages of undergraduate research, the viability of developing a research program, and specific research options feasible for LECC. Transcripted data were analyzed through multiple rounds of coding yielding five themes: faculty perception of undergraduate research, authentic experiences, health technologies/nursing programs, LECC students career focus, and the unique culture at LECC. The most viable type of undergraduate research for LECC is course-based and of short timeframe. The project study advocates the use of citizen science (CS) studies in the classroom as they are relatively short-term and can take the place of lab sessions. The true benefit is that students perform authentic science by contributing to an actual scientific research project. CS projects can effect social change by developing science literate citizens, empowering faculty to create authentic learning experiences, and by sparking interest in science and directing women into STEM careers.
Lessons Learned from Autonomous Sciencecraft Experiment
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce;
2005-01-01
An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.
Life sciences payload definition and integration study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.
Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
1998-01-01
The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.
The National Ignition Facility (NIF) as a User Facility
NASA Astrophysics Data System (ADS)
Keane, Christopher; NIF Team
2013-10-01
The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Guidelines for Building Science Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, Cheryn E.; Rashkin, Samuel; Huelman, Pat
The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part inmore » the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to building science education. This report summarizes the steps DOE has taken to develop guidance for building science education and outlines a path forward towards creating real change for an industry in need. The Guidelines for Building Science Education outlined in Appendix A of this report have been developed for external stakeholders to use to certify that their programs are incorporating the most important aspects of building science at the most appropriate proficiency level for their role. The guidelines are intended to be used primarily by training organizations, universities, and certification bodies. Each guideline can be printed or saved as a stand-alone document for ease-of-use by the respective stakeholder group. In 2015, DOE, with leadership from Pacific Northwest National Laboratory (PNNL), is launching a multi-year campaign to promote the adoption of the Guidelines for Building Science Education in a variety of training settings.« less
Modeling Enclosure Design in Above-Grade Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, J.; Ueno, K.; Musunuru, S.
2016-03-01
Building Science Corporation modeled typically well-performing wall assemblies using Wärme und Feuchte instationär (WUFI) Version 5.3 software and demonstrated that these models agree with historic experience when calibrated and modeled correctly. This technical report provides a library of WUFI modeling input data and results. Within the limits of existing experience, this information can be generalized for applications to a broad population of houses.
Cultivation of Science Identity through Authentic Science in an Urban High School Classroom
ERIC Educational Resources Information Center
Chapman, Angela; Feldman, Allan
2017-01-01
This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as…
NASA Astrophysics Data System (ADS)
Menon, Deepika
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.
The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract # DE-AC05-76RL0-1830« less
Gravitational Physics Research
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.
The Science of Sex Differences in Science and Mathematics
Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann
2014-01-01
Summary Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school influences; training and experience; and cultural practices. We conclude that early experience, biological factors, educational policy, and cultural context affect the number of women and men who pursue advanced study in science and math and that these effects add and interact in complex ways. There are no single or simple answers to the complex questions about sex differences in science and mathematics. PMID:25530726
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark manipulates a piece of equipment. She and other crew members are at SPACEHAB, Port Canaveral, Fla., for Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, David M. Brown and Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Foale and Kuipers work at the MSG during EXP 8 / EXP 9
2004-04-22
ISS008-E-21999 (22 April 2004) --- Astronaut C. Michael Foale (foreground), Expedition 8 commander and NASA ISS science officer, and European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands work with the HEAT experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station (ISS). The main aim of the HEAT technology demonstration is the characterization of the heat transfer performance of a grooved heat pipe in weightlessness.
Video- Soldering Iron Inserted Through a Film of Water Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates the result of inserting a soldering iron into a thin film or sheet of water in space. Dr. Pettit makes comparative comments about the differences and similarities of boiling processes in space and on Earth.
Research and the planned Space Experiment Research and Processing Laboratory
NASA Technical Reports Server (NTRS)
2000-01-01
Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.
ERIC Educational Resources Information Center
Joyce, Beverly A.; Farenga, Stephen J.
1999-01-01
Examines specific science-related attitudes, informal science-related experiences, future interest in science, and gender of young high-ability students (n=111) who completed the Test of Science Related Attitudes (TOSRA), the Science Experience Survey (SES), and the Course Selection Sheet (CSS). Develops two regression models to predict the number…
Stereotype Threat and Women's Performance in Physics
NASA Astrophysics Data System (ADS)
Marchand, Gwen C.; Taasoobshirazi, Gita
2013-12-01
Stereotype threat (ST), which involves confirming a negative stereotype about one's group, is a factor thought to contribute to the gender gap in science achievement and participation. This study involved a quasi-experiment in which 312 US high school physics students were randomly assigned, via their classroom cluster, to one of three ST conditions. The conditions included an explicit ST condition, an implicit ST condition, and a nullified condition. Results indicated that males in all three conditions performed similarly on a set of physics problems. Females in the nullified condition outperformed females in the explicit ST condition and females in the implicit and explicit conditions performed similarly. Males performed better than females in the implicit and explicit ST conditions, but male and female performance on the physics problems was not significantly different in the nullified condition. The implications of these findings for physics instruction and future research on gender differences in physics and ST in science are discussed.
NASA Astrophysics Data System (ADS)
Childers, Gina; Jones, M. Gail
2017-02-01
Through partnerships with scientists, students can now conduct research in science laboratories from a distance through remote access technologies. The purpose of this study was to explore factors that contribute to a remote learning environment by documenting high school students' perceptions of science motivation, science identity, and virtual presence during a remote microscopy investigation. Exploratory factor analysis identified 3 factors accounting for 63% of the variance, which suggests that Science Learning Drive (students' perception of their competence and performance in science and intrinsic motivation to do science), Environmental Presence (students' perception of control of the remote technology, sensory, and distraction factors in the learning environment, and relatedness to scientists), and Inner Realism Presence (students' perceptions of how real is the remote programme and being recognised as a science-oriented individual) were factors that contribute to a student's experience during a remote investigation. Motivation, science identity, and virtual presence in remote investigations are explored.
ERIC Educational Resources Information Center
Carlone, Heidi B.; Johnson, Angela
2007-01-01
In this study, we develop a model of science identity to make sense of the science experiences of 15 successful women of color over the course of their undergraduate and graduate studies in science and into science-related careers. In our view, science identity accounts both for how women make meaning of science experiences and how society…
Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.
