Millard, Heather A Towle; Millard, Ralph P; Constable, Peter D; Freeman, Lyn J
2014-02-01
To determine the relationships among traditional and laparoscopic surgical skills, spatial analysis skills, and video gaming proficiency of third-year veterinary students. Prospective, randomized, controlled study. A convenience sample of 29 third-year veterinary students. The students had completed basic surgical skills training with inanimate objects but had no experience with soft tissue, orthopedic, or laparoscopic surgery; the spatial analysis test; or the video games that were used in the study. Scores for traditional surgical, laparoscopic, spatial analysis, and video gaming skills were determined, and associations among these were analyzed by means of Spearman's rank order correlation coefficient (rs). A significant positive association (rs = 0.40) was detected between summary scores for video game performance and laparoscopic skills, but not between video game performance and traditional surgical skills scores. Spatial analysis scores were positively (rs = 0.30) associated with video game performance scores; however, that result was not significant. Spatial analysis scores were not significantly associated with laparoscopic surgical skills scores. Traditional surgical skills scores were not significantly associated with laparoscopic skills or spatial analysis scores. Results of this study indicated video game performance of third-year veterinary students was predictive of laparoscopic but not traditional surgical skills, suggesting that laparoscopic performance may be improved with video gaming experience. Additional studies would be required to identify methods for improvement of traditional surgical skills.
Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python
Laura, Jason R.; Rey, Sergio J.
2017-01-01
Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, John; Castillo, Andrew
2016-09-21
This software contains a set of python modules – input, search, cluster, analysis; these modules read input files containing spatial coordinates and associated attributes which can be used to perform nearest neighbor search (spatial indexing via kdtree), cluster analysis/identification, and calculation of spatial statistics for analysis.
Spatial compression algorithm for the analysis of very large multivariate images
Keenan, Michael R [Albuquerque, NM
2008-07-15
A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Spatial Dependency and Contextual Effects on Academic Achievement
ERIC Educational Resources Information Center
Matlock, Ki; Song, Joon Jin; Goering, Christian Z.
2014-01-01
This study investigated the influences of district-related variables on a district's academic performance. Arkansas augmented benchmark examination scores were used to measure a district's scholastic achievement. Spatial analysis fit each district's performance to its geographical location; spatial autocorrelation measured the amount of influence…
Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis
ERIC Educational Resources Information Center
Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.
2007-01-01
This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…
Apparatus for direct-to-digital spatially-heterodyned holography
Thomas, Clarence E.; Hanson, Gregory R.
2006-12-12
An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.
Impact of Spatial Scales on the Intercomparison of Climate Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Steptoe, Michael; Chang, Zheng
2017-01-01
Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less
Cohen, D
1976-10-01
This paper reports an analysis of sex differences in cognitive test scores covering the dimensions of spatial orientation and spatial visualization in groups of 6 older men and 6 women matched for speed of performance on a maze test and level of performance on a spatial relations task. Older men were more proficient solving spatial problems using the body as a referent, whereas there was no significant difference between the sexes in imagining spatial displacement. Matched comparisons appear a useful adjunct to population research to understand the type(s) of cognitive processes where differential performance by the sexes is observed.
Visuo-Spatial Performance in Autism: A Meta-Analysis
ERIC Educational Resources Information Center
Muth, Anne; Hönekopp, Johannes; Falter, Christine M.
2014-01-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large…
Oostermeijer, Meike; Boonen, Anton J. H.; Jolles, Jelle
2014-01-01
The scientific literature shows that constructive play activities are positively related to children’s spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children’s constructive play and their performance on mathematical word problems is, however, not reported yet. The aim of the present study was to investigate whether spatial ability acted as a mediator in the relation between constructive play and mathematical word problem-solving performance in 128 sixth-grade elementary school children. This mediating role of spatial ability was tested by utilizing the current mediation approaches suggested by Preacher and Hayes (2008). Results showed that 38.16% of the variance in mathematical word problem-solving performance is explained by children’s constructive play activities and spatial ability. More specifically, spatial ability acted as a partial mediator, explaining 31.58% of the relation between constructive play and mathematical word problem-solving performance. PMID:25101038
ERIC Educational Resources Information Center
Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.
2014-01-01
Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
Motor expertise and performance in spatial tasks: A meta-analysis.
Voyer, Daniel; Jansen, Petra
2017-08-01
The present study aimed to provide a summary of findings relevant to the influence of motor expertise on performance in spatial tasks and to examine potential moderators of this effect. Studies of relevance were those in which individuals involved in activities presumed to require motor expertise were compared to non-experts in such activities. A final set of 62 effect sizes from 33 samples was included in a multilevel meta-analysis. The results showed an overall advantage in favor of motor experts in spatial tasks (d=0.38). However, the magnitude of that effect was moderated by expert type (athlete, open skills/ball sports, runner/cyclist, gymnast/dancers, musicians), stimulus type (2D, blocks, bodies, others), test category (mental rotation, spatial perception, spatial visualization), specific test (Mental Rotations Test, generic mental rotation, disembedding, rod-and-frame test, other), and publication status. These findings are discussed in the context of embodied cognition and the potential role of activities requiring motor expertise in promoting good spatial performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Cai, Qing; Lee, Jaeyoung; Eluru, Naveen; Abdel-Aty, Mohamed
2016-08-01
This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. Additionally, spatial spillover effects are explored in the models by employing exogenous variables from neighboring zones. The dual-state models such as zero-inflated negative binomial and hurdle negative binomial models (with and without spatial effects) are compared with the conventional single-state model (i.e., negative binomial). The model comparison for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency. Copyright © 2016 Elsevier Ltd. All rights reserved.
An fMRI study of sex differences in regional activation to a verbal and a spatial task.
Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E
2000-09-01
Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.
Digital microarray analysis for digital artifact genomics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger; Handley, James; Williams, Deborah
2013-06-01
We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R.; Bingham, Philip R.
2006-10-03
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-09-09
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Spatially-Heterodyned Holography
Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN
2006-02-21
A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.
ERIC Educational Resources Information Center
Cohen, Donna
1977-01-01
This paper reviews the literature on sex differences in spatial performance in older persons, proposes a theory of measurement, operational psychogenetic structuralism, for the analysis of sex differences in cognition, and suggests research directions relevant to educational gerontology. (Author)
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, C.; Koch, J.
2017-12-01
Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.
A high-performance spatial database based approach for pathology imaging algorithm evaluation
Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.
2013-01-01
Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905
Fractal analysis of time varying data
Vo-Dinh, Tuan; Sadana, Ajit
2002-01-01
Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.
Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).
Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P
2016-01-01
Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Spatio-temporal Analysis for New York State SPARCS Data
Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng
2017-01-01
Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148
Burles, Ford; Umiltá, Alberto; McFarlane, Liam H; Potocki, Kendra; Iaria, Giuseppe
2018-01-01
The retrosplenial cortex has long been implicated in human spatial orientation and navigation. However, neural activity peaks labeled "retrosplenial cortex" in human neuroimaging studies investigating spatial orientation often lie significantly outside of the retrosplenial cortex proper. This has led to a large and anatomically heterogenous region being ascribed numerous roles in spatial orientation and navigation. Here, we performed a meta-analysis of functional Magnetic Resonance Imaging (fMRI) investigations of spatial orientation and navigation and have identified a ventral-dorsal functional specialization within the posterior cingulate for spatial encoding vs. spatial recall . Generally, ventral portions of the posterior cingulate cortex were more likely to be activated by spatial encoding , i.e., passive viewing of scenes or active navigation without a demand to respond, perform a spatial computation, or localize oneself in the environment. Conversely, dorsal portions of the posterior cingulate cortex were more likely to be activated by cognitive demands to recall spatial information or to produce judgments of distance or direction to non-visible locations or landmarks. The greatly varying resting-state functional connectivity profiles of the ventral (centroids at MNI -22, -60, 6 and 20, -56, 6) and dorsal (centroid at MNI 4, -60, 28) posterior cingulate regions identified in the meta-analysis supported the conclusion that these regions, which would commonly be labeled as "retrosplenial cortex," should be more appropriately referred to as distinct subregions of the posterior cingulate cortex. We suggest that future studies investigating the role of the retrosplenial and posterior cingulate cortex in spatial tasks carefully localize activity in the context of these identifiable subregions.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua
2018-06-01
The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.
Analysis of a spatial tracking subsystem for optical communications
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, CHIEN-C.
1992-01-01
Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
Assessing wildfire risks at multiple spatial scales
Justin Fitch
2008-01-01
In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...
Off-axis illumination direct-to-digital holography
Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.
2004-06-08
Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.
Recording multiple spatially-heterodyned direct to digital holograms in one digital image
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-03-25
Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
BATMAN: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2017-04-01
This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.
BaTMAn: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2016-12-01
Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.
Jung, Seung H.; Brownlow, Milene L.; Pellegrini, Matteo; Jankord, Ryan
2017-01-01
Individual susceptibility determines the magnitude of stress effects on cognitive function. The hippocampus, a brain region of memory consolidation, is vulnerable to stressful environments, and the impact of stress on hippocampus may determine individual variability in cognitive performance. Therefore, the purpose of this study was to define the relationship between the divergence in spatial memory performance under chronically unpredictable stress and an associated transcriptomic alternation in hippocampus, the brain region of spatial memory consolidation. Multiple strains of BXD (B6 × D2) recombinant inbred mice went through a 4-week chronic variable stress (CVS) paradigm, and the Morris water maze (MWM) test was conducted during the last week of CVS to assess hippocampal-dependent spatial memory performance and grouped animals into low and high performing groups based on the cognitive performance. Using hippocampal whole transcriptome RNA-sequencing data, differential expression, PANTHER analysis, WGCNA, Ingenuity's upstream regulator analysis in the Ingenuity Pathway Analysis® and phenotype association analysis were conducted. Our data identified multiple genes and pathways that were significantly associated with chronic stress-associated cognitive modification and the divergence in hippocampal dependent memory performance under chronic stress. Biological pathways associated with memory performance following chronic stress included metabolism, neurotransmitter and receptor regulation, immune response and cellular process. The Ingenuity's upstream regulator analysis identified 247 upstream transcriptional regulators from 16 different molecule types. Transcripts predictive of cognitive performance under high stress included genes that are associated with a high occurrence of Alzheimer's and cognitive impairments (e.g., Ncl, Eno1, Scn9a, Slc19a3, Ncstn, Fos, Eif4h, Copa, etc.). Our results show that the variable effects of chronic stress on the hippocampal transcriptome are related to the ability to complete the MWM task and that the modulations of specific pathways are indicative of hippocampal dependent memory performance. Thus, the divergence in spatial memory performance following chronic stress is related to the unique pattern of gene expression within the hippocampus. PMID:28912681
Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady
2015-01-01
The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.
