Sample records for perform scientific experiments

  1. Skylab experiments. Volume 2: Remote sensing of earth resources

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This volume covers the broad area of earth resources in which Skylab experiments will be performed. A brief description of the Skylab program, its objectives, and vehicles is included. Section 1 introduces the concept and historical significance of remote sensing, and discusses the major scientific considerations involved in remotely sensing the earth's resources. Sections 2 through 6 provide a description of the individual earth resource sensors and experiments to be performed. Each description includes a discussion of the experiment background and scientific objectives, the equipment involved, and a discussion of significant experiment performance areas.

  2. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  3. Apollo-Soyuz test project. Volume 1: Astronomy, earth atmosphere and gravity field, life sciences, and materials processing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The joint U.S.-USSR experiments and the U.S. conducted unilateral experiments performed during the Apollo Soyuz Test Project are described. Scientific concepts and experiment design and operation are discussed along with scientific results of postflight analysis.

  4. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  5. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  6. Classroom Critters and the Scientific Method.

    ERIC Educational Resources Information Center

    Kneidel, Sally

    This resource book presents 37 behavioral experiments that can be performed with commonly-found classroom animals including hamsters, gerbils, mice, goldfish, guppies, anolis lizards, kittens, and puppies. Each experiment explores the five steps of the scientific method: (1) Question; (2) Hypothesis; (3) Methods; (4) Result; and (5) Conclusion.…

  7. [The venture financing of scientifically-innovative projects: teaching experience in medical high school].

    PubMed

    Grachev, S V; Gorodnova, E A

    2008-01-01

    The authors presented an original material, devoted to first experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school. The results and conclusions were based on data of the questionnaire performed by the authors. More than 90% of young scientist physicians recognized actuality of this problem for realization of their research work results into practice. Thus, experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school proves reasonability of further development and inclusion the module "The venture financing of scientifically-innovative projects in biomedicine" in the training plan.

  8. Choosing experiments to accelerate collective discovery

    DOE PAGES

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; ...

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less

  9. ATS-6 engineering performance report. Volume 6: Scientific experiments

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Evaluations include a very high resolution radiometer, a radio beacon experiment, environmental measurement experiments (EME), EME support hardware, EME anomalies and failures, EME results, and US/USSR magnetometer experiments.

  10. NASA/ESA CT-990 Spacelab simulation. Appendix A: The experiment operator

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1976-01-01

    A joint NASA/ESA endeavor was established to conduct an extensive spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. This appendix discusses the experiment operators and their relationship to the joint mission under the following general headings: selection criteria, training programs, and performance. The performance of the proxy operators was assessed in terms of adequacy of training, amount of scientific data obtained, quality of data obtained, and reactions to problems that arose in experiment operation.

  11. [Animal experimentation, animal welfare and scientific research].

    PubMed

    Tal, H

    2013-10-01

    Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.

  12. It Takes a Village: Documenting the Contributions of Non-Scientific Staff to Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Valerie

    Documenting the Contributions of Non-Scientific Staff to Scientific Research Science, especially large-scale basic research, is a collaborative endeavor, often drawing on the skills of people from a wide variety of disciplines. These people include not just scientists, but also administrators, engineers, and many others. Fermilab, a Department of Energy National Laboratory and the United States’ premier particle physics laboratory, exemplifies this kind of research; many of its high-energy physics experiments involve hundreds of collaborators from all over the world. The Fermilab Archives seeks to document the history of the lab and the unique scientific research its staff and visitors perform.more » Adequately documenting the lab’s work often requires us to go far beyond things like the writings and correspondence of scientists to also capture the administrative and social histories of the experiments and the context in which they were performed. At Fermilab, we have sought to capture these elements of the lab’s activities through an oral history program that focuses on support staff as well as physicists and collection development choices that recognize the importance of records documenting the cultural life of the lab. These materials are not merely supplementary, but rather essential documentation of the many types of labor that go into the planning and execution of an experiment or the construction of an accelerator and the context in which this work is performed. Any picture of these experiments and accelerators that did not include this type of information would be incomplete. While the importance and richness of this material is especially pronounced at Fermilab due to the massive size of its experiments and accelerator facilities and its vibrant cultural life, the fruitfulness of these collecting efforts at Fermilab suggests that other archives documenting modern STEM research should also make sure the contributions of non-technical and non-scientific staff are preserved and that researchers interested in this subject should not neglect such sources.« less

  13. OPASS: An Online Portfolio Assessment and Diagnosis Scheme to Support Web-Based Scientific Inquiry Experiments

    ERIC Educational Resources Information Center

    Su, Jun-Ming; Lin, Huan-Yu; Tseng, Shian-Shyong; Lu, Chia-Jung

    2011-01-01

    Promoting the development of students' scientific inquiry capabilities is a major learning objective in science education. As a result, teachers require effective assessment approaches to evaluate students' scientific inquiry-related performance. Teachers must also be able to offer appropriate supplementary instructions, as needed, to students.…

  14. NASA/ESACV-990 spacelab simulation. Appendix B: Experiment development and performance

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1976-01-01

    Eight experiments flown on the CV-990 airborne laboratory during the NASA/ESA joint Spacelab simulation mission are described in terms of their physical arrangement in the aircraft, their scientific objectives, developmental considerations dictated by mission requirements, checkout, integration into the aircraft, and the inflight operation and performance of the experiments.

  15. The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments

    NASA Technical Reports Server (NTRS)

    Torrez, Jonathan

    2009-01-01

    The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.

  16. Animal and non-animal experiments in nanotechnology - the results of a critical literature survey.

    PubMed

    Sauer, Ursula G

    2009-01-01

    A literature survey funded by the Foundation Animalfree Research was performed to obtain an overview on animal experiments in nanotechnology. Scientific articles from Germany, France, the United Kingdom, Italy, the Netherlands and Switzerland published between 2004 and 2007 were collected. A total of 164 articles was retrieved covering in vivo nanotechnological research. The majority of animal experiments were conducted in "nanomedicine", i.e. nanotechnology in the health care area, to study targeted drug, vaccine or gene delivery. Further areas of research relate to nanotechnology-based imaging technologies, the toxicity of nanomaterials, tissue engineering for regenerative treatments, and magnetic tumour thermotherapy. Many experiments were classified as moderately and even severely distressful to the animals. Due to the significance of the scientific topics pursued, the possible scientific benefit of the research depicted in the articles is also assigned to be moderate to high. Nevertheless, it has to be asked whether such animal experiments are truly the only means to answer the scientific questions addressed in nanotechnology. An overview on non-animal test methods used in nanotechnological research revealed a broad spectrum of methodologies applied in a broad spectrum of scientific areas, including those for which animal experiments are being performed. Explicit incentives to avoid animal experiments in nanotechnology currently can only be found in the area of nanotoxicology, but not in the area of nanomedicine. From the point of view of animal welfare, not least because of the new technologies that arise due to nanotechnology, it is time for a paradigm change both in fundamental and applied biomedical research to found research strategies on non-animal test methods.

  17. Results from Alouette 1, Explorer 20, Alouette 2, and Explorer 31

    NASA Technical Reports Server (NTRS)

    Jackson, John E.

    1988-01-01

    This is a continuation of the Alouette-Isis Program Summary of 1986. Not only included is a description of the objectives, spacecraft, experiments, and flight performance, but also a complete experiment related bibliography along with a comprehensive assessment of the technological and scientific accomplishments. The scientific results are presented from the first four of the six spacecraft of the Alouette-Isis program.

  18. Undergraduate medical academic performance is improved by scientific training.

    PubMed

    Zhang, Lili; Zhang, Wei; Wu, Chong; Liu, Zhongming; Cai, Yunfei; Cao, Xingguo; He, Yushan; Liu, Guoxiang; Miao, Hongming

    2017-09-01

    The effect of scientific training on course learning in undergraduates is still controversial. In this study, we investigated the academic performance of undergraduate students with and without scientific training. The results show that scientific training improves students' test scores in general medical courses, such as biochemistry and molecular biology, cell biology, physiology, and even English. We classified scientific training into four levels. We found that literature reading could significantly improve students' test scores in general courses. Students who received scientific training carried out experiments more effectively and published articles performed better than their untrained counterparts in biochemistry and molecular biology examinations. The questionnaire survey demonstrated that the trained students were more confident of their course learning, and displayed more interest, motivation and capability in course learning. In summary, undergraduate academic performance is improved by scientific training. Our findings shed light on the novel strategies in the management of undergraduate education in the medical school. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):379-384, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    NASA Astrophysics Data System (ADS)

    Wang, Jeremy Yi-Ming

    This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.

  20. How to Teach High-School Students "How Science Really Works?"

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena

    2016-04-01

    One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting terrestrial glaciers and Martian North Polar Residual Cap. 3) Students were responsible for physically preparing scientific equipment (within a given budget). 4) Students prepared detailed procedures which were used during the experiment. The experiment was performed by the Austrian Space Forum analog astronauts during the Mars Analog Mission AMADEE-15 between 2nd and 14th of August 2015 at the Kaunertal Glacier in Austria. 5) During and after the mission students analyzed data collected during the experiment. 6) Students presented their findings during the regional science fair (Dolnoslaski Festiwal Nauki). Despite the fact the quality of the data produced during the experiment was not satisfactory, the project was a success in terms of explaining students "How Science Really Works" (e.g., how much depends on the properly designed and executed procedures).

  1. Astronaut operations requirements document for the White Light Coronagraph experiment s-052 for the Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Ross, C. L.

    1973-01-01

    Information necessary for successful performance of the observer's function in the White Light Coronagraph portion of the Apollo Telescope Mount experiments is presented. The pre-flight, in-flight, and post-flight operations required to perform the S-052 experiment are described. A discussion of the scientific objectives of the experiment and a description of the hardware are provided.

  2. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less

  3. Why scientists perform animal experiments, scientific or personal aim?

    PubMed

    Mayir, Burhan; Doğan, Uğur; Bilecik, Tuna; Yardımcı, Erdem Can; Çakır, Tuğrul; Aslaner, Arif; Mayir, Yeliz Akpınar; Oruç, Mehmet Tahir

    2016-01-01

    Although all animal studies are conducted in line with a specific purpose, we think that not all animal studies are performed for a scientific purpose but for personal curiosity or to fulfill a requirement. The aim of the present study is to reveal the purposes of experimental studies conducted on animals. We searched for experimental studies performed on rats in general surgery clinics via PubMed, and obtained the e-mail addresses of the corresponding authors for each study. Afterwards, we sent a 7-item questionnaire to the authors and awaited their responses. Seventy-three (22.2%) of 329 authors responded to the questionnaire. Within these studies, 31 (42.5%) were conducted as part of a dissertation, while the remaining 19 (26.0%) were conducted to meet the academic promotion criteria. Only 23 (31.5%) were conducted for scientific purposes. The cost of 41% of those studies was higher than 2500 $. As shown in this study, the main objective of carrying out animal studies in Turkey is usually to prepare a dissertation or to be entitled to academic promotion. Animal experiments must be planned and performed as scientific studies to support related clinical studies. Additionally, animal studies must have well-defined objectives and be carried out in line with scientific purposes that may lead to useful developments in medicine, rather than personal interests.

  4. The Scientific Method Ain't What It Used to Be

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2010-01-01

    Remember the time when all you had to do was memorize these five steps: ask a question, formulate a hypothesis, perform experiment, collect data, and draw conclusions? And you received full credit for defining the scientific method. Well, those days are gone. This article discusses why the "scientific method ain't what it used to be." (Contains 2…

  5. Microgravity Active Vibration Isolation System on Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.

  6. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  7. Hot Salsa: A Laboratory Exercise Exploring the Scientific Method.

    ERIC Educational Resources Information Center

    Levri, Edward P.; Levri, Maureen A.

    2003-01-01

    Presents a laboratory exercise on spicy food and body temperature that introduces the scientific method to introductory biology students. Suggests that when students perform their own experiments which they have developed, it helps with their understanding of and confidence in doing science. (Author/SOE)

  8. Piltdown Man: Combining the Instruction of Scientific Ethics and Qualitative Analysis

    NASA Astrophysics Data System (ADS)

    Vincent, John B.

    1999-11-01

    In combination with lectures on scientific method and the problems of scientific misconduct in a freshman chemistry course at The University of Alabama, a laboratory experiment was developed to allow students to feel some of the sense of scientific discovery associated with the exposure of the Piltdown Man fraud. This is accomplished by modifying a commonly performed freshman chemistry laboratory experiment, qualitative analysis of group III metal ions. Pieces of chalk are treated with chromium, manganese, and iron to simulate the treatment used to forge the Piltdown "fossils"; students can use techniques in qualitative analysis schemes for the group III ions to determine whether the samples are "forgeries" and if so which metal ion(s) were used.

  9. Apollo 14: Science at Fra Mauro.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The many scientific activities and experiments performed during the Apollo 14 Mission are presented in a descriptive, non-technical format. Content relates to experiments on the lunar surface and to those performed while traveling in space, and provides a great deal of information about the flight. Many photographs from the journey, a map of the…

  10. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab-1 module and Spacelab access turnel being installed in the cargo bay of orbiter Columbia for the STS-9 mission. The oribiting laboratory, built by the European Space Agency, is capable of supporting many types of scientific research that can best be performed in space. The Spacelab access tunnel, the only major piece of Spacelab hardware made in the U.S., connects the module with the mid-deck level of the orbiter cabin. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were: astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1, was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  11. The Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Primm, Lowell (Technical Monitor)

    2001-01-01

    The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.

  12. Accountability in Education -- the Michigan Experience

    ERIC Educational Resources Information Center

    Murphy, Jerome T.; Cohen, David K.

    1974-01-01

    One view of accountability focuses on schemes that assume that if government can get more rational information and use it in more scientific ways, the schools' performance can be improved; the other assumes that the schools' problems are less scientific than political and that clients and constituents should influence educational decisions more…

  13. Mariner-Venus 1967

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

  14. I performed experiments and I have results. Wow, and now?

    PubMed Central

    Padulo, Johnny; De Giorgio, Andrea; Oliva, Francesco; Frizziero, Antonio; Maffulli, Nicola

    2017-01-01

    Summary Writing a scientific article is not an easy task, but it is definitely a great satisfaction to be able to conclude and publish it. Indeed, each publication is a service we make to the entire scientific community and to the advancement of science even before our personal career. There is and there will not be a final book/article for writing a scientific paper. Therefore, some knowledge is a decisive factor to increase the chances of our work being accepted by a specialized scientific journal. The purpose of this editorial is to trace an ideal path, based on our personal experience, useful to properly structure a scientific article, from bibliographic research to cover letter. Articles should not be written in a polished way to gratify one’s own ego, but they must be written for anyone who can read and understand them. Level of evidence V. PMID:29387632

  15. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  16. Skylab Experiments, Volume 4, Life Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fourth volume is concerned with experiments designed to improve man's understanding of…

  17. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  18. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  19. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE PAGES

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  20. ELITE S2 - A Facility for Quantitative Human Movement Analysis on Board the ISS

    NASA Astrophysics Data System (ADS)

    Neri, Gianluca; Mascetti, Gabriele; Zolesi, Valfredo

    2014-11-01

    This paper describes the activities for utilization and control of ELITE S2 on board the International Space Station (ISS). ELITE S2 is a payload of the Italian Space Agency (ASI) for quantitative human movement analysis in weightlessness. Within the frame of a bilateral agreement with NASA, ASI has funded a number of facilities, enabling different scientific experiments on board the ISS. ELITE S2 has been developed by the ASI contractor Kayser Italia, delivered to the Kennedy Space Center in 2006 for pre-flight processing, launched in 2007 by the Space Shuttle Endeavour (STS-118), integrated in the U.S. lab and used during the Increments 16/17 (2008) and 33/34 (2012/2013). The ELITE S2 flight segment comprises equipment mounted into an Express Rack and a number of stowed items to be deployed for experiment performance (video cameras and accessories). The ground segment consists in a User Support Operations Center (based at Kayser Italia) enabling real-time payload control and a number of User Home Bases (located at the ASI and PIs premises), for the scientific assessment of the experiment performance. Two scientific protocols on reaching and cognitive processing have been successfully performed in eight sessions involving three ISS crewmembers: IMAGINE 2 and MOVE.

  1. Functional genomic hypothesis generation and experimentation by a robot scientist.

    PubMed

    King, Ross D; Whelan, Kenneth E; Jones, Ffion M; Reiser, Philip G K; Bryant, Christopher H; Muggleton, Stephen H; Kell, Douglas B; Oliver, Stephen G

    2004-01-15

    The question of whether it is possible to automate the scientific process is of both great theoretical interest and increasing practical importance because, in many scientific areas, data are being generated much faster than they can be effectively analysed. We describe a physically implemented robotic system that applies techniques from artificial intelligence to carry out cycles of scientific experimentation. The system automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using a laboratory robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the cycle. Here we apply the system to the determination of gene function using deletion mutants of yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments. We built and tested a detailed logical model (involving genes, proteins and metabolites) of the aromatic amino acid synthesis pathway. In biological experiments that automatically reconstruct parts of this model, we show that an intelligent experiment selection strategy is competitive with human performance and significantly outperforms, with a cost decrease of 3-fold and 100-fold (respectively), both cheapest and random-experiment selection.

  2. An overview of Korean astronaut’s space experiments

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.

    2010-10-01

    The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.

  3. A Test of the Circumvention-of-Limits Hypothesis in Scientific Problem Solving: The Case of Geological Bedrock Mapping

    ERIC Educational Resources Information Center

    Hambrick, David Z.; Libarkin, Julie C.; Petcovic, Heather L.; Baker, Kathleen M.; Elkins, Joe; Callahan, Caitlin N.; Turner, Sheldon P.; Rench, Tara A.; LaDue, Nicole D.

    2012-01-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco…

  4. The Combined Release and Radiation Effects Satellite program (CRRES): A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    1991-01-01

    CRRES is a program to study the space environment which surrounds Earth and the effects of space radiation on modern satellite electronic systems. The satellite will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with suborbital rocket probes. These chemical releases will paint the magnetic and electric fields in Earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments.

  5. Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments

    NASA Technical Reports Server (NTRS)

    Taeusch, D. R.

    1976-01-01

    The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.

  6. Skylab experiments. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The life sciences experiments conducted during Skylab missions are discussed. The general categories of the experiments are as follows: (1) mineral and hormonal balance, (2) hematology and immunology, (3) cardiovascular status, (4) energy expenditure, (5) neurophysiology, and (7) biology. Each experiment within the general category is further identified with respect to the scientific objectives, equipment used, performance, and data to be obtained.

  7. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  8. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  9. The consequences of chronic stereotype threat: domain disidentification and abandonment.

    PubMed

    Woodcock, Anna; Hernandez, Paul R; Estrada, Mica; Schultz, P Wesley

    2012-10-01

    Stereotype threat impairs performance across many domains. Despite a wealth of research, the long-term consequences of chronic stereotype threat have received little empirical attention. Beyond the immediate impact on performance, the experience of chronic stereotype threat is hypothesized to lead to domain disidentification and eventual domain abandonment. Stereotype threat is 1 explanation why African Americans and Hispanic/Latino(a)s "leak" from each juncture of the academic scientific pipeline in disproportionately greater numbers than their White and Asian counterparts. Using structural equation modeling, we tested the stereotype threat-disidentification hypothesis across 3 academic years with a national longitudinal panel of undergraduate minority science students. Experience of stereotype threat was associated with scientific disidentification, which in turn predicted a significant decline in the intention to pursue a scientific career. Race/ethnicity moderated this effect, whereby the effect was evident for Hispanic/Latino(a) students but not for all African American students. We discuss findings in terms of understanding chronic stereotype threat.

  10. The Consequences of Chronic Stereotype Threat: Domain Disidentification and Abandonment

    PubMed Central

    Woodcock, Anna; Hernandez, Paul R.; Estrada, Mica; Schultz, P. Wesley

    2013-01-01

    Stereotype threat impairs performance across many domains. Despite a wealth of research, the long-term consequences of chronic stereotype threat have received little empirical attention. Beyond the immediate impact on performance, the experience of chronic stereotype threat is hypothesized to lead to domain disidentification and eventual domain abandonment. Stereotype threat is 1 explanation why African Americans and Hispanic/Latino(a)s “leak” from each juncture of the academic scientific pipeline in disproportionately greater numbers than their White and Asian counterparts. Using structural equation modeling, we tested the stereotype threat-disidentification hypothesis across 3 academic years with a national longitudinal panel of undergraduate minority science students. Experience of stereotype threat was associated with scientific disidentification, which in turn predicted a significant decline in the intention to pursue a scientific career. Race/ethnicity moderated this effect, whereby the effect was evident for Hispanic/Latino(a) students but not for all African American students. We discuss findings in terms of understanding chronic stereotype threat. PMID:22746674

  11. Containerless Processing on ISS: Ground Support Program for EML

    NASA Technical Reports Server (NTRS)

    Diefenbach, Angelika; Schneider, Stephan; Willnecker, Rainer

    2012-01-01

    EML is an electromagnetic levitation facility planned for the ISS aiming at processing and investigating liquid metals or semiconductors by using electromagnetic levitation technique under microgravity with reduced electromagnetic fields and convection conditions. Its diagnostics and processing methods allow to measure thermophysical properties in the liquid state over an extended temperature range and to investigate solidification phenomena in undercooled melts. The EML project is a common effort of The European Space Agency (ESA) and the German Space Agency DLR. The Microgravity User Support Centre MUSC at Cologne, Germany, has been assigned the responsibility for EML operations. For the EML experiment preparation an extensive scientific ground support program is established at MUSC, providing scientific and technical services in the preparation, performance and evaluation of the experiments. Its final output is the transcription of the scientific goals and requirements into validated facility control parameters for the experiment execution onboard the ISS.

  12. System Configuration and Operation Plan of Hayabusa2 DCAM3-D Camera System for Scientific Observation During SCI Impact Experiment

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazunori; Shirai, Kei; Sawada, Hirotaka; Arakawa, Masahiko; Honda, Rie; Wada, Koji; Ishibashi, Ko; Iijima, Yu-ichi; Sakatani, Naoya; Nakazawa, Satoru; Hayakawa, Hajime

    2017-07-01

    An artificial impact experiment is scheduled for 2018-2019 in which an impactor will collide with asteroid 162137 Ryugu (1999 JU3) during the asteroid rendezvous phase of the Hayabusa2 spacecraft. The small carry-on impactor (SCI) will shoot a 2-kg projectile at 2 km/s to create a crater 1-10 m in diameter with an expected subsequent ejecta curtain of a 100-m scale on an ideal sandy surface. A miniaturized deployable camera (DCAM3) unit will separate from the spacecraft at about 1 km from impact, and simultaneously conduct optical observations of the experiment. We designed and developed a camera system (DCAM3-D) in the DCAM3, specialized for scientific observations of impact phenomenon, in order to clarify the subsurface structure, construct theories of impact applicable in a microgravity environment, and identify the impact point on the asteroid. The DCAM3-D system consists of a miniaturized camera with a wide-angle and high-focusing performance, high-speed radio communication devices, and control units with large data storage on both the DCAM3 unit and the spacecraft. These components were successfully developed under severe constraints of size, mass and power, and the whole DCAM3-D system has passed all tests verifying functions, performance, and environmental tolerance. Results indicated sufficient potential to conduct the scientific observations during the SCI impact experiment. An operation plan was carefully considered along with the configuration and a time schedule of the impact experiment, and pre-programed into the control unit before the launch. In this paper, we describe details of the system design concept, specifications, and the operating plan of the DCAM3-D system, focusing on the feasibility of scientific observations.

  13. Equality of opportunities in geosciences: The EGU Awards Committee experience

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür

    2017-04-01

    Scientists are evaluated on the basis of creativity and productivity, and their scientific excellence are rewarded by scientific associations. Providing equal opportunities and ensuring balance is a strict necessity when recognizing scientific excellence. The processes and procedures that lead to the recognition of excellence has to be transparent and free of gender biases. However, establishment of clear and transparent evaluation criteria and performance metrics in order to provide equal opportunities to researchers across gender, continents and ethnic groups can be challenging since the definition of scientific excellence is elusive. This talk aims to present the experience and the efforts of the European Geosciences Union to ensure balance, with a particular focus on gender balance. Data and statistics will be presented in the attempt to provide constructive indications to get to the target of giving equal opportunities to researchers across gender, continents and ethnic groups.

  14. FEDS - An experiment with a microprocessor-based orbit determination system using TDRS data

    NASA Technical Reports Server (NTRS)

    Shank, D.; Pajerski, R.

    1986-01-01

    An experiment in microprocessor-based onboard orbit determination has been conducted at NASA's Goddard Space Flight Center. The experiment collected forward-link observation data in real time from a prototype transponder and performed orbit estimation on a typical low-earth scientific satellite. This paper discusses the hardware and organizational configurations of the experiment, the structure of the onboard software, the mathematical models, and the experiment results.

  15. Integrated argument-based inquiry with multiple representation approach to promote scientific argumentation skill

    NASA Astrophysics Data System (ADS)

    Suminar, Iin; Muslim, Liliawati, Winny

    2017-05-01

    The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that of experiment class was 0.47 and control class was 0.31. The results of unequal variance t-test for independent means show that students'sargumentationskill of experiment class performed better significantly than students'sargumentationskill of control class.

  16. Spacelab

    NASA Image and Video Library

    1983-01-01

    This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  17. Spaceship Skylab: Wings of Discovery

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This video shows footage from the missions on the Skylab space station. The resident astronauts are seen as they perform spacewalks and various scientific experiments, including solar studies, Earth observations, metal alloy creation, and the effects of microgravity on the human body. The importance of these experiments is described.

  18. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    PubMed

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.

  19. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  20. Experimental Words: sharing science through poetry

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Illingworth, S. M.; Simpson, D.; Bravenec, A.; Calder, E.; Palmer, P. I.; Payen, F.; Ailes, K.; Alexander, F.; Garry, D.; McLean, K.; Wilson, C.

    2017-12-01

    Scientific outreach is often understood as the dissemination of results to a wide audience: press conferences and articles are a common example thereof. Despite their significant reach, these productions fail to generate public engagement; conversely, scientific and artistic collaborations, while they touch fewer people, may generate more impact."Experimental Words" explores the exchanges between scientific practice and performing arts. Coordinated by Dr. Sam Illingworth and funded by the National Environment Research Council, this project brought together four duos composed each of a poet from the Loud Poets company and a scientist from the University of Edinburgh. Duos were formed after a four-hour workshop and given a month to create a 10-minute piece representing the scientist's work. Pieces were then sown into a two-hour show by a series of poems and interventions by Dr. Illingworth and poet Dan Simpson; audience members was also offered to write poems of their own. Two promotional videos were uploaded to YouTube® before and after the event. The show itself was performed on June 14th, 2017 at the Scottish Storytelling Centre for an audience of 45 people. The scientific themes included the exploration of atmospheric boundary layers, topographic laser scanning on coastal marshes, the cultural challenges of volcanology in South America, and the various methods used to trace early water. Through a combination of theatre, spoken word poetry and sketching, the performances brought scientists, laboratory experiments, communication technology and even the audience to the stage. The audience, mostly composed of scientists and poetry enthusiasts, was exposed to their familiar interest and to novelty in a show that humanised science and anchored poetry. The performers were similarly enthused: poets acclaimed the inspiration they received from learning about the natural environment, while scientists discovered that seeing their work the poets' eyes changed their perception of their subject and gave them ideas for future research. All were open to renew the experience.Ultimately, this experience demonstrated that scientific outreach and artistic production can combine to do more than disseminate knowledge and oeuvres: it can also serve to share passion for both science and art.

  1. A Novel Hand-Held Optical Imager with Real-Time Co-Registration Facilities Towards Diagnostic Mammography

    DTIC Science & Technology

    2012-01-01

    Scientific Instruments 3 (article in press is attached in Appendix B). Additional experiments were performed in phantoms composed of minced chicken ...molecularly target tumors at their early stage. In fluorescenc imaging, the incident laser causes the flu orophore to excite. Upon relaxation, light is...measurements were acquired. Experiments were also performed using in vitro phantoms, which were com- posed of minced chicken breast combined with 1

  2. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    NASA Technical Reports Server (NTRS)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  3. Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems

    DOE PAGES

    Hendrix, Valerie; Fox, James; Ghoshal, Devarshi; ...