NASA Astrophysics Data System (ADS)
Loehr, John Francis
The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.
NASA Astrophysics Data System (ADS)
Haydel, Angela Michelle
The purpose of this dissertation was to advance theoretical understanding about fit between the personal resources of individuals and the characteristics of science achievement tasks. Testing continues to be pervasive in schools, yet we know little about how students perceive tests and what they think and feel while they are actually working on test items. This study focused on both the personal (cognitive and motivational) and situational factors that may contribute to individual differences in achievement-related outcomes. 387 eighth grade students first completed a survey including measures of science achievement goals, capability beliefs, efficacy related to multiple-choice items and performance assessments, validity beliefs about multiple-choice items and performance assessments, and other perceptions of these item formats. Students then completed science achievement tests including multiple-choice items and two performance assessments. A sample of students was asked to verbalize both thoughts and feelings as they worked through the test items. These think-alouds were transcribed and coded for evidence of cognitive, metacognitive and motivational engagement. Following each test, all students completed measures of effort, mood, energy level and strategy use during testing. Students reported that performance assessments were more challenging, authentic, interesting and valid than multiple-choice tests. They also believed that comparisons between students were easier using multiple-choice items. Overall, students tried harder, felt better, had higher levels of energy and used more strategies while working on performance assessments. Findings suggested that performance assessments might be more congruent with a mastery achievement goal orientation, while multiple-choice tests might be more congruent with a performance achievement goal orientation. A variable-centered analytic approach including regression analyses provided information about how students, on average, who differed in terms of their teachers' ratings of their science ability, achievement goals, capability beliefs and experiences with science achievement tasks perceived, engaged in, and performed on multiple-choice items and performance assessments. Person-centered analyses provided information about the perceptions, engagement and performance of subgroups of individuals who had different motivational characteristics. Generally, students' personal goals and capability beliefs related more strongly to test perceptions, but not performance, while teacher ratings of ability and test-specific beliefs related to performance.
Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, Peoman G.
1997-01-01
The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction
From trace evidence to bioinformatics: putting bryophytes into molecular biology education.
Fuselier, Linda; Bougary, Azhar; Malott, Michelle
2011-01-01
Students benefit most from their science education when they participate fully in the process of science in the context of real-world problems. We describe a student-directed open-inquiry lab experience that has no predetermined outcomes and requires students to engage in all components of scientific inquiry from posing a question through evaluating and reporting results. Over 5 weeks, students learn how bryophytes are used in forensics and become proficient in important molecular biology lab skills including DNA isolation, polymerase chain reaction, gel electrophoresis, capillary electrophoresis, and genotyping. For this portion of the experience, there is no specialized equipment necessary outside of gel electrophoresis supplies and a thermocycler. In an optional extension of the experience, students sequence a plastid intron and use introductory bioinformatics skills to identify species related to their forensics case. Students who participated in the lab experience performed well on content-based assessment, and student attitudes toward the experience were positive and indicative of engaged learning. The lab experience is easily modified for higher or lower level courses and can be used in secondary education. Copyright © 2011 Wiley Periodicals, Inc.
WFIRST: Data/Instrument Simulation Support at IPAC
NASA Astrophysics Data System (ADS)
Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin
2018-01-01
As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.
Generation of Graphite Particles by Abrasion and Their Characterization
NASA Astrophysics Data System (ADS)
Troy, Raymond Steven
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
Experiment Document for 01-E077 Microgravity Investigation of Crew Reactions in 0-G (MICRO-G)
NASA Technical Reports Server (NTRS)
Newman, Dava J.
2003-01-01
The Experiment Document (ED) serves the following purposes: a) It provides a vehicle for Principal Investigators (PIS) to formally specify the requirements for performing their experiments. b) It provides a technical Statement of Work (SOW). c) It provides experiment investigators and hardware developers with a convenient source of information about Human Life Sciences (HLS) requirements for the development and/or integration of flight experiment projects. d) It is the primary source of experiment specifications for the HLS Research Program Office (RPO). Inputs from this document will be placed into a controlled database that will be used to generate other documents.
1972-12-21
Hans F. Wuenscher, assistant director for Advanced Space Projects Engineering Laboratory at Marshall Space Flight Center (MSFC), examined the facility to be used by Skylab astronauts in performing a number of experiments in material science and manufacturing in space. The equipment shown here is a duplicate of the M512 Experiment hardware flown in the Multiple Docking Adapter section of the Sky lab. This equipment, itself an experiment, was be used for conducting 5 other experiments in the round vacuum chamber. Inside was a cavity which held the M518 Multipurpose Electric Furnace, a facility which was used for conducting other experiments. In all, a total of 17 experiments were conducted using this facility and furnace.
Exposing the Strategies that can Reduce the Obstacles: Improving the Science User Experience
NASA Astrophysics Data System (ADS)
Lindsay, F. E.; Brennan, J.; Behnke, J.; Lynnes, C.
2017-12-01
It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASA's Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of science and applications users.
Exposing the Strategies that Can Reduce the Obstacles: Improving the Science User Experience
NASA Technical Reports Server (NTRS)
Lindsay, Francis E.; Brennan, Jennifer; Behnke, Jeanne; Lynnes, Chris
2017-01-01
It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASAs Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of science and applications users.
NASA Astrophysics Data System (ADS)
Dabney, Katherine Patricia Traudel
Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.
Inertial Confinement Fusion Annual Report 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, Robert L.
The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less
NASA Astrophysics Data System (ADS)
Cooper, Leon N.
2015-01-01
Part I. Science and Society: 1. Science and human experience; 2. Does science undermine our values?; 3. Can science serve mankind?; 4. Modern science and contemporary discomfort: metaphor and reality; 5. Faith and science; 6. Art and science; 7. Fraud in science; 8. Why study science? The keys to the cathedral; 9. Is evolution a theory? A modest proposal; 10. The silence of the second; 11. Introduction to Copenhagen; 12. The unpaid debt; Part II. Thought and Consciousness: 13. Source and limits of human intellect; 14. Neural networks; 15. Thought and mental experience: the Turing test; 16. Mind as machine: will we rubbish human experience?; 17. Memory and memories: a physicist's approach to the brain; 18. On the problem of consciousness; Part III. On the Nature and Limits of Science: 19. What is a good theory?; 20. Shall we deconstruct science?; 21. Visible and invisible in physical theory; 22. Experience and order; 23. The language of physics; 24. The structure of space; 25. Superconductivity and other insoluble problems; 26. From gravity to light and consciousness: does science have limits?