Urban Spatial Ecological Performance Based on the Data of Remote Sensing of Guyuan
NASA Astrophysics Data System (ADS)
Ren, X.-J.; Chen, X.-J.; Ma, Q.
2018-04-01
The evolution analysis of urban landuse and spatial ecological performance are necessary and useful to recognizing the stage of urban development and revealing the regularity and connotation of urban spatial expansion. Moreover, it lies in the core that should be exmined in the urban sustainable development. In this paper, detailed information has been acquired from the high-resolution satellite imageries of Guyuan, China case study. With the support of GIS, the land-use mapping information and the land cover changes are analyzed, and the process of urban spatial ecological performance evolution by the hierarchical methodology is explored. Results demonstrate that in the past 11 years, the urban spatial ecological performance show an improved process with the dramatic landcover change in Guyuan. Firstly, the landuse structure of Guyuan changes significantly and shows an obvious stage characteristic. Secondly, the urban ecological performance of Guyuan continues to be optimized over the 11 years. Thirdly, the findings suggest that a dynamic monitoring mechanism of urban land use based on high-resolution remote sensing data should be established in urban development, and the rational development of urban land use should be guided by the spatial ecological performance as the basic value orientation.
Mendonça, Marcela Franklin Salvador de; Silva, Amanda Priscila de Santana Cabral; Castro, Claudia Cristina Lima de
2017-01-01
Urban transit accident are a global public health problem. The objective of this study was to describe the profile of the victims and the occurrences of urban transit accidents attended to by emergency mobile care services (Serviço de Atendimento Móvel de Urgência- SAMU) in Recife, and their distribution based on spatial analysis. An ecological study, developed through secondary data from emergency mobile care services in Recife, referring to the total number of occurrences of urban transit accidents attended to from January 1 to June 30, 2015. The spatial analysis was performed using the Moran index. Basic support units performed most of the emergency services (89.2%). Among the victims, there was a predominance of males (76.8%) and an age group of 20 - 29 years old (31.5%). Collisions were responsible for 59.9% of the transit accidents, and motorcycles for 61.6% of the accidents among all means of transportation. Friday was the day that showed the highest risk for treatment, and there was a concentration of events between 6:00 am - 8:59am and 6:00pm - 8:59pm. The MoranMap identified critical areas where calls came from traffic accidents during the period analyzed. The records of the mobile service from the spatial analysis are an important source of information for health surveillance. The spatial analysis of urban transit accidents identified regions with a positive spatial correlation, providing subsidies to the logistical planning of emergency mobile care services. This study is groundbreaking in that it offers such information about the region.
Science in the Sun: How Science is Performed as a Spatial Practice
NASA Astrophysics Data System (ADS)
Kass, Natalie
This study analyzes how spatial organization impacts science communication at the St. Petersburg Science Festival in Florida. Through map analysis, qualitative interviews, and a close reading of evaluation reports, the author determines that sponsorship, logistics, exhibitor ambience, and map usability and design are the factors most affecting the spatial performance of science. To mitigate their effects, technical communicators can identify these factors and provide the necessary revisions when considering how science is communicated to the public.
A Cognitive Component Analysis Approach for Developing Game-Based Spatial Learning Tools
ERIC Educational Resources Information Center
Hung, Pi-Hsia; Hwang, Gwo-Jen; Lee, Yueh-Hsun; Su, I-Hsiang
2012-01-01
Spatial ability has been recognized as one of the most important factors affecting the mathematical performance of students. Previous studies on spatial learning have mainly focused on developing strategies to shorten the problem-solving time of learners for very specific learning tasks. Such an approach usually has limited effects on improving…
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Precoded spatial multiplexing MIMO system with spatial component interleaver.
Gao, Xiang; Wu, Zhanji
In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.
Algorithm for Identifying Erroneous Rain-Gauge Readings
NASA Technical Reports Server (NTRS)
Rickman, Doug
2005-01-01
An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.
NASA Astrophysics Data System (ADS)
Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea
2017-12-01
Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana
2018-04-01
This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.
NASA Astrophysics Data System (ADS)
Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea
2018-06-01
Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.
Mellet, E; Jobard, G; Zago, L; Crivello, F; Petit, L; Joliot, M; Mazoyer, B; Tzourio-Mazoyer, N
2014-01-01
The relationship between manual laterality and cognitive skills remains highly controversial. Some studies have reported that strongly lateralised participants had higher cognitive performance in verbal and visuo-spatial domains compared to non-lateralised participants; however, others found the opposite. Moreover, some have suggested that familial sinistrality and sex might interact with individual laterality factors to alter cognitive skills. The present study addressed these issues in 237 right-handed and 199 left-handed individuals. Performance tests covered various aspects of verbal and spatial cognition. A principal component analysis yielded two verbal and one spatial factor scores. Participant laterality assessments included handedness, manual preference strength, asymmetry of motor performance, and familial sinistrality. Age, sex, education level, and brain volume were also considered. No effect of handedness was found, but the mean factor scores in verbal and spatial domains increased with right asymmetry in motor performance. Performance was reduced in participants with a familial history of left-handedness combined with a non-maximal preference strength in the dominant hand. These results elucidated some discrepancies among previous findings in laterality factors and cognitive skills. Laterality factors had small effects compared to the adverse effects of age for spatial cognition and verbal memory, the positive effects of education for all three domains, and the effect of sex for spatial cognition.
Remote Sensing Information Science Research
NASA Technical Reports Server (NTRS)
Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin
2002-01-01
This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.
Yang, Junhai; Caprioli, Richard M.
2011-01-01
We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088
Accelerating Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems
Wang, Kaibo; Huai, Yin; Lee, Rubao; Wang, Fusheng; Zhang, Xiaodong; Saltz, Joel H.
2012-01-01
As an important application of spatial databases in pathology imaging analysis, cross-comparing the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely data- and compute-intensive operations, requiring high throughput at an affordable cost. However, the performance of spatial database systems has not been satisfactory since their implementations of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU algorithm and a pipelined system framework with task migration support. Extensive experiments with real-world data sets demonstrate the effectiveness of our solution, which improves the performance of spatial cross-comparison by over 18 times compared with a parallelized spatial database approach. PMID:23355955
Zancada-Menendez, C; Alvarez-Suarez, P; Sampedro-Piquero, P; Cuesta, M; Begega, A
2017-04-01
Ageing is characterized by a decline in the processes of retention and storage of spatial information. We have examined the behavioural performance of adult rats (3months old) and aged rats (18months old) in a spatial complex task (delayed match to sample). The spatial task was performed in the Morris water maze and consisted of three sessions per day over a period of three consecutive days. Each session consisted of two trials (one sample and retention) and inter-session intervals of 5min. Behavioural results showed that the spatial task was difficult for middle aged group. This worse execution could be associated with impairments of processing speed and spatial information retention. We examined the changes in the neuronal metabolic activity of different brain regions through cytochrome C oxidase histochemistry. Then, we performed MANOVA and Discriminant Function Analyses to determine the functional profile of the brain networks that are involved in the spatial learning of the adult and middle-aged groups. This multivariate analysis showed two principal functional networks that necessarily participate in this spatial learning. The first network was composed of the supramammillary nucleus, medial mammillary nucleus, CA3, and CA1. The second one included the anterior cingulate, prelimbic, and infralimbic areas of the prefrontal cortex, dentate gyrus, and amygdala complex (basolateral l and central subregions). There was a reduction in the hippocampal-supramammilar network in both learning groups, whilst there was an overactivation in the executive network, especially in the aged group. This response could be due to a higher requirement of the executive control in a complex spatial memory task in older animals. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Tremblay, Sebastien; Saint-Aubin, Jean
2009-01-01
In the present study, the authors offer a window onto the mechanisms that drive the Hebb repetition effect through the analysis of eye movement and recall performance. In a spatial serial recall task in which sequences of dots are to be remembered in order, when one particular series is repeated every 4 trials, memory performance markedly improves…
A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002
Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.
2012-01-01
Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001). Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.
Spatially distributed effects of mental exhaustion on resting-state FMRI networks.
Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer
2014-01-01
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.
2010-01-01
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284
Analysis of suicide mortality in Brazil: spatial distribution and socioeconomic context.
Dantas, Ana P; Azevedo, Ulicélia N de; Nunes, Aryelly D; Amador, Ana E; Marques, Marilane V; Barbosa, Isabelle R
2018-01-01
To perform a spatial analysis of suicide mortality and its correlation with socioeconomic indicators in Brazilian municipalities. This is an ecological study with Brazilian municipalities as a unit of analysis. Data on deaths from suicide and contextual variables were analyzed. The spatial distribution, intensity and significance of the clusters were analyzed with the global Moran index, MoranMap and local indicators of spatial association (LISA), seeking to identify patterns through geostatistical analysis. A total of 50,664 deaths from suicide were registered in Brazil between 2010 and 2014. The average suicide mortality rate in Brazil was 5.23/100,000 population. The Brazilian municipalities presenting the highest rates were Taipas do Tocantins, state of Tocantins (79.68 deaths per 100,000 population), Itaporã, state of Mato Grosso do Sul (75.15 deaths per 100,000 population), Mampituba, state of Rio Grande do Sul (52.98 deaths per 100,000 population), Paranhos, state of Mato Grosso do Sul (52.41 deaths per 100,000 population), and Monjolos, state of Minas Gerais (52.08 deaths per 100,000 population). Although weak spatial autocorrelation was observed for suicide mortality (I = 0.2608), there was a formation of clusters in the South. In the bivariate spatial and classical analysis, no correlation was observed between suicide mortality and contextual variables. Suicide mortality in Brazil presents a weak spatial correlation and low or no spatial relationship with socioeconomic factors.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
NASA Astrophysics Data System (ADS)
Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.