    2016-07-21

    The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less

  4. Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrix, Valerie; Fox, James; Ghoshal, Devarshi

    The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less

  5. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  6. Skylab Experiments, Volume 2, Remote Sensing of Earth Resources.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The second volume emphasizes the sensing of earth resources. The content includes an introduction to the concept and historical…

  7. Skylab Experiments, Volume 3, Materials Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…

  8. Literary Competence of Future Philology Teachers' Professional Development (Based on the Educational Experience of Germany)

    ERIC Educational Resources Information Center

    Bazyl, Ludmyla

    2015-01-01

    The author performs a theoretical analysis of the educational experience in philology teachers' professional training in Germany in the context of solving scientific problem of literary competence development. Internal and external factors of this process have been determined both by socio-political realities, economic, philosophical, cultural,…

  9. Research knowledge in undergraduate school in Brazil: a comparison between medical and law students.

    PubMed

    Reis Filho, Antonio José Souza; Andrade, Bruno Bezerril; Mendonça, Vitor Rosa Ramos de; Barral-Netto, Manoel

    2010-09-01

    Exposure to science education during college may affect a student's profile, and research experience may be associated with better professional performance. We hypothesized that the impact of research experience obtained during graduate study differs among professional curricula and among graduate courses. A validated multiple-choice questionnaire concerning scientific concepts was given to students in the first and fourth years of medical and law school at a public Brazilian educational institution. Medical students participated more frequently in introductory scientific programs than law students, and this trend increased from the first to the fourth years of study. In both curricula, fourth-year students displayed a higher percentage of correct answers than first-year students. A higher proportion of fourth-year students correctly defined the concepts of scientific hypothesis and scientific theory. In the areas of interpretation and writing of scientific papers, fourth-year students, in both curricula, felt more confident than first-year students. Although medical students felt less confident in planning and conducting research projects than law students, they were more involved in research activities. Medical graduation seems to favor the development of critical scientific maturity than law graduation. Specific policy in medical schools is a reasonable explanation for medical students' participation in more scientific activities.

  10. 6 CFR 25.6 - Procedures for designation of qualified anti-terrorism technologies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (ii) Classified and otherwise confidential studies; (iii) Studies, tests, or other performance records...) Perform studies or analyses of the subject Technology or the insurance market for such Technology; and (v... prior experience and, thus, may be expedited. The Under Secretary may consider any scientific studies...

  11. 6 CFR 25.6 - Procedures for designation of qualified anti-terrorism technologies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (ii) Classified and otherwise confidential studies; (iii) Studies, tests, or other performance records...) Perform studies or analyses of the subject Technology or the insurance market for such Technology; and (v... prior experience and, thus, may be expedited. The Under Secretary may consider any scientific studies...

  12. Ethics in scientific communication: study of a problem case.

    PubMed

    Berger, R L

    1994-12-01

    The hypothermia experiments performed on humans during the Second World War at the German concentration camp in Dachau have been regarded as crimes against humanity, disguised as medical research. For almost 50 years, scientists maintained that the study produced valuable, even if not totally reliable, information. In recent years, the results from the Dachau hypothermia project were glamorized with life-saving potential and a heated ethical dialogue was activated about the use of life-saving but tainted scientific information. In the wake of the debate, an in-depth examination of the scientific rigour of the project was performed and revealed that neither the science nor the scientists from Dachau could be trusted and that the data were worthless. The body of medical opinion accepted the unfavourable determination but a few scientists and ethicists have continued to endorse the validity, of at least parts, of the Dachau hypothermia data. The conduct of the scientific communications about the Dachau hypothermia experiments by the scientific and ethical communities invites serious consideration of a possible ethical misadventure. It appears that for almost 50 years, the results of the study had been endorsed without careful examination of the scientific base of the experiments and that secondary citation of relevant original material may have been commonly employed. These infractions contributed to a myth that good science was practised by the Nazis at Dachau. The more recent emphasis on the life-saving potential of the Dachau data, without citation of credible supporting evidence, has also been misleading. Similarly, acceptance of a determination by an in-depth examination that the 'whole' Dachau project if flawed with simultaneous endorsement of the validity of 'parts' of the results, poses an ethical problem. It is advisable that before seeking ethical consultation about the use of unethically obtained data, scientists should examine the quality of science behind the controversial information and ethicists should verify the integrity of the material prior to engaging in a dialogue.

  13. Ethics in scientific communication: study of a problem case.

    PubMed Central

    Berger, R L

    1994-01-01

    The hypothermia experiments performed on humans during the Second World War at the German concentration camp in Dachau have been regarded as crimes against humanity, disguised as medical research. For almost 50 years, scientists maintained that the study produced valuable, even if not totally reliable, information. In recent years, the results from the Dachau hypothermia project were glamorized with life-saving potential and a heated ethical dialogue was activated about the use of life-saving but tainted scientific information. In the wake of the debate, an in-depth examination of the scientific rigour of the project was performed and revealed that neither the science nor the scientists from Dachau could be trusted and that the data were worthless. The body of medical opinion accepted the unfavourable determination but a few scientists and ethicists have continued to endorse the validity, of at least parts, of the Dachau hypothermia data. The conduct of the scientific communications about the Dachau hypothermia experiments by the scientific and ethical communities invites serious consideration of a possible ethical misadventure. It appears that for almost 50 years, the results of the study had been endorsed without careful examination of the scientific base of the experiments and that secondary citation of relevant original material may have been commonly employed. These infractions contributed to a myth that good science was practised by the Nazis at Dachau. The more recent emphasis on the life-saving potential of the Dachau data, without citation of credible supporting evidence, has also been misleading. Similarly, acceptance of a determination by an in-depth examination that the 'whole' Dachau project if flawed with simultaneous endorsement of the validity of 'parts' of the results, poses an ethical problem. It is advisable that before seeking ethical consultation about the use of unethically obtained data, scientists should examine the quality of science behind the controversial information and ethicists should verify the integrity of the material prior to engaging in a dialogue. PMID:7861424

  14. Limb radiance inversion radiometer. [Nimbus 6 satellite

    NASA Technical Reports Server (NTRS)

    Drozewski, R. W.; Gille, J. C.; Thomas, J. R.; Twohig, K. J.; Boyle, R. R.

    1975-01-01

    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included.

  15. Is Science Built on the Shoulders of Women? A Study of Gender Differences in Contributorship.

    PubMed

    Macaluso, Benoit; Larivière, Vincent; Sugimoto, Thomas; Sugimoto, Cassidy R

    2016-08-01

    Women remain underrepresented in the production of scientific literature, and relatively little is known regarding the labor roles played by women in the production of knowledge. This study examined labor roles by gender using contributorship data from science and medical journals published by the Public Library of Science (PLOS), which require each author to indicate their contribution to one or more of the following tasks: (1) analyzed the data, (2) conceived and designed the experiments, (3) contributed reagents/materials/analysis tools, (4) performed the experiments, and (5) wrote the paper. The authors analyzed contribution data from more than 85,000 articles published between 2008 and 2013 in PLOS journals with respect to gender using both descriptive and regression analyses. Gender was a significant variable in determining the likelihood of performing a certain task associated with authorship. Women were significantly more likely to be associated with performing experiments, and men were more likely to be associated with all other authorship roles. This holds true controlling for academic age: Although experimentation was associated with academically younger scholars, the gap between male and female contribution to this task remained constant across academic age. Inequalities were observed in the distribution of scientific labor roles. These disparities have implications for the production of scholarly knowledge, the evaluation of scholars, and the ethical conduct of science. Adopting the practice of identifying contributorship rather than authorship in scientific journals will allow for greater transparency, accountability, and equitable allocation of resources.

  16. Modern scientific evidence pertaining to criminal investigations in the Chosun dynasty era (1392-1897 A.C.E.) in Korea.

    PubMed

    Nam, Yun Sik; Won, Sung-Ok; Lee, Kang-Bong

    2014-07-01

    A guidebook detailing the process of forensic investigation was written in 1440 A.C.E. It outlines the fundamentals and details of each element of criminal investigation during the era of the Chosun dynasty in Korea. Because this old guidebook was written in terms of personal experience rather than on scientific basis, it includes many fallacies from the perspective of modern forensic science. However, the book describes methods to form a scientific basis for the experiments performed. We demonstrate the modern scientific basis for ancient methods to monitor trace amounts of blood and detect lethal arsenic poisoning from a postmortem examination as described in this old forensic guidebook. Traces of blood and arsenic poisoning were detected according to the respective color changes of brownish red, due to the reaction of ferric ions in blood with acetic ions of vinegar, and dark blue, due to the reaction of silver with arsenic sulfide. © 2014 American Academy of Forensic Sciences.

  17. Giant Vehicles

    NASA Technical Reports Server (NTRS)

    Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas

    2004-01-01

    Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.

  18. MSFC Skylab Apollo Telescope Mount experiment systems mission evaluation

    NASA Technical Reports Server (NTRS)

    White, A. F., Jr.

    1974-01-01

    A detailed evaluation is presented of the Skylab Apollo Telescope Mount experiments performance throughout the eight and one-half month Skylab Mission. Descriptions and the objectives of each instrument are included. The anomalies experienced, the causes, and corrective actions taken are discussed. Conclusions, based on evaluation of the performance of each instrument, are presented. Examples of the scientific data obtained, as well as a discussion of the quality and quantity of the data, are presented.

  19. Spacelab

    NASA Image and Video Library

    1983-11-01

    In this Spacelab-1 mission onboard photograph, astronaut Byron Lichtenberg performs a drop experiment, one of the Vestibular Experiments in Space investigations. The experiment examined spinal reflexes to determine whether they changed in microgravity. In Earth's environment, the otoliths signal the muscles to prepare for jolts associated with falling. During the flight, the normal reflex between the otoliths and the muscles was partially inhibited early in flight, declined further as the flight progressed, and returned to normal immediately after landing, suggesting that the brain ignored or reinterpreted otolith signals during space flight. Crewmembers reported a lack of awareness of position and location of feet, difficulty in maintaining balance, and a perception that falls were more sudden, faster, and harder than similar drops experienced in preflight. Crewmembers experienced illusions as they performed prescribed movement tests. When crew members viewed various targets and then pointed at them while blindfolded, their perception of target location and position of their own limbs was inaccurate in flight compared with similar tests on the ground. The Spacelab-1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The Spacelab-1 was launched aboard the Space Shuttle Orbiter Columbia for the STS-9 mission on November 28, 1983. The Marshall Space Flight Center had management responsibilities for the mission.

  20. A test of the circumvention-of-limits hypothesis in scientific problem solving: the case of geological bedrock mapping.

    PubMed

    Hambrick, David Z; Libarkin, Julie C; Petcovic, Heather L; Baker, Kathleen M; Elkins, Joe; Callahan, Caitlin N; Turner, Sheldon P; Rench, Tara A; Ladue, Nicole D

    2012-08-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco Root Mountains of Montana. A Visuospatial Ability × Geological Knowledge interaction was found, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. This finding suggests that high levels of domain knowledge may sometimes enable circumvention of performance limitations associated with cognitive abilities. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  1. Life science research objectives and representative experiments for the space station

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  2. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  3. [Analysis of scientific production and bibliometric impact of a group of Spanish clinical researchers].

    PubMed

    Miró, O; Burbano Santos, P; Trilla, A; Casademont, J; Fernandez Pérez, C; Martín-Sánchez, Fj

    2016-01-01

    To study the behaviour of several indicators of scientific production and repercussion in a group of Spanish clinical researchers and to evaluate their possible utility for interpreting individual or collective scientific pathways. We performed a unicentric, ecological pilot study involving a group of physicians with consolidated research experience. From the Science Citation Index Expanded (SCI-Expanded) database, we obtained the number of publications of each author (indicator of production) and the number of citations, impact factor and h index (indicators of repercussion). These indicators were calculated individually for each of the years of research experience and we assessed the relationship between the experience of the researcher and the value of the indicator achieved, the relationship between these indicators themselves, and their temporal evolution, both individually and for the entire group. We analysed 35 researchers with a research experience of 28.4 (9.6) years. The h index showed the lowest coefficient of variance. The relationship between the indicators and research experience was significant, albeit modest (R2 between 0.15-0.22). The 4 indicators showed good correlations. The temporal evolution of the indicators, both individual and collective, adjusted better to a second grade polynomial than a linear function: individually, all the authors obtained R2>0.90 in all the indicators; together the best adjustment was produced with the h index (R2=0.61). Based on the indicator used, substantial variations may be produced in the researchers' ranking. A model of the temporal evolution of the indicators of production and repercussion can be described in a relatively homogeneous sample of researchers and the h index seems to demonstrate certain advantages compared to the remaining indicators. This type of analysis could become a predictive tool of performance to be achieved not only for a particular researcher, but also for a homogeneous group of resear-chers corresponding to a specific scientific niche.

  4. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.

  5. Skylab Experiments, Volume 7, Living and Working in Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their scope of material selection. The seventh volume deals with the ability of the Skylab crew to live and work effectively in space. The content is…

  6. Skylab Experiments, Volume 5, Astronomy and Space Physics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fifth volume is concerned with studies of our own and other galaxies and effects of solar…

  7. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  8. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.

  9. The Experiment CPLM (Comportamiento De Puentes Líquidos En Microgravedad) On Board MINISAT 01

    NASA Astrophysics Data System (ADS)

    Sanz-Andrés, Angel; Rodríguez-De-Francisco, Pablo; Santiago-Prowald, Julián

    2001-03-01

    The Universidad Politécnica de Madrid participates in the MINISAT 01 program as the experiment CPLM responsible. This experiment aims at the study of the fluid behaviour in reduced gravity conditions. The interest of this study is and has been widely recognised by the scientific community and has potential applications in the pharmaceutical and microelectronic technologies (crystal growth), among others. The scientific team which has developed the CPLM experiment has a wide experience in this field and had participate in the performance of a large number of experiments on the fluid behaviour in reduced gravity conditions in flight (Spacelab missions, TEXUS sounding rockets, KC-135 and Caravelle aeroplanes, drop towers, as well as on earth labs (neutral buoyancy and small scale simulations). The experimental equipment used in CPLMis a version of the payload developed for experimentation on drop towers and on board microsatellites as the UPM-Sat 1, adapted to fly on board MINISAT 01.

  10. Second United States Microgravity Laboratory: One Year Report. Volume 1

    NASA Technical Reports Server (NTRS)

    Vlasse, M (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  11. Second United States Microgravity Laboratory: One Year Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Vlasse, M. (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  12. Instructional scientific humor in the secondary classroom

    NASA Astrophysics Data System (ADS)

    Wizner, Francine

    This study is an examination of the manner in which educators employ scientific content humor and how that humor is perceived by their students. Content humor is a useful strategy in drawing the attention of students and improving their receptivity toward scientific information. It is also a useful tool in combating the growing distractions of the electronic classroom. Previous studies have found that humor has a positive effect on knowledge, memory, and understanding. However, few studies have been conducted below the undergraduate level and mainly quantitative measures of student recall have been used to measure learning. This study employed multiple data sources to determine how two secondary biology teachers used humor in order to explain scientific concepts and how their students perceived their teachers' use of scientific instructional humor. Evidence of student humor reception was collected from four students in each of the two classes. All of the scientific instructional humor used in the studied classrooms was cognitive in nature, varying among factual, procedural, conceptual, and metacognitive knowledge. Teachers tended to use dialogic forms of humor. Their scientific humor reflected everyday experiences, presented queries, poked fun at authority, and asked students to search out new perspectives and perform thought experiments. Teachers were the primary actors in performing the humorous events. The events were sometimes physical exaggerations of words or drawings, and they occurred for the purpose of establishing rapport or having students make connections between scientific concepts and prior knowledge. Student perceptions were that teachers did employ humor toward instructional objectives that helped their learning. Helping students become critical thinkers is a trademark of science teachers. Science teachers who take the risk of adopting some attributes of comedians may earn the reward of imparting behaviors on their students like critical thinking skills, the ability to explore questions in a detached manner, and the ability to search out new perspectives. The results of this research may encourage additional study on how secondary science teachers use humor to explain scientific concepts and may also encourage science teachers to investigate novel ways that instructional humor can be used in their classrooms. Keywords: Scientific Humor, Instructional Humor, Secondary, Biology.

  13. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  14. Introduction

    NASA Astrophysics Data System (ADS)

    Carotenuto, Luigi

    This chapter introduces the context, objectives and structure of the book. This book aims both to contribute to disseminate the knowledge about the scientific research conducted in space and to promote new exploitation of existing data in this field. While space experiments are characterised by a long time for preparation, high costs and few opportunities, significant scientific value is expected from the resulting data for almost scientific disciplines. In this context, ISS is a unique experimental environment for research. As part of its Seventh Framework Programme, the European Commission intends to support further exploitation and valorisation of space experimental data. This book was realised as part of the ULISSE project, co-funded by the European Union. The book intends to provide an introduction to space research with a focus on the experiments performed on the ISS and related disciplines. The book also intends to be a useful guide, not only for scientists but also for teachers, students and newcomers to space research activities.

  15. SoRa first flight. Summer 2009

    NASA Astrophysics Data System (ADS)

    Pirrotta, S.; Flamini, E.

    The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.

  16. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.

  17. A ranking algorithm for spacelab crew and experiment scheduling

    NASA Technical Reports Server (NTRS)

    Grone, R. D.; Mathis, F. H.

    1980-01-01

    The problem of obtaining an optimal or near optimal schedule for scientific experiments to be performed on Spacelab missions is addressed. The current capabilities in this regard are examined and a method of ranking experiments in order of difficulty is developed to support the existing software. Experimental data is obtained from applying this method to the sets of experiments corresponding to Spacelab mission 1, 2, and 3. Finally, suggestions are made concerning desirable modifications and features of second generation software being developed for this problem.

  18. Introducing social cues in multimedia learning: The role of pedagogic agents' image and language in a scientific lesson

    NASA Astrophysics Data System (ADS)

    Moreno, Roxana Arleen

    The present dissertation tested the hypothesis that software pedagogical agents can promote constructivist learning in a discovery-based multimedia environment. In a preliminary study, students who received a computer-based lesson on environmental science performed better on subsequent tests of problem solving and motivation when they learned with the mediation of a fictional agent compared to when they learned the same material from text. In order to investigate further the basis for this personal agent effect, I varied whether the agent's words were presented as speech or on-screen text and whether or not the agent's image appeared on the screen. Both with a fictional agent (Experiment 1) and a video of a human face (Experiment 2), students performed better on tests of retention, problem-solving transfer, and program ratings when words were presented as speech rather than on-screen text (producing a modality effect) but visual presence of the agent did not affect test performance (producing no image effect). Next, I varied whether or not the agent's words were presented in conversational style (i.e., as dialogue) or formal style (i.e., as monologue) both using speech (Experiment 3) and on-screen text (Experiment 4). In both experiments, there was a dialogue effect in which conversational-style produced better retention and transfer performance. Students who learned with conversational-style text rated the program more favorably than those who learned with monologue-style text. The results support cognitive principles of multimedia learning which underlie the understanding of a computer lesson about a complex scientific system.

  19. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  20. Manifold compositions, music visualization, and scientific sonification in an immersive virtual-reality environment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.

    1998-01-05

    An interdisciplinary project encompassing sound synthesis, music composition, sonification, and visualization of music is facilitated by the high-performance computing capabilities and the virtual-reality environments available at Argonne National Laboratory. The paper describes the main features of the project's centerpiece, DIASS (Digital Instrument for Additive Sound Synthesis); ''A.N.L.-folds'', an equivalence class of compositions produced with DIASS; and application of DIASS in two experiments in the sonification of complex scientific data. Some of the larger issues connected with this project, such as the changing ways in which both scientists and composers perform their tasks, are briefly discussed.

  1. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    ERIC Educational Resources Information Center

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  2. The Learning of Grammar: An Experimental Study. Experimental Studies on the Learning of Language, Progress Report II, Revised.

    ERIC Educational Resources Information Center

    Torrey, Jane W.

    An experiment in language behavior comparing two methods of learning grammatical word order in a new language presents scientific evidence supporting the use of pattern drills in foreign language teaching. The experiment reviews the performance of three groups attempting to learn small segments of Russian "microlanguage": (1) a drill group learned…

  3. Cake Flour Is Not Just Any Old White Powder: A Fun Take-Home Experiment

    ERIC Educational Resources Information Center

    McMullen, Kevin; Rasmus, C.; Virtue, Melinda; Slik, Kate; Wrigley, Colin

    2014-01-01

    Baking cakes with different recipes can provide an exercise in the application of the scientific method, illustrating the need to vary only one ingredient at a time for correct derivation of conclusions. This experiment, most likely to be performed at home, compares a cake flour with flours from durum wheat, rice and cornflour (gluten-free…

  4. Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.

    PubMed

    Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K

    2016-01-01

    Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.

  5. Faculty Members' Attitudes towards the Performance Appraisal Process in the Public Universities in Light of Some Variables

    ERIC Educational Resources Information Center

    Al-Ashqar, Wafaa Mohammed Ali

    2017-01-01

    The present study aimed to detect the level of faculty members' attitudes at public universities towards the performance appraisal process and its relationship with some variables (gender, college, scientific rank, university, teaching experience, and age). The study sample consisted of (320) faculty members of both sexes in three public…

  6. Learning from Scientific Texts: Personalizing the Text Increases Transfer Performance and Task Involvement

    ERIC Educational Resources Information Center

    Dutke, Stephan; Grefe, Anna Christina; Leopold, Claudia

    2016-01-01

    In an experiment with 65 high-school students, we tested the hypothesis that personalizing learning materials would increase students' learning performance and motivation to study the learning materials. Students studied either a 915-word standard text on the anatomy and functionality of the human eye or a personalized version of the same text in…

  7. How to grow transgenic Arabidopsis in the field.

    PubMed

    Jänkänpää, Hanna Johansson; Jansson, Stefan

    2012-01-01

    Arabidopsis is naturally adapted to habitats in which both biotic variables (e.g., light, wind, and humidity) and abiotic variables (e.g., competition, herbivory, and pathogen densities) strongly fluctuate. Hence, conditions in controlled growth chambers (in which Arabidopsis is typically grown for scientific experiments) differ substantially from those in natural environments. In order to mimic more closely natural conditions, we grow Arabidopsis outdoors under "semi-natural" field conditions. Performing experiments on transgenic Arabidopsis grown in the field that are sufficiently reliable for publication is challenging. In this chapter, we present some of our experiences based on 10 years of field experimentation, which may be of use to researchers seeking to perform field experiments using transgenic Arabidopsis.

  8. The Viking project. [summary

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.

    1977-01-01

    The Viking project launched two unmanned spacecraft to Mars in 1975 for scientific exploration with special emphasis on the search for life. Each spacecraft consisted of an orbiter and a lander. The landing sites were finally selected after the spacecraft were in orbit. Thirteen investigations were performed: three mapping experiments from the orbiter, one atmospheric investigation during the lander entry phase, eight experiments on the surface of the planet, and one using the spacecraft radio and radar systems. The experiments on the surface dealt principally with biology, chemistry, geology, and meteorology. Seventy-eight scientists have participated in the 13 teams performing these experiments. This paper is a summary of the project and an introduction to the articles that follow.

  9. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  10. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    PubMed

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach, however, increases the operational overhead significantly. But meeting especially these requirements offers unique opportunities for testing these sensor technologies in harsh and dedicated environments which are not available on Earth, therefore pushing the related technologies and methodologies to their limits. The scientific objectives for selected experiments, representing a wide range of research fields, are presented, including the instrument setups and the implemented sensor technologies, and where available, the first scientific results are presented.

  11. Comprehensive Study of the Model Mercury-Based Cuprate Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greven, Martin

    This is the Final Report on DE-SC0006858, which opened 15 August 2011 and closed 14 August 2017. The Principal Investigator is Martin Greven, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 555455 (email: greven@umn.edu). The Administrative Point of Contact is Patricia Jondahl, phone: 612-624-5599, email: awards@umn.edu. The DOE Program is the Office of Basic Energy Sciences, Program manager is Dr. P. Thiyagarajan, Neutron Scattering SC-22.2/ Germantown Bldg. (email: Thiyagarajan@science.doe.gov). The chief activity was the crystal growth, characterization, neutron and X-ray scattering study of the mercury-based cuprates, arguably the most desirable high-Tc superconductors for experimental study due to theirmore » record values of Tc and their relatively simple crystal structures. It is thought that the unusual magnetic and charge degrees of freedom of the copper-oxygen sheets that form the fundamental building block of all cuprate superconductors give rise to the high Tc and to many other unusual properties exhibited by the class of quantum materials. Neutron scattering experiments were performed to reveal the nature of the magnetic degrees of freedom of the copper-oxygen sheets, whereas X-ray scattering experiments and complementary charge-transport experiments were performed to reveal the nature of the charge degrees of freedom. In addition, collaborations were initiated with experts in the use of complementary experimental techniques. The primary products are (i) scientific articles published in peer-reviewed scientific journals, (ii) scientific presentations at national and international conferences, and (iii) education of postdoctoral researchers, PhD graduate students and undergraduate researchers by providing a research experience in crystal growth, characterization and scattering. Twenty scientific papers were published in peer-reviewed journals, thirty-one invited talks were presented at national or international conferences, or as colloquia or seminars, and three postdoctoral researchers, six PhD graduate students and nine undergraduate researchers were supported wholly or in part in the pursuit of the scientific topics of this award. This report summarizes the activity and productivity, lists highlights, publications and conference presentations, postdocs, students and collaborators. A balance of zero remained at the close of the grant.« less

  12. Improving Project Performance through Implementation of Agile Methodologies in the Renewable Energy Construction Industry

    NASA Astrophysics Data System (ADS)

    Hernandez Mendez, Arturo

    Collaborative inquiry within undergraduate research experiences (UREs) is an effective curriculum tool to support student growth. This study seeks to understand how collaborative inquiry within undergraduate biology student experiences are affected within faculty mentored experiences and non-mentored experiences at a large private southeastern university. Undergraduate biology students engaged in UREs (faculty as mentor and non-mentor experiences) were examined for statistically significant differences in student self-efficacy. Self-efficacy was measured in three subcomponents (thinking and working like a scientist, scientific self-efficacy, and scientific identity) from student responses obtained in an online survey. Responses were analyzed using a nonparametric equivalent of a t test (Mann Whitney U test) to make comparisons between faculty mentored and non-mentored student groups. The conclusions of this study highlight the statistically significant effect of faculty mentoring in all three subcomponents. Faculty and university policy makers can apply these findings to develop further support for effective faculty mentoring practices in UREs.

  13. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Fazio, Claudio; Rosario Battaglia, Onofrio

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed.

  14. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  15. Duque performs VIDEO-2 (VID-01) experiment

    NASA Image and Video Library

    2003-10-23

    ISS007-E-17848 (23 October 2003) --- Cosmonaut Alexander Y. Kaleri (right), Expedition 8 flight engineer, uses a camera to film a scientific experiment performed by European Space Agency (ESA) astronaut Pedro Duque of Spain in the Zvezda Service Module on the International Space Station (ISS). Kaleri represents Rosaviakosmos. Duque and Kaleri performed the European educational VIDEO-2 (VID-01) experiment, which uses the Russian DSR PD-150P digital video camcorder for recording demos of several basic physical phenomena, viz., Isaac Newton's three motion laws, with narration. [The demo made use of a sealed bag containing coffee and a syringe to fill one of two hollow balls with the brown liquid (to provide "mass", as opposed to the other, "mass-less" ball).

  16. Detailed Results from the Flame Extinguishment Experiment (FLEX) March 2009 to December 2011

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ferkul, Paul V.; Bryg, Victoria M.; Nayagam, M. Vedha; Hicks, Michael C.; Williams, Forman A.; Dryer, Frederick L.; Shaw, Benjamin D.; Choi, Mun Y.; Avedisian, C. Thomas

    2015-01-01

    The Flame Extinguishment Experiment (FLEX) program is a continuing set of experiments on droplet combustion, performed employing the Multi-User Droplet Combustion Apparatus (MDCA), inside the chamber of the Combustion Integrated Rack (CIR), which is located in the Destiny module of the International Space Station (ISS). This report describes the experimental hardware, the diagnostic equipment, the experimental procedures, and the methods of data analysis for FLEX. It also presents the results of the first 284 tests performed. The intent is not to interpret the experimental results but rather to make them available to the entire scientific community for possible future interpretations.

  17. Third United States Microgravity Payload: One Year Report

    NASA Technical Reports Server (NTRS)

    Currieri, P. A. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1998-01-01

    This document reports the one year science results for the Third United States Microgravity Payload (USMP-3). The USMP-3 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about seven major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive space station era.