NASA Astrophysics Data System (ADS)
Cooper, Leon N.
2014-12-01
Part I. Science and Society: 1. Science and human experience; 2. Does science undermine our values?; 3. Can science serve mankind?; 4. Modern science and contemporary discomfort: metaphor and reality; 5. Faith and science; 6. Art and science; 7. Fraud in science; 8. Why study science? The keys to the cathedral; 9. Is evolution a theory? A modest proposal; 10. The silence of the second; 11. Introduction to Copenhagen; 12. The unpaid debt; Part II. Thought and Consciousness: 13. Source and limits of human intellect; 14. Neural networks; 15. Thought and mental experience: the Turing test; 16. Mind as machine: will we rubbish human experience?; 17. Memory and memories: a physicist's approach to the brain; 18. On the problem of consciousness; Part III. On the Nature and Limits of Science: 19. What is a good theory?; 20. Shall we deconstruct science?; 21. Visible and invisible in physical theory; 22. Experience and order; 23. The language of physics; 24. The structure of space; 25. Superconductivity and other insoluble problems; 26. From gravity to light and consciousness: does science have limits?
Gamma-Insensitive Fast Neutron Detector with Spectral Source Identification Potential
2011-03-01
commercialising novel detection technologies developed for fundamental science. Rico’s past work experience includes consulting work performed for the European...copies of this journal and the articles contained herein may be printed or downloaded and redistributed for personal, research or educational
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High -performance Computing Grid Computing Networking Mass Storage Plan for the Future State of the Laboratory Homeland Security Industry Computing Sciences Workforce Development A Growing List Historic Results
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David
2004-01-01
Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science
Predicting continued participation in college chemistry for men and women
NASA Astrophysics Data System (ADS)
Deboer, George E.
The purpose of this study was to test the effectiveness of a cognitive motivational model of course selection patterns to explain the continued participation of men and women in college science courses. A number of cognitive motivational constructs were analyzed in a path model and their effect on students' intention to continue in college chemistry was determined. Variables in the model included self-perceived ability in science, future expectations, level of past success, effort expended, subjective interpretations of both past success and task difficulty, and the intention to continue in college chemistry.The results showed no sex differences in course performance, the plan to continue in chemistry, perceived ability in science, or past achievement in science courses. The path analysis did confirm the usefulness of the cognitive motivational perspective to explain the intention of both men and women to continue in science. Central to that process appears to be a person's belief about their ability. Students who had confidence in their ability in chemistry expected to do well in the future and were more likely to take more chemistry. Ability ratings in turn were dependent on a number of past achievement experiences and the personal interpretation of those experiences.
Creating Catalytic Collaborations between Theater Artists, Scientists, and Research Institutions
NASA Astrophysics Data System (ADS)
Wise, Debra
2012-02-01
Catalyst Collaborative@MIT (CC@MIT) is a collaboration between MIT and Underground Railway Theater (URT), a company with 30 years experience creating theater through interdisciplinary inquiry and engaging community. CC@MIT is dedicated to creating and presenting plays that deepen public understanding about science, while simultaneously providing artistic and emotional experiences not available in other forms of dialogue about science. CC@MIT engages audiences in thinking about themes in science of social and ethical concern; provides insight into the culture of science and the impact of that culture on society; and examines the human condition through the lens of science that intersects our lives and the lives of scientists. Original productions range from Einstein's Dreams to From Orchids to Octopi -- an evolutionary love story; classics re-framed include The Life of Galileo and Breaking the Code (about Alan Turing). CC@MIT commissions playwrights and scientists to create plays; engages audiences with scientists; performs at MIT and a professional venue near the campus; collaborates with the Cambridge Science Festival and MIT Museum; engages MIT students, as well as youth and children. Artistic Director Debra Wise will address how the collaboration developed, what opportunities are provided by collaborations between theaters and scientific research institutions, and lessons learned of value to the field.
Experiments on Socio-Technical Systems: The Problem of Control.
Kroes, Peter
2016-06-01
My aim is to question whether the introduction of new technologies in society may be considered to be genuine experiments. I will argue that they are not, at least not in the sense in which the notion of experiment is being used in the natural and social sciences. If the introduction of a new technology in society is interpreted as an experiment, then we are dealing with a notion of experiment that differs in an important respect from the notion of experiment as used in the natural and social sciences. This difference shows itself most prominently when the functioning of the new technological system is not only dependent on technological hardware but also on social 'software', that is, on social institutions such as appropriate laws, and actions of operators of the new technological system. In those cases we are not dealing with 'simply' the introduction of a new technology, but with the introduction of a new socio-technical system. I will argue that if the introduction of a new socio-technical system is considered to be an experiment, then the relation between the experimenter and the system on which the experiment is performed differs significantly from the relation in traditional experiments in the natural and social sciences. In the latter experiments it is assumed that the experimenter is not part of the experimental system and is able to intervene in and control the experimental system from the outside. With regard to the introduction of new socio-technical systems the idea that there is an experimenter outside the socio-technical system who intervenes in and controls that system becomes problematic. From that perspective we are dealing with a different kind of experiment.
NASA Astrophysics Data System (ADS)
Smith, Vivian Lee
Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.
Implementing Professional Experiences to Prepare Preservice Science Teachers
ERIC Educational Resources Information Center
Nuangchalerm, Prasart
2009-01-01
In the correlation between professional experiences of preservice science teacher and classroom managerial skills, professional experiences were designed to prepare science teacher in the future. The effects of program were described the result of implementing professional experiences of 67 preservice science teachers. Data were collected by using…
ERIC Educational Resources Information Center
Reece, Amber J.; Butler, Malcolm B.
2017-01-01
Biology I is a required course for many science, technology, engineering, and mathematics (STEM) majors and is often their first college-level laboratory experience. The replacement of the traditional face-to-face laboratory experience with virtual laboratories could influence students' content knowledge, motivation to learn biology, and overall…
2009-04-29
ISS019-E-012391 (29 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, activates the Microgravity Science Glovebox (MSG) from its A31p laptop, initiates and conducts a session, the first of Increment 19, with the experiment Smoke Point In Co-flow Experiment (SPICE), performed in the MSG and controlled by its A31p with SPICE micro-drives in the Kibo laboratory of the International Space Station.