1995-10-01
A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.
Spatial Skill Profile of Mathematics Pre-Service Teachers
NASA Astrophysics Data System (ADS)
Putri, R. O. E.
2018-01-01
This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.
Variable optical attenuator and dynamic mode group equalizer for few mode fibers.
Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M
2014-12-15
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.
An information theory analysis of spatial decisions in cognitive development
Scott, Nicole M.; Sera, Maria D.; Georgopoulos, Apostolos P.
2015-01-01
Performance in a cognitive task can be considered as the outcome of a decision-making process operating across various knowledge domains or aspects of a single domain. Therefore, an analysis of these decisions in various tasks can shed light on the interplay and integration of these domains (or elements within a single domain) as they are associated with specific task characteristics. In this study, we applied an information theoretic approach to assess quantitatively the gain of knowledge across various elements of the cognitive domain of spatial, relational knowledge, as a function of development. Specifically, we examined changing spatial relational knowledge from ages 5 to 10 years. Our analyses consisted of a two-step process. First, we performed a hierarchical clustering analysis on the decisions made in 16 different tasks of spatial relational knowledge to determine which tasks were performed similarly at each age group as well as to discover how the tasks clustered together. We next used two measures of entropy to capture the gradual emergence of order in the development of relational knowledge. These measures of “cognitive entropy” were defined based on two independent aspects of chunking, namely (1) the number of clusters formed at each age group, and (2) the distribution of tasks across the clusters. We found that both measures of entropy decreased with age in a quadratic fashion and were positively and linearly correlated. The decrease in entropy and, therefore, gain of information during development was accompanied by improved performance. These results document, for the first time, the orderly and progressively structured “chunking” of decisions across the development of spatial relational reasoning and quantify this gain within a formal information-theoretic framework. PMID:25698915
Fetterman, J. Gregor; Killeen, Peter R.; Hall, Scott
2008-01-01
Four rats and four pigeons were monitored while performing retrospective timing tasks. All animals displayed collateral behaviors which could have mediated their temporal judgements. Statistical analysis made a good case for such mediation in the case of two pigeons performing on a spatially-differentiated response, but not for the two responding on a color-differentiated response. For the rats, all of which performed on a spatially-differentiated task, prediction of their temporal judgements was always better if based on collateral activity than if based on the passage of time. PMID:19701487
geospatial data analysis using parallel processing High performance computing Renewable resource technical potential and supply curve analysis Spatial database utilization Rapid analysis of large geospatial datasets energy and geospatial analysis products Research Interests Rapid, web-based renewable resource analysis
Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology
NASA Astrophysics Data System (ADS)
Guthrie, Anne
In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.
A comparative analysis of two highly spatially resolved European atmospheric emission inventories
NASA Astrophysics Data System (ADS)
Ferreira, J.; Guevara, M.; Baldasano, J. M.; Tchepel, O.; Schaap, M.; Miranda, A. I.; Borrego, C.
2013-08-01
A reliable emissions inventory is highly important for air quality modelling applications, especially at regional or local scales, which require high resolutions. Consequently, higher resolution emission inventories have been developed that are suitable for regional air quality modelling. This research performs an inter-comparative analysis of different spatial disaggregation methodologies of atmospheric emission inventories. This study is based on two different European emission inventories with different spatial resolutions: 1) the EMEP (European Monitoring and Evaluation Programme) inventory and 2) an emission inventory developed by the TNO (Netherlands Organisation for Applied Scientific Research). These two emission inventories were converted into three distinct gridded emission datasets as follows: (i) the EMEP emission inventory was disaggregated by area (EMEParea) and (ii) following a more complex methodology (HERMES-DIS - High-Elective Resolution Modelling Emissions System - DISaggregation module) to understand and evaluate the influence of different disaggregation methods; and (iii) the TNO gridded emissions, which are based on different emission data sources and different disaggregation methods. A predefined common grid with a spatial resolution of 12 × 12 km2 was used to compare the three datasets spatially. The inter-comparative analysis was performed by source sector (SNAP - Selected Nomenclature for Air Pollution) with emission totals for selected pollutants. It included the computation of difference maps (to focus on the spatial variability of emission differences) and a linear regression analysis to calculate the coefficients of determination and to quantitatively measure differences. From the spatial analysis, greater differences were found for residential/commercial combustion (SNAP02), solvent use (SNAP06) and road transport (SNAP07). These findings were related to the different spatial disaggregation that was conducted by the TNO and HERMES-DIS for the first two sectors and to the distinct data sources that were used by the TNO and HERMES-DIS for road transport. Regarding the regression analysis, the greatest correlation occurred between the EMEParea and HERMES-DIS because the latter is derived from the first, which does not occur for the TNO emissions. The greatest correlations were encountered for agriculture NH3 emissions, due to the common use of the CORINE Land Cover database for disaggregation. The point source emissions (energy industries, industrial processes, industrial combustion and extraction/distribution of fossil fuels) resulted in the lowest coefficients of determination. The spatial variability of SOx differed among the emissions that were obtained from the different disaggregation methods. In conclusion, HERMES-DIS and TNO are two distinct emission inventories, both very well discretized and detailed, suitable for air quality modelling. However, the different databases and distinct disaggregation methodologies that were used certainly result in different spatial emission patterns. This fact should be considered when applying regional atmospheric chemical transport models. Future work will focus on the evaluation of air quality models performance and sensitivity to these spatial discrepancies in emission inventories. Air quality modelling will benefit from the availability of appropriate resolution, consistent and reliable emission inventories.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation.
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.
An integrated analysis-synthesis array system for spatial sound fields.
Bai, Mingsian R; Hua, Yi-Hsin; Kuo, Chia-Hao; Hsieh, Yu-Hao
2015-03-01
An integrated recording and reproduction array system for spatial audio is presented within a generic framework akin to the analysis-synthesis filterbanks in discrete time signal processing. In the analysis stage, a microphone array "encodes" the sound field by using the plane-wave decomposition. Direction of arrival of plane-wave components that comprise the sound field of interest are estimated by multiple signal classification. Next, the source signals are extracted by using a deconvolution procedure. In the synthesis stage, a loudspeaker array "decodes" the sound field by reconstructing the plane-wave components obtained in the analysis stage. This synthesis stage is carried out by pressure matching in the interior domain of the loudspeaker array. The deconvolution problem is solved by truncated singular value decomposition or convex optimization algorithms. For high-frequency reproduction that suffers from the spatial aliasing problem, vector panning is utilized. Listening tests are undertaken to evaluate the deconvolution method, vector panning, and a hybrid approach that combines both methods to cover frequency ranges below and above the spatial aliasing frequency. Localization and timbral attributes are considered in the subjective evaluation. The results show that the hybrid approach performs the best in overall preference. In addition, there is a trade-off between reproduction performance and the external radiation.
Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure
NASA Astrophysics Data System (ADS)
Abdelrahim, Mohamed Mahmoud Hosny
2001-11-01
In this research, an "Intelligent Imagery System Prototype" (IISP) was developed. IISP is an integration tool that facilitates the environment for active, direct, and on-the-fly usage of high resolution imagery, internally linked to hidden GIS vector layers, to query the real world phenomena and, consequently, to perform exploratory types of spatial analysis based on a clear/undisturbed image scene. The IISP was designed and implemented using the software components approach to verify the hypothesis that a fully rectified, partially rectified, or even unrectified digital image can be internally linked to a variety of different hidden vector databases/layers covering the end user area of interest, and consequently may be reliably used directly as a base for "on-the-fly" querying of real-world phenomena and for performing exploratory types of spatial analysis. Within IISP, differentially rectified, partially rectified (namely, IKONOS GEOCARTERRA(TM)), and unrectified imagery (namely, scanned aerial photographs and captured video frames) were investigated. The system was designed to handle four types of spatial functions, namely, pointing query, polygon/line-based image query, database query, and buffering. The system was developed using ESRI MapObjects 2.0a as the core spatial component within Visual Basic 6.0. When used to perform the pre-defined spatial queries using different combinations of image and vector data, the IISP provided the same results as those obtained by querying pre-processed vector layers even when the image used was not orthorectified and the vector layers had different parameters. In addition, the real-time pixel location orthorectification technique developed and presented within the IKONOS GEOCARTERRA(TM) case provided a horizontal accuracy (RMSE) of +/- 2.75 metres. This accuracy is very close to the accuracy level obtained when purchasing the orthorectified IKONOS PRECISION products (RMSE of +/- 1.9 metre). The latter cost approximately four times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon
2018-05-01
The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.
Herrera, Victoria L; Pasion, Khristine A; Tan, Glaiza A; Ruiz-Opazo, Nelson
2013-01-01
A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02-74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
NASA Astrophysics Data System (ADS)
Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.
2018-04-01
We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.
Sohn, Young Woo; Doane, Stephanie M
2004-01-01
This research examined the role of working memory (WM) capacity and long-term working memory (LT-WM) in flight situation awareness (SA). We developed spatial and verbal measures of WM capacity and LT-WM skill and then determined the ability of these measures to predict pilot performance on SA tasks. Although both spatial measures of WM capacity and LT-WM skills were important predictors of SA performance, their importance varied as a function of pilot expertise. Spatial WM capacity was most predictive of SA performance for novices, whereas spatial LT-WM skill based on configurations of control flight elements (attitude and power) was most predictive for experts. Furthermore, evidence for an interactive role of WM and LT-WM mechanisms was indicated. Actual or potential applications of this research include cognitive analysis of pilot expertise and aviation training.
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.
Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li
2011-04-01
New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.
Testing averaged cosmology with type Ia supernovae and BAO data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, B.; Alcaniz, J.S.; Coley, A.A.