  18. Fourth United States Microgravity Payload: One Year Report

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C. (Compiler); Curreri, Peter A. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    This document reports the one year science results for the Fourth United States Microgravity Payload (USMP-4). The USMP-4 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about eight major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  19. Engaging Teenagers in Astronomy Using the Lens of Next Generation Science Standards and Common Core State Standards (Abstract)

    NASA Astrophysics Data System (ADS)

    Gillette, S.; Wolf, D.; Harrison, J.

    2017-12-01

    (Abstract only) The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.

  20. Engaging Teenagers in Astronomy Using the Lens of Next Generation Science Standards and Common Core State Standards

    NASA Astrophysics Data System (ADS)

    Gillette, Sean; Wolf, Debbie; Harrison, Jeremiah

    2017-06-01

    The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.

  1. The credibility crisis in research: Can economics tools help?

    PubMed Central

    Gall, Thomas; Ioannidis, John P. A.; Maniadis, Zacharias

    2017-01-01

    The issue of nonreplicable evidence has attracted considerable attention across biomedical and other sciences. This concern is accompanied by an increasing interest in reforming research incentives and practices. How to optimally perform these reforms is a scientific problem in itself, and economics has several scientific methods that can help evaluate research reforms. Here, we review these methods and show their potential. Prominent among them are mathematical modeling and laboratory experiments that constitute affordable ways to approximate the effects of policies with wide-ranging implications. PMID:28445470

  2. The credibility crisis in research: Can economics tools help?

    PubMed

    Gall, Thomas; Ioannidis, John P A; Maniadis, Zacharias

    2017-04-01

    The issue of nonreplicable evidence has attracted considerable attention across biomedical and other sciences. This concern is accompanied by an increasing interest in reforming research incentives and practices. How to optimally perform these reforms is a scientific problem in itself, and economics has several scientific methods that can help evaluate research reforms. Here, we review these methods and show their potential. Prominent among them are mathematical modeling and laboratory experiments that constitute affordable ways to approximate the effects of policies with wide-ranging implications.

  3. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 403

    DTIC Science & Technology

    1977-08-17

    34Akademik Kurchatov" Departs for " Polimode " Ocean Experiment.... 11 Scientists Perform Oceanic Studies Near Wrangel Island 11 Abstracts of...stratosphere. [198] 10 III. OCEANOGRAPHY News "AKADEMIK KURCHATOV" DEPARTS FOR " POLIMODE " OCEAN EXPERIMENT Moscow PRAVDA in Russian 30 Jun 77 p 6 [Article...studies under the POLIMODE program. The head of the expedition, Professor V. Kort, commented on the pur- poses and tasks of the experiment: "Several

  4. Antituberculous effect of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreytsberg, G. N.; Gracheva, I. E.; Kibrik, B. S.; Golikov, I. V.

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  5. The Relationship between Family Experiences and Motivation to Learn Science for Different Groups of Grade 9 Students in South Africa

    ERIC Educational Resources Information Center

    Schulze, Salomé; Lemmer, Eleanor

    2016-01-01

    Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…

  6. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.

  7. Biomedical program of the ALTAIR french russian flight onboard the MIR station.

    PubMed

    Andre-Deshays, C; Haignere, J P; Guell, A; Marsal, O; Suchet, L; Kotovskaya, A; Gratchev, V; Noskin, A; Grigoriev, A

    1995-01-01

    One year after the achievement of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAIR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustments during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended. Adding the results of the 2 missions ANTARES and ALTAIR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.

  8. Biomedical program of the ALTAÏR french russian flight onboard the MIR station

    NASA Astrophysics Data System (ADS)

    André-Deshays, C.; Haigneré, J. P.; Guell, A.; Marsal, O.; Suchet, L.; Kotovskaya, A.; Gratchev, V.; Noskin, A.; Grigoriev, A.

    One year after the achievemant of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAÏR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustements during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended. Adding the results of the 2 missions ANTARES and ALTAÏR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.

  9. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  10. First scientific application of the membrane cryostat technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Baller, Bruce R.

    2014-01-29

    We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less

  11. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  12. Technology for increased human productivity and safety on orbit

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith; Gartrell, Charles F.

    1991-01-01

    Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.

  13. Terrifying Landscapes: A Study of Scientific Research Into Understanding Motivations of Non-State Actors to Acquire and/or Use Weapons of Mass Destruction

    DTIC Science & Technology

    2007-06-22

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sandia National Laboratories,PO Box 5800,Albuquerque,NM,87103 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Nancy Kay Hayden Sandia National Laboratories Albuquerque, NM June 22, 2007 Work performed for Defense Threat Reduction Agency/Advanced...Bale for sharing their experience, wisdom, insights, and time to discuss the important issues and review the work performed . I thank sponsors and

  14. Formal and Informal Learning and First-Year Psychology Students’ Development of Scientific Thinking: A Two-Wave Panel Study

    PubMed Central

    Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363

  15. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    PubMed

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  16. A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy.

    PubMed

    Stockwell, Stephanie B

    2016-03-01

    Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science-course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science-themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, "Nonscientists should do scientific research." Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement-like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science-themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.

  17. GEODE : In situ planetary compact geochemistry facility

    NASA Astrophysics Data System (ADS)

    Angrilli, F.; Guizzo, G. P.; Bibring, J. P.; Fulchignoni, M.; Marinangeli, L.

    2001-11-01

    The purpose of this compact and miniaturised facility is to analyse the composition and physical properties of soils and rocks of the planetary surfaces. This type of assemblage would be suitable for the Mercury and Mars Scout missions (though under different environmental conditions) which require a very lightweight scientific package. In fact, ought to the very small dimensions of this facility, it can be easily allocated either inside a microrover or on a robotic arm of a lander. The scientific experiments we propose to be onboard the facility are: XMAP (x-ray diffractometer and fluorescence), MPE (magnetic properties experiment), VIRCUI (visible and infrared close-up imager). XMAP will perform mineralogical and chemical analysis directly on the sample surface. It will allow to define the textural and petro-mineralogical characteristics of the rocks and thus information of the past environment conditions. MPE will provide answers on the magnetic phase of particles and minerals which are responsible for the magnetisation of the soil. It can perform repeated measurements in different sites or generate variable field intensity and collect particles with different sizes. VIRCUI is a multifunction microscope that can perform visible and infrared analysis of the soil and at the same time it is a support for the MPE experiment; moreover VIRCUI can also be useful for the navigation of a microrover.

  18. The Mars Surveyor '01 Rover and Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  19. Thermal integration of Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Patterson, W. C.; Hopson, G. D.

    1978-01-01

    The method of thermally integrating the experiments for Spacelab is discussed. The scientific payload consists of a combination of European and United States sponsored experiments located in the module as well as on a single Spacelab pallet. The thermal integration must result in accomodating the individual experiment requirements as well as ensuring that the total payload is within the Spacelab Environmental Control System (ECS) resource capability. An integrated thermal/ECS analysis of the module and pallet is performed in concert with the mission timeline to ensure that the agreed upon experiment requirements are accommodated and to ensure the total payload is within the Spacelab ECS resources.

  20. Individual and Team Performance in Team-Handball: A Review

    PubMed Central

    Wagner, Herbert; Finkenzeller, Thomas; Würth, Sabine; von Duvillard, Serge P.

    2014-01-01

    Team handball is a complex sport game that is determined by the individual performance of each player as well as tactical components and interaction of the team. The aim of this review was to specify the elements of team-handball performance based on scientific studies and practical experience, and to convey perspectives for practical implication. Scientific studies were identified via data bases of PubMed, Web of Knowledge, SPORT Discus, Google Scholar, and Hercules. A total of 56 articles met the inclusion criteria. In addition, we supplemented the review with 13 additional articles, proceedings and book sections. It was found that the specific characteristics of team-handball with frequent intensity changes, team-handball techniques, hard body confrontations, mental skills and social factors specify the determinants of coordination, endurance, strength and cognition. Although we found comprehensive studies examining individual performance in team-handball players of different experience level, sex or age, there is a lack of studies, particularly for team-handball specific training, as well as cognition and social factors. Key Points The specific characteristics of team-handball with frequent intensity changes, specific skills, hard body confrontations, mental skills and social factors define the determinants of coordination, endurance, strength and cognition. To increase individual and team performance in team-handball specific training based on these determinants have been suggested. Although there are comprehensive studies examining individual performance in team-handball players of different experience level, sex, or age are published, there is a lack of training studies, particularly for team-handball specific techniques and endurance, as well as cognition and social factors. PMID:25435773

  1. Individual and team performance in team-handball: a review.

    PubMed

    Wagner, Herbert; Finkenzeller, Thomas; Würth, Sabine; von Duvillard, Serge P

    2014-12-01

    Team handball is a complex sport game that is determined by the individual performance of each player as well as tactical components and interaction of the team. The aim of this review was to specify the elements of team-handball performance based on scientific studies and practical experience, and to convey perspectives for practical implication. Scientific studies were identified via data bases of PubMed, Web of Knowledge, SPORT Discus, Google Scholar, and Hercules. A total of 56 articles met the inclusion criteria. In addition, we supplemented the review with 13 additional articles, proceedings and book sections. It was found that the specific characteristics of team-handball with frequent intensity changes, team-handball techniques, hard body confrontations, mental skills and social factors specify the determinants of coordination, endurance, strength and cognition. Although we found comprehensive studies examining individual performance in team-handball players of different experience level, sex or age, there is a lack of studies, particularly for team-handball specific training, as well as cognition and social factors. Key PointsThe specific characteristics of team-handball with frequent intensity changes, specific skills, hard body confrontations, mental skills and social factors define the determinants of coordination, endurance, strength and cognition.To increase individual and team performance in team-handball specific training based on these determinants have been suggested.Although there are comprehensive studies examining individual performance in team-handball players of different experience level, sex, or age are published, there is a lack of training studies, particularly for team-handball specific techniques and endurance, as well as cognition and social factors.

  2. Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean Carl

    1999-01-01

    Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.

  3. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGES

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  4. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  5. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    Reasoner, David L.; Mccook, Morgan W. (Editor); Vaughan, William W. (Editor)

    1990-01-01

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  6. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    NASA Astrophysics Data System (ADS)

    Reasoner, David L.; McCook, Morgan W.; Vaughan, William W.

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  7. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  8. [Influence of the Nuremberg physicians' trials--beginning a new era in the ethical judging of human experiments].

    PubMed

    Kerpel-Fronius, Sándor

    2008-02-03

    This short historical review attempts to shed light on the tortuous road on which society moved toward the general acceptance of the idea of experimenting on human beings. Unfortunately people had to realize that under antihuman or lenient political leadership, some physicians might apply their knowledge against their fellow beings, or might endanger them while pursuing their scientific goals. For this reason, it became necessary to codify the ethical requirements of medical experiments. This was done first by the Prussian government in 1900. The historical significance of the Nuremberg physicians' trials is that, by recognizing the enormous scientific importance of human experiments, they led to the formulation of general ethical principles governing human studies, which became known as the Nuremberg Code. Broad, international regulations were developed as the consequence of the trial. Unfortunately human experiments performed on prison inmates were judged at the trial as ethically acceptable, provided an informed consent was signed. Misusing this possibility many unethical experiments were done primarily in the US after the war. The great indignation due to ethical misconduct in prison trials and the highly unethical Tuskegee experiments performed on black Americans' suffering from syphilis, led much later to the organization of independent ethics committees. Through these committees, society exercises supervision of human trials. However, in case of severely ill patients the physician might be left alone to make a quick, and ethically correct, decision corresponding to the situation. In the final analysis the safety and ethical protection of research subjects remain the joint responsibility of society and of the experimenting physicians.

  9. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.

  10. Developing Science: Scientific Performance and Brain Drains in the Developing World

    PubMed Central

    Weinberg, Bruce A.

    2016-01-01

    Establishing a strong scientific community is important as countries develop, which requires both producing and retaining of important scientists. We show that developing countries produce a sizeable number of important scientists, but that they experience a tremendous brain drain. Education levels, population, and per capita GDP are positively related to the number of important scientists born in and staying in a country. Our analysis indicates that democracy and urbanization are associated with the production of more important scientists although democracy is associated with more out-migration. PMID:27152061

  11. Measuring the magnetic fields of Jupiter and the outer solar system

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Connor, B. V.; Foster, G. T., Jr.

    1975-01-01

    The vector helium magnetometer, one of the Pioneer-Jupiter experiments, has measured the magnetic field of Jupiter and the interplanetary magnetic field in the outer solar system. The comprehensive scientific objectives of the investigations are explained and are then translated into the major instrument requirements. The principles of operation of the magnetometer, which involve the optical pumping of metastable helium, are discussed and the Pioneer instrument is described. The in-flight performance of the magnetometer is discussed and principal scientific results obtained thus far by the Pioneer investigation are summarized.

  12. Tethered satellite system

    NASA Technical Reports Server (NTRS)

    Sisson, J.

    1986-01-01

    A reusable system is to be developed to enable a variety of scientific investigations to be accomplished from the shuttle, considering the use of a tethered system with manual or automated control, deployment of a satellite toward or away from the Earth, up to 100 km, and conducting or nonconducting tether. Experiments and scientific investigations are to be performed using the tether system for applications such as magnetometry, electrodynamics, atmospheric science, and chemical release. A program is being implemented as a cooperative U.S./Italian activity. The proposed systems, investigations, and the program are charted and briefly discussed.

  13. Spacelab

    NASA Image and Video Library

    1983-11-01

    In this photograph, astronauts Owen Garriott on the body restriant system and Byron Lichtenberg prepare for a Vestibular Experiment during the Spacelab-1 mission. The Vestibular Experiments in Space were the study of the interaction among the otoliths, semicircular canals, vision, and spinal reflexes in humans. The main objective was to determine how the body, which receives redundant information for several sensory sources, interprets this information in microgravity. Another objective was to record and characterize the symptoms of space sickness experienced by crewmembers. The body restraint system was a rotating chair with a harness to hold the test subject in place. The crewmember wore an accelerometer and electrodes to record head motion and horizontal and vertical eye movement as the body rotated. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The Spacelab-1 was launched aboard the Space Shuttle Orbiter Columbia for the STS-9 mission on November 28, 1983. The Marshall Space Flight Center had management responsibilities for the mission.

  14. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  15. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  16. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  17. A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy†

    PubMed Central

    Stockwell, Stephanie B.

    2016-01-01

    Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science—course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science–themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, “Nonscientists should do scientific research.” Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement–like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science–themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values. PMID:27047600

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallarno, George; Rogers, James H; Maxwell, Don E

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learnedmore » in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.« less

  19. Skylab

    NASA Image and Video Library

    1970-01-01

    This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  20. The Pathfinder Microrover

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Bickler, D. B.; Braun, D. F.; Eisen, H. J.; Matthies, L. H.; Mishkin, A. H.; Stone, H. W.; van Nieuwstadt, L. M.; Wen, L. C.; Wilcox, B. H.; hide

    1996-01-01

    An exciting scientific component of the Pathfinder mission is the rover, which will act as a mini-field geologist by providing us with access to samples for chemical analyses and close-up images of the Martian surface, performing active experiments to modify the surface and study the results, and exploring the landing site area.

  1. BEHAVIOR OF MEALWORMS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, THE "BEHAVIOR OF MEALWORMS." BY MAKING CAREFUL OBSERVATIONS AND PERFORMING SIMPLE EXPERIMENTS, THE CHILDREN LEARN HOW TO APPROACH A PROBLEM, HOW TO INTERPRET AND EVALUATE DATA, AND, IN GENERAL, HOW TO CONDUCT A SCIENTIFIC INVESTIGATION. THE MATERIALS HAVE…

  2. General Purpose Sampling in the Domain of Higher Education.

    ERIC Educational Resources Information Center

    Creager, John A.

    The experience of the American Council on Education's Cooperative Institutional Research Program indicates that large-scale national surveys in the domain of higher education can be performed with scientific integrity within the constraints of costs, logistics, and technical resources. The purposes of this report are to provide complete and…

  3. Expected scientific results on ballistic spacecraft missions to comet Encke during the 1980 apparition

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1976-01-01

    Summarized are three proposed ballistic spacecraft missions to intercept P/Encke during the 1980 apparition. A baseline physical activity model for P/Encke is established and the performances of the neutral mass spectrometer and of the imaging experiment on each intercept mission are assessed.

  4. Concept Recognition in an Automatic Text-Processing System for the Life Sciences.

    ERIC Educational Resources Information Center

    Vleduts-Stokolov, Natasha

    1987-01-01

    Describes a system developed for the automatic recognition of biological concepts in titles of scientific articles; reports results of several pilot experiments which tested the system's performance; analyzes typical ambiguity problems encountered by the system; describes a disambiguation technique that was developed; and discusses future plans…

  5. A Peer-Reviewed Research Assignment for Large Classes.

    ERIC Educational Resources Information Center

    Henderson, LaRhee; Buising, Charisse

    2000-01-01

    Introduces a writing exercise students work on in collaborative groups. Aims to enhance students' scientific research paper writing skills and provide experience working in collaborative groups. Presents evaluation criteria for peer-group evaluation of a poster presentation, intra-group evaluation of peer performance, and peer-group evaluation of…

  6. Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T. L.; Teegarden, B. J.

    1985-01-01

    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described.

  7. Scientific Experiences Using Argentinean Sounding Rockets in Antarctica

    NASA Astrophysics Data System (ADS)

    Sánchez-Peña, Miguel

    2000-07-01

    Argentina in the sixties and seventies, had experience for developing and for using sounding rockets and payloads to perform scientific space experiments. Besides they have several bases in Antarctica with adequate premises and installations, also duly equipped aircrafts and trained crews to flight to the white continent. In February 1965, scientists and technical people from the "Instituto de Investigacion Aeronáutica y Espacial" (I.I.A.E.) with the cooperation of the Air Force and the Tucuman University, conducted the "Matienzo Operation" to measure X radiation and temperature in the upper atmosphere, using the Gamma Centauro rocket and also using big balloons. The people involved in the experience, the launcher, other material and equipment flew from the south tip of Argentina to the Matienzo base in Antarctica, in a C-47 aircraft equipped with skies an additional jet engine Marbore 2-C. Other experience was performed in 1975 in the "Marambio" Antartic Base, using the two stages solid propellent sounding rocket Castor, developed in Argentina. The payload was developed in cooperation with the Max Planck Institute of Germany. It consist of a special mixture including a shape charge to form a ionized cloud producing a jet of electrons travelling from Marambio base to the conjugate point in the Northern hemisphere. The cloud was observed by several ground stations in Argentina and also by a NASA aircraft with TV cameras, flying at East of New York. The objective of this experience was to study the electric and magnetic fields in altitude, the neutral points, the temperature and electrons profile. The objectives of both experiments were accomplished satisfactorily.

  8. In-situ generation of carrier gases for scientific analyses on Mars

    NASA Technical Reports Server (NTRS)

    Finn, J. E.; Sridhar, K. R.

    1997-01-01

    The search for useful raw materials on planetary surfaces will involve various scientific analyses of soil and rock samples. The devices performing these measurements often require inert carrier gases for moving analytes and purging instrumentation. At present, the carrier or sweep gas must be carried from Earth in a compressed gas cylinder, and so the supply of this depletable resource sets a hard limit on the (flexible) life span of the experiment. If a suitable carrier gas could be produced in-situ, then the scientific return of exploration missions could be extended and enhanced greatly. Many more samples could be analyzed, long-ranging rovers could have independent gas supplies, and designs could have added flexibility with respect to gas consumption.

  9. [How to write and publish a scientific article in stomatology].

    PubMed

    Gao, X J

    2017-12-09

    The general principles and key points in writing of a scientific article in stomatology were interpreted based on the national guideline and the author's personal experiences in the present article. Efforts should be made by the authors focusing on core information, refinement and description of their papers. In the second half of the article, the general process of paper review was introduced. The article also gave suggestions on how to response to the reviewers' questions. It is well recognized that a good scientific journal was created by good authors, good reviewers and good editors. The author proposed that efforts by above mentioned three parties should be gathered to make more valuable, delicately designed and well performed clinical research articles be published.

  10. Teaching examples for the design of experiments: geographical sensitivity and the self-fulfilling prophecy.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Rowland-Jones, Ruth; D'Agostino, Fabio; Linsley, Matt; Owen, Martin R; Isaacs, John D

    2016-01-01

    Many scientists believe that small experiments, guided by scientific intuition, are simpler and more efficient than design of experiments. This belief is strong and persists even in the face of data demonstrating that it is clearly wrong. In this paper, we present two powerful teaching examples illustrating the dangers of small experiments guided by scientific intuition. We describe two, simple, two-dimensional spaces. These two spaces give rise to, and at the same time appear to generate supporting data for, scientific intuitions that are deeply flawed or wholly incorrect. We find these spaces useful in unfreezing scientific thinking and challenging the misplaced confidence in scientific intuition. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Evaluating the Development of Chemistry Undergraduate Researchers' Scientific Thinking Skills Using Performance-Data: First Findings from the Performance Assessment of Undergraduate Research (PURE) Instrument

    ERIC Educational Resources Information Center

    Harsh, Joseph; Esteb, John J.; Maltese, Adam V.

    2017-01-01

    National calls in science, technology, engineering, and technology education reform efforts have advanced the wide-scale engagement of students in undergraduate research for the preparation of a workforce and citizenry able to attend to the challenges of the 21st century. Awareness of the potential benefits and costs of these experiences has led…

  12. Performance of OVERFLOW-D Applications based on Hybrid and MPI Paradigms on IBM Power4 System

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This report briefly discusses our preliminary performance experiments with parallel versions of OVERFLOW-D applications. These applications are based on MPI and hybrid paradigms on the IBM Power4 system here at the NAS Division. This work is part of an effort to determine the suitability of the system and its parallel libraries (MPI/OpenMP) for specific scientific computing objectives.

  13. The Ophidia Stack: Toward Large Scale, Big Data Analytics Experiments for Climate Change

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Williams, D. N.; D'Anca, A.; Nassisi, P.; Aloisio, G.

    2015-12-01

    The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in multiple domains (e.g. climate change). It provides a "datacube-oriented" framework responsible for atomically processing and manipulating scientific datasets, by providing a common way to run distributive tasks on large set of data fragments (chunks). Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes. The project relies on a strong background on high performance database management and On-Line Analytical Processing (OLAP) systems to manage large scientific datasets. The Ophidia analytics platform provides several data operators to manipulate datacubes (about 50), and array-based primitives (more than 100) to perform data analysis on large scientific data arrays. To address interoperability, Ophidia provides multiple server interfaces (e.g. OGC-WPS). From a client standpoint, a Python interface enables the exploitation of the framework into Python-based eco-systems/applications (e.g. IPython) and the straightforward adoption of a strong set of related libraries (e.g. SciPy, NumPy). The talk will highlight a key feature of the Ophidia framework stack: the "Analytics Workflow Management System" (AWfMS). The Ophidia AWfMS coordinates, orchestrates, optimises and monitors the execution of multiple scientific data analytics and visualization tasks, thus supporting "complex analytics experiments". Some real use cases related to the CMIP5 experiment will be discussed. In particular, with regard to the "Climate models intercomparison data analysis" case study proposed in the EU H2020 INDIGO-DataCloud project, workflows related to (i) anomalies, (ii) trend, and (iii) climate change signal analysis will be presented. Such workflows will be distributed across multiple sites - according to the datasets distribution - and will include intercomparison, ensemble, and outlier analysis. The two-level workflow solution envisioned in INDIGO (coarse grain for distributed tasks orchestration, and fine grain, at the level of a single data analytics cluster instance) will be presented and discussed.

  14. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.

  15. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  16. Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Davy, William C.; Whiting, Ellis E.

    1994-01-01

    The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.

  17. Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin; Brinkmann, Martin; Müller, Frank

    2015-03-01

    Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.

  18. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  19. Development of student performance assessment based on scientific approach for a basic physics practicum in simple harmonic motion materials

    NASA Astrophysics Data System (ADS)

    Serevina, V.; Muliyati, D.

    2018-05-01

    This research aims to develop students’ performance assessment instrument based on scientific approach is valid and reliable in assessing the performance of students on basic physics lab of Simple Harmonic Motion (SHM). This study uses the ADDIE consisting of stages: Analyze, Design, Development, Implementation, and Evaluation. The student performance assessment developed can be used to measure students’ skills in observing, asking, conducting experiments, associating and communicate experimental results that are the ‘5M’ stages in a scientific approach. Each grain of assessment in the instrument is validated by the instrument expert and the evaluation with the result of all points of assessment shall be eligible to be used with a 100% eligibility percentage. The instrument is then tested for the quality of construction, material, and language by panel (lecturer) with the result: 85% or very good instrument construction aspect, material aspect 87.5% or very good, and language aspect 83% or very good. For small group trial obtained instrument reliability level of 0.878 or is in the high category, where r-table is 0.707. For large group trial obtained instrument reliability level of 0.889 or is in the high category, where r-table is 0.320. Instruments declared valid and reliable for 5% significance level. Based on the result of this research, it can be concluded that the student performance appraisal instrument based on the developed scientific approach is declared valid and reliable to be used in assessing student skill in SHM experimental activity.

  20. Characterization of Settled Atmospheric Dust by the DART Experiment

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo

    1999-01-01

    The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.

  1. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  2. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  3. An illustrated gardener's guide to transgenic Arabidopsis field experiments.

    PubMed

    Frenkel, Martin; Jänkänpää, Hanna Johansson; Moen, Jon; Jansson, Stefan

    2008-01-01

    Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. This is believed to be the first example of a 'manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems.

  4. Feasibility Study of the Superconducting Gravity Gradiometer (SGG) Flight Test on the European Retrievable Carrier (EURECA)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.

  5. VIRGO: Experiment for helioseismology and solar irradiance monitoring

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus; Andersen, Bo N.

    1995-01-01

    The scientific objectives of the variability of solar irradiance and gravity oscillations (VIRGO) experiment are as follows: to determine the characteristics of pressure and internal gravity oscillations by observing irradiance and radiance variations; to measure the solar total and spectral irradiance, and to quantify their variability. Helioseismological methods can be applied to these data in order to probe the solar interior. Certain convection characteristics and their interaction with magnetic fields will be studied from the results of the irradiance monitoring and from the comparison of the amplitudes and phases of the oscillations as observed from the brightness by VIRGO and from velocity by the global oscillations at low frequency (GOLF) experiment. The VIRGO experiment contains two active-cavity radiometers that monitor the solar constant, two three-channel sunphotometers that measure the spectral irradiance, and a low resolution imager with 12 pixels that measures the radiance distribution over the solar disk at 500 nm. The scientific objectives of VIRGO are presented, the instruments and the data acquisition and control system are described, and their measured performances are given.

  6. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  7. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  8. Upgrading of the LGD cluster at JINR to support DLNP experiments

    NASA Astrophysics Data System (ADS)

    Bednyakov, I. V.; Dolbilov, A. G.; Ivanov, Yu. P.

    2017-01-01

    Since its construction in 2005, the Computing Cluster of the Dzhelepov Laboratory of Nuclear Problems has been mainly used to perform calculations (data analysis, simulation, etc.) for various scientific collaborations in which DLNP scientists take an active part. The Cluster also serves to train specialists. Much has changed in the past decades, and the necessity has arisen to upgrade the cluster, increasing its power and replacing the outdated equipment to maintain its reliability and modernity. In this work we describe the experience of performing this upgrading, which can be helpful for system administrators to put new equipment for clusters of this type into operation quickly and efficiently.