Student experience of school science
NASA Astrophysics Data System (ADS)
Shirazi, Shaista
2017-09-01
This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a quasi-longitudinal approach to determine a typology of experiences. The second phase entailed data collection through interviews of a sample of these students (n = 55) to help triangulate and extend findings from the first phase. Students taking up science post-16 reported significantly more positive experiences of school science than students who had decided not to take science further. Of school-related factors influencing experiences of school science curriculum content was the most important followed by being interested and motivated in the subject. There is evidence that interest and motivation in science depend on teacher practice and the perception of science as a difficult subject.
Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less
NASA Astrophysics Data System (ADS)
O'Neal, Melissa Jean
Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 < r < 85) stronger correlations (73 < r < 97) between life science/biology and other science domains. Results demonstrated the foundational nature of STEM knowledge at the fourth grade level, and established the importance of strong interconnections among life science/biology, mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be strengthened through new knowledge construction beyond the traditional boundaries of each subject. It is the knowledge transfer across subjects that breaks barriers of future STEM discoveries to improve STEM education outcomes.
The Light Microscopy Module Design and Performance Demonstrations
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.
2003-01-01
The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.
Academic Effort and Achievement in Science: Beyond a Gendered Relationship
NASA Astrophysics Data System (ADS)
Adamuti-Trache, Maria; Sweet, Robert
2013-12-01
This study employs the 2004 School Achievement Indicators Program (SAIP) data to examine whether academic effort manifested by greater investments in school and homework does result in higher literacy scores in science for Canadian students. The study compares four gender-immigrant profiles: Canadian-born males, immigrant males, Canadian-born females, and immigrant females on their scores on teacher-assigned grades in science and on the SAIP science literacy test, and across a range of dispositions, beliefs, and behaviors suggested in the literature as predictive of achievement in science. Study findings show that Canadian-born students, particularly boys, have higher performance in the science literacy test despite their lower achievement in the science classroom and the least investments of time in doing science homework. In contrast, immigrant female students demonstrate the highest academic effort and achievement in science courses which are not matched by similar results in the science literacy test. We discuss these results in relation to different socialization experiences with science and technology that limit female and immigrant students' abilities to transfer knowledge to new situations that have not been learned in the classroom.
Why are some STEM fields more gender balanced than others?
Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily
2017-01-01
Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Earth Radiation Measurement Science
NASA Technical Reports Server (NTRS)
Smith, G. Louis
2000-01-01
This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel
2014-04-07
Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development suchmore » that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.« less
GNSS CORS hardware and software enabling new science
NASA Astrophysics Data System (ADS)
Drummond, P.
2009-12-01
GNSS CORS networks are enabling new opportunities for science and public and private sector business. This paper will explore how the newest geodetic monitoring software and GNSS receiver hardware from Trimble Navigation Ltd are enabling new science. Technology trends and science opportunities will be explored. These trends include the installation of active GNSS control, automation of observations and processing, and the advantages of multi-observable and multi-constellation observations, all performed with the use of off the shelf products and industry standard open-source data formats. Also the possibilities with moving science from an after-the-fact postprocessed model to a real-time epoch-by-epoch solution will be explored. This presentation will also discuss the combination of existing GNSS CORS networks with project specific installations used for monitoring. Experience is showing GNSS is able to provide higher resolution data than previous methods, providing new tools for science, decision makers and financial planners.
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
1978-11-02
79.0 + 5.4 days in the control group . 11 Table 3: Histological Changes in the Tumors of Patients Following Preoperative SHF Thermal Radiotherapy...of the 7th day the hemody- namics were in practice completely restored in the control group of animals. There are 8 references and 1 table. Among...microwaves, has not been discussed. Procedure. Experiments were performed on Ul rabbits. Fifteen out of the Ul served as a control group , and 26
ERIC Educational Resources Information Center
Lorch, Robert F., Jr.; Lorch, Elizabeth P.; Freer, Benjamin Dunham; Dunlap, Emily E.; Hodell, Emily C.; Calderhead, William J.
2014-01-01
Students (n = 1,069) from 60 4th-grade classrooms were taught the control of variables strategy (CVS) for designing experiments. Half of the classrooms were in schools that performed well on a state-mandated test of science achievement, and half were in schools that performed relatively poorly. Three teaching interventions were compared: an…
Pettit performs a session of BASS Fire Safety Tests at the MSG
2012-03-30
ISS030-E-178648 (30 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a session of Burning and Suppression of Solids (BASS) fire safety tests at the Microgravity Sciences Glovebox (MSG) in the International Space Station?s Destiny laboratory. BASS uses Smoke Point in Coflow Experiment (SPICE) equipment but burns solid fuel samples instead of gaseous jets.
NASA Astrophysics Data System (ADS)
Ortega, Robbie Ray
Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were self-efficacious to learn science, and they were self-efficacious to learn science one year after the precollege experience. Youth reported they did not develop interpersonal and leadership skills during the precollege experience, yet they said the interpersonal and leadership skills were useful throughout the following year after the precollege experience. Participants were interested in science careers, and their career plans did not change after the precollege experience.
Goldstone, Robert L; Landy, David H; Son, Ji Y
2010-04-01
Although the field of perceptual learning has mostly been concerned with low- to middle-level changes to perceptual systems due to experience, we consider high-level perceptual changes that accompany learning in science and mathematics. In science, we explore the transfer of a scientific principle (competitive specialization) across superficially dissimilar pedagogical simulations. We argue that transfer occurs when students develop perceptual interpretations of an initial simulation and simply continue to use the same interpretational bias when interacting with a second simulation. In arithmetic and algebraic reasoning, we find that proficiency in mathematics involves executing spatially explicit transformations to notational elements. People learn to attend mathematical operations in the order in which they should be executed, and the extent to which students employ their perceptual attention in this manner is positively correlated with their mathematical experience. For both science and mathematics, relatively sophisticated performance is achieved not by ignoring perceptual features in favor of deep conceptual features, but rather by adapting perceptual processing so as to conform with and support formally sanctioned responses. These "rigged-up perceptual systems" offer a promising approach to educational reform. Copyright © 2009 Cognitive Science Society, Inc.