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO datamore » is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.« less
ERIC Educational Resources Information Center
Erskine, Michael A.
2013-01-01
As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…
A systematic intercomparison of regional flood frequency analysis models in a simulation framework
NASA Astrophysics Data System (ADS)
Ganora, Daniele; Laio, Francesco; Claps, Pierluigi
2015-04-01
Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve (or other discharge-related variables), based on the fundamental concept of substituting temporal information at a site (no data or short time series) by exploiting observations at other sites (spatial information). Different RFA paradigms exist, depending on the way the information is transferred to the site of interest. Despite the wide use of such methodology, a systematic comparison between these paradigms has not been performed. The aim of this study is to provide a framework wherein carrying out the intercomparison: we thus synthetically generate data through Monte Carlo simulations for a number of (virtual) stations, following a GEV parent distribution; different scenarios can be created to represent different spatial heterogeneity patterns by manipulating the parameters of the parent distribution at each station (e.g. with a linear variation in space of the shape parameter of the GEV). A special case is the homogeneous scenario where each station record is sampled from the same parent distribution. For each scenario and each simulation, different regional models are applied to evaluate the 200-year growth factor at each station. Results are than compared to the exact growth factor of each station, which is known in our virtual world. Considered regional approaches include: (i) a single growth curve for the whole region; (ii) a multiple-region model based on cluster analysis which search for an adequate number of homogeneous subregions; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially-smooth estimation procedure based on linear regressions.. A further benchmark model is the at-site estimate based on the analysis of the local record. A comprehensive analysis of the results of the simulations shows that, if the scenario is homogeneous (no spatial variability), all the regional approaches have comparable performances. Moreover, as expected, regional estimates are much more reliable than the at-site estimates. If the scenario is heterogeneous, the performances of the regional models depend on the pattern of heterogeneity; in general, however, the spatially-smooth regional approach performs better than the others, and its performances improve for increasing record lengths. For heterogeneous scenarios, the at-site estimates appear to be comparably more efficient than in the homogeneous case, and in general less biased than the regional estimates.
NASA Astrophysics Data System (ADS)
Mengaldo, Gianmarco; De Grazia, Daniele; Moura, Rodrigo C.; Sherwin, Spencer J.
2018-04-01
This study focuses on the dispersion and diffusion characteristics of high-order energy-stable flux reconstruction (ESFR) schemes via the spatial eigensolution analysis framework proposed in [1]. The analysis is performed for five ESFR schemes, where the parameter 'c' dictating the properties of the specific scheme recovered is chosen such that it spans the entire class of ESFR methods, also referred to as VCJH schemes, proposed in [2]. In particular, we used five values of 'c', two that correspond to its lower and upper bounds and the others that identify three schemes that are linked to common high-order methods, namely the ESFR recovering two versions of discontinuous Galerkin methods and one recovering the spectral difference scheme. The performance of each scheme is assessed when using different numerical intercell fluxes (e.g. different levels of upwinding), ranging from "under-" to "over-upwinding". In contrast to the more common temporal analysis, the spatial eigensolution analysis framework adopted here allows one to grasp crucial insights into the diffusion and dispersion properties of FR schemes for problems involving non-periodic boundary conditions, typically found in open-flow problems, including turbulence, unsteady aerodynamics and aeroacoustics.
NASA Astrophysics Data System (ADS)
Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.
2016-04-01
We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).
NASA Astrophysics Data System (ADS)
Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.
2018-04-01
The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.
Discrete analysis of spatial-sensitivity models
NASA Technical Reports Server (NTRS)
Nielsen, Kenneth R. K.; Wandell, Brian A.
1988-01-01
Procedures for reducing the computational burden of current models of spatial vision are described, the simplifications being consistent with the prediction of the complete model. A method for using pattern-sensitivity measurements to estimate the initial linear transformation is also proposed which is based on the assumption that detection performance is monotonic with the vector length of the sensor responses. It is shown how contrast-threshold data can be used to estimate the linear transformation needed to characterize threshold performance.
Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108
Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
Exploratory spatial data analysis of global MODIS active fire data
NASA Astrophysics Data System (ADS)
Oom, D.; Pereira, J. M. C.
2013-04-01
We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.
The emergence of spatial cyberinfrastructure.
Wright, Dawn J; Wang, Shaowen
2011-04-05
Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.
The emergence of spatial cyberinfrastructure
Wright, Dawn J.; Wang, Shaowen
2011-01-01
Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227
Method of assessing heterogeneity in images
Jacob, Richard E.; Carson, James P.
2016-08-23
A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.
NASA Astrophysics Data System (ADS)
Banet, Matthias T.; Spencer, Mark F.
2017-09-01
Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.
Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M
2018-03-01
Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.
Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi
2017-01-01
Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.
A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA
NASA Astrophysics Data System (ADS)
Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan
2016-11-01
The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.
Spatial-heterodyne interferometry for transmission (SHIFT) measurements
Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.
2006-10-10
Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.
Evaluation and Analysis of Regional Best Management Practices in San Diego, California (USA)
NASA Astrophysics Data System (ADS)
Flint, K.; Kinoshita, A. M.
2017-12-01
In urban areas, surface water quality is often impaired due to pollutants transported by stormwater runoff. To maintain and improve surface water quality, the United States Clean Water Act (CWA) requires an evaluation of available water quality information to develop a list of impaired water bodies and establish contaminant restrictions. Structural Best Management Practices (BMPs) are designed to reduce runoff volume and/or pollutant concentrations to comply with CWA requirements. Local level policy makers and managers require an improved understanding of the costs and benefits associated with BMP installation, performance, and maintenance. The International Stormwater BMP Database (Database) is an online platform for submittal of information about existing BMPs, such as cost, design details, and statistical analysis of influent and effluent pollutant concentrations. While the Database provides an aggregation of data which supports analysis of overall BMP performance at international and national scales, the sparse spatial distribution of the data is not suitable for regional and local analysis. This research conducts an extensive review of local inventory and spatial analysis of existing permanent BMPs throughout the San Diego River watershed in California, USA. Information collected from cities within the San Diego River watershed will include BMP types, locations, dates of installation, costs, expected removal efficiencies, monitoring data, and records of maintenance. Aggregating and mapping this information will facilitate BMP evaluation. Specifically, the identification of spatial trends, inconsistencies in BMP performances, and gaps in current records. Regression analysis will provide insight into the nature and significance of correlations between BMP performance and physical characteristics such as land use, soil type, and proximity to impaired waters. This analysis will also result in a metric of relative BMP performance and will provide a basis for future predictions of BMP effectiveness. Ultimately, results from this work will provide information to local governments and agencies for prioritizing, maintaining and monitoring BMPs, and improvement of hydrologic and water quality modeling in urban systems subject to compliance.
NASA Astrophysics Data System (ADS)
Provo, Judy; Lamar, Carlton; Newby, Timothy
2002-01-01
A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.
Spatial abilities and technical skills performance in health care: a systematic review.
Langlois, Jean; Bellemare, Christian; Toulouse, Josée; Wells, George A
2015-11-01
The aim of this study was to conduct a systematic review and meta-analysis of the relationship between spatial abilities and technical skills performance in health care in beginners and to compare this relationship with those in intermediate and autonomous learners. Search criteria included 'spatial abilities' and 'technical skills'. Keywords related to these criteria were defined. A literature search was conducted to 20 December, 2013 in Scopus (including MEDLINE) and in several databases on EBSCOhost platforms (CINAHL Plus with Full Text, ERIC, Education Source and PsycINFO). Citations were obtained and reviewed by two independent reviewers. Articles related to retained citations were reviewed and a final list of eligible articles was determined. Articles were assessed for quality using the Scottish Intercollegiate Guidelines Network-50 assessment instrument. Data were extracted from articles in a systematic way. Correlations between spatial abilities test scores and technical skills performance were identified. A series of 8289 citations was obtained. Eighty articles were retained and fully reviewed, yielding 36 eligible articles. The systematic review found a tendency for spatial abilities to be negatively correlated with the duration of technical skills and positively correlated with the quality of technical skills performance in beginners and intermediate learners. Pooled correlations of studies were -0.46 (p = 0.03) and -0.38 (95% confidence interval [CI] -0.53 to -0.21) for duration and 0.33 (95% CI 0.20-0.44) and 0.41 (95% CI 0.26-0.54) for quality of technical skills performance in beginners and intermediate learners, respectively. However, correlations between spatial abilities test scores and technical skills performance were not statistically significant in autonomous learners. Spatial abilities are an important factor to consider in selecting and training individuals in technical skills in health care. © 2015 John Wiley & Sons Ltd.
Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F
2008-10-01
A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
Herrera, Victoria L.; Pasion, Khristine A.; Tan, Glaiza A.; Ruiz-Opazo, Nelson
2013-01-01
A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats. PMID:23469157
Comparative analysis of zonal systems for macro-level crash modeling.
Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen
2017-06-01
Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.
Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity
2018-01-01
Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD. PMID:29570976
NASA Astrophysics Data System (ADS)
Kulkarni, Subodh
2008-10-01
Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused by SCN infestation. Comparison of estimators such as -2 RLL, AIC, and BIC of non-spatial and spatial models affirmed that incorporating spatial covariance structure of observations improved model performances. These results demonstrated a limited potential of aerial imaging and ground level spectrometry for detecting nematode infestation in the field. However, it is strongly recommended that more multisite-multiyear trials must be performed to establish and validate empirical models to quantify SCN population densities and their impact on soybean canopy reflectance.
2012-09-01
Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the
Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2013-03-01
Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
Spatially distributed modeling of soil organic carbon across China with improved accuracy
NASA Astrophysics Data System (ADS)
Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song
2017-06-01
There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi objective climate change impact assessment using multi downscaled climate scenarios
NASA Astrophysics Data System (ADS)
Rana, Arun; Moradkhani, Hamid
2016-04-01
Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.
NASA Astrophysics Data System (ADS)
Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin
2017-03-01
Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.
Spatial Learning and Wayfinding in an Immersive Environment: The Digital Fulldome.