  9. High Performance Object-Oriented Scientific Programming in Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  10. Long-running telemedicine networks delivering humanitarian services: experience, performance and scientific output

    PubMed Central

    Geissbuhler, Antoine; Jethwani, Kamal; Kovarik, Carrie; Person, Donald A; Vladzymyrskyy, Anton; Zanaboni, Paolo; Zolfo, Maria

    2012-01-01

    Abstract Objective To summarize the experience, performance and scientific output of long-running telemedicine networks delivering humanitarian services. Methods Nine long-running networks – those operating for five years or more– were identified and seven provided detailed information about their activities, including performance and scientific output. Information was extracted from peer-reviewed papers describing the networks’ study design, effectiveness, quality, economics, provision of access to care and sustainability. The strength of the evidence was scored as none, poor, average or good. Findings The seven networks had been operating for a median of 11 years (range: 5–15). All networks provided clinical tele-consultations for humanitarian purposes using store-and-forward methods and five were also involved in some form of education. The smallest network had 15 experts and the largest had more than 500. The clinical caseload was 50 to 500 cases a year. A total of 59 papers had been published by the networks, and 44 were listed in Medline. Based on study design, the strength of the evidence was generally poor by conventional standards (e.g. 29 papers described non-controlled clinical series). Over half of the papers provided evidence of sustainability and improved access to care. Uncertain funding was a common risk factor. Conclusion Improved collaboration between networks could help attenuate the lack of resources reported by some networks and improve sustainability. Although the evidence base is weak, the networks appear to offer sustainable and clinically useful services. These findings may interest decision-makers in developing countries considering starting, supporting or joining similar telemedicine networks. PMID:22589567

  11. Toward the Standardization of Bioreactors for Space Research

    NASA Astrophysics Data System (ADS)

    Garcia, Michel; Nebuloni, Stefano; Dainesi, Paolo; Gass, Samuel

    Growing interest in long-term human space missions and exploration as well as future plans for extra-terrestrial human settlements, places increasing importance on understanding biological and chemical processes in space at cellular and molecular level. RUAG Space has been involved in the development of bioreactors for life-science experiments in space for the past 20 years. Throughout these developments, RUAG has acted as the link between scientists and the space industry, translating high-level scientific requirements into technical requirements, verifying their feasibility within the space context, and developing state-of-the-art experiment hardware which can interface with dedicated micro-gravity platform. Although this approach has brought forth promising developments in the field, it is associated to very long development phases as well as correspondingly high costs. Each new scientific experiment is often associated to an entirely new hardware development. This is, in large, due to the limited information available on the possibilities and constraints imposed by the particular context of space. Therefore, a considerable amount of time and development costs are invested in order to accommodate stringent scientific requirements and/or specific experiment design in space hardware. This does not only have an impact on funding opportunities for micro-gravity experiments in space, it also curbs the pace of scientific discoveries and limits the number of research opportunities. Therefore, in the following, we present an overview of already established possibilities for cellular research in space, with special emphasis on hardware developed by RUAG Space. This is intended to provide scientists with key technical information on already existing bioreactors, subsystems, and components, which may be used as a basis when designing scientific studies. By considering this information from the onset of the establishment of scientific requirements, technical solutions can be implemented which do not require major new and lengthy developments. RUAG believes this is pivotal in facilitating access to life-science research in space and thereby increasing scientific output in this research area. The overview includes a description of technical features such as feasible cultivation volumes in highly biocompatible and transparent culture chambers, cultivation method options (batch vs. continuous), associated feed rates, and chemical fixation methods. Feasible regulation and sensing possibilities (i.e. O2, CO2, temperature, pH, cell concentration), based on technologies already used in laboratory application, are also discussed. Important aspects related to flow homogeneity, mass/gas transfer and mixing methods in micro-gravity are also presented. Lastly, the environmental performance of existing bioreactors is also shown and a particular emphasis is placed on safety design aspects for space hardware.

  12. A Study of Cloud Radiative Forcing and Feedback

    NASA Technical Reports Server (NTRS)

    Ramanathan, Veerabhadran

    2000-01-01

    The main objective of the grant proposal was to participate in the CERES (Cloud and Earth's Radiant Energy System) Satellite experiment and perform interdisciplinary investigation of NASA's Earth Observing System (EOS). During the grant period, massive amounts of scientific data from diverse platforms have been accessed, processed and archived for continuing use; several software packages have been developed for integration of different data streams for performing scientific evaluation; extensive validation studies planned have been completed culminating in the development of important algorithms that are being used presently in the operational production of data from the CERES. Contributions to the inter-disciplinary science investigations have been significantly more than originally envisioned. The results of these studies have appeared in several refereed journals and conference proceedings. They are listed at the end of this report.

  13. An Experiment on Prediction Markets in Science

    PubMed Central

    Almenberg, Johan; Kittlitz, Ken; Pfeiffer, Thomas

    2009-01-01

    Prediction markets are powerful forecasting tools. They have the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to provide incentives for information acquisition. These market functionalities can be very valuable for scientific research. Here, we report an experiment that examines the compatibility of prediction markets with the current practice of scientific publication. We investigated three settings. In the first setting, different pieces of information were disclosed to the public during the experiment. In the second setting, participants received private information. In the third setting, each piece of information was private at first, but was subsequently disclosed to the public. An automated, subsidizing market maker provided additional incentives for trading and mitigated liquidity problems. We find that the third setting combines the advantages of the first and second settings. Market performance was as good as in the setting with public information, and better than in the setting with private information. In contrast to the first setting, participants could benefit from information advantages. Thus the publication of information does not detract from the functionality of prediction markets. We conclude that for integrating prediction markets into the practice of scientific research it is of advantage to use subsidizing market makers, and to keep markets aligned with current publication practice. PMID:20041139

  14. Balancing the Equity Equation: The Importance of Experience and Culture in Science Learning.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2003-01-01

    Explains the rights of all students, no matter what their background, to have the opportunity to attain scientific literacy. Points out the challenges and opportunities teachers face in a diverse student environment and how culturally diverse students speaking different languages perform worse than native English speakers. Presents instructional…

  15. Using Role Play to Debate Animal Testing

    ERIC Educational Resources Information Center

    Agell, Laia; Soria, Vanessa; Carrió, Mar

    2015-01-01

    The use of animals in biomedical research is a socio-scientific issue in which decision-making is complicated. In this article, we describe an experience involving a role play activity performed during school visits to the Barcelona Biomedical Research Park (PRBB) to debate animal testing. Role playing games require students to defend different…

  16. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    ERIC Educational Resources Information Center

    Shakur, Asif; Connor, Rainor

    2018-01-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and…

  17. Integrating Numerical Computation into the Modeling Instruction Curriculum

    ERIC Educational Resources Information Center

    Caballero, Marcos D.; Burk, John B.; Aiken, John M.; Thoms, Brian D.; Douglas, Scott S.; Scanlon, Erin M.; Schatz, Michael F.

    2014-01-01

    Numerical computation (the use of a computer to solve, simulate, or visualize a physical problem) has fundamentally changed the way scientific research is done. Systems that are too difficult to solve in closed form are probed using computation. Experiments that are impossible to perform in the laboratory are studied numerically. Consequently, in…

  18. My Path Into X-Ray, Optics and Pressure: Experiences and Achievements

    NASA Astrophysics Data System (ADS)

    Evans, William

    2013-04-01

    A successful career path in science is rarely formulaic or achieved by following a predefined set of actions. Sustained commitment, perseverance, performance and relationships are all key ingredients. Judicious selection of opportunities (research projects, employers, etc.) can lead to significant scientific accomplishments and career advancements. In this presentation I will review the trajectory of my scientific career spanning my experiences from the Westinghouse STS and ISEF, through Caltech and Harvard to my current position of High Pressure Physics Group Leader at Lawrence Livermore National Laboratory. I will discuss my involvement in some exciting research projects using x-ray synchrotron sources and optical spectroscopy to study static and dynamic properties of materials at high-pressures. In addition, I will share my perspectives on the importance of excellence, preparedness and the value of professional relationships.

  19. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized fashion and can design experiments to generate greater fitness in an accelerated time frame, thereby pushing the limits of what adaptive laboratory evolution can achieve. Copyright © 2017 American Society for Microbiology.

  20. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  1. Design of a comprehensive biochemistry and molecular biology experiment: phase variation caused by recombinational regulation of bacterial gene expression.

    PubMed

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.

  2. Effects of Background Pressure on Relativistic Laser-Plasma Interaction Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Peterson, Andrew; Orban, C.; Feister, S.; Ngirmang, G.; Smith, J. T.; Klim, A.; Frische, K.; Morrison, J.; Chowdhury, E.; Roquemore, W. M.

    2016-10-01

    Typically, ultra-intense laser-accelerated ion experiments are carried out under high-vacuum conditions and with a repetition rate up to several shots per day. Looking to the future there is a need to perform these experiments with a much larger repetition rate. A continuously flowing liquid target is more suitable than a solid target for this purpose. However liquids vaporize below their vapor pressure, and the experiment cannot be performed under high-vacuum conditions. The effects of this non-negligible high chamber pressure acceleration of charged particles is not yet well understood. We investigate this phenomena using Particle-in-Cell simulations, exploring the effect of the background pressure on the accelerated ion spectrum. Experiments in this regime are being performed at the Air Force Research Laboratory at Wright-Patterson Air Force Base. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the Air Force Office of Scientific Research, under the management of Dr. Enrique Parra, Program Manager and significant support from the DOD HPCMP Internship Program.

  3. Trajectory determinations and collection of micrometeoroids on the space station. Report of the Workshop on Micrometeorite Capture Experiments

    NASA Technical Reports Server (NTRS)

    Hoerz, F. (Editor)

    1986-01-01

    Summaries of papers presented at the Workshop on Micrometeorite Capture Experiments are compiled. The goals of the workshop were to define the scientific objectives and the resulting performance requirements of a potential Space Station facility and to identify the major elements of a coherent development program that would generate the desired capabilities within the next decade. Specific topics include cosmic dust and space debris collection techniques, particle trajectory and source determination, and specimen analysis methods.

  4. Wooooooahhh! vs Aha!, is the choice obvious?

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz

    2016-11-01

    There has been a lot of focus towards attracting people, especially under-represented groups, to STEM fields. One of the ways to accomplish this is short demonstrations and workshops, where young students are exposed to "exciting" experiments in an effort to make STEM more appealing. We tried an alternative approach by making the students perform a deliberately "boring" experiment but one which made them think scientifically. This was tested on a small group of high school students during Girls Technology Day in New Hampshire.

  5. Skylab

    NASA Image and Video Library

    1970-01-01

    This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  6. Study of the comprehension of the scientific method by members of a university health research laboratory.

    PubMed

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  7. Study of the comprehension of the scientific method by members of a university health research laboratory

    PubMed Central

    Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.

    2012-01-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427

  8. High-Temperature Controlled Redox Crystallization Studies

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1985-01-01

    The crystallization of silicates containing redox sensitive ions (e.g., Fe, Ti, Ce) must be performed under controlled and known redox conditions in order to obtain the maximum scientific benefit from experimental study. Furthermore, many compositions crystallize dense phases which settle during ground-based experiments. This settling influences the texture and chemical evolution of the crystallizing system. The purpose of this investigation is to develop a test system in which controlled redox experiments can be performed in the microgravity environment. The system will use solid ceramic oxygen electrolyte cells for control, measurements, and production of the required redox conditions. A preliminary design for a prototype is developed, the electrolyte and furnace tested, and a tentative protocol for experiment developed. The control parameter is to be established and a laboratory prototype built.

  9. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 1: Executive summary and overview

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.

  10. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  11. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  12. The influence of authentic scientific research experiences on teachers' conceptions of the nature of science (NOS) and their NOS teaching practices

    NASA Astrophysics Data System (ADS)

    Moriarty, Meghan A.

    This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.

  13. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  14. Perrault's experiments, a matter of soil hydrology and epistemology

    NASA Astrophysics Data System (ADS)

    Barontini, Stefano; Berta, Andrea; Settura, Matteo

    2017-04-01

    The studies conducted in the second half of the Sixteenth Century were crucial both for the hydrological knowledge and for the modern epistemology. In fact thanks to the new experiment-based scientific approach the Sun was about to be fully recognized as the engine of the hydrological cycle instead of an endogenous engine placed in the depths of the Earth, and the original Aristotelic approach to the description of the nature, based on the the four qualities (hot and cold, dry and moist), was got over. At the same time, the questions posed on the hydrological cycle and on the soil hydrology, which are hardly reproducible by means of a controlled laboratory model, severely tested the modern scientific approach at its beginning, and contributed to the development of modern epistemology. Perrault's classical book De l'origine des fontaines (On the origin of springs, 1674) is deeply rooted in these debates. In this book he performed experiments and collected many observations both to assess the water balance at the basin scale and to understand the water movement in the upper soil layers. Particularly he performed four experiments to understand whether the water could spontaneously rise within the soil from the water table and originate springs (1st and 2nd experiment), how deep the rainfall could percolate through the soil and recharge the groundwater table (3rd one), and whether salty water remained salty when rising into the soil by capillary action (4th one). In order to do so he filled with different soils a leaden pipe, 65cm long, and observed their performances against capillary rise, infiltration, percolation and water-content redistribution. The great detail of the experimental report allowed us to quantitatively re-experience the first three ones in the laboratory, with comparable results to Perrault's ones. Moreover it allowed us to recognize both the omitted data which would be needed for a complete repeatability, and the observations which leaded Perrault to misinterpretate the experiments by a physical point of view. As his interpretation of the experiments did not corroborate the hypothesis that precipitation might be at the origin of all the springs, it accepted one of the forms of the traditional scheme of water circulation. According to it, greatly productive springs should be sustained by evaporation and condensation processes taking place below the soil surface. Even if Perrault's conclusions went in the direction of the ancient opinion, not only De l'origine des fontaines is a seminal work of experimental hydrology, but also it can be regarded to as a milestone of scientific revolution. In his critique of both ancient (e.g. Aristotle) and modern scholars (e.g. Nicolas Papin) he makes use of principles drawn by the works of Bacon, Galilei and Pascal. Stating that "the first and most usual maxim of our moderns is to doubt everything", he shows deep awareness of the specific essence of scientific modernity. Moreover his rejection of alchemy, analogical reasoning and astrological influences arises from the conviction that "it is to experiments that we owe the finest knowledge we now have concerning the things of nature". According to this perspective, despite of all the difficulties of the soil-hydrologic laboratory practice, Perrault was nevertheless able to report his experiments in terms that we can properly reproduce nowadays.

  15. MSFC Skylab instrumentation and communication system mission evaluation

    NASA Technical Reports Server (NTRS)

    Adair, B. M.

    1974-01-01

    An evaluation of the in-orbit performance of the instrumentation and communications systems installed on Skylab is presented. Performance is compared with functional requirements and the fidelity of communications. In-orbit performance includes processing engineering, scientific, experiment, and biomedical data, implementing ground-generated commands, audio and video communication, generating rendezvous ranging information, and radio frequency transmission and reception. A history of the system evolution based on the functional requirements and a physical description of the launch configuration is included. The report affirms that the instrumentation and communication system satisfied all imposed requirements.

  16. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    PubMed

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  17. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science

    PubMed Central

    Grady, Julie R.; Dolan, Erin L.; Glasson, George E.

    2013-01-01

    Students’ experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students’ experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face–to–face interviews with the teacher, and students’ work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students’ participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers. PMID:23935256

  18. "Shocking" masculinity: Stanley Milgram, "obedience to authority," and the "crisis of manhood" in Cold War America.

    PubMed

    Nicholson, Ian

    2011-06-01

    Stanley Milgram's study of "obedience to authority" is one of the best-known psychological experiments of the twentieth century. This essay examines the study's special charisma through a detailed consideration of the intellectual, cultural, and gender contexts of Cold War America. It suggests that Milgram presented not a "timeless" experiment on "human nature" but, rather, a historically contingent, scientifically sanctioned "performance" of American masculinity at a time of heightened male anxiety. The essay argues that this gendered context invested the obedience experiments with an extraordinary plausibility, immediacy, and relevance. Immersed in a discourse of masculinity besieged, many Americans read the obedience experiments not as a fanciful study of laboratory brutality but as confirmation of their worst fears. Milgram's extraordinary success thus lay not in his "discovery" of the fragility of individual conscience but in his theatrical flair for staging culturally relevant masculine performances.

  19. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment

    ERIC Educational Resources Information Center

    Girault, Isabelle; d'Ham, Cédric

    2014-01-01

    When solving a scientific problem through experimentation, students may have the responsibility to design the experiment. When students work in a conventional condition, with paper and pencil, the designed procedures stay at a very general level. There is a need for additional scaffolds to help the students perform this complex task. We propose a…

  20. Testing Foreign Language Impact on Engineering Students' Scientific Problem-Solving Performance

    ERIC Educational Resources Information Center

    Tatzl, Dietmar; Messnarz, Bernd

    2013-01-01

    This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in…

  1. User Feedback Procedures; Part III of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Part Three of this five part report on Salton's Magical Automatic Retriever of Texts (SMART) project contains four papers. The first: "Variations on the Query Splitting Technique with Relevance Feedback" by T. P. Baker discusses some experiments in relevance feedback performed with variations on the technique of query splitting. The…

  2. Science Fun with Electricity...Discoveries and Innovations.

    ERIC Educational Resources Information Center

    Horton, Robert L.

    This project manual is written for 4-H member children who are in the fifth grade or older. This project is designed to familiarize members with the scientific history concerning the discovery and application of electric energy through the 1800's. Readers can conduct experiments similar to the ones performed by the scientists and inventors of that…

  3. A Lesson Not to Be Learned? Understanding Stereotype Threat Does Not Protect Women from Stereotype Threat

    ERIC Educational Resources Information Center

    Tomasetto, Carlo; Appoloni, Sara

    2013-01-01

    This research examines whether reading a text presenting scientific evidence concerning the phenomenon of stereotype threat improves or disrupts women's performance in a subsequent math task. In two experimental conditions participants (N=118 ) read a text summarizing an experiment in which stereotypes, and not biological differences, were shown…

  4. Facing page test for the astronaut science advisor presentation

    NASA Technical Reports Server (NTRS)

    Compton, Michael M.

    1991-01-01

    The goal of the Astronaut Science Advisor (ASA) project is to improve the scientific return of experiments performed in space by providing astronaut experimenters with an 'intelligent assistant' that encapsulates much of the domain- and experiment-related knowledge commanded by the Principal Investigator (PI) on the ground. By using expert systems technology and the availability of flight-qualified personal computers, it is possible to encode the requisite knowledge and make it available to astronauts as they perform experiments in space. The system performs four major functions: diagnosis and troubleshooting of experiment apparatus, data collection, protocol management, and detection of interesting data. The experiment used for development of the system measures human adaptation to weightlessness in the context of the neurovestibular system. This so-called 'Rotating Dome' experiment was flown on the recent Spacelab Life Sciences One (SLS-1) Mission. This mission was used as an opportunity to test some of the system's functionality. Experiment data was downlinked from the orbiter, and the system then captured the data and analyzed it in real time. The system kept track of the time being used by the experiment, recognized occurrences of interesting data, summarized data statistically and generated potential new protocols that could be used to optimize the course of the experiment.

  5. Tailoring Summer Research Experiences to Diverse Student Cohorts: Lessons Learned from Teaching Scientific Communication to Summer Interns

    NASA Astrophysics Data System (ADS)

    Batchelor, R. L.; Haacker, R.

    2014-12-01

    Scientific posters, presentations and papers are frequently assigned outputs for students participating in summer research experiences, yet previous exposure to any form of scientific communication is not a given. Providing training in scientific communication in some form is thus a necessity for many internship programs, especially those aimed towards academically younger students. In this presentation, we will share some of the experiences we've gained from teaching scientific communication workshops to summer interns who range from high school to graduate school. Building on the many years of experience learned through the Significant Opportunities in Atmospheric Research Science (SOARS) program, course material has been adapted and tailored to students participating in the National Center for Atmospheric Research High-School Internship Research Opportunity (HIRO, now the NCAR PreCollege Internship) and Research Experiences for Community College Students (RECCS, based with Colorado University's Cooperative Institute for Research in Environmental Science). SOARS also has experience supporting graduate students towards publication. Weekly communications workshops have served not only to provide necessary scientific skills, but also as a place to gather, reflect, discuss and build community. The unique opportunities and challenges in working with each of these groups will be discussed as part of the larger community discussion of how we can increase diversity in STEM through providing genuine research experiences to diverse and academically young students.

  6. Experience Paper: Software Engineering and Community Codes Track in ATPESC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; Riley, Katherine M.

    Argonne Training Program in Extreme Scale Computing (ATPESC) was started by the Argonne National Laboratory with the objective of expanding the ranks of better prepared users of high performance computing (HPC) machines. One of the unique aspects of the program was inclusion of software engineering and community codes track. The inclusion was motivated by the observation that the projects with a good scientific and software process were better able to meet their scientific goals. In this paper we present our experience of running the software track from the beginning of the program until now. We discuss the motivations, the reception,more » and the evolution of the track over the years. We welcome discussion and input from the community to enhance the track in ATPESC, and also to facilitate inclusion of similar tracks in other HPC oriented training programs.« less

  7. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert; Ang, James; Bergman, Keren

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a systemmore » that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.« less

  8. AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven

    Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less

  9. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/A. Stancil) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/T. Zaperach) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  12. Handling Metadata in a Neurophysiology Laboratory

    PubMed Central

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G.; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397

  13. Handling Metadata in a Neurophysiology Laboratory.

    PubMed

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.

  14. Electronic Collaboration Logbook

    NASA Astrophysics Data System (ADS)

    Gysin, Suzanne; Mandrichenko, Igor; Podstavkov, Vladimir; Vittone, Margherita

    2012-12-01

    In HEP, scientific research is performed by large collaborations of organizations and individuals. The logbook of a scientific collaboration is an important part of the collaboration record. Often it contains experimental data. At Fermi National Accelerator Laboratory (FNAL), we developed an Electronic Collaboration Logbook (ECL) application, which is used by about 20 different collaborations, experiments and groups at FNAL. The ECL is the latest iteration of the project formerly known as the Control Room Logbook (CRL). We have been working on mobile (IOS and Android) clients for the ECL. We will present the history, current status and future plans of the project, as well as design, implementation and support solutions made by the project.

  15. Toward server-side, high performance climate change data analytics in the Earth System Grid Federation (ESGF) eco-system

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Williams, Dean; Aloisio, Giovanni

    2016-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF) Compute Working Team. Also highlighted will be the results of large scale climate model intercomparison data analysis experiments, for example: (1) defined in the context of the EU H2020 INDIGO-DataCloud project; (2) implemented in a real geographically distributed environment involving CMCC (Italy) and LLNL (US) sites; (3) exploiting Ophidia as server-side, parallel analytics engine; and (4) applied on real CMIP5 data sets available through ESGF.

  16. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  17. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  18. PI-in-a-box: Intelligent onboard assistance for spaceborne experiments in vestibular physiology

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Young, Laurence; Wogrin, Nancy; Rosenthal, Don

    1988-01-01

    In construction is a knowledge-based system that will aid astronauts in the performance of vestibular experiments in two ways: it will provide real-time monitoring and control of signals and it will optimize the quality of the data obtained, by helping the mission specialists and payload specialists make decisions that are normally the province of a principal investigator, hence the name PI-in-a-box. An important and desirable side-effect of this tool will be to make the astronauts more productive and better integrated members of the scientific team. The vestibular experiments are planned by Prof. Larry Young of MIT, whose team has already performed similar experiments in Spacelab missions SL-1 and D-1, and has experiments planned for SLS-1 and SLS-2. The knowledge-based system development work, performed in collaboration with MIT, Stanford University, and the NASA-Ames Research Center, addresses six major related functions: (1) signal quality monitoring; (2) fault diagnosis; (3) signal analysis; (4) interesting-case detection; (5) experiment replanning; and (6) integration of all of these functions within a real-time data acquisition environment. Initial prototyping work has been done in functions (1) through (4).

  19. How Historical Experiments Can Improve Scientific Knowledge and Science Education: The Cases of Boiling Water and Electrochemistry

    ERIC Educational Resources Information Center

    Chang, Hasok

    2011-01-01

    I advance some novel arguments for the use of historical experiments in science education. After distinguishing three different types of historical experiments and their general purposes, I define "complementary experiments", which can recover lost scientific knowledge and extend what has been recovered. Complementary experiments can help science…

  20. Principal Investigator-in-a-Box

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1999-01-01

    Human performance in orbit is currently limited by several factors beyond the intrinsic awkwardness of motor control in weightlessness. Cognitive functioning can be affected by such factors as cumulative sleep loss, stress and the psychological effects of long-duration small-group isolation. When an astronaut operates a scientific experiment, the performance decrement associated with such factors can lead to lost or poor quality data and even the total loss of a scientific objective, at great cost to the sponsors and to the dismay of the Principal Investigator. In long-duration flights, as anticipated on the International Space Station and on any planetary exploration, the experimental model is further complicated by long delays between training and experiment, and the large number of experiments each crew member must perform. Although no documented studies have been published on the subject, astronauts report that an unusually large number of simple errors are made in space. Whether a result of the effects of microgravity, accumulated fatigue, stress or other factors, this pattern of increased error supports the need for a computerized decision-making aid for astronauts performing experiments. Artificial intelligence and expert systems might serve as powerful tools for assisting experiments in space. Those conducting space experiments typically need assistance exactly when the planned checklist does not apply. Expert systems, which use bits of human knowledge and human methods to respond appropriately to unusual situations, have a flexibility that is highly desirable in circumstances where an invariably predictable course of action/response does not exist. Frequently the human expert on the ground is unavailable, lacking the latest information, or not consulted by the astronaut conducting the experiment. In response to these issues, we have developed "Principal Investigator-in-a-Box," or [PI], to capture the reasoning process of the real expert, the Principal Investigator, and combine that with real-time data available in space in order to advise the astronaut about how to proceed in real time. [PI] advises the astronaut during the progress of an experiment in much the same way a real Principal Investigator might do while looking over the astronaut's shoulder. In its original application, [PI] mimicked several of the tasks of the Principal Investigator, including data quality monitoring, troubleshooting, prescheduling, protocol management and "interesting data" detection. The proposed research focuses on the efficacy of this technique as applied to the data quality monitoring and troubleshooting aspects of [PI].

  1. The fast azimuthal integration Python library: pyFAI.

    PubMed

    Ashiotis, Giannis; Deschildre, Aurore; Nawaz, Zubair; Wright, Jonathan P; Karkoulis, Dimitrios; Picca, Frédéric Emmanuel; Kieffer, Jérôme

    2015-04-01

    pyFAI is an open-source software package designed to perform azimuthal integration and, correspondingly, two-dimensional regrouping on area-detector frames for small- and wide-angle X-ray scattering experiments. It is written in Python (with binary submodules for improved performance), a language widely accepted and used by the scientific community today, which enables users to easily incorporate the pyFAI library into their processing pipeline. This article focuses on recent work, especially the ease of calibration, its accuracy and the execution speed for integration.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Brian James

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less

  3. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  4. 'Sciencenet'--towards a global search and share engine for all scientific knowledge.

    PubMed

    Lütjohann, Dominic S; Shah, Asmi H; Christen, Michael P; Richter, Florian; Knese, Karsten; Liebel, Urban

    2011-06-15

    Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, 'Sciencenet', which facilitates rapid searching over this large data space. By 'bringing the search engine to the data', we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the 'AskMe' experiment publisher is written in Python 2.7, and the backend 'YaCy' search engine is based on Java 1.6.

  5. Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.

  6. Investigating Flow Experience and Scientific Practices during a Mobile Serious Educational Game

    ERIC Educational Resources Information Center

    Bressler, Denise M.; Bodzin, Alec M.

    2016-01-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game (n = 59) were…

  7. An Overview of the Object Protocol Model (OPM) and the OPM Data Management Tools.

    ERIC Educational Resources Information Center

    Chen, I-Min A.; Markowitz, Victor M.

    1995-01-01

    Discussion of database management tools for scientific information focuses on the Object Protocol Model (OPM) and data management tools based on OPM. Topics include the need for new constructs for modeling scientific experiments, modeling object structures and experiments in OPM, queries and updates, and developing scientific database applications…

  8. Assessment of Scientific Reasoning: the Effects of Task Context, Data, and Design on Student Reasoning in Control of Variables.

    PubMed

    Zhou, Shaona; Han, Jing; Koenig, Kathleen; Raplinger, Amy; Pi, Yuan; Li, Dan; Xiao, Hua; Fu, Zhao; Bao, Lei

    2016-03-01

    Scientific reasoning is an important component under the cognitive strand of the 21st century skills and is highly emphasized in the new science education standards. This study focuses on the assessment of student reasoning in control of variables (COV), which is a core sub-skill of scientific reasoning. The main research question is to investigate the extent to which the existence of experimental data in questions impacts student reasoning and performance. This study also explores the effects of task contexts on student reasoning as well as students' abilities to distinguish between testability and causal influences of variables in COV experiments. Data were collected with students from both USA and China. Students received randomly one of two test versions, one with experimental data and one without. The results show that students from both populations (1) perform better when experimental data are not provided, (2) perform better in physics contexts than in real-life contexts, and (3) students have a tendency to equate non-influential variables to non-testable variables. In addition, based on the analysis of both quantitative and qualitative data, a possible progression of developmental levels of student reasoning in control of variables is proposed, which can be used to inform future development of assessment and instruction.