Self-directed learning: A heretical experiment in teaching physics
NASA Astrophysics Data System (ADS)
Silverman, M. P.
1995-06-01
An account is given of the instruction of university-level introductory physics courses according to an educational framework in which (1) curiosity-driven inquiry is recognized as an essential activity of both science and science teaching; (2) the principal role of the instructor is to provide students the incentive to learn science through their pursuit of personally meaningful questions; (3) the commission of errors is regarded as a natural concomitant to learning and is not penalized; (4) emphasis is placed on laboratory investigations that foster minimally restrictive free exploration rather than prescriptive adherence to formal procedure; (5) research skills are developed through out-of-class projects that involve literature search, experiment, and the modeling of real-world physical phenomena: (6) the precise and articulate use of language is regarded as seminal to communication in science (as it is in the humanities) and is promoted through activities that help develop written and oral language skills; (7) the evaluation of student performance is based on a portfolio of accomplished work rather than on the outcome of formal testing.
1981-01-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew did research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new mini-labs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. The instruments requiring direct exposure to space were mounted outside in the open payload bay of the Shuttle. Spacelab represented the merger of science and marned spaceflight. It opened remarkable opportunities to push the frontiers of knowledge beyond the limits of research on Earth. Scientists in space performed experiments in close collaboration with their colleagues on the ground. On the Spacelab-3 mission, managed by the Marshall Space Flight Center, this versatile laboratory entered routine operation service for the next two decades. Spacelab-3 (STS-51B mission) was launched aboard Space Shuttle Orbiter Challenger on April 29, 1985.
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
NASA Astrophysics Data System (ADS)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
Inclusion, Disabilities, and Informal Science Learning. A CAISE Inquiry Group Report
ERIC Educational Resources Information Center
Reich, Christine; Price, Jeremy; Rubin, Ellen; Steiner, Mary Ann
2010-01-01
Informal science education (ISE) experiences can provide powerful opportunities for people with disabilities to experience and learn about science. When designed to be inclusive, such experiences can lead people with disabilities to feel competent and empowered as science learners, generate excitement and enthusiasm for science, and be equitable…
1992-06-25
Space Shuttle Columbia (STS-50) onboard photo of astronauts working in United States Microgravity Laboratory (USML-1). USML-1 will fly in orbit for extended periods of time attached to the Shuttle, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The scientific data gained from the USML-1 missions will constitute a landmark in space science, pioneering investigations into the role of gravity in a wide array of important processes and phenomena. In addition, the missions will also provide much of the experience in performing research in space and in the design of instruments needed for Space Station Freedom and the programs to follow in the 21st Century.
Video-Growing Salt Crystals Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.
Science investigation: the views of 14 to 16 year old pupils
NASA Astrophysics Data System (ADS)
Toplis, Rob; Cleaves, Anna
2006-05-01
This paper reports research about upper secondary school pupils' views about science investigations in school. Although researchers, teachers and examiners have expressed opinions about investigative work in science, there have been relatively few studies of pupils' experiences. The present study identified pupils' concerns about the limited time available, timing of the investigations, lack of familiarity with apparatus and the association of investigation almost exclusively with assessment, all factors which contributed to stress. One exceptional school apart, pupils perceived the teacher's role as a didactic supporter of strategies to maximise performance for assessment. We discuss these views and examine the potential for putting policy into practice.
NASA Astrophysics Data System (ADS)
Mokshein, Siti Eshah
The importance of science and technology in the global economy has led to growing emphasis on math and science achievement all over the world. In this study, I seek to identify variables at the student-level and school-level that account for the variation in science achievement of the eighth graders in Malaysia. Using the Third International Math and Science Study (TIMSS) 1999 for Malaysia, a series of HLM analysis was performed. Results indicate that (1) variation in overall science achievement is greater between schools than within schools; (2) both the selected student-level and school-level factors are Important in explaining the variation in the eight graders' achievement In science; (3) the selected student-level variables explain about 13% of the variation in students' achievement within schools, but as an aggregate, they account for a much larger proportion of the between-school variance; (4) the selected school-level variables account for about 55% of the variation between schools; (5) within schools, the effects of self-concept In science, awareness of the social implications of science, gender, and home educational resources are significantly related to achievement; (6) the effects of self-concept in science and awareness of social implications of science are significant even after controlling for the effects of SES; (7) between schools, the effects of the mean of home educational resources, mean of parents' education, mean of awareness of the social implications of science, and emphasis on conducting experiments are significantly related to achievement; (8) the effects of SES variables explain about 50% of the variation in the school means achievement; and (9) the effects of emphasis on conducting experiments on achievement are significant even after controlling for the effects of SES. Since it is hard to change the society, it is recommended that efforts to Improve science achievement be focused more at the school-level, concentrating on variables that can be changed. This includes Increasing students' awareness of the social Implications of science and improving students' self-concepts In science, strengthening evaluation systems, and finding ways to compensate for the lack of home educational resources among disadvantaged students. The study further suggests that emphasis be given to proper implementation of science experiments. Besides, the prominent effects of SES variables on the school mean achievement is something worthwhile to be further researched.
Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grin, A.; Lstiburek, J.
2012-09-01
This report describes the work conducted by the Building Science Corporation (BSC) Building America Research Team's 'Energy Efficient Housing Research Partnerships' project. Based on past experience in the Building America program, they have found that combinations of materials and approaches---in other words, systems--usually provide optimum performance. No single manufacturer typically provides all of the components for an assembly, nor has the specific understanding of all the individual components necessary for optimum performance.
A Laboratory Course in Technological Chemistry.
ERIC Educational Resources Information Center
Wiseman, P.
1986-01-01
Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…
Hot Salsa: A Laboratory Exercise Exploring the Scientific Method.
ERIC Educational Resources Information Center
Levri, Edward P.; Levri, Maureen A.
2003-01-01
Presents a laboratory exercise on spicy food and body temperature that introduces the scientific method to introductory biology students. Suggests that when students perform their own experiments which they have developed, it helps with their understanding of and confidence in doing science. (Author/SOE)
42 CFR 493.1411 - Standard; Technical consultant qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Hold an earned doctoral or master's degree in a chemical, physical, biological or clinical laboratory... degree in a chemical, physical or biological science or medical technology from an accredited institution... biology and additionally has documentation of 2 years of work experience performing tests of moderate...