Hedge, Craig; Weaver, Ruth; Schnall, Simone
2017-05-01
Previous work has examined whether immersive technologies can benefit learning in virtual environments, but the potential benefits of technology in this context are confounded by individual differences such as spatial ability. We assessed spatial knowledge acquisition in male and female participants using a technology not previously examined empirically: the digital fulldome. Our primary aim was to examine whether performance on a test of survey knowledge was better in a fulldome (N = 28, 12 males) relative to a large, flat screen display (N = 27, 13 males). Regression analysis showed that, compared to a flat screen display, males showed higher levels of performance on a test of survey knowledge after learning in the fulldome, but no benefit occurred for females. Furthermore, performance correlated with spatial visualization ability in male participants, but not in female participants. Thus, the digital fulldome is a potentially useful learning aid, capable of accommodating multiple users, but individual differences and use of strategy need to be considered.
NASA Astrophysics Data System (ADS)
Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.
2018-01-01
We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.
A comparison of regional flood frequency analysis approaches in a simulation framework
NASA Astrophysics Data System (ADS)
Ganora, D.; Laio, F.
2016-07-01
Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.
Bangirana, Paul; Menk, Jeremiah; John, Chandy C; Boivin, Michael J; Hodges, James S
2013-01-01
The contribution of different cognitive abilities to academic performance in children surviving cerebral insult can guide the choice of interventions to improve cognitive and academic outcomes. This study's objective was to identify which cognitive abilities are associated with academic performance in children after malaria with neurological involvement. 62 Ugandan children with a history of malaria with neurological involvement were assessed for cognitive ability (working memory, reasoning, learning, visual spatial skills, attention) and academic performance (reading, spelling, arithmetic) three months after the illness. Linear regressions were fit for each academic score with the five cognitive outcomes entered as predictors. Adjusters in the analysis were age, sex, education, nutrition, and home environment. Exploratory factor analysis (EFA) and structural equation models (SEM) were used to determine the nature of the association between cognition and academic performance. Predictive residual sum of squares was used to determine which combination of cognitive scores was needed to predict academic performance. In regressions of a single academic score on all five cognitive outcomes and adjusters, only Working Memory was associated with Reading (coefficient estimate = 0.36, 95% confidence interval = 0.10 to 0.63, p<0.01) and Spelling (0.46, 0.13 to 0.78, p<0.01), Visual Spatial Skills was associated with Arithmetic (0.15, 0.03 to 0.26, p<0.05), and Learning was associated with Reading (0.06, 0.00 to 0.11, p<0.05). One latent cognitive factor was identified using EFA. The SEM found a strong association between this latent cognitive ability and each academic performance measure (P<0.0001). Working memory, visual spatial ability and learning were the best predictors of academic performance. Academic performance is strongly associated with the latent variable labelled "cognitive ability" which captures most of the variation in the individual specific cognitive outcome measures. Working memory, visual spatial skills, and learning together stood out as the best combination to predict academic performance.
Weis, Cleo-Aron; Grießmann, Benedict Walter; Scharff, Christoph; Detzner, Caecilia; Pfister, Eva; Marx, Alexander; Zoellner, Frank Gerrit
2015-09-02
Immunohistochemical analysis of cellular interactions in the bone marrow in situ is demanding, due to its heterogeneous cellular composition, the poor delineation and overlap of functional compartments and highly complex immunophenotypes of several cell populations (e.g. regulatory T-cells) that require immunohistochemical marker sets for unambiguous characterization. To overcome these difficulties, we herein present an approach to describe objects (e.g. cells, bone trabeculae) by a scalar field that can be propagated through registered images of serial histological sections. The transformation of objects within images (e.g. cells) to a scalar field was performed by convolution of the object's centroids with differently formed radial basis function (e.g. for direct or indirect spatial interaction). On the basis of such a scalar field, a summation field described distributed objects within an image. After image registration i) colocalization analysis could be performed on basis scalar field, which is propagated through registered images, and - due to the shape of the field - were barely prone to matching errors and morphological changes by different cutting levels; ii) furthermore, depending on the field shape the colocalization measurements could also quantify spatial interaction (e.g. direct or paracrine cellular contact); ii) the field-overlap, which represents the spatial distance, of different objects (e.g. two cells) could be calculated by the histogram intersection. The description of objects (e.g. cells, cell clusters, bone trabeculae etc.) as a field offers several possibilities: First, co-localization of different markers (e.g. by immunohistochemical staining) in serial sections can be performed in an automatic, objective and quantifiable way. In contrast to multicolour staining (e.g. 10-colour immunofluorescence) the financial and technical requirements are fairly minor. Second, the approach allows searching for different types of spatial interactions (e.g. direct and indirect cellular interaction) between objects by taking field shape into account (e.g. thin vs. broad). Third, by describing spatially distributed groups of objects as summation field, it gives cluster definition that relies rather on the bare object distance than on the modelled spatial cellular interaction.
Poverty and Algebra Performance: A Comparative Spatial Analysis of a Border South State
ERIC Educational Resources Information Center
Tate, William F.; Hogrebe, Mark C.
2015-01-01
This research uses two measures of poverty, as well as mobility and selected education variables to study how their relationships vary across 543 Missouri high school districts. Using Missouri and U.S. Census American Community Survey (ACS) data, local R[superscript 2]'s from geographically weighted regressions are spatially mapped to demonstrate…
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.
Shi, Yuhu; Zeng, Weiming; Wang, Nizhuan
2017-09-01
With the rapid development of big data, the functional magnetic resonance imaging (fMRI) data analysis of multi-subject is becoming more and more important. As a kind of blind source separation technique, group independent component analysis (GICA) has been widely applied for the multi-subject fMRI data analysis. However, spatial concatenated GICA is rarely used compared with temporal concatenated GICA due to its disadvantages. In this paper, in order to overcome these issues and to consider that the ability of GICA for fMRI data analysis can be improved by adding a priori information, we propose a novel spatial concatenation based GICA with reference (SCGICAR) method to take advantage of the priori information extracted from the group subjects, and then the multi-objective optimization strategy is used to implement this method. Finally, the post-processing means of principal component analysis and anti-reconstruction are used to obtain group spatial component and individual temporal component in the group, respectively. The experimental results show that the proposed SCGICAR method has a better performance on both single-subject and multi-subject fMRI data analysis compared with classical methods. It not only can detect more accurate spatial and temporal component for each subject of the group, but also can obtain a better group component on both temporal and spatial domains. These results demonstrate that the proposed SCGICAR method has its own advantages in comparison with classical methods, and it can better reflect the commonness of subjects in the group. Copyright © 2017 Elsevier B.V. All rights reserved.
Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark
2007-12-01
To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian
2006-10-01
This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.
Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A
2017-07-01
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
The strength study of the rotating device driver indexing spatial mechanism
NASA Astrophysics Data System (ADS)
Zakharenkov, N. V.; Kvasov, I. N.
2018-04-01
The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.
Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.
2016-01-01
We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
Spatial memory tasks in rodents: what do they model?
Morellini, Fabio
2013-10-01
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
NASA Technical Reports Server (NTRS)
Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.
2006-01-01
Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.
Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L
2014-02-01
Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.
Photography activities for developing students’ spatial orientation and spatial visualization
NASA Astrophysics Data System (ADS)
Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.
2017-12-01
Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.
Is a matrix exponential specification suitable for the modeling of spatial correlation structures?
Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha
2018-01-01
This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.
Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians
Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330
Bragg, Heather R; Towle Millard, Heather A; Millard, Ralph P; Constable, Peter D; Freeman, Lyn J
2016-06-15
OBJECTIVE To determine whether gender or interest in pursuing specialty certification in internal medicine or surgery was associated with video-gaming, 3-D spatial analysis, or entry-level laparoscopic skills in third-year veterinary students. DESIGN Cross-sectional study. SAMPLE A convenience sample of 68 (42 female and 26 male) third-year veterinary students. PROCEDURES Participants completed a survey asking about their interest in pursuing specialty certification in internal medicine or surgery. Subsequently, participants' entry-level laparoscopic skills were assessed with 3 procedures performed in box trainers, their video-gaming skills were tested with 3 video games, and their 3-D spatial analysis skills were evaluated with the Purdue University Visualization of Rotations Spatial Test. Scores were assigned for laparoscopic, video-gaming, and 3-D spatial analysis skills. RESULTS Significantly more female than male students were interested in pursuing specialty certification in internal medicine (23/42 vs 7/26), and significantly more male than female students were interested in pursuing specialty certification in surgery (19/26 vs 19/42). Males had significantly higher video-gaming skills scores than did females, but spatial analysis and laparoscopic skills scores did not differ between males and females. Students interested in pursuing specialty certification in surgery had higher video-gaming and spatial analysis skills scores than did students interested in pursuing specialty certification in internal medicine, but laparoscopic skills scores did not differ between these 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE For this group of students, neither gender nor interest in specialty certification in internal medicine versus surgery was associated with entry-level laparoscopy skills.
The geography of patient safety: a topical analysis of sterility.
Mesman, Jessica
2009-12-01
Many studies on patient safety are geared towards prevention of adverse events by eliminating causes of error. In this article, I argue that patient safety research needs to widen its analytical scope and include causes of strength as well. This change of focus enables me to ask other questions, like why don't things go wrong more often? Or, what is the significance of time and space for patient safety? The focal point of this article is on the spatial dimension of patient safety. To gain insight into the 'geography' of patient safety and perform a topical analysis, I will focus on one specific kind of space (sterile space), one specific medical procedure (insertion of an intravenous line) and one specific medical ward (neonatology). Based on ethnographic data from research in the Netherlands, I demonstrate how spatial arrangements produce sterility and how sterility work produces spatial orders at the same time. Detailed analysis shows how a sterile line insertion involves the convergence of spatially distributed resources, relocations of the field of activity, an assemblage of an infrastructure of attention, a specific compositional order of materials, and the scaling down of one's degree of mobility. Sterility, I will argue, turns out to be a product of spatial orderings. Simultaneously, sterility work generates particular spatial orders, like open and restricted areas, by producing buffers and boundaries. However, the spatial order of sterility intersects with the spatial order of other lines of activity. Insight into the normative structure of these co-existing spatial orders turns out to be crucial for patient safety. By analyzing processes of spatial fine-tuning in everyday practice, it becomes possible to identify spatial competences and circumstances that enable staff members to provide safe health care. As such, a topical analysis offers an alternative perspective of patient safety, one that takes into account its spatial dimension.