  9. Assessment of Scientific Reasoning: the Effects of Task Context, Data, and Design on Student Reasoning in Control of Variables

    PubMed Central

    Zhou, Shaona; Han, Jing; Koenig, Kathleen; Raplinger, Amy; Pi, Yuan; Li, Dan; Xiao, Hua; Fu, Zhao

    2015-01-01

    Scientific reasoning is an important component under the cognitive strand of the 21st century skills and is highly emphasized in the new science education standards. This study focuses on the assessment of student reasoning in control of variables (COV), which is a core sub-skill of scientific reasoning. The main research question is to investigate the extent to which the existence of experimental data in questions impacts student reasoning and performance. This study also explores the effects of task contexts on student reasoning as well as students’ abilities to distinguish between testability and causal influences of variables in COV experiments. Data were collected with students from both USA and China. Students received randomly one of two test versions, one with experimental data and one without. The results show that students from both populations (1) perform better when experimental data are not provided, (2) perform better in physics contexts than in real-life contexts, and (3) students have a tendency to equate non-influential variables to non-testable variables. In addition, based on the analysis of both quantitative and qualitative data, a possible progression of developmental levels of student reasoning in control of variables is proposed, which can be used to inform future development of assessment and instruction. PMID:26949425

  10. SDS: A Framework for Scientific Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bin; Byna, Surendra; Wu, Kesheng

    2013-10-31

    Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read callsmore » to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.« less

  11. Becoming a scientist: A qualitative study of the educational experience of undergraduates working in an American and a Brazilian research laboratory

    NASA Astrophysics Data System (ADS)

    Pascoa, Maria Beatriz Amorim

    Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in science. In addition, the study of two countries enriched the research inquiry, adding to the findings reflections on the ways differences in national contexts affects scientific training and scientific practices. Mainly, this qualitative research of students in laboratories offers some concrete recommendations and illuminating reflections for science educators, science policy makers, and for those working in the understanding of science epistemologies.

  12. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.

  13. The teratology testing of cosmetics.

    PubMed

    Spézia, François; Barrow, Paul C

    2013-01-01

    In Europe, the developmental toxicity testing (including teratogenicity) of new cosmetic ingredients is performed according to the Cosmetics Directive 76/768/EEC: only alternatives leading to full replacement of animal experiments should be used. This chapter presents the three scientifically validated animal alternative methods for the assessment of embryotoxicity: the embryonic stem cell test (EST), the micromass (MM) assay, and the whole embryo culture (WEC) assay.

  14. Do Predators Always Win? Starfish versus Limpets: A Hands-On Activity Examining Predator-Prey Interactions

    ERIC Educational Resources Information Center

    Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel

    2011-01-01

    In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…

  15. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  16. EURECA mission control experience and messages for the future

    NASA Technical Reports Server (NTRS)

    Huebner, H.; Ferri, P.; Wimmer, W.

    1994-01-01

    EURECA is a retrievable space platform which can perform multi-disciplinary scientific and technological experiments in a Low Earth Orbit for a typical mission duration of six to twelve months. It is deployed and retrieved by the NASA Space Shuttle and is designed to support up to five flights. The first mission started at the end of July 1992 and was successfully completed with the retrieval in June 1993. The operations concept and the ground segment for the first EURECA mission are briefly introduced. The experiences in the preparation and the conduction of the mission from the flight control team point of view are described.

  17. An analysis of learning process based on scientific approach in physical chemsitry experiment

    NASA Astrophysics Data System (ADS)

    Arlianty, Widinda Normalia; Febriana, Beta Wulan; Diniaty, Artina

    2017-03-01

    This study aimed to analysis the quality of learning process based on scientific approach in physical chemistry experiment of Chemistry Education students, Islamic University of Indonesia. The research was descriptive qualitative. The samples of this research were 2nd semester student, class of 2015. Scientific data of learning process were collected by observation sheet and documentation of seven title experimental. The results showed that the achievement of scientific learning process on observing, questioning, experimenting and associating data were 73.98%; 81.79%; 80.74%; and 76.94% respectively, which categorized as medium. Furthermore, for aspect communicating had high category at 86.11% of level achievement.

  18. Mars surface transportation options

    NASA Technical Reports Server (NTRS)

    Leitner, Jeffrey M.; Alred, John W.

    1986-01-01

    As the number of scientific experiments for the surface of Mars grows, the need for effective surface transportation becomes critical. Because of the diversity of the experiments proposed, as well as the desire to explore Mars from the equator to the poles, the optimum surface vehicle configuration is not obvious. Five candidate vehicles are described, with an estimate of their size and performance. In order to maximize the success of a manned Mars mission, it appears that two vehicles should be designed for surface transportation: an advanced long-range rover, and a remotely-piloted airplane.

  19. Interior View of the Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This photograph is an interior view of the Orbital Workshop (OWS) upper level looking from the airlock hatch, showing the octagonal opening that separated the workshop's two levels. The trash airlock can be seen at center. The lower level of the OWS provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  20. Learning and performance under alternative instructional manifestations of experimental practice

    NASA Astrophysics Data System (ADS)

    Ford, Michael J.

    Before we can understand how students learn "to do" science, we must make explicit our assumptions about what scientific practice is. This study compares the learning outcomes of two sixth-grade instructional units on experimentation, each based on a particular characterization of practice. In one unit, instruction focused on acquisition and application of the control of variables strategy (CVS; Chen & Klahr, 1999), which is consistent with a popular conception of science education, stemming from Piaget, as the mastery of logical forms. In the other unit, students designed experimental apparatus to answer a target question, and instruction emphasized practices of rendering and transforming the material world in ways that support scientific understanding. Students in both groups were assessed for CVS acquisition and subsequent experimental performance on a novel task, and group performances on these assessments different across instructional conditions. I will argue that student understandings of goals, norms of instructional expectation, and strategies explain these differences, in some cases by supporting performance and in other cases by hindering it. I will also argue that the results question the role typically attributed to logical method in learning to design experiments.

  1. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990-2010

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Andersson, Camilla; Manders, Astrid; Mar, Kathleen; Mircea, Mihaela; Pay, Maria-Teresa; Raffort, Valentin; Tsyro, Svetlana; Cuvelier, Cornelius; Adani, Mario; Bessagnet, Bertrand; Bergström, Robert; Briganti, Gino; Butler, Tim; Cappelletti, Andrea; Couvidat, Florian; D'Isidoro, Massimo; Doumbia, Thierno; Fagerli, Hilde; Granier, Claire; Heyes, Chris; Klimont, Zig; Ojha, Narendra; Otero, Noelia; Schaap, Martijn; Sindelarova, Katarina; Stegehuis, Annemiek I.; Roustan, Yelva; Vautard, Robert; van Meijgaard, Erik; Garcia Vivanco, Marta; Wind, Peter

    2017-09-01

    The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have - to date - completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990-2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.

  2. JoVE: the Journal of Visualized Experiments.

    PubMed

    Vardell, Emily

    2015-01-01

    The Journal of Visualized Experiments (JoVE) is the world's first scientific video journal and is designed to communicate research and scientific methods in an innovative, intuitive way. JoVE includes a wide range of biomedical videos, from biology to immunology and bioengineering to clinical and translation medicine. This column describes the browsing and searching capabilities of JoVE, as well as its additional features (including the JoVE Scientific Education Database designed for students in scientific fields).

  3. Simple Messages Help Set the Record Straight about Scientific Agreement on Human-Caused Climate Change: The Results of Two Experiments

    PubMed Central

    Myers, Teresa A.; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents’ estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an “estimation and reveal” technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed. PMID:25812121

  4. Simple messages help set the record straight about scientific agreement on human-caused climate change: the results of two experiments.

    PubMed

    Myers, Teresa A; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents' estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an "estimation and reveal" technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed.

  5. Exploration Science Opportunities for Students within Higher Education

    NASA Astrophysics Data System (ADS)

    Bailey, Brad; Minafra, Joseph; Schmidt, Gregory

    2016-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  6. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    ERIC Educational Resources Information Center

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  7. Sexual Activity before Sports Competition: A Systematic Review.

    PubMed

    Stefani, Laura; Galanti, Giorgio; Padulo, Johnny; Bragazzi, Nicola L; Maffulli, Nicola

    2016-01-01

    Sexual activity before competition has been considered as a possible cause for reduced performance since ancient Greece and Rome. Recently, the hypothesis that optimal sport performance could be influenced by a variety of factors including sexual activity before competition has been investigated. However, few scientific data are available, with the exception of anecdotal reports of individual experiences. The present systematic review focused on the current scientific evidence on the effects of sexual activity on sport performance regardless of sport type. Data were obtained following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, using PubMed/MEDLINE, ISI/Web of Science, the Cochrane Collaboration Database, Cochrane Library, Evidence Database (PEDro), Evidence Based Medicine (EBM) Search review, National Guidelines, ProQuest, and Scopus, all searched from inception further, to broaden the search, no time filter nor language restriction have been applied. Also, the gray literature was mined using Google Scholar. Only relevant scientific articles reporting outcomes of athletic performance after sexual activity were considered. The impact of sexual activity before a sport competition is still unclear, but most studies generally seem to exclude a direct impact of sexual activity on athletic aerobic and strength performance. The most important aspect seems to be the interval from the time of the sports competition that affects negatively the performance if it is shorter than 2 h. There are possible negative effects from some possible concurrent wrong behaviors such as smoking or alcohol abuse. There are no investigations about the effect of masturbation in this context. There is a need to clarify the effects of sexual activity on competition performance. The present evidence suggests that sexual activity the day before competition does not exert any negative impact on performance, even though high-quality, randomized controlled studies are urgently needed.

  8. Sexual Activity before Sports Competition: A Systematic Review

    PubMed Central

    Stefani, Laura; Galanti, Giorgio; Padulo, Johnny; Bragazzi, Nicola L.; Maffulli, Nicola

    2016-01-01

    Sexual activity before competition has been considered as a possible cause for reduced performance since ancient Greece and Rome. Recently, the hypothesis that optimal sport performance could be influenced by a variety of factors including sexual activity before competition has been investigated. However, few scientific data are available, with the exception of anecdotal reports of individual experiences. The present systematic review focused on the current scientific evidence on the effects of sexual activity on sport performance regardless of sport type. Data were obtained following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, using PubMed/MEDLINE, ISI/Web of Science, the Cochrane Collaboration Database, Cochrane Library, Evidence Database (PEDro), Evidence Based Medicine (EBM) Search review, National Guidelines, ProQuest, and Scopus, all searched from inception further, to broaden the search, no time filter nor language restriction have been applied. Also, the gray literature was mined using Google Scholar. Only relevant scientific articles reporting outcomes of athletic performance after sexual activity were considered. The impact of sexual activity before a sport competition is still unclear, but most studies generally seem to exclude a direct impact of sexual activity on athletic aerobic and strength performance. The most important aspect seems to be the interval from the time of the sports competition that affects negatively the performance if it is shorter than 2 h. There are possible negative effects from some possible concurrent wrong behaviors such as smoking or alcohol abuse. There are no investigations about the effect of masturbation in this context. There is a need to clarify the effects of sexual activity on competition performance. The present evidence suggests that sexual activity the day before competition does not exert any negative impact on performance, even though high-quality, randomized controlled studies are urgently needed. PMID:27445838

  9. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A vapor cloud is seen after launch of a Black Brant IX suborbital sounding rocket, launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/J. Adkins) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media.

    PubMed

    Stefanoni, Matteo; Angst, Ueli M; Elsener, Bernhard

    2018-05-09

    Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

  11. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab 1 module and pallet ready to be installed in the cargo bay of the Space Shuttle Orbiter Columbia at the Kennedy Space Center. The overall goal of the first Spacelab mission was to verify its Space performance through a variety of scientific experiments. The investigation selected for this mission tested the Spacelab hardware, flight and ground systems, and crew to demonstrate their capabilities for advanced research in space. However, Spacelab 1 was not merely a checkout flight or a trial run. Important research problems that required a laboratory in space were scheduled for the mission. Spacelab 1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. These fields were Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. Spacelab 1 was launched aboard the Space Shuttle Columbia (STS-9 mission) on November 28, 1983.

  12. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  13. Studying scientific thought experiments in their context: Albert Einstein and electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Potters, Jan; Leuridan, Bert

    2017-05-01

    This article concerns the way in which philosophers study the epistemology of scientific thought experiments. Starting with a general overview of the main contemporary philosophical accounts, we will first argue that two implicit assumptions are present therein: first, that the epistemology of scientific thought experiments is solely concerned with factual knowledge of the world; and second, that philosophers should account for this in terms of the way in which individuals in general contemplate these thought experiments in thought. Our goal is to evaluate these assumptions and their implications using a particular case study: Albert Einstein's magnet-conductor thought experiment. We will argue that an analysis of this thought experiment based on these assumptions - as John Norton (1991) provides - is, in a sense, both misguided (the thought experiment by itself did not lead Einstein to factual knowledge of the world) and too narrow (to understand the thought experiment's epistemology, its historical context should also be taken into account explicitly). Based on this evaluation we propose an alternative philosophical approach to the epistemology of scientific thought experiments which is more encompassing while preserving what is of value in the dominant view.

  14. Remote measurements of upper atmospheric density and temperature

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa

    1995-01-01

    A suborbital experiment was designed to study the photochemistry of the mesosphere by observing simultaneously the airglow emissions with in-situ minor species number density profiles. The experiment was very successful and some preliminary results have already been reported in various scientific meetings. Two scientific papers are currently in the process of final preparation for submission for publication. In this final project report, we will first give a background description of the experiment and follow by the summaries of the scientific papers currently being prepared.

  15. Creepy Crawlies and the Scientific Method: Over 100 Hands-On Science Experiments for Children.

    ERIC Educational Resources Information Center

    Kneidel, Sally Stenhouse

    This book contains 114 experiments, mostly behavioral, with animals that are commonly found in nature. Each experiment is a five-step procedure: question, hypothesis, methods, result, and conclusion. Chapter 1 is devoted entirely to explaining these five steps, which together constitute the scientific method. The experiments are in the last part…

  16. Silly Science: Strange and Startling Projects To Amaze Your Family and Friends.

    ERIC Educational Resources Information Center

    Levine, Shar; Johnstone, Leslie

    This book is a collection of 28 experiments that are not meant to have any practical purpose. Each experiment, however, illustrates a scientific principle and enables students to discover how scientific facts and theories apply to seemingly useless experiments. Each experiment includes a list of materials, a series of steps, an explanation of the…

  17. Taming theory with thought experiments: Understanding and scientific progress.

    PubMed

    Stuart, Michael T

    2016-08-01

    I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Revisiting the scientific method to improve rigor and reproducibility of immunohistochemistry in reproductive science.

    PubMed

    Manuel, Sharrón L; Johnson, Brian W; Frevert, Charles W; Duncan, Francesca E

    2018-04-21

    Immunohistochemistry (IHC) is a robust scientific tool whereby cellular components are visualized within a tissue, and this method has been and continues to be a mainstay for many reproductive biologists. IHC is highly informative if performed and interpreted correctly, but studies have shown that the general use and reporting of appropriate controls in IHC experiments is low. This omission of the scientific method can result in data that lacks rigor and reproducibility. In this editorial, we highlight key concepts in IHC controls and describe an opportunity for our field to partner with the Histochemical Society to adopt their IHC guidelines broadly as researchers, authors, ad hoc reviewers, editorial board members, and editors-in-chief. Such cross-professional society interactions will ensure that we produce the highest quality data as new technologies emerge that still rely upon the foundations of classic histological and immunohistochemical principles.

  19. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  20. The Hubble Space Telescope Scientific Instruments

    NASA Technical Reports Server (NTRS)

    Moore, J. V.

    1986-01-01

    The paper describes the status of the five Scientific Instruments (SI's) to be flown on the Hubble Space Telescope (HST) which is planned to be launched by the Space Transportation System in the last half of 1986. Concentration is on the testing experience for each of the instruments both at the instrument level and in conjunction with the other instruments and subsystems of the HST. Since the Acceptance/Flight Qualification Program of the HST is currently underway a description of the test and verification plans to be accomplished prior to shipment to the Kennedy Space Center (KSC) and pre-launch tests plans prior to launch are provided. The paper concludes with a brief description of anticipated orbital performance.

  1. Vacuum stability testing of Apollo 15 Scientific Instrument Module (SIM) non-metallic materials and reversion of silicone rubber in a motor switch

    NASA Technical Reports Server (NTRS)

    Clancy, H. M.

    1972-01-01

    Vacuum stability screening tests were performed on the Apollo 15 Scientific Instrument Module (SIM) bay nonmetallic materials in accordance with the NASA document SP-R-0022. The testing was necessary to support the evaluation to determine the effect material outgassing contamination would have on the SIM bay optical lenses and sensing devices. The Apollo 15 SIM experiments were highly successful, therefore, it is assumed that contamination due to the outgassing of nonmetallic materials did not affect equipment operation. A related problem, the reversion of a silicone rubber grommet which affected an electrical motor switch operation is also reported.

  2. Outreach with Team eS Through Science Festivals and Interactive Art Installations

    NASA Astrophysics Data System (ADS)

    Yoho, Amanda; Starkman, Glenn

    2014-03-01

    The Team eS project aims to acclimate (pre)teens to scientific concepts subtly, with fun, accessible, and engaging art and activities hosted at public community festivals, online at a dedicated website, and using social media. Our festivals will be centered around an interactive art installation inspired by a scientific concept. We hope to provide a positive experience inspired by science that these teens can reflect upon when encountering similar concepts in the future, especially in settings like a classroom where fear and anxiety can cloud interest or performance. We want to empower teens to not feel lost or out of the loop - we want to remove the fear of facing science.

  3. Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.

    2007-12-01

    Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.

  4. The use of the German V-2 in US for upper atmosphere research

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.

    1979-01-01

    Early U.S. space experiments involving the liquid propellant German V-2 are discussed. Although the primary objective of the experiments conducted under project Hermes after World War II was initially the development of missile technology, scientific objectives were soon given the priority. The missile was modified for scientific experiments and the payload increased from 6.8% to 47% between 1946 and 1949. Among other instruments, the payload included a cosmic ray telescope, ionosphere transmitter and spectrograph for solar spectral measurements. While the scientific success of the program established a positive public attitude towards space research, the Upper Atmosphere Research Panel, formed to coordinate the project, set a pattern for future scientific advisory bodies.

  5. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  6. The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software

    NASA Astrophysics Data System (ADS)

    Cicalò, S.; Schettino, G.; Di Ruzza, S.; Alessi, E. M.; Tommei, G.; Milani, A.

    2016-04-01

    The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possible to constrain relativistic theories of gravitation. In order to assess that all the scientific goals are achievable with the required level of accuracy, full cycle numerical simulations of the radio science experiment have been performed. Simulated tracking, accelerometer and optical camera data have been generated, and a long list of variables including the spacecraft initial conditions, the accelerometer calibrations and the gravity field coefficients have been determined by a least-squares fit. The simulation results are encouraging: the experiments are feasible at the required level of accuracy provided that some critical terms in the accelerometer error are moderated. We will show that BepiColombo will be able to provide at least an order of magnitude improvement in the knowledge of Love number k2, libration amplitudes and obliquity, along with a gravity field determination up to degree 25 with a signal-to-noise ratio of 10.

  7. [Issues of research in medicine].

    PubMed

    Topić, Elizabeta

    2006-01-01

    Research in medicine is liable to all rules and standards that apply to research in other natural sciences, since medicine as a science and service fully meets the general definition of science: it is a common, integrated, organized and systematized knowledge of mankind, whereby physician--being more or less aware of doing so-- in his daily activities applies scientific thinking and scientific methods. The procedure of problem solving in scientific work and in medical practice is characterized by many similarities as well as variation. In scientific research, the observation of some phenomenon that cannot be explained by the known facts and theories is followed by making a hypothesis, planning and carrying out experimental investigation resulting in some data. Interpretation of these data then provides evidence to confirm or reject the hypothesis. In medical practice, quite a similar procedure is followed; the initial examination of a patient, when his condition cannot be explained by the data thus obtained, is identical to the observation of a phenomenon which cannot be explained by the known facts; working diagnosis would correspond to making the hypothesis; and experimental investigation would compare to laboratory and other diagnostic studies. The working diagnosis is accepted or rejected depending on these results. Of course, there also are differences in the problem solving procedure between scientific research and daily medical practice. For example, in research a single hypothesis is posed, a single experiment with successive testing and/or repeats is performed, whereas in medical practice several hypotheses are made, multiple studies are concurrently performed to reject current hypotheses and to make new ones. Scientific investigation produces an abundance of systematic data, whereas in medical practice target data are being generated, yet not systematically. Definitive decision making also differs greatly, as in scientific research it only ensues from conclusive evidence, whereas in medical practice definitive decision is made and therapeutic procedures are performed even before reaching final evidence. The general strategy of work and research in medicine can be briefly described by four principles, i.e. good knowledge of one's own work; continuing upgrading of one's own work in collaboration with respective institutions (laboratories, university, and research institutes); implementation of standard, up-to-date and scientific methods most of the time; and publishing work results on a regular basis. This strategy ensures constant progress and treatment quality improvement while allowing due validation and evaluation of the work by the society. Scientific research is based on the pre-existing knowledge of the problem under study, and should be supervised, systematic and planned. Research produces data that may represent some new concepts, or such concepts are developed by further data processing. In research, scientific procedure includes a number of steps that have to be made to reach a new scientific result. This procedure includes (a) thinking about a scientific issue; (b) making a scientific hypothesis, i.e. the main objective of the study; (c) research ethics; (d) determination of sources and mode of data collection; (e) research performance; (f) collection and analysis of all research data; (g) interpretation of results and evidence; and (h) publications. The next section of this chapter brings an example of scientific research in the field of medicine, where the procedures carried out during the research are briefly described; other chapters of this supplement deal with statistical methodology used on processing the data obtained in the study, which is most frequently employed in scientific work in the field of medicine.

  8. Microgravity effects on standardized cognitive performance measures

    NASA Technical Reports Server (NTRS)

    Schiflett, Samuel G.

    1992-01-01

    The purpose of this experiment, selected to fly on the International Microgravity Laboratory (IML-2) Spacelab mission, is to determine the effects of microgravity upon the cognitive skills which are critical to successful performance of many tasks on board the Space Shuttle. Six tests from the Unified Tri-service Cognitive Performance Assessment Battery (UTC-PAB) will be administered to the Mission Specialists to fulfill the goals of this experiment. These tests are based upon current theoretical models of human performance and the hypothesized effects of microgravity. The principle objective is the identification of the effects of microgravity upon specific information processing skills affecting performance from those of fatigue and shifts in work/rest cycles. Multiple measures of both short and long term fatigue will be obtained and used as a major independent variable for the analysis of these performance data. Scientific supporting studies will determine optimum practice and performance testing schedules for the astronauts. The same tests will be used post-flight to collect data on the recovery of any cognitive performance impairment compared with pre-flight, baseline levels.

  9. OMEGA FY13 HED requests - LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, Jonathan B; Loomis, Eric N

    2012-06-25

    This is a summary of scientific work to be performed on the OMEGA laser system located at the Laboratory for Laser Energetics in Rochester New York. The work is funded through Science and ICF Campagins and falls under the category of laser-driven High-Energy Density Physics experiments. This summary is presented to the Rochester scheduling committee on an annual basis for scheduling and planning purposes.

  10. Mariner Mars 1971: Press kit

    NASA Technical Reports Server (NTRS)

    Mittauer, R. T.

    1971-01-01

    The news release describes the 1971 launches of Mariner 8 and 9 which were to be the first attempt by NASA to orbit another planet, Mars. Described are: (1) mission capsule; (2) planetary missions; (3) aiming zones; (4) the spacecraft; (5) scientific experiments to be performed; (6) Atlas Centaur launch vehicle; (7) launch operations; (8) tracking and data system and mission operations; and (9) Mariner Mars 71 team and subcontractors.

  11. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    PubMed Central

    Verdi, Kacy K; Ellis, Heidi JC; Gryk, Michael R

    2007-01-01

    Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment. PMID:17263870

  12. Conceptual-level workflow modeling of scientific experiments using NMR as a case study.

    PubMed

    Verdi, Kacy K; Ellis, Heidi Jc; Gryk, Michael R

    2007-01-30

    Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment.

  13. [26th Conference of the Spanish Society of Quality in Healthcare: a good balance between quality, innovation, science and participation].

    PubMed

    Astier-Peña, M P; Barrasa-Villar, I; García-Mata, J R; Aranaz-Andrés, J; Enriquez-Martín, N; Vela-Marquina, M L

    2010-01-01

    The experience and learning process of preparing a scientific conference programme, organising and conducting a conference ccompletes the quality circle with the quantitative and qualitative assessment of the process and results. The transmission of this experience and learning process through this paper will improve the performance of committees of future conference venues, partners and participants and collaborators. The method for performing this evaluation is the assessment of the activities of both the scientific and organising committees of the XXVI Conference of the Spanish Society of Quality Healthcare in October 2008 in Zaragoza. The methodology evaluated the observance of the timetable and tasks assigned to the committees in the Congress Manual of the society along with the presentation of final results of the congress concerning scientific participation and overall satisfaction. There were a total of 1211 communications with a rejection rate of 9.1%. Of the total, 577 communications were presented in oral format and 544 in poster format. Aragon was the community of origin of 24% of communications. By subject areas, those of most interest were patient safety, organisational and management processes, and patient perspectives. A total of 83 participants attended 7 of the 11 workshops offered. The average attendance for each workshop was 12 people. The response rate to the assessment of workshops questionnaire was 54.2% with an average score of 4 (scale of 1 to 5). A total of 1131 people attended the conference of which 17% (193) were SECA associates. Out of a total of 1075 overall satisfaction conference questionnaires distributed there was a response rate of 9.30% (100). The scientific content was assessed with an average score of 3.6 and the organization with 3.87, both on a total score of 5 points. According to the number of abstracts received, number of conferences, level of satisfaction with the scientific program and organisation, we can conclude that the XXVI Conference of the Society has been a success, although we are still in our continuous quality improvement circle that will make conferences even better. Copyright © 2010 SECA. Published by Elsevier Espana. All rights reserved.

  14. The effects of computer-simulated experiments on high school biology students' problem-solving skills and achievement

    NASA Astrophysics Data System (ADS)

    Carmack, Gay Lynn Dickinson

    2000-10-01

    This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.

  15. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p < .001; Home Chemicals lab t(114) = 8.585, p < .001; Water Use lab, t(116) = 6.657, p < .001; Trees and Carbon lab, t(113) = 9.921, p < .001; Stratospheric Ozone lab, t(112) =12.974, p < .001; Renewable Energy lab, t(115) = 7.369, p < .001. The end of the course Scientific Skills quiz revealed statistically significant improvements, t(112) = 8.221, p < .001. The results of the two surveys showed a statistically significant improvement on student Scientific Self-Confidence because of lab completion, t(114) = 3.015, p < .05. Because age and gender were available, regression models were developed. The results indicated weak multiple correlation coefficients and were not statistically significant at alpha = .05. Evidence suggests that labs play a positive role in a student's academic success. It is recommended that lab experiences be included in all online Environmental Science programs, with emphasis on open-ended inquiries, and adoption of online tools to enhance hands-on experiences, such as virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  16. Scientific expertise and the Athlete Biological Passport: 3 years of experience.

    PubMed

    Schumacher, Yorck Olaf; d'Onofrio, Giuseppe

    2012-06-01

    Expert evaluation of biological data is a key component of the Athlete Biological Passport approach in the fight against doping. The evaluation consists of a longitudinal assessment of biological variables to determine the probability of the data being physiological on the basis of the athlete's on own previous values (performed by an automated software system using a Bayesian model) and a subjective evaluation of the results in view of possible causes (performed by experts). The role of the expert is therefore a key component in the process. Experts should be qualified to evaluate the data regarding possible explanations related to the influence of doping products and methods, analytical issues, and the influence of exercise or pathological conditions. The evaluation provides a scientific basis for the decision taken by a disciplinary panel. This evaluation should therefore encompass and balance all possible causes for a given blood profile and provide a likelihood for potential scenarios (pathology, normal variation, doping) that might have caused the pattern. It should comply with the standards for the evaluation of scientific evidence in forensics. On the basis of their evaluation of profiles, experts might provide assistance in planning appropriate target testing schemes.