42 CFR 493.1411 - Standard; Technical consultant qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Hold an earned doctoral or master's degree in a chemical, physical, biological or clinical laboratory... degree in a chemical, physical or biological science or medical technology from an accredited institution... biology and additionally has documentation of 2 years of work experience performing tests of moderate...
42 CFR 493.1411 - Standard; Technical consultant qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Hold an earned doctoral or master's degree in a chemical, physical, biological or clinical laboratory... degree in a chemical, physical or biological science or medical technology from an accredited institution... biology and additionally has documentation of 2 years of work experience performing tests of moderate...
42 CFR 493.1411 - Standard; Technical consultant qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Hold an earned doctoral or master's degree in a chemical, physical, biological or clinical laboratory... degree in a chemical, physical or biological science or medical technology from an accredited institution... biology and additionally has documentation of 2 years of work experience performing tests of moderate...
Radio science ground data system for the Voyager-Neptune encounter, part 1
NASA Technical Reports Server (NTRS)
Kursinski, E. R.; Asmar, S. W.
1991-01-01
The Voyager radio science experiments at Neptune required the creation of a ground data system array that includes a Deep Space Network complex, the Parkes Radio Observatory, and the Usuda deep space tracking station. The performance requirements were based on experience with the previous Voyager encounters, as well as the scientific goals at Neptune. The requirements were stricter than those of the Uranus encounter because of the need to avoid the phase-stability problems experienced during that encounter and because the spacecraft flyby was faster and closer to the planet than previous encounters. The primary requirement on the instrument was to recover the phase and amplitude of the S- and X-band (2.3 and 8.4 GHz) signals under the dynamic conditions encountered during the occultations. The primary receiver type for the measurements was open loop with high phase-noise and frequency stability performance. The receiver filter bandwidth was predetermined based on the spacecraft's trajectory and frequency uncertainties.
Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility
NASA Technical Reports Server (NTRS)
Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.
1992-01-01
In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.
ERIC Educational Resources Information Center
Hirça, Necati
2015-01-01
Although science experiments are the basis of teaching science process skills (SPS), it has been observed that a large number of prospective primary teachers (PPTs), by virtue of their background, feel anxious about doing science experiments. To overcome this problem, a proposal was suggested for primary school teachers (PSTs) to teach science and…
ERIC Educational Resources Information Center
McAdaragh, Mary Kathleen
This study examined the effects of an advance organizer and background experience in science on the attainment of science concepts. Ninth-grade earth science students (N=90) were given the Dubbins Earth Science Test (DEST) and a Science Background Experience Inventory (SBEI) developed by the author. They were then placed into high, medium, and low…
Barminova, H Y; Saratovskyh, M S
2016-02-01
The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10(10) ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.
An Evaluation of the ROSE System
NASA Technical Reports Server (NTRS)
Usher, John M.
2002-01-01
A request-oriented scheduling engine, better known as ROSE, is under development within the Flight Projects Directorate for the purpose of planning and scheduling of the activities and resources associated with the science experiments to be performed aboard the International Space Station (ISS). ROSE is being designed to incrementally process requests from payload developers (PDs) to model and schedule the execution of their science experiments on the ISS. The novelty of the approach comes from its web-based interface permitting the PDs to define their request via the construction of a graphical model to represent their requirements. Based on an examination of the current ROSE implementation, this paper proposes several recommendations for changes to the modeling component and makes mention of other potential applications of the ROSE system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@bk.ru; Saratovskyh, M. S.
2016-02-15
The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10{sup 10} ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turnmore » in magnetic field are presented for different initial conditions.« less
The Fundamental Neutron Physics Facilities at NIST.
Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K
2005-01-01
The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.
The Fundamental Neutron Physics Facilities at NIST
Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.
2005-01-01
The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110
Exploring Aesthetic Experiences in the Undergraduate General Education Science Classroom
NASA Astrophysics Data System (ADS)
Biscotte, Stephen Michael
Citizens must have a minimal level of STEM-literacy to work alongside scientists to tackle both current and future global challenges. How can general education, the one piece of the undergraduate experience every student completes, contribute to this development? And science learning is dependent on having transformative aesthetic experiences in the science classroom. These memorable experiences involve powerful connection between students and the world around them. If these types of experiences are necessary for science learning and growth, are students in introductory science courses having them? If so, what relationship might they have with students' desires to pursue further science study? This dissertation explores these questions through two manuscripts. The first, a theoretical piece published in the Journal of General Education in 2015, argues that non-STEM students must have transformative aesthetic experiences in their undergraduate general education science course to develop the level of understanding needed to engage with challenging scientific issues in the future. This claim is substantiated by bringing together the work of Dewey and Deweyan scholars on the nature and impact of aesthetic experiences in science and science education with the general education reform efforts and desired outcomes for an informed and engaged citizenry. The second manuscript, an empirical piece, explores the lived experience of non-STEM students in an introductory geosciences course. A phenomenological research methodology is deployed to capture the 'essence' of the lived experience of a STEM-philic student in general education science. In addition, Uhrmacher's CRISPA framework is used to analyze the participants' most memorable course moments for the presence or absence of aesthetic experiences. In explication of the data, it shows that students are in fact having aesthetic experiences (or connecting to prior aesthetic experiences) and these experiences are related to their desires to pursue further STEM study.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Improving calorimeter resolution using temperature compensation calculations
NASA Astrophysics Data System (ADS)
Smiga, Joseph; Purschke, Martin
2017-01-01
The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Pico Reentry Probes: Affordable Options for Reentry Measurements and Testing
NASA Technical Reports Server (NTRS)
Ailor, William H.; Kapoor, Vinod B.; Allen, Gay A., Jr.; Venkatapathy, Ethiraj; Arnold, James O.; Rasky, Daniel J.