Fincannon, Thomas; Keebler, Joseph R; Jentsch, Florian; Curtis, Michael
2013-01-01
The purpose of this study was to examine the effects of environmental and cognitive factors on the identification of targets from an unmanned ground vehicle (UGV). This was accomplished by manipulating obstruction, camouflage and familiarity of objects in the environment, while also measuring spatial ability. The effects of these variables on target identification were studied by measuring performance of participants that observed pre-recorded video from a 1:35 scaled military operations in urban terrain facility. Analyses indicated that a combination of camouflage and obstruction caused the most detrimental effects on performance, and that there were differences in the recognition of familiar and unfamiliar targets. Further analysis indicated that these detrimental effects could only be overcome with a combination of target familiarity and spatial ability. The findings highlight the degree to which environmental factors hinder performance and the need for a multidimensional approach for improving performance under these conditions. Areas in need of future research are also discussed. Cognitive theory is applied to the problem of perception from UGVs. Results from an experimental study indicate that a combination of camouflage and obstruction caused the most detrimental effects on performance, with differences in the recognition of both familiar and unfamiliar targets. Familiarity and spatial ability interacted to predict the performance.
NASA Astrophysics Data System (ADS)
Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran
2017-02-01
Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.
Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio
2016-04-01
We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.
Study of target and non-target interplay in spatial attention task.
Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree
2018-02-01
Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.
Schwibbe, Anja; Kothe, Christian; Hampe, Wolfgang; Konradt, Udo
2016-10-01
Sixty years of research have not added up to a concordant evaluation of the influence of spatial and manual abilities on dental skill acquisition. We used Ackerman's theory of ability determinants of skill acquisition to explain the influence of spatial visualization and manual dexterity on the task performance of dental students in two consecutive preclinical technique courses. We measured spatial and manual abilities of applicants to Hamburg Dental School by means of a multiple choice test on Technical Aptitude and a wire-bending test, respectively. Preclinical dental technique tasks were categorized as consistent-simple and inconsistent-complex based on their contents. For analysis, we used robust regression to circumvent typical limitations in dental studies like small sample size and non-normal residual distributions. We found that manual, but not spatial ability exhibited a moderate influence on the performance in consistent-simple tasks during dental skill acquisition in preclinical dentistry. Both abilities revealed a moderate relation with the performance in inconsistent-complex tasks. These findings support the hypotheses which we had postulated on the basis of Ackerman's work. Therefore, spatial as well as manual ability are required for the acquisition of dental skills in preclinical technique courses. These results support the view that both abilities should be addressed in dental admission procedures in addition to cognitive measures.
Helm, Fabian; Munzert, Jörn; Troje, Nikolaus F
2017-08-01
This study examined the kinematic characteristics of disguised movements by applying linear discriminant (LDA) and dissimilarity analyses to the motion data from 788 disguised and 792 non-disguised 7-m penalty throws performed by novice and expert handball field players. Results of the LDA showed that discrimination between type of throws (disguised vs. non-disguised) was more error-prone when throws were performed by experts (spatial: 4.6%; temporal: 29.6%) compared to novices (spatial: 1.0%; temporal: 20.2%). The dissimilarity analysis revealed significantly smaller spatial dissimilarities and variations between type of throws in experts compared to novices (p<0.001), but also showed that these spatial dissimilarities and variations increased significantly in both groups the closer the throws came to the moment of (predicted) ball release. In contrast, temporal dissimilarities did not differ significantly between groups. Thus, our data clearly demonstrate that expertise in disguising one's own action intentions results in an ability to perform disguised penalty throws that are highly similar to genuine throws. We suggest that this expertise depends mainly on keeping spatial dissimilarities small. However, the attempt to disguise becomes a challenge the closer one gets to the action outcome (i.e., ball release) becoming visible. Copyright © 2017 Elsevier B.V. All rights reserved.
Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
Kiran Kumar, G R; Reddy, M Ramasubba
2018-06-08
Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.
Finite time step and spatial grid effects in δf simulation of warm plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturdevant, Benjamin J., E-mail: benjamin.j.sturdevant@gmail.com; Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309; Parker, Scott E.
2016-01-15
This paper introduces a technique for analyzing time integration methods used with the particle weight equations in δf method particle-in-cell (PIC) schemes. The analysis applies to the simulation of warm, uniform, periodic or infinite plasmas in the linear regime and considers the collective behavior similar to the analysis performed by Langdon for full-f PIC schemes [1,2]. We perform both a time integration analysis and spatial grid analysis for a kinetic ion, adiabatic electron model of ion acoustic waves. An implicit time integration scheme is studied in detail for δf simulations using our weight equation analysis and for full-f simulations usingmore » the method of Langdon. It is found that the δf method exhibits a CFL-like stability condition for low temperature ions, which is independent of the parameter characterizing the implicitness of the scheme. The accuracy of the real frequency and damping rate due to the discrete time and spatial schemes is also derived using a perturbative method. The theoretical analysis of numerical error presented here may be useful for the verification of simulations and for providing intuition for the design of new implicit time integration schemes for the δf method, as well as understanding differences between δf and full-f approaches to plasma simulation.« less
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Developmental patterns of spatial ability: an early sex difference.
Johnson, E S; Meade, A C
1987-06-01
Over 1,800 public school students (grades K-12, ages 6-18) took a battery of 7 spatial tests tailored to their respective developmental levels. Analyses of resulting data indicate that it is feasible to measure spatial ability throughout this developmental range with modified versions of adult paper-and-pencil tests, that a male advantage in spatial performance appears reliably by age 10, and that the magnitude of the advantage remains constant through age 18. Analysis of covariance suggests that an early female precocity in language skills may mask a male advantage in spatial ability during the primary school years. There is no indication of a sex difference in kindergarten children.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992
NASA Astrophysics Data System (ADS)
Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.
2016-12-01
Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.
NASA Astrophysics Data System (ADS)
Karnatak, H.; Pandey, K.; Oberai, K.; Roy, A.; Joshi, D.; Singh, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.
2014-11-01
National Biodiversity Characterization at Landscape Level, a project jointly sponsored by Department of Biotechnology and Department of Space, was implemented to identify and map the potential biodiversity rich areas in India. This project has generated spatial information at three levels viz. Satellite based primary information (Vegetation Type map, spatial locations of road & village, Fire occurrence); geospatially derived or modelled information (Disturbance Index, Fragmentation, Biological Richness) and geospatially referenced field samples plots. The study provides information of high disturbance and high biological richness areas suggesting future management strategies and formulating action plans. The study has generated for the first time baseline database in India which will be a valuable input towards climate change study in the Indian Subcontinent. The spatial data generated during the study is organized as central data repository in Geo-RDBMS environment using PostgreSQL and POSTGIS. The raster and vector data is published as OGC WMS and WFS standard for development of web base geoinformation system using Service Oriented Architecture (SOA). The WMS and WFS based system allows geo-visualization, online query and map outputs generation based on user request and response. This is a typical mashup architecture based geo-information system which allows access to remote web services like ISRO Bhuvan, Openstreet map, Google map etc., with overlay on Biodiversity data for effective study on Bio-resources. The spatial queries and analysis with vector data is achieved through SQL queries on POSTGIS and WFS-T operations. But the most important challenge is to develop a system for online raster based geo-spatial analysis and processing based on user defined Area of Interest (AOI) for large raster data sets. The map data of this study contains approximately 20 GB of size for each data layer which are five in number. An attempt has been to develop system using python, PostGIS and PHP for raster data analysis over the web for Biodiversity conservation and prioritization. The developed system takes inputs from users as WKT, Openlayer based Polygon geometry and Shape file upload as AOI to perform raster based operation using Python and GDAL/OGR. The intermediate products are stored in temporary files and tables which generate XML outputs for web representation. The raster operations like clip-zip-ship, class wise area statistics, single to multi-layer operations, diagrammatic representation and other geo-statistical analysis are performed. This is indigenous geospatial data processing engine developed using Open system architecture for spatial analysis of Biodiversity data sets in Internet GIS environment. The performance of this applications in multi-user environment like Internet domain is another challenging task which is addressed by fine tuning the source code, server hardening, spatial indexing and running the process in load balance mode. The developed system is hosted in Internet domain (http://bis.iirs.gov.in) for user access.
Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry
NASA Astrophysics Data System (ADS)
Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.
2014-12-01
Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H
2012-11-06
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.
2013-01-01
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719
Spatial Data Structures for Robotic Vehicle Route Planning
1988-12-01
goal will be realized in an intelligent Spatial Data Structure Development System (SDSDS) intended for use by Terrain Analysis applications...from the user the details of representation and to permit the infrastructure itself to decide which representations will be most efficient or effective ...to intelligently predict performance of algorithmic sequences and thereby optimize the application (within the accuracy of the prediction models). The
Analysis of Spatial Point Patterns in Nuclear Biology
Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.
2012-01-01
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822
Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-01
There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.
Separate but correlated: The latent structure of space and mathematics across development.
Mix, Kelly S; Levine, Susan C; Cheng, Yi-Ling; Young, Chris; Hambrick, D Zachary; Ping, Raedy; Konstantopoulos, Spyros
2016-09-01
The relations among various spatial and mathematics skills were assessed in a cross-sectional study of 854 children from kindergarten, third, and sixth grades (i.e., 5 to 13 years of age). Children completed a battery of spatial mathematics tests and their scores were submitted to exploratory factor analyses both within and across domains. In the within domain analyses, all of the measures formed single factors at each age, suggesting consistent, unitary structures across this age range. Yet, as in previous work, the 2 domains were highly correlated, both in terms of overall composite score and pairwise comparisons of individual tasks. When both spatial and mathematics scores were submitted to the same factor analysis, the 2 domain specific factors again emerged, but there also were significant cross-domain factor loadings that varied with age. Multivariate regressions replicated the factor analysis and further revealed that mental rotation was the best predictor of mathematical performance in kindergarten, and visual-spatial working memory was the best predictor of mathematical performance in sixth grade. The mathematical tasks that predicted the most variance in spatial skill were place value (K, 3rd, 6th), word problems (3rd, 6th), calculation (K), fraction concepts (3rd), and algebra (6th). Thus, although spatial skill and mathematics each have strong internal structures, they also share significant overlap, and have particularly strong cross-domain relations for certain tasks. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data.