  17. Nuclear and ionic charge distribution experiment on ISEE-1 and ISEE-3

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1987-01-01

    The experimental work carried out under this contract is a continuation of that originally performed under Contracts NAS5-20062 and NAS5-26739. The data analyzed are from the Max-Planck Institut/Univ. of Maryland experiment on ISEE-1 and ISEE-3. Each spacecraft experiment consists of a nearly identical set of three sensors (designated the ULECA, ULEWAT, and ULEZEQ sensors) designed to measure the energy spectra and composition of suprathermal and energetic ions over a broad energy range (less than 3 keV/e to more than 20 MeV/nucleon). Since the launch of ISEE's 2 and 3, the MPI/Univ. of Maryland experiments have generally performed as expected except for a partial failure of the ULEWAT sensor on ISEE-1 in August 1978. A number of scientific studies have either been completed, initiated or are at various stages of completion. A brief summary of Primary Results is given, followed by a more detailed summary of the major accomplishments at the Univ. of Maryland.

  18. Early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.; Craft, H. G., Jr.

    1977-01-01

    NASA has issued payload flight assignments for the first three Spacelab missions. The first two of these missions will have dual objectives, that of verifying Spacelab system performance and accomplishing meaningful space research. The first of these missions will be a joint NASA and ESA mission with a multidisciplinary payload. The second mission will verify a different Spacelab configuration while addressing the scientific disciplines of astrophysics. The third assigned mission will concentrate on utilizing the capabilities of Spacelab to perform meaningful experiments in space applications, primarily space processing. The paper describes these missions with their objectives, planned configuration and accommodation.

  19. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  20. What is the role of induction and deduction in reasoning and scientific inquiry?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    2005-08-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled experiment designed to identify the role played by enumerative induction and deduction in cognition as well as from the relatively new field of neural modeling. Both experimental results and the neurological models imply that induction across a limited set of observations plays no role in task performance and in reasoning. Therefore, support has been obtained for Popper's hypothesis that enumerative induction does not exist as a psychological process. Instead, people appear to process information in terms of increasingly abstract cycles of hypothetico-deductive reasoning. Consequently, science instruction should provide students with opportunities to generate and test increasingly complex and abstract hypotheses and theories in a hypothetico-deductive manner. In this way students can be expected to become increasingly conscious of their underlying hypothetico-deductive thought processes, increasingly skilled in their application, and hence increasingly scientifically literate.

  1. Scientific and educational center "space systems and technology"

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  2. THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS

    PubMed Central

    Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel

    2010-01-01

    Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618

  3. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  4. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    ERIC Educational Resources Information Center

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  5. Turning Scientific Presentations into Stories

    ERIC Educational Resources Information Center

    Aruffo, Christopher

    2015-01-01

    To increase students' confidence in giving scientific presentations, students were shown how to present scientific findings as a narrative story. Students who were preparing to give a scientific talk attended a workshop in which they were encouraged to experience the similarities between telling a personal anecdote and presenting scientific data.…

  6. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  7. The EXPERT project: part of the Super-FRS Experiment Collaboration

    NASA Astrophysics Data System (ADS)

    Chudoba, V.; "EXPERT project, New findings and instrumentation from the NASA Lewis microgravity facilities

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Greenberg, Paul S.

    1990-01-01

    The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.

  8. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  9. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    NASA Technical Reports Server (NTRS)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  10. [The significance of drawing on experience of experimental study on Chinese materia medica during the Republican period].

    PubMed

    Li, Nan; Wan, Fang

    2015-05-01

    During the period of the Republic of China, researches of experiments on Chinese materia medica developed extensively with the scientific process of Chinese medicine. Although the technology standard was relatively low and the reference value, limited. The experiences, positive or negative, obtained at that time still has reference significance to today's Chinese medicine scientific research. The notion that traditional Chinese medical and scientific research be conducted under the guidance of TCM theory; valuable experience contained in the ancient literature of traditional Chinese medicine be collected; and the transformation capacity of scientific research be elevated, has been accepted by modern TCM professionals. If you go back to the history, it can be seen that this notion was summarized through repeated practice during the critical moment of traditional Chinese medicine, which should be emphasized and its understanding deepened at any time.

  11. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    NASA Astrophysics Data System (ADS)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  12. Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces.

    PubMed

    Lourenço, Anália; Coenye, Tom; Goeres, Darla M; Donelli, Gianfranco; Azevedo, Andreia S; Ceri, Howard; Coelho, Filipa L; Flemming, Hans-Curt; Juhna, Talis; Lopes, Susana P; Oliveira, Rosário; Oliver, Antonio; Shirtliff, Mark E; Sousa, Ana M; Stoodley, Paul; Pereira, Maria Olivia; Azevedo, Nuno F

    2014-04-01

    The minimum information about a biofilm experiment (MIABiE) initiative has arisen from the need to find an adequate and scientifically sound way to control the quality of the documentation accompanying the public deposition of biofilm-related data, particularly those obtained using high-throughput devices and techniques. Thereby, the MIABiE consortium has initiated the identification and organization of a set of modules containing the minimum information that needs to be reported to guarantee the interpretability and independent verification of experimental results and their integration with knowledge coming from other fields. MIABiE does not intend to propose specific standards on how biofilms experiments should be performed, because it is acknowledged that specific research questions require specific conditions which may deviate from any standardization. Instead, MIABiE presents guidelines about the data to be recorded and published in order for the procedure and results to be easily and unequivocally interpreted and reproduced. Overall, MIABiE opens up the discussion about a number of particular areas of interest and attempts to achieve a broad consensus about which biofilm data and metadata should be reported in scientific journals in a systematic, rigorous and understandable manner. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Communicate science: an example of food related hands-on laboratory approach

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The activity was successful as more than 500 kids of different ages participated with great enthusiasm, as well as they parents, and gave the chance to explore and manipulate even complex scientific arguments without getting the feeling of having doing this.

  14. Spacelab 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The most promising new technology for scientific research is America's Space Transportation System; the space shuttle and its companion facility, Spacelab. Spacelab is a versatile laboratory designed specifically to accommodate scientists and their instruments in low-Earth orbit. In a space laboratory, scientists can perform experiments that are impossible on Earth. They can also use very large instruments aboard the Shuttle, with the added benefit of bringing all their equipment, experiment samples, and data home for analysis. Spacelab 2 is one in a series of missions that gives the world's scientists a chance to do research in a well-equipped laboratory in space.

  15. Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets

    NASA Astrophysics Data System (ADS)

    Egri, Sándor; Szabó, Lóránt

    2015-03-01

    It is well known that "interactive engagement" helps students to understand basic concepts in physics.1 Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate student use of mobile phones or tablets to take experimental data. Applying their own devices and measuring simple phenomena from everyday life can improve student interest, while still allowing precise analysis of data, which can give deeper insight into scientific thinking and provide a good opportunity for inquiry-based learning.2

  16. Global tropospheric experiment at the Hong Kong Atmosphere Chemistry Measurement Station

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Ann; Wang, Tao

    1995-01-01

    The major activities of the Global Tropospheric Experiment at the Hong Kong Atmospheric Chemistry Measurement Station are presented for the period 1 January - 31 December 1995. Activities included data analysis, reduction, and archiving of atmospheric measurements and sampling. Sampling included O3, CO, SO2, NO, TSP, RSP, and ozone column density. A data archive was created for the surface meteorological data. Exploratory data analysis was performed, including examination of time series, frequency distributions, diurnal variations and correlation. The major results have been or will be published in scientific journals as well as presented at conferences/workshops. Abstracts are attached.

  17. Modeling Subsurface Reactive Flows Using Leadership-Class Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Richard T; Hammond, Glenn; Lichtner, Peter

    2009-01-01

    We describe our experiences running PFLOTRAN - a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media - on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  18. Applying the scientific method to small catchment studies: Areview of the Panola Mountain experience

    USGS Publications Warehouse

    Hooper, R.P.

    2001-01-01

    A hallmark of the scientific method is its iterative application to a problem to increase and refine the understanding of the underlying processes controlling it. A successful iterative application of the scientific method to catchment science (including the fields of hillslope hydrology and biogeochemistry) has been hindered by two factors. First, the scale at which controlled experiments can be performed is much smaller than the scale of the phenomenon of interest. Second, computer simulation models generally have not been used as hypothesis-testing tools as rigorously as they might have been. Model evaluation often has gone only so far as evaluation of goodness of fit, rather than a full structural analysis, which is more useful when treating the model as a hypothesis. An iterative application of a simple mixing model to the Panola Mountain Research Watershed is reviewed to illustrate the increase in understanding gained by this approach and to discern general principles that may be applicable to other studies. The lessons learned include the need for an explicitly stated conceptual model of the catchment, the definition of objective measures of its applicability, and a clear linkage between the scale of observations and the scale of predictions. Published in 2001 by John Wiley & Sons. Ltd.

  19. Using Communication Technology to Facilitate Scientific Literacy: A Framework for Engaged Learning

    NASA Astrophysics Data System (ADS)

    VanBuskirk, Shireen Adele

    The purpose of this research project is to describe how existing communication technologies are used to foster scientific literacy for secondary students. This study develops a new framework as an analytic tool to categorize the activities of teachers and students involved in scientific literacy to describe what elements of scientific literacy are facilitated by such technologies. Four case studies are analyzed using the framework to describe the scientific literacy initiatives. Data collection at each site included interviews with the teacher, student focus groups, student surveys, and classroom observations. Qualitative analysis of the data provided insight into the learning activities and student experiences in the four cases. This study intentionally provides a platform for student voice. Very few previous empirical studies in the area of scientific literacy include the student experience. This represents a significant gap in the current literature on scientific literacy. An interpretation of scientific literacy that promotes student engagement, interaction, and initiative corresponds to a need to listen to students' perspectives on these experiences. Findings of the study indicated that the classroom activities depended on the teacher's philosophy regarding scientific literacy. Communication technology was ubiquitous; where the teacher did not initiate the use of social media in the classroom, the students did. The goal of supporting scientific literacy in students is an objective that extends beyond the boundaries of classroom walls, and it can be facilitated by technologies that seem both abundant and underutilized. Technology-enhanced pedagogy altered the classroom practices and resulted in more student participation and engagement.

  1. 7 CFR 3430.33 - Selection of reviewers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... and experience in relevant scientific, extension, or education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and extension experience of...

  2. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice

    PubMed Central

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W.; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior—genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)—influence students’ perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students’ attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. PMID:28572181

  3. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.

  4. [Organization of scientific-methodological work in Central Military Clinical Hospital named after A.A. Vishnevskiĭ].

    PubMed

    Beliakin, S A; Fokin, Iu N; Kokhan, E P; Frolkin, M N

    2009-09-01

    There was congested a wide experience of organization and management of scientific work in the 3rd CMCH by Vishnevsky A.A. for a term of more than 40 years. This experience is subjected to generalization, analyze for the purpose of determination of it's priority orientations of improvement. Scientific-methods work in hospital is rated as a complex of measures, organisationaly-planed and coordinated by purpose and reinforcement of scientific schools of the 3rd CMCH by Vishnevsky A.A., as a basis of effective delivery of specialized medical aid. The vector of scientific researches is directed, generally, to solving questions of military and field medicine.

  5. Student scientific inquiry in the core curriculum.

    PubMed

    Vaidean, Georgeta D; Vansal, Sandeep S; Moore, Ronnie J; Feldman, Stuart

    2013-10-14

    To design and implement a required student-driven research program as a capstone experience in the doctor of pharmacy (PharmD) curriculum. A research proposal in the form of a competitive grant application was required for each of 65 fourth-year students in an inaugural PharmD class at Touro College of Pharmacy in New York. The focus of the proposals was on hypothesis-driven research in basic science, clinical research, health outcomes, and public health. Students' research proposals were graded using a standardized grading instrument. On a post-experience survey, most students rated the overall experience positively, indicating increased confidence in their research skills. About two-thirds of faculty members were satisfied with their students' performance, and the great majority thought the experience would be useful in the students' careers. The capstone research project was a positive experience for fourth-year students.

  6. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  7. Science Operations Management

    NASA Astrophysics Data System (ADS)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  8. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    NASA Astrophysics Data System (ADS)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  9. Students' Scientific Epistemic Beliefs, Online Evaluative Standards, and Online Searching Strategies for Science Information: The Moderating Role of Cognitive Load Experience

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Hui; Tsai, Chin-Chung

    2014-06-01

    The purpose of this study is to examine the moderating role of cognitive load experience between students' scientific epistemic beliefs and information commitments, which refer to online evaluative standards and online searching strategies. A total of 344 science-related major students participated in this study. Three questionnaires were used to ascertain the students' scientific epistemic beliefs, information commitments, and cognitive load experience. Structural equation modeling was then used to analyze the moderating effect of cognitive load, with the results revealing its significant moderating effect. The relationships between sophisticated scientific epistemic beliefs and the advanced evaluative standards used by the students were significantly stronger for low than for high cognitive load students. Moreover, considering the searching strategies that the students used, the relationships between sophisticated scientific epistemic beliefs and advanced searching strategies were also stronger for low than for high cognitive load students. However, for the high cognitive load students, only one of the sophisticated scientific epistemic belief dimensions was found to positively associate with advanced evaluative standard dimensions.

  10. Monitoring Of The Middle Atmosphere: Grille Spectrometer Experiment Results On Board SPACELAB 1 And Scientific Program Of ATLAS 1 Mission

    NASA Astrophysics Data System (ADS)

    Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.

    1989-10-01

    Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.

  11. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  12. Raman technology for future planetary missions

    NASA Astrophysics Data System (ADS)

    Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer

    2017-11-01

    Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.

  13. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  14. Bonsai: an event-based framework for processing and controlling data streams

    PubMed Central

    Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.

    2015-01-01

    The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861

  15. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reproducibility and Variability of I/O Performance on BG/Q: Lessons Learned from a Data Aggregation Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessier, Francois; Vishwanath, Venkatram

    2017-11-28

    Reading and writing data efficiently from different tiers of storage is necessary for most scientific simulations to achieve good performance at scale. Many software solutions have been developed to decrease the I/O bottleneck. One wellknown strategy, in the context of collective I/O operations, is the two-phase I/O scheme. This strategy consists of selecting a subset of processes to aggregate contiguous pieces of data before performing reads/writes. In our previous work, we implemented the two-phase I/O scheme with a MPI-based topology-aware algorithm. Our algorithm showed very good performance at scale compared to the standard I/O libraries such as POSIX I/O andmore » MPI I/O. However, the algorithm had several limitations hindering a satisfying reproducibility of our experiments. In this paper, we extend our work by 1) identifying the obstacles we face to reproduce our experiments and 2) discovering solutions that reduce the unpredictability of our results.« less

  17. Fungi in space--literature survey on fungi used for space research.

    PubMed

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  18. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  19. Worlds of wonder: Sensation and the Victorian scientific performance.

    PubMed

    Morus, Iwan Rhys

    2010-12-01

    Performances of various kinds were central to the strategies adopted by Victorian natural philosophers to constitute their authority. Appealing to the senses of their audience through spectacular effects or ingenious demonstrations of skill was key to the success of these performances. If we want to understand the politics and practice of Victorian science-and science more generally-we need to pay particular attention to these sorts of performances. We need to understand the ingredients that went into them and the relationships between scientific performers and their publics. In particular, we need to investigate the self-conscious nature of Victorian scientific performances. Looking at science as performance provides us with a new set of tools for understanding the politics of knowledge, the relationship between producers and consumers of scientific knowledge, and the construction and constitution of scientific authority.

  20. Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.

    Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.

  1. Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.

    PubMed

    Laha, Bireswar; Bowman, Doug A; Socha, John J

    2014-04-01

    Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.

  2. The ATIC Long Duration Balloon Project

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Granger, D.; Gunasingha, R.

    2003-01-01

    Long Duration Balloon (LDB) scientific experiments, launched to circumnavigate the south pole over Antarctica, have particular advantages compared to Shuttle or other Low Earth Orbit (LEO) missions in terms of cost, weight, scientific 'duty factor' and work force development. The Advanced Thin Ionization Calorimeter (ATIC) cosmic ray astrophysics experiment is a good example of a university-based project that takes full advantage of current LDB capability. The ATIC experiment is currently being prepared for its first LDB science flight that will investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 10(exp 10) to 10(exp 14) eV. The instrument is built around a fully active, Bismuth Germanate (BGO) ionization calorimeter to measure the energy deposited by the cascades formed by particles interacting in a thick carbon target. A highly segmented silicon matrix, located above the target, provides good incident charge resolution plus rejection of the 'backscattered' particles from the interaction. Trajectory reconstruction is based on the cascade profile in the BGO calorimeter, plus information from the three pairs of scintillator hodoscope layers in the target section above it. A full evaluation of the experiment was performed during a test flight occurring between 28 December 2000 and 13 January 2001 where ATIC was carried to an altitude of approx. 37 km above Antarctica by an approx. 850,000 cu m helium filled balloon for one circumnavigation of the continent. All systems behaved well, the detectors performed as expected, more than 43 gigabytes of engineering and cosmic ray event data was returned and these data are now undergoing preliminary data analysis. During the coming 2002-2003 Antarctica summer season, we are preparing for a ATIC science flight with approx. 15 to 30 days of continuous data collection in the near-space environment of LDB float altitudes.

  3. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  4. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.

  5. The use of data from national and other large-scale user experience surveys in local quality work: a systematic review.

    PubMed

    Haugum, Mona; Danielsen, Kirsten; Iversen, Hilde Hestad; Bjertnaes, Oyvind

    2014-12-01

    An important goal for national and large-scale surveys of user experiences is quality improvement. However, large-scale surveys are normally conducted by a professional external surveyor, creating an institutionalized division between the measurement of user experiences and the quality work that is performed locally. The aim of this study was to identify and describe scientific studies related to the use of national and large-scale surveys of user experiences in local quality work. Ovid EMBASE, Ovid MEDLINE, Ovid PsycINFO and the Cochrane Database of Systematic Reviews. Scientific publications about user experiences and satisfaction about the extent to which data from national and other large-scale user experience surveys are used for local quality work in the health services. Themes of interest were identified and a narrative analysis was undertaken. Thirteen publications were included, all differed substantially in several characteristics. The results show that large-scale surveys of user experiences are used in local quality work. The types of follow-up activity varied considerably from conducting a follow-up analysis of user experience survey data to information sharing and more-systematic efforts to use the data as a basis for improving the quality of care. This review shows that large-scale surveys of user experiences are used in local quality work. However, there is a need for more, better and standardized research in this field. The considerable variation in follow-up activities points to the need for systematic guidance on how to use data in local quality work. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  6. Growing Your Career through Volunteering and Leadership

    NASA Astrophysics Data System (ADS)

    O'Riordan, C. A.; Meth, C.

    2007-12-01

    From giving your first paper at a scientific meeting to chairing committees that make multi-million dollar decisions, scientific organizations provide critical opportunities for growing your career. Many organizations support student activities by providing travel grants and fellowships - an important first step towards joining the larger scientific community. Beyond these standard opportunities, organizations also provide opportunities for students interested in gaining leadership experience, a skill not typically acquired in graduate science programs. For example, the Consortium for Leadership's Schlanger Ocean Drilling Fellowship provides research funds to graduate students, but also introduces the fellows to the communication skills needed to become successful members of their scientific community. Beyond student opportunities, volunteering provides mid-career and established scientists further experience in leadership. Opportunities exist in advising government science policy, guiding large-scale research programs, organizing large scientific meetings, and serving on non-profit boards. The variety of volunteer and leadership opportunities that are available give scientists at all stages of their career a chance to expand and diversify their experience, leading to new successes.

  7. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    PubMed Central

    Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet. PMID:28695067

  8. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis.

    PubMed

    Costa, Raquel L; Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet.

  9. Experiments: Why and How?

    PubMed

    Hansson, Sven Ove

    2016-06-01

    An experiment, in the standard scientific sense of the term, is a procedure in which some object of study is subjected to interventions (manipulations) that aim at obtaining a predictable outcome or at least predictable aspects of the outcome. The distinction between an experiment and a non-experimental observation is important since they are tailored to different epistemic needs. Experimentation has its origin in pre-scientific technological experiments that were undertaken in order to find the best technological means to achieve chosen ends. Important parts of the methodological arsenal of modern experimental science can be traced back to this pre-scientific, technological tradition. It is claimed that experimentation involves a unique combination of acting and observing, a combination whose unique epistemological properties have not yet been fully clarified.

  10. Final Report. Institute for Ultralscale Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu; Galli, Giulia; Gygi, Francois

    The SciDAC Institute for Ultrascale Visualization brought together leading experts from visualization, high-performance computing, and science application areas to make advanced visualization solutions for SciDAC scientists and the broader community. Over the five-year project, the Institute introduced many new enabling visualization techniques, which have significantly enhanced scientists’ ability to validate their simulations, interpret their data, and communicate with others about their work and findings. This Institute project involved a large number of junior and student researchers, who received the opportunities to work on some of the most challenging science applications and gain access to the most powerful high-performance computing facilitiesmore » in the world. They were readily trained and prepared for facing the greater challenges presented by extreme-scale computing. The Institute’s outreach efforts, through publications, workshops and tutorials, successfully disseminated the new knowledge and technologies to the SciDAC and the broader scientific communities. The scientific findings and experience of the Institute team helped plan the SciDAC3 program.« less

  11. Design Approaches to Support Preservice Teachers in Scientific Modeling

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa; Davis, Elizabeth A.; Hug, Barbara

    2011-02-01

    Engaging children in scientific practices is hard for beginning teachers. One such scientific practice with which beginning teachers may have limited experience is scientific modeling. We have iteratively designed preservice teacher learning experiences and materials intended to help teachers achieve learning goals associated with scientific modeling. Our work has taken place across multiple years at three university sites, with preservice teachers focused on early childhood, elementary, and middle school teaching. Based on results from our empirical studies supporting these design decisions, we discuss design features of our modeling instruction in each iteration. Our results suggest some successes in supporting preservice teachers in engaging students in modeling practice. We propose design principles that can guide science teacher educators in incorporating modeling in teacher education.

  12. Management experience of an international venture in space The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  13. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.

    1999-03-15

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation,more » isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.« less

  14. [The nursing administration scientific publications in Brasil since 1947 until 1972].

    PubMed

    Martins, Elaine Guimarães; Sanna, Maria Cristina

    2005-01-01

    The Nursing Administration was added to the Nursing Undergraduation Curriculum when the evidence of this need came clear to the brazilian nurses. The main objective of the present investigation is to describe the history pathway of scientific productions about Nursing Administration to evidence the special points of this history, intended to contribute to the understanding of the sequence of their productions and the utilization of this concepts in the administration nursing practice. The study referred from 1947 to 1972, by the searching in the electronic nursing scientific publications data base named--PERIENF. The results were 19 indications submitted to a thematic analysis treatment. This procedure reveals that since the forties the nurses were conscious of the difficulties they had experimented in their administration performance, growing up to the inclusion of this theme in the undergraduate courses and demonstrating its organization until the definition of the "Curriculo Mínimo do Curso de Enfermagem e Obstetricia" in 1972, granting a special place of this discipline.

  15. Narrative Review of Statistical Reporting Checklists, Mandatory Statistical Editing, and Rectifying Common Problems in the Reporting of Scientific Articles.

    PubMed

    Dexter, Franklin; Shafer, Steven L

    2017-03-01

    Considerable attention has been drawn to poor reproducibility in the biomedical literature. One explanation is inadequate reporting of statistical methods by authors and inadequate assessment of statistical reporting and methods during peer review. In this narrative review, we examine scientific studies of several well-publicized efforts to improve statistical reporting. We also review several retrospective assessments of the impact of these efforts. These studies show that instructions to authors and statistical checklists are not sufficient; no findings suggested that either improves the quality of statistical methods and reporting. Second, even basic statistics, such as power analyses, are frequently missing or incorrectly performed. Third, statistical review is needed for all papers that involve data analysis. A consistent finding in the studies was that nonstatistical reviewers (eg, "scientific reviewers") and journal editors generally poorly assess statistical quality. We finish by discussing our experience with statistical review at Anesthesia & Analgesia from 2006 to 2016.

  16. Bringing Federated Identity to Grid Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teheran, Jeny

    The Fermi National Accelerator Laboratory (FNAL) is facing the challenge of providing scientific data access and grid submission to scientific collaborations that span the globe but are hosted at FNAL. Users in these collaborations are currently required to register as an FNAL user and obtain FNAL credentials to access grid resources to perform their scientific computations. These requirements burden researchers with managing additional authentication credentials, and put additional load on FNAL for managing user identities. Our design integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and MyProxy with the FNAL grid submission system to provide secure access formore » users from diverse experiments and collab orations without requiring each user to have authentication credentials from FNAL. The design automates the handling of certificates so users do not need to manage them manually. Although the initial implementation is for FNAL's grid submission system, the design and the core of the implementation are general and could be applied to other distributed computing systems.« less

  17. Challenges in Elevated CO2 Experiments on Forests

    USDA-ARS?s Scientific Manuscript database

    Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. It is the time to define the scientific goals and priorities of future experimental facilities. The overarching issues are three-fold: first, which are the most urgent scientific questions and which technological aspe...

  18. PREDON Scientific Data Preservation 2014

    NASA Astrophysics Data System (ADS)

    Diaconu, C.; Kraml, S.; Surace, C.; Chateigner, D.; Libourel, T.; Laurent, A.; Lin, Y.; Schaming, M.; Benbernou, S.; Lebbah, M.; Boucon, D.; Cérin, C.; Azzag, H.; Mouron, P.; Nief, J.-Y.; Coutin, S.; Beckmann, V.

    Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by researchers from different disciplines and institutes. Several meetings and workshops lead to a rich exchange in ideas, paradigms and methods. The present document includes contributions of the participants to the PREDON Study Group, as well as invited papers, related to the scientific case, methodology and technology. This document should be read as a "facts finding" resource pointing to a concrete and significant scientific interest for long term research data preservation, as well as to cutting edge methods and technologies to achieve this goal. A sustained, coherent and long term action in the area of scientific data preservation would be highly beneficial.

  19. Materials processing in space, 1980 science planning document. [crystal growth, containerless processing, solidification, bioprocessing, and ultrahigh vacuum processes

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.

  20. Medical results of the Skylab program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Dietlein, L. F.

    1974-01-01

    The Skylab food system, waste management system, operational bioinstrumentation, personal hygiene provisions, in-flight medical support system, and the cardiovascular counterpressure garment worn during reentry are described. The medical experiments program provided scientific data and also served as the basis for real-time decisions on flight duration. Premission support, in-flight operational support, and postflight medical activities are surveyed. Measures devised to deal with possible food spoilage, medical instrument damage, and toxic atmosphere caused by the initial failures on the Orbital Workshop (OWS) are discussed. The major medical experiments performed in flight allowed the study of physiological changes as a function of exposure to weightless flight. The experiments included studies of the cardiovascular system, musculoskeletal and fluid/electrolyte balance, sleep, blood, vestibular system, and time and motion studies.

  1. Computational Science: A Research Methodology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2004-03-01

    Computational simulation - a means of scientific discovery that employs computer systems to simulate a physical system according to laws derived from theory and experiment - has attained peer status with theory and experiment. Important advances in basic science are accomplished by a new "sociology" for ultrascale scientific computing capability (USSCC), a fusion of sustained advances in scientific models, mathematical algorithms, computer architecture, and scientific software engineering. Expansion of current capabilities by factors of 100 - 1000 open up new vistas for scientific discovery: long term climatic variability and change, macroscopic material design from correlated behavior at the nanoscale, design and optimization of magnetic confinement fusion reactors, strong interactions on a computational lattice through quantum chromodynamics, and stellar explosions and element production. The "virtual prototype," made possible by this expansion, can markedly reduce time-to-market for industrial applications such as jet engines and safer, more fuel efficient cleaner cars. In order to develop USSCC, the National Energy Research Scientific Computing Center (NERSC) announced the competition "Innovative and Novel Computational Impact on Theory and Experiment" (INCITE), with no requirement for current DOE sponsorship. Fifty nine proposals for grand challenge scientific problems were submitted for a small number of awards. The successful grants, and their preliminary progress, will be described.

  2. Do you kiss your mother with that mouth? An authentic large-scale undergraduate research experience in mapping the human oral microbiome.