2005-01-01
It is generally very costly to perform in-space and atmospheric entry experiments. This paper presents a new platform - the Pico Reentry Probe (PREP) - that we believe will make targeted flight-tests and planetary atmospheric probe science missions considerably more affordable. Small, lightweight, self-contained, it is designed as a "launch and forget" system, suitable for experiments that require no ongoing communication with the ground. It contains a data recorder, battery, transmitter, and user-customized instrumentation. Data recorded during reentry or space operations is returned at end-of-mission via transmission to Iridium satellites (in the case of earth-based operations) or a similar orbiting communication system for planetary missions. This paper discusses possible applications of this concept for Earth and Martian atmospheric entry science. Two well-known heritage aerodynamic shapes are considered as candidates for PREP: the shape developed for the Planetary Atmospheric Experiment Test (PAET) and that for the Deep Space II Mars Probe.
Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat
NASA Astrophysics Data System (ADS)
Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto
2013-03-01
Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
Kaushik, Karishma S.; Kessel, Ashley; Ratnayeke, Nalin; Gordon, Vernita D.
2015-01-01
We have developed a hands-on experimental module that combines biology experiments with a physics-based analytical model in order to characterize antimicrobial compounds. To understand antibiotic resistance, participants perform a disc diffusion assay to test the antimicrobial activity of different compounds and then apply a diffusion-based analytical model to gain insights into the behavior of the active antimicrobial component. In our experience, this module was robust, reproducible, and cost-effective, suggesting that it could be implemented in diverse settings such as undergraduate research, STEM (science, technology, engineering, and math) camps, school programs, and laboratory training workshops. By providing valuable interdisciplinary research experience in science outreach and education initiatives, this module addresses the paucity of structured training or education programs that integrate diverse scientific fields. Its low-cost requirements make it especially suitable for use in resource-limited settings. PMID:25602254
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group places the APEX-04 science kits into the Double Cold Bag (DCB), which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent. The cold bricks in the lower right of the photo are placed in the DCB prior to closure. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Preparation for microgravity: The role of the microgravity materials science laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.
Reconstructing Iconic Experiments in Electrochemistry: Experiences from a History of Science Course
NASA Astrophysics Data System (ADS)
Eggen, Per-Odd; Kvittingen, Lise; Lykknes, Annette; Wittje, Roland
2012-01-01
The decomposition of water by electricity, and the voltaic pile as a means of generating electricity, have both held an iconic status in the history of science as well as in the history of science teaching. These experiments featured in chemistry and physics textbooks, as well as in classroom teaching, throughout the nineteenth and twentieth centuries. This paper deals with our experiences in restaging the decomposition of water as part of a history of science course at the Norwegian University of Science and Technology, Trondheim, Norway. For the experiment we used an apparatus from our historical teaching collection and built a replica of a voltaic pile. We also traced the uses and meanings of decomposition of water within science and science teaching in schools and higher education in local institutions. Building the pile, and carrying out the experiments, held a few surprises that we did not anticipate through our study of written sources. The exercise gave us valuable insight into the nature of the devices and the experiment, and our students appreciated an experience of a different kind in a history of science course.
STS-30 onboard closeup of the fluids experiment apparatus (FEA) equipment
1989-05-08
STS030-01-015 (4-8 May 1989) --- A 35mm close-up view of the Fluids Experiment Apparatus (FEA) aboard Atlantis for NASA’s STS-30 mission. Rockwell International is engaged in a joint endeavor agreement with NASA’s Office of Commercial Programs in the field of floating zone crystal growth and purification research. The March 1987 agreement provides for microgravity experiments to be performed in the company’s Microgravity Laboratory, the FEA. Crewmembers, especially Mary L. Cleave, devoted a great deal of onboard time to the monitoring of various materials science experiments using the apparatus.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
A physical sciences network characterization of non-tumorigenic and metastatic cells.
Agus, David B; Alexander, Jenolyn F; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E; Austin, Robert H; Backman, Vadim; Bethel, Kelly J; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C; Curley, Steven A; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C W; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A; Geng, Yue; Gerecht, Sharon; Gillies, Robert J; Godin, Biana; Grady, William M; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L; Hielscher, Abigail; Hillis, W Daniel; Holland, Eric C; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H; Joo, Ahyoung; Katz, Jonathan E; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N; Lambert, Guillaume; Liao, David; Licht, Jonathan D; Liphardt, Jan T; Liu, Liyu; Lloyd, Mark C; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J T; Meldrum, Deirdre R; Michor, Franziska; Mumenthaler, Shannon M; Nandakumar, Vivek; O'Halloran, Thomas V; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J; Philips, Kevin G; Poultney, Christopher S; Rana, Kuldeepsinh; Reinhart-King, Cynthia A; Ros, Robert; Semenza, Gregg L; Senechal, Patti; Shuler, Michael L; Srinivasan, Srimeenakshi; Staunton, Jack R; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D; Tormoen, Garth W; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S; Wan, Jenny C; Weaver, Valerie M; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-01-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science
NASA Technical Reports Server (NTRS)
Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert
2013-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.
A physical sciences network characterization of non-tumorigenic and metastatic cells
NASA Astrophysics Data System (ADS)
Physical Sciences-Oncology Centers Network; Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O'Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-04-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
Motion of Air Bubbles in Water Subjected to Microgravity Accelerations
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.
2006-01-01
The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.
NASA Astrophysics Data System (ADS)
Eddy, Sarah L.; Brownell, Sara E.
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college STEM on measures that have been correlated with retention. These include disparities in academic performance, engagement, self-efficacy, belonging, and identity. We argue that observable factors such as persistence, performance, and engagement can inform researchers about what populations are disadvantaged in a STEM classroom or program, but we need to measure underlying mechanisms to understand how these inequalities arise. We present a framework that helps connect larger sociocultural factors, including stereotypes and gendered socialization, to student affect and observable behaviors in STEM contexts. We highlight four mechanisms that demonstrate how sociocultural factors could impact women in STEM classrooms and majors. We end with a set of recommendations for how we can more holistically evaluate the experiences of women in STEM to help mitigate the underlying inequities instead of applying a quick fix.