Moraga, Paula
2017-11-01
During last years, public health surveillance has been facilitated by the existence of several packages implementing statistical methods for the analysis of spatial and spatio-temporal disease data. However, these methods are still inaccesible for many researchers lacking the adequate programming skills to effectively use the required software. In this paper we present SpatialEpiApp, a Shiny web application that integrate two of the most common approaches in health surveillance: disease mapping and detection of clusters. SpatialEpiApp is easy to use and does not require any programming knowledge. Given information about the cases, population and optionally covariates for each of the areas and dates of study, the application allows to fit Bayesian models to obtain disease risk estimates and their uncertainty by using R-INLA, and to detect disease clusters by using SaTScan. The application allows user interaction and the creation of interactive data visualizations and reports showing the analyses performed. Copyright © 2017 Elsevier Ltd. All rights reserved.
AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems
Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya
2015-01-01
A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911
Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki
2017-03-01
In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
NASA Astrophysics Data System (ADS)
Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.
2010-02-01
We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.
Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P
2015-08-01
Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.
Spatial and temporal adaptations that accompany increasing catching performance during learning.
Mazyn, Liesbeth I N; Lenoir, Matthieu; Montagne, Gilles; Savelsbergh, Geert J P
2007-11-01
The authors studied changes in performance and kinematics during the acquisition of a 1-handed catch. Participants were 8 women who took an intensive 2-week training program during which they evolved from poor catchers to subexpert catchers. An increased temporal consistency, shift in spatial location of ball-hand contact away from the body, and higher peak velocity of the transport of the hand toward the ball accompanied their improvement in catching performance. Moreover, novice catchers first adjusted spatial characteristics of the catch to the task constraints and fine-tuned temporal features only later during learning. A principal components analysis on a large set of kinematic variables indicated that a successful catch depends on (a) forward displacement of the hand and (b) the dynamics of the hand closure, thereby providing a kinematic underpinning for the traditional transport-manipulation dissociation in the grasping and catching literature.
Exploiting spectral content for image segmentation in GPR data
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.
2011-06-01
Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.
Use of artificial neural network for spatial rainfall analysis
NASA Astrophysics Data System (ADS)
Paraskevas, Tsangaratos; Dimitrios, Rozos; Andreas, Benardos
2014-04-01
In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.
Estimating Biofuel Feedstock Water Footprints Using System Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inman, Daniel; Warner, Ethan; Stright, Dana
Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of manymore » feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user-friendly interface for on-demand, spatially explicit, water use scenario analysis for many US agricultural crops. Built-in controls permit users to quickly make modifications to the model assumptions, such as those affecting yield, and to see the implications of those results in real time. BioSpatial H2O's dynamic capabilities and adjustable climate data allow for analyses of water use and management scenarios to inform current and potential future bioenergy policies. The model could also be adapted for scenario analysis of alternative climatic conditions and comparison of multiple crops. The results of such an analysis would help identify risks associated with water use competition among feedstocks in certain regions. Results could also inform research and development efforts that seek to reduce water-related risks of biofuel pathways.« less
Photo-induced spatial modulation of THz waves: opportunities and limitations.
Kannegulla, Akash; Shams, Md Itrat Bin; Liu, Lei; Cheng, Li-Jing
2015-12-14
Programmable conductive patterns created by photoexcitation of semiconductor substrates using digital light processing (DLP) provides a versatile approach for spatial and temporal modulation of THz waves. The reconfigurable nature of the technology has great potential in implementing several promising THz applications, such as THz beam steering, THz imaging or THz remote sensing, in a simple, cost-effective manner. In this paper, we provide physical insight about how the semiconducting materials, substrate dimension, optical illumination wavelength and illumination size impact the performance of THz modulation, including modulation depth, modulation speed and spatial resolution. The analysis establishes design guidelines for the development of photo-induced THz modulation technology. Evolved from the theoretical analysis, a new mesa array technology composed by a matrix of sub-THz wavelength structures is introduced to maximize both spatial resolution and modulation depth for THz modulation with low-power photoexcitation by prohibiting the lateral diffusion of photogenerated carriers.
McClusky, D A; Ritter, E M; Lederman, A B; Gallagher, A G; Smith, C D
2005-01-01
Given the dynamic nature of modern surgical education, determining factors that may improve the efficiency of laparoscopic training is warranted. The objective of this study was to analyze whether perceptual, visuo-spatial, or psychomotor aptitude are related to the amount of training required to reach specific performance-based goals on a virtual reality surgical simulator. Sixteen MS4 medical students participated in an elective skills course intended to train laparoscopic skills. All were tested for perceptual, visuo-spatial, and psychomotor aptitude using previously validated psychological tests. Training involved as many instructor-guided 1-hour sessions as needed to reach performance goals on a custom designed MIST-VR manipulation-diathermy task (Mentice AB, Gothenberg, Sweden). Thirteen subjects reached performance goals by the end of the course. Two were excluded from analysis due to previous experience with the MIST-VR (total n = 11). Perceptual ability (r = -0.76, P = 0.007) and psychomotor skills (r = 0.62, P = 0.04) significantly correlated with the number of trials required. Visuo-spatial ability did not significantly correlate with training duration. The number of trials required to train subjects to performance goals on the MIST-VR manipulation diathermy task is significantly related to perceptual and psychomotor aptitude.
Bednarkiewicz, Artur; Whelan, Maurice P
2008-01-01
Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.
Modeling fixation locations using spatial point processes.
Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix
2013-10-01
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.
Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis
NASA Astrophysics Data System (ADS)
Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.
2007-12-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.
Scaling properties of sea ice deformation from buoy dispersion analysis
NASA Astrophysics Data System (ADS)
Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.
2008-03-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.
Automated defect spatial signature analysis for semiconductor manufacturing process
Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed
1999-01-01
An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.
de Fiebre, Nancyellen C; Sumien, Nathalie; Forster, Michael J; de Fiebre, Christopher M
2006-09-01
Two tests often used in aging research, the elevated path test and the Morris water maze test, were examined for their application to the study of brain aging in a large sample of C57BL/6JNia mice. Specifically, these studies assessed: (1) sensitivity to age and the degree of interrelatedness among different behavioral measures derived from these tests, (2) the effect of age on variation in the measurements, and (3) the reliability of individual differences in performance on the tests. Both tests detected age-related deficits in group performance that occurred independently of each other. However, analysis of data obtained on the Morris water maze test revealed three relatively independent components of cognitive performance. Performance in initial acquisition of spatial learning in the Morris maze was not highly correlated with performance during reversal learning (when mice were required to learn a new spatial location), whereas performance in both of those phases was independent of spatial performance assessed during a single probe trial administered at the end of acquisition training. Moreover, impaired performance during initial acquisition could be detected at an earlier age than impairments in reversal learning. There were modest but significant age-related increases in the variance of both elevated path test scores and in several measures of learning in the Morris maze test. Analysis of test scores of mice across repeated testing sessions confirmed reliability of the measurements obtained for cognitive and psychomotor function. Power calculations confirmed that there are sufficiently large age-related differences in elevated path test performance, relative to within age variability, to render this test useful for studies into the ability of an intervention to prevent or reverse age-related deficits in psychomotor performance. Power calculations indicated a need for larger sample sizes for detection of intervention effects on cognitive components of the Morris water maze test, at least when implemented at the ages tested in this study. Variability among old mice in both tests, including each of the various independent measures in the Morris maze, may be useful for elucidating the biological bases of different aspects of dysfunctional brain aging.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.
2018-02-01
While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.
Kawada, Hitoshi; Iwasaki, Tomonori; LE Loan, Luu; Tien, Tran Khanh; Mai, Nguyen Thi Nhu; Shono, Yoshinori; Katayama, Yasuyuki; Takagi, Masahiro
2006-12-01
Spatial repellency of metofluthrin-impregnated polyethylene latticework plastic strips against Aedes aegypti mosquitoes was evaluated. Analysis of environmental factors affecting the efficacy of these strips, such as room temperature, humidity, and house structure, was performed in a residential area in My Tho City, Tien Giang Province, Vietnam. Treatment with the strips at the rate of 1 strip per 2.6-5.52 m(2) (approximately 600 mg per 2.6-5.52 m(2)) reduced the collection of Ae. aegypti resting inside the houses for at least eight weeks. Multiple regression analysis indicated that both increase in the average room temperature and decrease in the area of openings in the rooms that were treated with the strips positively affected the spatial repellency of metofluthrin.
Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije
2010-12-01
The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.
Visual spatial cue use for guiding orientation in two-to-three-year-old children
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2–3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences. PMID:24368903
Visual spatial cue use for guiding orientation in two-to-three-year-old children.
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
Online data analysis using Web GDL
NASA Astrophysics Data System (ADS)
Jaffey, A.; Cheung, M.; Kobashi, A.
2008-12-01
The ever improving capability of modern astronomical instruments to capture data at high spatial resolution and cadence is opening up unprecedented opportunities for scientific discovery. When data sets become so large that they cannot be easily transferred over the internet, the researcher must find alternative ways to perform data analysis. One strategy is to bring the data analysis code to where the data resides. We present Web GDL, an implementation of GDL (GNU Data Language, open source incremental compiler compatible with IDL) that allows users to perform interactive data analysis within a web browser.