    PubMed

    Wang, Jack T H; Daly, Joshua N; Willner, Dana L; Patil, Jayee; Hall, Roy A; Schembri, Mark A; Tyson, Gene W; Hugenholtz, Philip

    2015-05-01

    Clinical microbiology testing is crucial for the diagnosis and treatment of community and hospital-acquired infections. Laboratory scientists need to utilize technical and problem-solving skills to select from a wide array of microbial identification techniques. The inquiry-driven laboratory training required to prepare microbiology graduates for this professional environment can be difficult to replicate within undergraduate curricula, especially in courses that accommodate large student cohorts. We aimed to improve undergraduate scientific training by engaging hundreds of introductory microbiology students in an Authentic Large-Scale Undergraduate Research Experience (ALURE). The ALURE aimed to characterize the microorganisms that reside in the healthy human oral cavity-the oral microbiome-by analyzing hundreds of samples obtained from student volunteers within the course. Students were able to choose from selective and differential culture media, Gram-staining, microscopy, as well as polymerase chain reaction (PCR) and 16S rRNA gene sequencing techniques, in order to collect, analyze, and interpret novel data to determine the collective oral microbiome of the student cohort. Pre- and postsurvey analysis of student learning gains across two iterations of the course (2012-2013) revealed significantly higher student confidence in laboratory skills following the completion of the ALURE (p < 0.05 using the Mann-Whitney U-test). Learning objectives on effective scientific communication were also met through effective student performance in laboratory reports describing the research outcomes of the project. The integration of undergraduate research in clinical microbiology has the capacity to deliver authentic research experiences and improve scientific training for large cohorts of undergraduate students.

  3. Undergraduate Medical Academic Performance is Improved by Scientific Training

    ERIC Educational Resources Information Center

    Zhang, Lili; Zhang, Wei; Wu, Chong; Liu, Zhongming; Cai, Yunfei; Cao, Xingguo; He, Yushan; Liu, Guoxiang; Miao, Hongming

    2017-01-01

    The effect of scientific training on course learning in undergraduates is still controversial. In this study, we investigated the academic performance of undergraduate students with and without scientific training. The results show that scientific training improves students' test scores in general medical courses, such as biochemistry and…

  4. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  5. Laboratory Experimental Design for a Glycomic Study.

    PubMed

    Ugrina, Ivo; Campbell, Harry; Vučković, Frano

    2017-01-01

    Proper attention to study design before, careful conduct of procedures during, and appropriate inference from results after scientific experiments are important in all scientific studies in order to ensure valid and sometimes definitive conclusions can be made. The design of experiments, also called experimental design, addresses the challenge of structuring and conducting experiments to answer the questions of interest as clearly and efficiently as possible.

  6. Human Research Program: 2012 Fiscal Year Annual Report

    NASA Technical Reports Server (NTRS)

    Effenhauser, Laura

    2012-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. Risks to health and performance include physiologic effects from radiation, hypogravity, and planetary environments, as well as unique challenges in medical treatment, human factors, and support of behavioral health. The scientists and engineers of the Human Research Program (HRP) investigate and reduce the greatest risks to human health and performance, and provide essential countermeasures and technologies for human space exploration. In its seventh year of operation, the HRP continued to refine its management architecture of evidence, risks, gaps, tasks, and deliverables. Experiments continued on the International Space Station (ISS), on the ground in analog environments that have features similar to those of spaceflight, and in laboratory environments. Data from these experiments furthered the understanding of how the space environment affects the human system. These research results contributed to scientific knowledge and technology developments that address the human health and performance risks. As shown in this report, HRP has made significant progress toward developing medical care and countermeasure systems for space exploration missions which will ultimately reduce risks to crew health and performance.

  7. 21 CFR 600.80 - Postmarketing reporting of adverse experiences.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... epidemiological/surveillance studies, reports in the scientific literature, and unpublished scientific papers... products to the Center for Biologics Evaluation and Research (HFM-210), or to the Center for Drug Evaluation and Research (see mailing addresses in § 600.2). Submit all vaccine adverse experience reports to...

  8. 21 CFR 600.80 - Postmarketing reporting of adverse experiences.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... epidemiological/surveillance studies, reports in the scientific literature, and unpublished scientific papers... products to the Center for Biologics Evaluation and Research (HFM-210), or to the Center for Drug Evaluation and Research (see mailing addresses in § 600.2). Submit all vaccine adverse experience reports to...

  9. 21 CFR 600.80 - Postmarketing reporting of adverse experiences.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... epidemiological/surveillance studies, reports in the scientific literature, and unpublished scientific papers... products to the Center for Biologics Evaluation and Research (HFM-210), or to the Center for Drug Evaluation and Research (see mailing addresses in § 600.2). Submit all vaccine adverse experience reports to...

  10. 21 CFR 600.80 - Postmarketing reporting of adverse experiences.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... epidemiological/surveillance studies, reports in the scientific literature, and unpublished scientific papers... products to the Center for Biologics Evaluation and Research (HFM-210), or to the Center for Drug Evaluation and Research (see mailing addresses in § 600.2). Submit all vaccine adverse experience reports to...

  11. 10 CFR 2.703 - Examination by experts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... permit a qualified individual who has scientific or technical training or experience to participate on... purpose of furthering the conduct of the proceeding; (2) That the individual is qualified by scientific or technical training or experience to contribute to the development of an adequate decisional record in the...

  12. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.

  13. Student Scientific Inquiry in the Core Curriculum

    PubMed Central

    Vansal, Sandeep S.; Moore, Ronnie J.; Feldman, Stuart

    2013-01-01

    Objective. To design and implement a required student-driven research program as a capstone experience in the doctor of pharmacy (PharmD) curriculum. Design. A research proposal in the form of a competitive grant application was required for each of 65 fourth-year students in an inaugural PharmD class at Touro College of Pharmacy in New York. The focus of the proposals was on hypothesis-driven research in basic science, clinical research, health outcomes, and public health. Assessment. Students’ research proposals were graded using a standardized grading instrument. On a post-experience survey, most students rated the overall experience positively, indicating increased confidence in their research skills. About two-thirds of faculty members were satisfied with their students’ performance, and the great majority thought the experience would be useful in the students’ careers. Conclusion. The capstone research project was a positive experience for fourth-year students. PMID:24159217

  14. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less

  15. Cassini Maneuver Experience for the Fourth Year of the Solstice Mission

    NASA Technical Reports Server (NTRS)

    Vaquero, Mar; Hahn, Yungsun; Stumpf, Paul; Valerino, Powtawche; Wagner, Sean; Wong, Mau

    2014-01-01

    After sixteen years of successful mission operations and invaluable scientific discoveries, the Cassini orbiter continues to tour Saturn on the most complex gravity-assist trajectory ever flown. To ensure that the end-of-mission target of September 2017 is achieved, propellant preservation is highly prioritized over maneuver cycle minimization. Thus, the maneuver decision process, which includes determining whether a maneuver is performed or canceled, designing a targeting strategy and selecting the engine for execution, is being continuously re-evaluated. This paper summarizes the maneuver experience throughout the fourth year of the Solstice Mission highlighting 27 maneuvers targeted to nine Titan flybys.

  16. Airborne measurements of solar and planetary near ultraviolet radiation during the NASA/ESA CV-900 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.

    1977-01-01

    Results from a comparative study of the feasibility of employing experiment operators on the space shuttle to acquire scientifically worthwhile data are presented. The experiments performed during these tests included spectral observations of the Sun and Venus in the near ultraviolet region. The solar measurements were analyzed to determine ozone abundance in the terrestrial atmosphere. Using a detailed spectral matching technique to compare airborne solar UV measurements with synthetic spectral profiles of sunlight, it is deduced that in winter the total atmospheric ozone abundance is about 0.33 atm/cm at midlatitudes in the northern hemisphere.

  17. Hardware and software for automating the process of studying high-speed gas flows in wind tunnels of short-term action

    NASA Astrophysics Data System (ADS)

    Yakovlev, V. V.; Shakirov, S. R.; Gilyov, V. M.; Shpak, S. I.

    2017-10-01

    In this paper, we propose a variant of constructing automation systems for aerodynamic experiments on the basis of modern hardware-software means of domestic development. The structure of the universal control and data collection system for performing experiments in wind tunnels of continuous, periodic or short-term action is proposed. The proposed hardware and software development tools for ICT SB RAS and ITAM SB RAS, as well as subsystems based on them, can be widely applied to any scientific and experimental installations, as well as to the automation of technological processes in production.

  18. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  19. Science Education Using a Computer Model-Virtual Puget Sound

    NASA Astrophysics Data System (ADS)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  20. Integrated design and management of complex and fast track projects

    NASA Astrophysics Data System (ADS)

    Mancini, Dario

    2003-02-01

    Modern scientific and technological projects are increasingly in competition over scientific aims, technological innovation, performance, time and cost. They require a dedicated and innovative organization able to satisfy contemporarily various technical and logistic constraints imposed by the final user, and guarantee the satisfaction of technical specifications, identified on the basis of scientific aims. In order to satisfy all the above, the management has to be strategically innovative and intuitive, by removing, first of all, the bottlenecks that are pointed out, usually only at the end of the projects, as the causes of general dissatisfaction. More than 30 years spent working on complex multidisciplinary systems and 20 years of formative experience in managing contemporarily both scientific, technological and industrial projects have given the author the possibility to study, test and validate strategies for parallel project management and integrated design, merged in a sort of unique optimized task, using the newly-coined word "Technomethodology". The paper highlights useful information to be taken into consideration during project organization to minimize the program deviations from the expected goals and describe some of the basic meanings of this new advanced method that is the key for parallel successful management of multiple and interdisciplinary activities.

  1. Creativity, visualization abilities, and visual cognitive style.

    PubMed

    Kozhevnikov, Maria; Kozhevnikov, Michael; Yu, Chen Jiao; Blazhenkova, Olesya

    2013-06-01

    Despite the recent evidence for a multi-component nature of both visual imagery and creativity, there have been no systematic studies on how the different dimensions of creativity and imagery might interrelate. The main goal of this study was to investigate the relationship between different dimensions of creativity (artistic and scientific) and dimensions of visualization abilities and styles (object and spatial). In addition, we compared the contributions of object and spatial visualization abilities versus corresponding styles to scientific and artistic dimensions of creativity. Twenty-four undergraduate students (12 females) were recruited for the first study, and 75 additional participants (36 females) were recruited for an additional experiment. Participants were administered a number of object and spatial visualization abilities and style assessments as well as a number of artistic and scientific creativity tests. The results show that object visualization relates to artistic creativity and spatial visualization relates to scientific creativity, while both are distinct from verbal creativity. Furthermore, our findings demonstrate that style predicts corresponding dimension of creativity even after removing shared variance between style and visualization ability. The results suggest that styles might be a more ecologically valid construct in predicting real-life creative behaviour, such as performance in different professional domains. © 2013 The British Psychological Society.

  2. Winter in Northern Europe (WINE). The project Winter in Northern Europe (MAP/WINE): Introduction and outlook

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1989-01-01

    The project Winter in Northern Europe (WINE) of the international Middle Atmosphere Program (MAP) comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983 to 1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, were, in addition, expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Beyond its direct scientific results, which are reviewed, MAP/WINE has stimulated quite a number of follow-on experiments and projects which address the aeronomy of the middle atmosphere at high and polar latitudes.

  3. Dealing with scientific integrity issues: the Spanish experience.

    PubMed

    Puigdomènech, Pere

    2014-02-01

    Integrity has been an important matter of concern for the scientific community as it affects the basis of its activities. Most countries having a significant scientific activity have dealt with this problem by different means, including drafting specific legal or soft law regulations and the appointment of stable or ad hoc committees that take care of these questions. This has also been the case in Spain. After the period of transition between dictatorship to a democratic regime, and, particularly, after the entrance in the European Union, scientific activity has increased in the country. As it could be expected, problems of misconduct have appeared and different institutions have been dealing with these matters. One of the best examples is that of Consejo Superior de Investigaciones Cientificas (CSIC), the largest institution devoted to scientific research belonging to the Spanish Government. The experience of the CSIC’s Ethics Committee in dealing with conflicts related to scientific practices is discussed here.

  4. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  5. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms. PMID:27873868

  6. Solving challenges in inter- and trans-disciplinary working teams: Lessons from the surgical technology field.

    PubMed

    Korb, Werner; Geißler, Norman; Strauß, Gero

    2015-03-01

    Engineering a medical technology is a complex process, therefore it is important to include experts from different scientific fields. This is particularly true for the development of surgical technology, where the relevant scientific fields are surgery (medicine) and engineering (electrical engineering, mechanical engineering, computer science, etc.). Furthermore, the scientific field of human factors is important to ensure that a surgical technology is indeed functional, process-oriented, effective, efficient as well as user- and patient-oriented. Working in such trans- and inter-disciplinary teams can be challenging due to different working cultures. The intention of this paper is to propose an innovative cooperative working culture for the interdisciplinary field of computer-assisted surgery (CAS) based on more than ten years of research on the one hand and the interdisciplinary literature on working cultures and various organizational theories on the other hand. In this paper, a retrospective analysis of more than ten years of research work in inter- and trans-disciplinary teams in the field of CAS will be performed. This analysis is based on the documented observations of the authors, the study reports, protocols, lab reports and published publications. To additionally evaluate the scientific experience in an interdisciplinary research team, a literature analysis regarding scientific literature on trans- and inter-disciplinarity was performed. Own research and literature analyses were compared. Both the literature and the scientific experience in an interdisciplinary research team show that consensus finding is not always easy. It is, however, important to start trans- and interdisciplinary projects with a shared mental model and common goals, which include communication and leadership issues within the project teams, i.e. clear and unambiguous information about the individual responsibilities and objectives to attain. This is made necessary due to differing leadership cultures within the cooperating disciplines. Another research outcome is the relevance of a cooperative learning culture throughout the complete duration of the project. Based on this cooperation, new ideas and projects were developed, i.e. a training concept for surgical trainers including technological competence for surgeons. An adapted innovative paradigm for a cooperating working culture in CAS is based on a shared mental model and common goals from the very beginning of a project. All actors in trans- and inter-disciplinary teams need to be interested in cooperation. This will lead to a common view on patients and technology models. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  8. Using NASA-Unique Lunar Sample Disks and Resources to Inspire and Promote Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Allen, J.; Graff, P. V.; Willis, K. J.; Runco, S.

    2014-01-01

    The opportunity for educators and students across the nation to hold precious, NASA lunar samples in their hands and examine materials brought back by astronauts during the Apollo era is an experience and memory that can last a lifetime. Combine that experience with the opportunity to be engaged with hands-on activities that promote scientific inquiry and an understanding of the importance of these samples...now you are preparing our nation's future scientific explorers.

  9. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  10. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.

    PubMed

    Voet, Arnout R D; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y J

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  11. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4

    NASA Astrophysics Data System (ADS)

    Voet, Arnout R. D.; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y. J.

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  12. Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive

    ERIC Educational Resources Information Center

    Bangera, Gita; Brownell, Sara E.

    2014-01-01

    Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…

  13. Astronomy through the Skylab scientific airlocks.

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Weinberg, J. L.

    1973-01-01

    Description of Skylab astronomy experiments (other than the Apollo Telescope Mount experiments) designed to study the earth's atmosphere, particles near the spacecraft, various components of the background skylight, the spectra of the sun, and the features of stars, nebulae, and galaxies. Emphasis is placed on the eight experiments that will operate through the scientific airlocks in the Orbital Workshop. The major features of equipment to be used in each experiment are outlined together with characteristics and relevance of information expected in each case.

  14. Preliminary results of the scientific experiments on the Kosmos-936 biosatellite

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The scientific equipment and experiments on the Kosmos-936 biosatellite are described, including various ground controls and the lab unit for studies at the descent vehicle landing site. Preliminary results are presented of the physiological experiment with rats, biological experiments with drosophila and higher and lower plants, and radiation physics and radiobiology studies for the planning of biological protection on future space flights. The most significant conclusion from the preliminary data is that rats tolerate space flight better with an artificial force of gravity.

  15. Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle

    1999-01-01

    This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.

  16. Data analysis and interpretation of UVSP and other experiments on board solar maximum mission

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    During the period of this contract (February 1 1980 to February 1987) there were two separate efforts involved: one was programmetric, i.e., the coordination of scientific working groups and the organization of workshops in the solar physics discipline; the second was scientific, i.e., to perform research to investigate the fundamental physical mechanisms of the energy and momentum transport from the solar surface to interplanetary space. In the former, 19 workshops, involving 88 scientists were organized. In the latter aspect, the following were investigated: solar flare energy buildup and release, coronal dynamics, energy and momentum transport from lower solar atmosphere to interplanetary space, numerical methods for the calculation of the nonlinear force-free field, and the evolution of the solar magnetic field.

  17. ‘Sciencenet’—towards a global search and share engine for all scientific knowledge

    PubMed Central

    Lütjohann, Dominic S.; Shah, Asmi H.; Christen, Michael P.; Richter, Florian; Knese, Karsten; Liebel, Urban

    2011-01-01

    Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, ‘Sciencenet’, which facilitates rapid searching over this large data space. By ‘bringing the search engine to the data’, we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. Availability and Implementation: The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the ‘AskMe’ experiment publisher is written in Python 2.7, and the backend ‘YaCy’ search engine is based on Java 1.6. Contact: urban.liebel@kit.edu Supplementary Material: Detailed instructions and descriptions can be found on the project homepage: http://sciencenet.kit.edu. PMID:21493657

  18. The New Commercial Suborbital Vehicles: An Opportunity for Scientific and Microgravity Research

    NASA Astrophysics Data System (ADS)

    Moro-Aguilar, Rafael

    2014-11-01

    As of 2013, a number of companies had announced their intention to start flying suborbital vehicles, capable of transporting people to high altitudes out of any airport or launch site, on a commercial and regular basis. According to several studies, a market for suborbital "space tourism" exists. Another very promising application of suborbital flight is scientific research. The present paper provides an overview of the potential of commercial suborbital flight for science, including microgravity research. Suborbital flight provides a much-needed intermediate-duration opportunity between research performed in Earth orbit and more affordable but shorter duration alternatives, such as drop towers and zero-g parabolic flights. Moreover, suborbital flight will be less expensive and more frequent than both orbital flight and sounding rockets, and it has the capability to fly into sub-orbit the researcher together with the payload, and thus enable on-site interaction with the experiment. In the United States, both the National Aeronautics and Space Administration (NASA) and a number of private institutions have already shown interest in conducting scientific experiments, particularly microgravity research, aboard these new platforms. Researchers who intend to participate in future suborbital flights as payload specialists will need training, given the physical challenges posed by the flight. Finally, suborbital researchers may also want to have a basic knowledge of the legal status that will apply to them as passengers of such flights.

  19. Skylab

    NASA Image and Video Library

    1972-08-21

    St. Paul Minnesota high school student, Roger Johnston (center), Gene Vacca (left) of NASA Headquarters, and Ann Whitaker of the Marshall Space Flight Center (MSFC) discuss the equipment to be used for the student’s experiment, “Capillary Action Studies in a State of Free Fall”, to be performed aboard the Skylab the following year. Johnston was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC two months earlier where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment. The equipment for the experiments was manufactured at MSFC.

  20. Scientific Rationale and Requirements for a Global Seismic Network on Mars

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Anderson, Don L.; Banerdt, W. Bruce; Butler, Rhett G.; Davis, Paul M.; Duennebier, Frederick K.; Nakamura, Yosio; Okal, Emile A.; Phillips, Roger J.

    1991-01-01

    Following a brief overview of the mission concepts for a Mars Global Network Mission as of the time of the workshop, we present the principal scientific objectives to be achieved by a Mars seismic network. We review the lessons for extraterrestrial seismology gained from experience to date on the Moon and on Mars. An important unknown on Mars is the expected rate of seismicity, but theoretical expectations and extrapolation from lunar experience both support the view that seismicity rates, wave propagation characteristics, and signal-to-noise ratios are favorable to the collection of a scientifically rich dataset during the multiyear operation of a global seismic experiment. We discuss how particular types of seismic waves will provide the most useful information to address each of the scientific objectives, and this discussion provides the basis for a strategy for station siting. Finally, we define the necessary technical requirements for the seismic stations.

  1. The Mpemba effect: When can hot water freeze faster than cold?

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2006-06-01

    We review the Mpemba effect, where initially hot water freezes faster than initially cold water. Although the effect might appear impossible, it has been observed in numerous experiments and was discussed by Aristotle, Francis Bacon, Roger Bacon, and Descartes. It has a rich and fascinating history, including the story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon is simple to describe and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. Proposed theoretical mechanisms for the Mpemba effect and the results of contemporary experiments on the phenomenon are surveyed. The observation that hot water pipes are more likely to burst than cold water pipes is also discussed.

  2. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  3. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  4. Avengers Assemble! Using pop-culture icons to communicate science

    PubMed Central

    2014-01-01

    Engaging communication of complex scientific concepts with the general public requires more than simplification. Compelling, relevant, and timely points of linkage between scientific concepts and the experiences and interests of the general public are needed. Pop-culture icons such as superheroes can represent excellent opportunities for exploring scientific concepts in a mental “landscape” that is comfortable and familiar. Using an established icon as a familiar frame of reference, complex scientific concepts can then be discussed in a more accessible manner. In this framework, scientists and the general public use the cultural icon to occupy a commonly known performance characteristic. For example, Batman represents a globally recognized icon who represents the ultimate response to exercise and training. The physiology that underlies Batman's abilities can then be discussed and explored using real scientific examples that highlight truths and fallacies contained in the presentation of pop-culture icons. Critically, it is not important whether the popular representation of the icon shows correct science because the real science can be revealed in discussing the character through this lens. Scientists and educators can then use these icons as foils for exploring complex ideas in a context that is less threatening and more comfortable for the target audience. A “middle-ground hypothesis” for science communication is proposed in which pop-culture icons are used to exploring scientific concepts in a bridging mental landscape that is comfortable and familiar. This approach is encouraged for communication with all nonscientists regardless of age. PMID:25039082

  5. Avengers Assemble! Using pop-culture icons to communicate science.

    PubMed

    Zehr, E Paul

    2014-06-01

    Engaging communication of complex scientific concepts with the general public requires more than simplification. Compelling, relevant, and timely points of linkage between scientific concepts and the experiences and interests of the general public are needed. Pop-culture icons such as superheroes can represent excellent opportunities for exploring scientific concepts in a mental “landscape” that is comfortable and familiar. Using an established icon as a familiar frame of reference, complex scientific concepts can then be discussed in a more accessible manner. In this framework, scientists and the general public use the cultural icon to occupy a commonly known performance characteristic. For example, Batman represents a globally recognized icon who represents the ultimate response to exercise and training. The physiology that underlies Batman’s abilities can then be discussed and explored using real scientific examples that highlight truths and fallacies contained in the presentation of pop-culture icons. Critically, it is not important whether the popular representation of the icon shows correct science because the real science can be revealed in discussing the character through this lens. Scientists and educators can then use these icons as foils for exploring complex ideas in a context that is less threatening and more comfortable for the target audience. A “middle-ground hypothesis” for science communication is proposed in which popculture icons are used to exploring scientific concepts in a bridging mental landscape that is comfortable and familiar. This approach is encouraged for communication with all nonscientists regardless of age.

  6. An investigation into the effectiveness of problem-based learning in a physical chemistry laboratory course

    NASA Astrophysics Data System (ADS)

    Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa

    2007-04-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p

  7. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    NASA Technical Reports Server (NTRS)

    Chance, Kelly

    2003-01-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  8. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    NASA Astrophysics Data System (ADS)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  9. Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology

    NASA Astrophysics Data System (ADS)

    Sauter, Megan Patrice

    Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.

  10. Gene expression variations during Drosophila metamorphosis in space: The GENE experiment in the Spanish cervantes missions to the ISS

    NASA Astrophysics Data System (ADS)

    Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto

    2005-08-01

    The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.

  11. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  12. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  13. Experience factors in performing periodic physical evaluations

    NASA Technical Reports Server (NTRS)

    Hoffman, A. A.

    1969-01-01

    The lack of scientific basis in the so-called periodic health examinations on military personnel inclusive of the Executive Health Program is outlined. This latter program can well represent a management tool of the company involved in addition to being a status symbol. A multiphasic screening technique is proposed in conjunction with an automated medical history questionnaire for preventive occupational medicine methodology. The need to collate early sickness consultation or clinic visit histories with screening techniques is emphasized.

  14. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Connor, Rainor

    2018-03-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and cost-saving achieved by replacing a plethora of traditional laboratory sensors, wires, and equipment clutter with the smart cart are reported here.

  15. A step-by-step guide to systematically identify all relevant animal studies.

    PubMed

    Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first step in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search filters to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, step-by-step guide was prepared and optimized using feedback from scientists in the field of animal experimentation. The step-by-step guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future.

  16. A step-by-step guide to systematically identify all relevant animal studies

    PubMed Central

    Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first step in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search filters to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, step-by-step guide was prepared and optimized using feedback from scientists in the field of animal experimentation. The step-by-step guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future. PMID:22037056

  17. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  18. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather (approximately 50 students participated) and the other on ecology (24 students participated). Both units proved to be a success in terms of the learning that resulted and in the positive experiences of the students and myself as the teacher. In both cases, students were give a pre and post multiple-choice test that covered questions typical of those found on the state's achievement exam and the schools' regular tests covering weather and ecology. Both groups of students showed a significant increase in learning. In an attempt to gain an understanding of student experiences with this type of learning, surveys and interviews were administered. The units appear to have profoundly affected students' ideas of weather and ecology---many reporting to see these concepts in new, richer ways. The goal of teaching for scientific sublime experiences is not only content knowledge, but to transform students' understanding of the world. Based on student comments and observations of classroom discussions, I feel that I largely achieved my goal.

  19. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouzounian, G.

    Year 2006 has been marked in France by the vote in the Parliament of the Planning Act of 28 June, 2006, concerning the sustainable management of radioactive materials and waste. This vote was the achievement of a 15 years research programme performed as required by the previous Research Law of 1991, also known as the Bataille Law, from the name of Christian Bataille, MP, who drafted it and monitored its enforcement as a member of the Parliamentary Office for Scientific and Technological Assessment (Office Parlementaire d'Evaluation des Choix Scientifiques et Techniques - OPECST). At that time a stepwise approach tomore » siting was introduced in the process. It included the study of several alternatives to the geological disposal of long lived high level radioactive waste. Those alternatives have been thoroughly studied and assessed before the Government decided to submit the bill to the Parliament. Experience has been gained not only on the scientific and technical aspects, but also in the field of decision making process, also called now governance. However, not only the results of the research programme were decisive in preparing the bill, but also of major importance were the industrial experience of ANDRA and the rigorous programme management along all those years. Main lessons learnt from the experience are given in this paper. (authors)« less

  1. Spacelab

    NASA Image and Video Library

    1981-01-01

    Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements could be combined to accommodate the many types of scientific research that could best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, anternas, and sensors, was mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building of Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  2. SEAS (Student Experiments At Sea): Helping Teachers Foster Authentic Student Inquiry in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Kelsey, K.; Carlson, J.

    2005-12-01

    Teacher professional development designed to promote authentic research in the classroom is ultimately aimed at improving student scientific literacy. In addition to providing teachers with opportunities to improve their understanding of science through research experiences, we need to help facilitate similar learning in students. This is the focus of the SEAS (Student Experiments At Sea) program: to help students learn science by doing science. SEAS offers teachers tools and a framework to help foster authentic student inquiry in the classroom. SEAS uses the excitement of deep-sea research, as well as the research facilities and human resources that comprise the deep-sea scientific community, to engage student learners. Through SEAS, students have the opportunity to practice inquiry skills and participate in research projects along side scientists. SEAS is a pilot program funded by NSF and sponsored by the Ridge 2000 research community. The pilot includes inquiry-based curricular materials, facilitated interaction with scientists, opportunities to engage students in research projects, and teacher training. SEAS offers a framework of resources designed to help translate inquiry skills and approaches to the classroom environment, recognizing the need to move students along the continuum of scientific inquiry skills. This framework includes hands-on classroom lessons, Classroom to Sea labs where students compare their investigations with at-sea investigations, and a student experiment competition. The program also uses the Web to create a virtual ``scientific community'' including students. Lessons learned from this two year pilot emphasize the importance of helping teachers feel knowledgeable and experienced in the process of scientific inquiry as well as in the subject. Teachers with experience in scientific research were better able to utilize the program. Providing teachers with access to scientists as a resource was also important, particularly given the challenges of working in the deep-sea environment. Also, fostering authentic student investigations (i.e., working through preparatory materials, developing proposals, analyzing data and writing summary reports) is challenging to fit within the academic year. Nonetheless, teacher feedback highlights that the excitement generated by participation in real research is highly motivating. Further, students experience a ``paradigm shift'' in understanding evidence-based reasoning and the process of scientific discovery.