The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance
NASA Astrophysics Data System (ADS)
Guzik, T. Gregory; Calet Collaboration
2016-03-01
The CALET space experiment, has been developed by collaborators in Japan, Italy and the United States, will study electrons to 20 TeV, gamma rays above 10 GeV and nuclei with Z =1 to 40 up to 1,000 TeV during a five-year mission on the International Space Station. The instrument consists of a particle charge identification module, a thin imaging calorimeter (3 r.l. in total) with tungsten plates interleaving scintillating fiber planes, and a thick calorimeter (27 r.l.) composed of lead tungstate logs. CALET has the depth, imaging capabilities and energy resolution for excellent separation between hadrons, electrons and gamma rays. The instrument was launched into orbit on August 19, 2015 and on August 25, 2015 was mounted as an attached payload on the International Space Station (ISS) Japanese Experiment Module - Exposed Facility (JEM-EF). The experiment has successfully completed on-orbit checkout and has now been transitioned to normal science operations. This presentation summarizes the instrument design, science goals and early on-orbit performance. This effort is supported by NASA in the United States, by JAXA in Japan, and ASI in Italy.
Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*
NASA Astrophysics Data System (ADS)
Belak, J.; Ilavsky, J.; Hessler, J. P.
2005-07-01
Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten
2017-04-01
Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.
Microgravity Materials and Biotechnology Experiments
NASA Technical Reports Server (NTRS)
Vlasse, Marcus
1998-01-01
Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.
Development of an Environmental Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.
1999-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
An Environment Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, M. Ralph; Clifton, Kenneth S.
1998-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice
Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.
ERIC Educational Resources Information Center
Center for Advancement of Informal Science Education, 2010
2010-01-01
Informal science education (ISE) experiences can provide powerful opportunities for people with disabilities to experience and learn about science. When designed to be inclusive, such experiences can lead people with disabilities to feel competent and empowered as science learners, generate excitement and enthusiasm for science, and be equitable…
NASA Advanced Refrigerator/Freezer Technology Development Project Overview
NASA Technical Reports Server (NTRS)
Cairelli, J. E.
1995-01-01
NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.
NASA Astrophysics Data System (ADS)
Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy
2017-12-01
In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07133 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition 6 is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07134 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Membrane Transport Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry W.
1997-01-01
The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.
STEM Education is Missing This.......
NASA Astrophysics Data System (ADS)
Orr, Laura; Johnson, Milton; Miller, Alexandra; Rebull, Luisa M.
2017-01-01
STEM education gets a lot of attention in schools, media, politics, and funding. But while the acronym grows from STEM to STEAM to STREAM, we still see a lack of student participation in real science, using big data and building partnerships with professionals in the field, and real student growth in science achievement. After the NITARP experience, we believe that NITARP is a rich, demanding, and authentic experience for dedicated teachers and students that provides a caliber of learning that is hard, if not impossible, to achieve in the traditional classroom. This poster looks at what STEM still needs to be and become for it to be the driving force behind greater student involvement, interest, and increased academic performance in the sciences. We focus on our own experiences and that of our students; our different teaching backgrounds and school environments; and the effects we see on our students using traditional and new STEM education and participation in the NITARP program. We come from backgrounds and situations that range from urban to rural, middle to high school, wide socioeconomic variety, gender differences, as well as different exposures to STEM opportunities. We propose that traditional and current standards for STEM education are falling short of what is needed for students to truly experience, understand, and gain the skills to accurately apply and advance in science. Incoming and current science teachers at all levels are not provided with quality, realistic, or applicable preparation. NITARP is truly a STEM experience because it actually integrates the 4 fields and provides opportunities for students to experience the overlap of the 4 fields in an authentic way. The deep, long term exposure to authentic research and technology as well as opportunity to talk with working scientists in a variety of fields have a huge impact on the students and teachers alike. Exposure to programs and experiences like NITARP are needed to help drive and support STEM education to meet its goals and intentions. Support provided for this work by the NASA/IPAC Teacher Archive Research Program (NITARP), which receives funding from the NASA ADP program.
A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^
NASA Astrophysics Data System (ADS)
Wellner, Karen Linette
1995-01-01
This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study: (1) The teaching of spatially dependent content to students without prerequisite spatial structures results in understanding no further beyond that which can be memorized; (2) assessment for projective spatial structures should precede science lessons dealing with time-space relationships, and (3) a student's level of spatial ability may directly impact upon interpretation of three-dimensional models.
Fermilab | Science at Fermilab | Experiments & Projects | Intensity
Theory Computing High-performance Computing Grid Computing Networking Mass Storage Plan for the Future List Historic Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator
AFRL’s Demonstration and Science Experiments (DSX) Mission
2009-09-01
Air Force Research Laboratory , Kirtland AFB, Albuquerque, NM...Technology, Lincoln Laboratory , Boston, MA ABSTRACT The Air Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) has developed the...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate, Kirtland AFB,NM,87117 8.
Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.
2004-01-01
The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.
NASA Astrophysics Data System (ADS)
Hemler, Debra A.
1997-11-01
The purpose of this study was to examine the effectiveness of the preservice teacher component of the Research Experiences in Teacher Preparation (RETP) project aimed at enhancing teacher perceptions of the nature of science, science research, and science teaching. Data was collected for three preservice teacher groups during the three phases of the program: (I) a one week institute held at the National Radio Astronomy Observatory in Green Bank, West Virginia where teachers performed astronomy research using a 40 foot diameter radio telescope; (II) a secondary science methods course; and (III) student teaching placements. Four Likert-type instruments were developed and administered pre and post-institute to assess changes in perceptions of science, attitudes toward research, concerns about implementing research in the classroom, and evaluation of the institute. Instruments were re-administered following the methods course and student teaching. Observations of classroom students conducting research were completed for seven preservice teacher participants in their student teaching placements. Analysis, using t-tests, showed a significant increase in preservice teachers perceptions of their ability to do research. Preservice teachers were not concerned about implementing research in their placements. No significant change was measured in their understanding of the nature of science and science teaching. Concept maps demonstrated a significant increase in radio astronomy content knowledge. Participants responded that the value of institute components, quality of the research elements, and preparation for implementing research in the classroom were "good" to "excellent". Following the methods course (Phase II) no significant change in their understanding of the nature of science or concerns about implementing projects in the classroom were measured. Of the 7 preservice teachers who were observed implementing research projects, 5 projects were consistent with the Green Bank model. Student teachers who had initiated research in their classrooms had fewer concerns about doing them than those that had not. No significant change was measured in their perceptions of science and science teaching. The RETP project serves as a viable constructivist model for exposing preservice teachers to science research and transferring that experience to the classroom.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
The Information Science Experiment System - The computer for science experiments in space
NASA Technical Reports Server (NTRS)
Foudriat, Edwin C.; Husson, Charles
1989-01-01
The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.