  3. Exploring English Language Learners (ELL) Experiences with Scientific Language and Inquiry within a Real Life Context

    ERIC Educational Resources Information Center

    Algee, Lisa M.

    2012-01-01

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on…

  4. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  5. Processing and Recall of Seductive Details in Scientific Text

    ERIC Educational Resources Information Center

    Lehman, Stephen; Schraw, Gregory; McCrudden, Matthew T.; Hartley, Kendall

    2007-01-01

    This study examined how seductive details affect on-line processing of a technical, scientific text. In Experiment 1, each sentence from the experimental text was rated for interest and importance. Participants rated seductive details as being more interesting but less important than main ideas. In Experiment 2, we examined the effect of seductive…

  6. Enhancing the Student Experiment Experience: Visible Scientific Inquiry through a Virtual Chemistry Laboratory

    ERIC Educational Resources Information Center

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-01-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student…

  7. First among equals: The selection of NASA space science experiments

    NASA Technical Reports Server (NTRS)

    Naugle, John E.

    1990-01-01

    The process is recounted by which NASA and the scientific community have, since 1958, selected individual experiments for NASA space missions. It explores the scientific and organizational issues involved in the selection process and discusses the significance of the process in the character and accomplishments of U.S. space activities.

  8. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  9. Introductory Psychology: How Student Experiences Relate to Their Understanding of Psychological Science

    ERIC Educational Resources Information Center

    Toomey, Thomas; Richardson, Deborah; Hammock, Georgina

    2017-01-01

    Many students who declare a psychology major are unaware that they are studying a scientific discipline, precipitating a need for exercises and experiences that help students understand the scientific nature of the discipline. The present study explores aspects of an introductory psychology class that may contribute to students' understanding of…

  10. Cuban Techno-physical Experiments in Space

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Calzadilla Amaya, Ocatvio; Falcon, Federico; Fuentes, Juan E.; Lodos, Jorge; Vigil Santos, Elena

    When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18-26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

  11. IMP series report/bibliography

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1971-01-01

    The main characteristics of the IMP spacecraft and experiments are considered and the scientific knowledge gained is presented in the form of abstracts of scientific papers using IMP data. Spacecraft characteristics, including temporal and spatial coverages, are presented followed by an annotated bibliography. Experiments conducted on all IMP's (including prelaunch IMP's H and J) are described. Figures are presented showing the time histories, through the end of 1970, of magnetic field, plasma, and energetic particle experiments.

  12. Participation in the definition, conduct, and analysis of particle accelerator experiments for the first Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC) is a joint endeavor between NASA and the Institute of Space and Aeronautical Sciences (ISAS) in Japan. Its objectives are to use energetic electron beams to investigate beam-atmosphere interactions and beam-plasma interactions in the earth's upper atmosphere and ionosphere using the shuttle Spacelab. Two flights of SEPAC have occurred to date (Spacelab 1 on STS-9 in Nov.-Dec. 1983 and ATLAS 1 on STS-45 in Mar.-Apr. 1992). The SEPAC instrumentation is available for future missions, and the scientific results of the first two missions justify further investigations; however, at present there are no identifiable future flight opportunities. As specified in the contract, the primary purpose of this report is to review the scientific accomplishments of the ATLAS 1 SEPAC experiments, which have been documented in the published literature, with only a brief review of the earlier Spacelab 1 results. One of the main results of the Spacelab 1 SEPAC experiments was that the ejection of plasma from the magnetoplasmadynamic (MPD) arcjet was effective in maintaining vehicle charge neutralization during electron beam firings, but only for a brief period of 10 ms or so. Therefore, a xenon plasma contactor, which can provide continuous vehicle charge neutralization, was developed for the ATLAS 1 SEPAC experiments. Because of the successful operation of the plasma contactor on ATLAS 1, it was possible to perform experiments on beam-plasma interactions and beam-atmosphere interactions at the highest beam power levels of SEPAC. In addition, the ability of the plasma contactor to eject neutral xenon led to a successful experiment on the critical ionization velocity (CIV) phenomena on ATLAS 1.

  13. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    NASA Astrophysics Data System (ADS)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  14. Airborne simulation of Shuttle/Spacelab management and operation

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Neel, C. B.

    1976-01-01

    The ASSESS (Airborne Science/Spacelab Experiments System Simulation) program is discussed. A simulated Spacelab operation was carried out aboard the CV-990 airborne laboratory at Ames Research Center. A scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England and the U.S. Two experiment operators (EOs) from the U.S. and two from Europe were trained to function as proxies for the principal investigators in operating, maintaining, and repairing the scientific instruments. The simulated mission, in which the EOs and a Mission Manager were confined to the aircraft and living quarters for a 1-week period while making scientific observations during nightly flights, provided experience in the overall management of a complex international payload, experiment preparation, testing, and integration, the training and selection of proxy operators, and data handling.

  15. Performing the Future. On the Use of Drama in Philosophy Courses for Science Students

    NASA Astrophysics Data System (ADS)

    Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub

    2016-10-01

    Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.

  16. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  17. Overview of NASA's microgravity combustion science and fire safety program

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.

    1993-01-01

    The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity -- in the form of long duration microgravity laboratories -- and need -- in the form of spacecraft fire safety and a variety of terrestrial applications -- to pursue fresh insight into the basic physics of combustion. Through microgravity, a new range of experiments can be performed since: (1) Buoyancy-induced flows are nearly eliminated; (2) Normally obscured forces and flows may be isolated; (3) Gravitational settling or sedimentation is nearly eliminated; and (4) Larger time or length scales in experiments become permissible.

  18. Report of the Plasma Physics and Environmental Perturbation Laboratory (PPEPL) working groups. Volume 3: Magnetospheric experiments working group

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A number of general studies that were proposed for the PPEPL-SHUTTLE program are considered in qualitative detail from both the theoretical and practical points of view. The selection of experimental programs was restricted to those which may be considered active as opposed to refinements of the passive observational programs done previously. It is concluded that, while these new studies were scientifically worthwhile and could be performed in principle, in most cases insufficient attention was paid to the practical details of the experiments. Several specific areas of study, stressing in particular the practical feasibility of the proposed experiments, are recommended. In addition, recommendations are made for further theoretical study, where appropriate. For Vol. 1, see N74-28169; for Vol. 2, see N74-28170.

  19. Active Rack Isolation System Program and Technical Status

    NASA Technical Reports Server (NTRS)

    Bushnell, Glenn; Fialho, Ian; Allen, James; Quraishi, Naveed

    2000-01-01

    The Boeing Active Rack Isolation System (ARIS) is one of the means used to isolate acceleration-sensitive scientific experiments from structurally transmitted disturbances aboard the International Space Station. The presentation provides an overview of ARIS and technical issues associated with the development of the active control system. An overview of ARIS analytical models is presented along with recent isolation performance predictions made using these models. Issues associated with commanding and capturing ARIS data are discussed and possible future options based on the ARIS ISS Characterization Experiment (ICE) Payload On-orbit Processor (POP) are outlined. An overview of the ARIS-ICE experiment scheduled to fly on ISS Flight 6A is presented. The presentation concludes with a discussion of recent- developmental work that includes passive rack damping, umbilical redesigns and advanced multivariable control design methods.

  20. Neutron interferometry: The pioneering contributions of Samuel A. Werner

    NASA Astrophysics Data System (ADS)

    Klein, A. G.

    2006-11-01

    In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975) 1472] on gravitationally induced quantum interference. Shortly thereafter he moved to the University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. This work and its history are briefly reviewed in this paper.

  1. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa.

  2. Incorporating Scientific Publishing into an Undergraduate Neuroscience Course: A Case Study Using IMPULSE

    PubMed Central

    Jones, Leslie Sargent; Allen, Laura; Cronise, Kim; Juneja, Natasha; Kohn, Rebecca; McClellan, Katherine; Miller, Ashley; Nazir, Azka; Patel, Andy; Sweitzer, Sarah M.; Vickery, Erin; Walton, Anna; Young, Robert

    2011-01-01

    The journal IMPULSE offers undergraduates worldwide the opportunity to publish research and serve as peer reviewers for the submissions of others. Undergraduate faculty have recognized the journal’s value in engaging students working in their labs in the publication process. However, integration of scientific publication into an undergraduate laboratory classroom setting has been lacking. We report here on a course at Ursinus College where 20 students taking Molecular Neurobiology were required to submit manuscripts to IMPULSE. The syllabus allowed for the laboratory research to coincide with the background research and writing of the manuscript. Students completed their projects on the impact of drugs on the Daphnia magna nervous system while producing manuscripts ready for submission by week 7 of the course. Findings from a survey completed by the students and perceptions of the faculty member teaching the course indicated that students spent much more time writing, were more focused on completing the assays, completed the assays with larger data sets, were more engaged in learning the scientific concepts and were more thorough with their revisions of the paper knowing that it might be published. Further, the professor found she was more thorough in critiquing students’ papers knowing they would be externally reviewed. Incorporating journal submission into the course stimulated an in depth writing experience and allowed for a deeper exploration of the topic than students would have experienced otherwise. This case study provides evidence that IMPULSE can be successfully used as a means of incorporating scientific publication into an undergraduate laboratory science course. This approach to teaching undergraduate neuroscience allows for a larger number of students to have hands-on research and scientific publishing experience than would be possible with the current model of a few students in a faculty member’s laboratory. This report illustrates that IMPULSE can be incorporated as an integral part of an academic curriculum with positive outcomes on student engagement and performance. PMID:23494013

  3. Research by retrieving experiments.

    PubMed

    Blagosklonny, Mikhail V

    2007-06-01

    Newton did not discover that apples fall: the information was available prior to his gravitational hypothesis. Hypotheses can be tested not only by performing experiments but also by retrieving experiments from the literature (via PubMed, for example). Here I show how disconnected facts from known data, if properly connected, can generate novel predictions testable in turn by other published data. With examples from cell cycle, aging, cancer and other fields of biology and medicine, I discuss how new knowledge was and will be derived from old information. Millions of experiments have been already performed to test unrelated hypotheses and the results of those experiments are available to 'test' your hypotheses too. But most data (99% by some estimates) remain unpublished, because they were negative, seemed of low priority, or did not fit the story. Yet for other investigators those data may be valuable. The well-known story of Franklin and Watson is a case in point. By making preliminary data widely available, 'data-owners' will benefit most, receiving the credit for otherwise unused results. If posted (pre-published) on searchable databases, these data may fuel thousands of projects without the need for repetitive experiments. Enormous 'pre-published' databases coupled with Google-like search engines can change the structure of scientific research, and shrinking funding will make this inevitable.

  4. An integrated biochemistry and genetics outreach program designed for elementary school students.

    PubMed

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  5. Towards Robot Scientists for autonomous scientific discovery

    PubMed Central

    2010-01-01

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist. PMID:20119518

  6. Towards Robot Scientists for autonomous scientific discovery.

    PubMed

    Sparkes, Andrew; Aubrey, Wayne; Byrne, Emma; Clare, Amanda; Khan, Muhammed N; Liakata, Maria; Markham, Magdalena; Rowland, Jem; Soldatova, Larisa N; Whelan, Kenneth E; Young, Michael; King, Ross D

    2010-01-04

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.

  7. Macular pigment and its contribution to visual performance and experience

    PubMed Central

    Loughman, James; Davison, Peter A.; Nolan, John M.; Akkali, Mukunda C.; Beatty, Stephen

    2010-01-01

    There is now a consensus, based on histological, biochemical and spectral absorption data, that the yellow colour observed at the macula lutea is a consequence of the selective accumulation of dietary xanthophylls in the central retina of the living eye. Scientific research continues to explore the function(s) of MP in the human retina, with two main hypotheses premised on its putative capacity to (1) protect the retina from (photo)-oxidative damage by means of its optical filtration and/or antioxidant properties, the so-called protective hypothesis and (2) influence the quality of visual performance by means of selective short wavelength light absorption prior to photoreceptor light capture, thereby attenuating the effects of chromatic aberration and light scatter, the so-called acuity and visibility hypotheses. The current epidemic of age-related macular degeneration has directed researchers to investigate the protective hypothesis of MP, while there has been a conspicuous lack of work designed to investigate the role of MP in visual performance. The aim of this review is to present and critically appraise the current literature germane to the contribution of MP, if any, to visual performance and experience.

  8. SSERVI Opportunities for the Next Generation of Planetary Researchers

    NASA Astrophysics Data System (ADS)

    Bailey, B. E.; Day, B. H.; Minafra, J.; Baer, J.

    2015-12-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) was founded as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD). SSERVI consists of a diverse set of domestic teams and (currently) nine international teams, ultimately represented by greater than 75 distinct research institutions and more than 450 individual researchers and EPO specialists. The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  9. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  10. Web-based analysis and publication of flow cytometry experiments.

    PubMed

    Kotecha, Nikesh; Krutzik, Peter O; Irish, Jonathan M

    2010-07-01

    Cytobank is a Web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a Web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permission, from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at http://www.cytobank.org. (c) 2010 by John Wiley & Sons, Inc.

  11. Web-Based Analysis and Publication of Flow Cytometry Experiments

    PubMed Central

    Kotecha, Nikesh; Krutzik, Peter O.; Irish, Jonathan M.

    2014-01-01

    Cytobank is a web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permissions from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at www.cytobank.org PMID:20578106

  12. Main results and experience obtained on Mir space station and experiment program for Russian segment of ISS.

    PubMed

    Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M

    2003-07-01

    This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.

  13. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  14. PARCS-Primary Atomic Reference Clock in Space

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2000-04-01

    The purpose of the PARCS project is to place an advanced Cesium clock on the International Space Station (ISS). The project has been approved by NASA at the level of Science Concept Review. Groups at the National Institute of Standards and Technology, Jet Propulsion Laboratory, University of Colorado, and Harvard-Smithsonian Astrophysical Observatory, University of Torino are collaborating on clock design and construction. The microgravity space environment allows laser-cooled Cs atoms to spend longer times in the beam, resulting in improved clock performance. Clock stabilities of 3 × 10-14 at one second and accuracies of 1 × 10-16 are projected. With improved clock performance, significant improvements in several fundamental special and general relativity experiments are expected. For an ISS orbit at 400 km altitude and eccentricity 0.02, the gravitational frequency shift should be measureable about 35 times better than the previous best, Gravity Probe A. Improvements in testing Local Position Invariance and in a Kennedy-Thorndike experiment are expected. Areas of technology such as world-wide timing and time transfer and navigation will also directly benefit from such a high-performance clock in space. This paper will briefly describe the PARCS clock. The principal limitations on performance of relativity experiments, scientific objectives and benefits, and projected outcomes, will be discussed.

  15. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  16. ATLAS computing on Swiss Cloud SWITCHengines

    NASA Astrophysics Data System (ADS)

    Haug, S.; Sciacca, F. G.; ATLAS Collaboration

    2017-10-01

    Consolidation towards more computing at flat budgets beyond what pure chip technology can offer, is a requirement for the full scientific exploitation of the future data from the Large Hadron Collider at CERN in Geneva. One consolidation measure is to exploit cloud infrastructures whenever they are financially competitive. We report on the technical solutions and the performances used and achieved running simulation tasks for the ATLAS experiment on SWITCHengines. SWITCHengines is a new infrastructure as a service offered to Swiss academia by the National Research and Education Network SWITCH. While solutions and performances are general, financial considerations and policies, on which we also report, are country specific.

  17. Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.

  18. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  19. Operation and performance of the EEE network array for the detection of cosmic rays

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2017-02-01

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  20. Microprobe Analysis of Pu-Ga Standards

    DOE PAGES

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    2017-08-04

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  1. How to reconcile the multiculturalist and universalist approaches to science education

    NASA Astrophysics Data System (ADS)

    Hansson, Sven Ove

    2017-06-01

    The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved rationality, a careful distinction between facts and values, a search for shared, well-founded judgments in empirical matters, and strivings for continuous improvement of these judgments. Prominent examples are hunters' discussions when tracking a prey, systematic agricultural experiments performed by indigenous farmers, and remarkably advanced experiments performed by craftspeople long before the advent of modern science. When the continuities between science and these prescientific practices are taken into account, it becomes obvious that the traditional forms of both multiculturalism and universalism should be replaced by a new approach that dissolves the alleged conflict between adherence to modern science and respect for traditional cultures.

  2. Microprobe Analysis of Pu-Ga Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  3. Publishing Platform for Scientific Software - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim

    2015-04-01

    Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.

  4. Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.

    ERIC Educational Resources Information Center

    Carr, Robin; And Others

    1995-01-01

    Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…

  5. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  6. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  7. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  8. Demystifying the Chemistry Literature: Building Information Literacy in First-Year Chemistry Students through Student-Centered Learning and Experiment Design

    ERIC Educational Resources Information Center

    Bruehl, Margaret; Pan, Denise; Ferrer-Vinent, Ignacio J.

    2015-01-01

    This paper describes curriculum modules developed for first-year general chemistry laboratory courses that use scientific literature and creative experiment design to build information literacy in a student-centered learning environment. Two curriculum units are discussed: Exploring Scientific Literature and Design Your Own General Chemistry…

  9. Thermoregulatory Behavior in Diurnal Lizards as a Vehicle for Teaching Scientific Process

    ERIC Educational Resources Information Center

    Platz, James E.

    2009-01-01

    Field experiments offer the opportunity for hands on experience with the scientific process. While this is true of a wide variety of activities, many have pitfalls both experimental and logistical that reduce the overall rate of success, in turn, influencing student learning outcomes. Relying on small, territorial, diurnal lizards and an array of…

  10. Effects of an Educational Experience Incorporating an Inventory of Factors Potentially Influencing Student Acceptance of Biological Evolution

    ERIC Educational Resources Information Center

    Wiles, Jason R.; Alters, Brian

    2011-01-01

    This investigation provides an extensive review of scientific, religious, and otherwise non-scientific factors that may influence student acceptance of biological evolution. We also measure the extent to which students' levels of acceptance changed following an educational experience designed to address an inclusive inventory of factors identified…

  11. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  12. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    ERIC Educational Resources Information Center

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  13. EDEN: a payload dedicated to neurovestibular research for Neurolab

    NASA Technical Reports Server (NTRS)

    Bellossi, F.; Clement, G.; Cohen, B.; Cork, M.

    1998-01-01

    The European Space Agency contributes to the Neurolab mission through the delivery of the ESA Developed Elements for Neurolab (EDEN). Those elements include one set supporting the Autonomic Nervous System experiment and one set supporting the Neurovestibular (so-called ATLAS) experiment. This second set is called the Visual and Vestibular Investigation System (VVIS). This paper describes the main characteristics of the VVIS and its various subsystems. The scientific objectives and operational constraints of the ATLAS experiment to be carried out with this equipment during Neurolab are presented to underline the correspondence between the VVIS design and the scientific requirements. Further scientific and technical perspectives for the VVIS, particularly within the scope of the International Space station, are also proposed.

  14. Corot telescope (COROTEL)

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  15. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  16. Lessons for Interstellar Travel from the Guidance and Control Design of the Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Diedrich, Benjamin; Heaton, Andrew

    2017-01-01

    NASA's Near Earth Asteroid Scout (NEA Scout) solar sail mission will fly by and image an asteroid. The team has experience characterizing the sail forces and torques used in guidance, navigation, and control to meet the scientific objectives. Interstellar and precursor sail missions similarly require understanding of beam riding dynamics to follow sufficiently accurate trajectories to perform their missions. Objective: Identify the driving factors required to implement a guidance and control system that meets mission requirements for a solar sail mission; Compare experience of an asteroid flyby mission to interstellar missions to flyby and observe other stars or precursor missions to study the extrasolar medium.

  17. Interactive mission planning for a Space Shuttle flight experiment - A case history

    NASA Technical Reports Server (NTRS)

    Harris, H. M.

    1986-01-01

    Scientific experiments which use the Space Shuttle as a platform require the development of new operations techniques for the command and control of the instrument. Principal among these is the ability to simulate the complex maneuvers of the orbiter's path realistically. Computer generated graphics provide a window into the actual and predicted performance of the instrument and allow sophisticated control of the instrument under varying conditions. In October of 1984 the Shuttle carried a synthetic aperture radar built by JPL for the purpose of recording images of the earth surface. The mission deviated from planned operation in almost every conceivable way and provided an exacting test bed for concepts of interactive mission planning.

  18. STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

  19. Age and Scientific Performance.

    ERIC Educational Resources Information Center

    Cole, Stephen

    1979-01-01

    The long-standing belief that age is negatively associated with scientific productivity and creativity is shown to be based upon incorrect analysis of data. Studies reported in this article suggest that the relationship between age and scientific performance is influenced by the operation of the reward system. (Author)

  20. The Effect of High School Physics Laboratories on Performance in Introductory College Physics

    NASA Astrophysics Data System (ADS)

    Maltese, Adam V.; Tai, Robert H.; Sadler, Philip M.

    2010-05-01

    Laboratory experiences play a substantial role in most high school science courses, and many teachers believe the number of labs they offer is a measure of the quality of their curriculum. While some teachers believe labs are meant to confirm concepts taught during lectures, others feel labs should address students' everyday beliefs about the world. Still other teachers emphasize learning of the scientific method and laboratory techniques. Accordingly, many articles offer advice on "effective" pedagogical practices.2-5

  1. Recent Advances in Endoscopy.

    PubMed

    Wallace, Michael B; Wang, Kenneth K; Adler, Douglas G; Rastogi, Amit

    2017-08-01

    In this narrative review, invited by the Editors of Gastroenterology, we summarize recent advances in the field of gastrointestinal endoscopy. We have chosen articles published primarily in the past 2-3 years. Although a thorough literature review was performed for each topic, the nature of the article is subjective and systematic and is based on the authors' experience and expertise regarding articles we believed were most likely to be of high clinical and scientific importance. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. KSC-2012-1862

    NASA Image and Video Library

    2012-02-17

    Satellites: The principal objectives of the Launch Services Program are to provide safe, reliable, cost-effective and on schedule launch services for NASA and NASA-sponsored payloads seeking launch on expendable vehicles. These payloads have a number of purposes. Scientific satellites obtain information about the space environment and transmit it to stations on Earth. Applications satellites designed to perform experiments that have everyday usefulness for people on Earth, such as weather forecasting and communications. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  3. Voyager 1 examines Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An overview of the Voyager mission to Jupiter, Saturn, and possibly Uranus is presented. Scientific instruments onboard the spacecraft are described as well as methods used for their calibration and evaluation during the cruise phase of the mission. Experiments to be performed cover the following areas: imaging science, radio science, cosmic rays, ultraviolet spectroscopy, photopolarimetry, planetary radio astronomy, magnetic fields, low-energy charged particles, plasma science, and infrared radiometry and spectroscopy. A list of the satellites of Jupiter and their diameters, distances, and periods is included.

  4. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  5. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  6. PARTIAL ARTICULAR SUPRASPINATUS TENDON AVULSION (PASTA) LESION. CURRENT CONCEPTS IN REHABILITATION

    PubMed Central

    2016-01-01

    ABSTRACT Rotator cuff pathology can contribute to shoulder pain and may affect the performance of sport activities, work, and activities of daily living. The partial articular supraspinatus tendon avulsion (PASTA) lesion represents a very common type of rotator cuff pathology seen in rehabilitation. When conservative treatment fails, surgery is generally required. Success of recovery depends on several factors, including: repair techniques, healing process related to timing, rehabilitation programs, and patient compliance with home exercises. To date, most treatment modalities and rehabilitation programs are based on clinical experience rather than scientific evidence. Therefore, the purpose of this clinical commentary is to provide an overview on the PASTA lesion, discuss the common treatment approaches adopted to date and to propose a rehabilitation program based on the available scientific evidence. Level of Evidence 5 PMID:27274431

  7. A Roadmap for Interpreting the Literature on Vision and Driving

    PubMed Central

    Owsley, Cynthia; Wood, Joanne M.; McGwin, Gerald

    2015-01-01

    Over the past several decades there has been a sharp increase in the number of studies focused on the relationship between vision and driving. The intensified scientific attention to this topic has most likely been stimulated by the lack of an evidence-basis for determining vision standards for driving licensure and a poor understanding about how vision impairment impacts driver safety and performance. Clinicians depend on the scientific literature on vision and driving as a resource to appropriately advise visually impaired patients about driving fitness. Policy makers also depend on the scientific literature in order to develop guidelines that are evidence-based and are thus fair to persons who are visually impaired. Thus it is important for clinicians and policy makers alike to understand how various study designs and measurement methods should be appropriately interpreted so that the conclusions and recommendations they make based on this literature are not overly broad, too narrowly constrained, or even misguided. In this overview, based on our 25 years of experience in this field, we offer a methodological framework to guide interpretations of studies on vision and driving, which can also serve as a heuristic for researchers in the area. Here we discuss research designs and general measurement methods for the study of vision as they relate to driver safety, driver performance, and driver-centered (self-reported) outcomes. PMID:25753389

  8. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice.

    PubMed

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior-genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)-influence students' perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students' attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. © 2017 M. Munn et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  10. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  11. Engineering Values into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility

    PubMed Central

    Cho, Mildred K.

    2016-01-01

    Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments. PMID:26632356

  12. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    PubMed

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  13. Introducing Ocean Science Research to Two-Year College (2YC) Students Through Inquiry-Based Experiences

    NASA Astrophysics Data System (ADS)

    Gamage, K. R.

    2016-02-01

    An effective approach to introduce 2YC students to ocean science research is through propagating inquiry-based experiences into existing geosciences courses using a series of research activities. The proposed activity is based on scientific ocean drilling, where students begin their research experience (pre-field activity) by reading articles from scientific journals and analyzing and interpreting core and log data on a specific research topic. At the end of the pre-field activity, students will visit the Gulf Coast Repository to examine actual cores, smear slides, thin sections etc. After the visit, students will integrate findings from their pre-field and field activities to produce a term paper. These simple activities allow students to experience in the iterative process of scientific research, illuminates how scientists approach ocean science, and can be the hook to get students interested in pursuing ocean science as a career.

  14. Cyberinfrastructure and Scientific Collaboration: Application of a Virtual Team Performance Framework with Potential Relevance to Education. WCER Working Paper No. 2010-12

    ERIC Educational Resources Information Center

    Kraemer, Sara; Thorn, Christopher A.

    2010-01-01

    The purpose of this exploratory study was to identify and describe some of the dimensions of scientific collaborations using high throughput computing (HTC) through the lens of a virtual team performance framework. A secondary purpose was to assess the viability of using a virtual team performance framework to study scientific collaborations using…

  15. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    NASA Astrophysics Data System (ADS)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  16. Investigating Flow Experience and Scientific Practices During a Mobile Serious Educational Game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.; Bodzin, Alec M.

    2016-10-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game ( n = 59) were compared with students in a business-as-usual control activity ( n = 120). In both scenarios, students worked in small teams. Data measures included an open-ended instrument designed to measure scientific practices, a self-report flow survey, and classroom observations. The game players had significantly higher levels of flow and scientific practices compared to the control group. Observations revealed that game teams received less whole-class instruction and review compared to the control teams. Game teachers had primarily a guide-on-the-side role when facilitating the game, while control teachers predominantly used didactic instruction when facilitating the control activity. Implications for these findings are discussed.

  17. Skylab

    NASA Image and Video Library

    1972-08-21

    Youngstown, Ohio high school student, W. Brian Dunlap (center), discusses with Dr. Robert Head (right), and Henry Floyd, both of the Marshall Space Flight Center (MSFC), his experiment to be performed aboard the Skylab the following year. His experiment, “Wave Motion Trough A Liquid in Zero Gravity” used a container attached to the end of a leaf spring which was oscillated at specific rates using two thickness differentiated types of liquids. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment. The equipment for the experiments was manufactured at MSFC.

  18. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    NASA Astrophysics Data System (ADS)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  19. Web-based visualization of very large scientific astronomy imagery

    NASA Astrophysics Data System (ADS)

    Bertin, E.; Pillay, R.; Marmo, C.

    2015-04-01

    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.

  20. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

Top