Lee, Seohyun; Cho, Yoon-Min; Kim, Sun-Young
2017-08-22
Mobile health (mHealth), a term used for healthcare delivery via mobile devices, has gained attention as an innovative technology for better access to healthcare and support for performance of health workers in the global health context. Despite large expansion of mHealth across sub-Saharan Africa, regional collaboration for scale-up has not made progress since last decade. As a groundwork for strategic planning for regional collaboration, the study attempted to identify spatial patterns of mHealth implementation in sub-Saharan Africa using an exploratory spatial data analysis. In order to obtain comprehensive data on the total number of mHelath programs implemented between 2006 and 2016 in each of the 48 sub-Saharan Africa countries, we performed a systematic data collection from various sources, including: the WHO eHealth Database, the World Bank Projects & Operations Database, and the USAID mHealth Database. Additional spatial analysis was performed for mobile cellular subscriptions per 100 people to suggest strategic regional collaboration for improving mobile penetration rates along with the mHealth initiative. Global Moran's I and Local Indicator of Spatial Association (LISA) were calculated for mHealth programs and mobile subscriptions per 100 population to investigate spatial autocorrelation, which indicates the presence of local clustering and spatial disparities. From our systematic data collection, the total number of mHealth programs implemented in sub-Saharan Africa between 2006 and 2016 was 487 (same programs implemented in multiple countries were counted separately). Of these, the eastern region with 17 countries and the western region with 16 countries had 287 and 145 mHealth programs, respectively. Despite low levels of global autocorrelation, LISA enabled us to detect meaningful local clusters. Overall, the eastern part of sub-Saharan Africa shows high-high association for mHealth programs. As for mobile subscription rates per 100 population, the northern area shows extensive low-low association. This study aimed to shed some light on the potential for strategic regional collaboration for scale-up of mHealth and mobile penetration. Firstly, countries in the eastern area with much experience can take the lead role in pursuing regional collaboration for mHealth programs in sub-Saharan Africa. Secondly, collective effort in improving mobile penetration rates for the northern area is recommended.
Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet
NASA Astrophysics Data System (ADS)
Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio
2018-04-01
Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method
NASA Astrophysics Data System (ADS)
Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.
2009-02-01
Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.
Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.
Jakobsen, M L; Yura, H T; Hanson, S G
2012-03-20
This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America
Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods
NASA Technical Reports Server (NTRS)
Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.
2015-01-01
Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.
NASA Astrophysics Data System (ADS)
Gaitan, S.; ten Veldhuis, J. A. E.
2015-06-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
NASA Astrophysics Data System (ADS)
Rodríguez, Félix R.; Barrena, Manuel
2011-07-01
The spatial indexing of eventually all the available topographic information of Earth is a highly valuable tool for different geoscientific application domains. The Shuttle Radar Topography Mission (SRTM) collected and made available to the public one of the world's largest digital elevation models (DEMs). With the aim of providing on easier and faster access to these data by improving their further analysis and processing, we have indexed the SRTM DEM by means of a spatial index based on the kd-tree data structure, called the Q-tree. This paper is the second in a two-part series that includes a thorough performance analysis to validate the bulk-load algorithm efficiency of the Q-tree. We investigate performance measuring elapsed time in different contexts, analyzing disk space usage, testing response time with typical queries, and validating the final index structure balance. In addition, the paper includes performance comparisons with Oracle 11g that helps to understand the real cost of our proposal. Our tests prove that the proposed algorithm outperforms Oracle 11g using around a 9% of the elapsed time, taking six times less storage with more than 96% of page utilization, and getting faster response times to spatial queries issued on 4.5 million points. In addition to this, the behavior of the spatial index has been successfully tested on both an open GIS (VT Builder) and a visualizer tool derived from the previous one.
Notarnicola, Angela; Maccagnano, Giuseppe; Pesce, Vito; Tafuri, Silvio; Novielli, Grazia; Moretti, Biagio
2014-01-21
In the general population visual-spatial ability is better in males, due to the influence of biological and socio-cultural factors. We know that sport activity improves motor skills. The aim of this work is to determine if these gender differences exist in young athletes. The orientation test described by Terzi and standardized by Cesaroni, used to measure spatial ability, was carried out on 60 volleyball or 60 tennis athletes as well as on 60 non-sporting subjects. The data analysis revealed a worse performance for non-athletes in comparison with athletes in both components of test (p < 0.0001; p = 0.04), with no differences between the volleyball and tennis groups. As far as gender comparison is concerned, as expected in the non- sport group the males presented better values (p < 0.001; p = 0.006). However in both sports groups there weren't any gender differences in either part of the test (p = 0.18; p = 0.056). These results confirm that during athletic preparation in volleyball and tennis the specific training is able to develop spatial ability. Besides, boys and girls have similar performance demands and training experience. It appears that this specific training could be responsible for modifying gender differences in performance of spatial ability during adolescence.
Nallikuzhy, Jiss J; Dandapat, S
2017-06-01
In this work, a new patient-specific approach to enhance the spatial resolution of ECG is proposed and evaluated. The proposed model transforms a three-lead ECG into a standard twelve-lead ECG thereby enhancing its spatial resolution. The three leads used for prediction are obtained from the standard twelve-lead ECG. The proposed model takes advantage of the improved inter-lead correlation in wavelet domain. Since the model is patient-specific, it also selects the optimal predictor leads for a given patient using a lead selection algorithm. The lead selection algorithm is based on a new diagnostic similarity score which computes the diagnostic closeness between the original and the spatially enhanced leads. Standard closeness measures are used to assess the performance of the model. The similarity in diagnostic information between the original and the spatially enhanced leads are evaluated using various diagnostic measures. Repeatability and diagnosability are performed to quantify the applicability of the model. A comparison of the proposed model is performed with existing models that transform a subset of standard twelve-lead ECG into the standard twelve-lead ECG. From the analysis of the results, it is evident that the proposed model preserves diagnostic information better compared to other models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Hedonic valuation of the spatial competition for urban circumstance utilities: case Wuhan, China
NASA Astrophysics Data System (ADS)
Zheng, Bin; Liu, Yaolin; Huang, Lina
2008-10-01
It has generally accepted Alonso's [1] theory about the allocation of different land uses of commerce, resident and industry in urban area. A bunch of researches have provided their aspects of the theme of the relationships between urban circumstances and urban land uses in either the influence of one or several designate circumstance factors on different land uses, or the comprehensive analysis of the influence of all kinds of circumstance on one selected land usage (e.g. residential use). There is still not a wholly analysis about the influence of all kinds of spatial characteristics, available for the location selection of different land uses. That's why this research selects to engage in a study on the difference among "consumer preferences" to the location amenities in the city. Here we regard the behavior as "spatial competition of the locations". Hedonic regression model (HRM) analysis is employed as the basic framework of the research. Tabular comparison of HRM parameters performed with principal components analysis (PCA) and Geographic Information Science (GIS) provides all necessary numerical investigation and spatial analysis until to the finally results. The research can be helpful for putting forward to a further integrated investigation on the relationship between urban circumstance and real land use values.
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Technical Reports Server (NTRS)
1974-01-01
The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien
2012-11-01
Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.
Auditory Spatial Attention Representations in the Human Cerebral Cortex
Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.
2014-01-01
Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo
2003-01-01
Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.
Advances in Spatial Data Infrastructure, Acquisition, Analysis, Archiving and Dissemination
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuran K.; Rochon, Gilbert L.; Duerr, Ruth; Rank, Robert; Nativi, Stefano; Stocker, Erich Franz
2010-01-01
The authors review recent contributions to the state-of-thescience and benign proliferation of satellite remote sensing, spatial data infrastructure, near-real-time data acquisition, analysis on high performance computing platforms, sapient archiving, multi-modal dissemination and utilization for a wide array of scientific applications. The authors also address advances in Geoinformatics and its growing ubiquity, as evidenced by its inclusion as a focus area within the American Geophysical Union (AGU), European Geosciences Union (EGU), as well as by the evolution of the IEEE Geoscience and Remote Sensing Society's (GRSS) Data Archiving and Distribution Technical Committee (DAD TC).
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
Chen, Guangxiang; Hu, Xinyu; Li, Lei; Huang, Xiaoqi; Lui, Su; Kuang, Weihong; Ai, Hua; Bi, Feng; Gu, Zhongwei; Gong, Qiyong
2016-02-24
White matter (WM) abnormalities have long been suspected in major depressive disorder (MDD). Tract-based spatial statistics (TBSS) studies have detected abnormalities in fractional anisotropy (FA) in MDD, but the available evidence has been inconsistent. We performed a quantitative meta-analysis of TBSS studies contrasting MDD patients with healthy control subjects (HCS). A total of 17 studies with 18 datasets that included 641 MDD patients and 581 HCS were identified. Anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis was performed to assess FA alterations in MDD patients compared to HCS. FA reductions were identified in the genu of the corpus callosum (CC) extending to the body of the CC and left anterior limb of the internal capsule (ALIC) in MDD patients relative to HCS. Descriptive analysis of quartiles, sensitivity analysis and subgroup analysis further confirmed these findings. Meta-regression analysis revealed that individuals with more severe MDD were significantly more likely to have FA reductions in the genu of the CC. This study provides a thorough profile of WM abnormalities in MDD and evidence that interhemispheric connections and frontal-striatal-thalamic pathways are the most convergent circuits affected in MDD.
Rasdaman for Big Spatial Raster Data
NASA Astrophysics Data System (ADS)
Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.
2015-12-01
Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.
An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach
NASA Astrophysics Data System (ADS)
Grant, Christina P.
San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.
Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument
NASA Astrophysics Data System (ADS)
Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory
2014-10-01
The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.
Distributed multi-criteria model evaluation and spatial association analysis
NASA Astrophysics Data System (ADS)
Scherer, Laura; Pfister, Stephan
2015-04-01
Model performance, if evaluated, is often communicated by a single indicator and at an aggregated level; however, it does not embrace the trade-offs between different indicators and the inherent spatial heterogeneity of model efficiency. In this study, we simulated the water balance of the Mississippi watershed using the Soil and Water Assessment Tool (SWAT). The model was calibrated against monthly river discharge at 131 measurement stations. Its time series were bisected to allow for subsequent validation at the same gauges. Furthermore, the model was validated against evapotranspiration which was available as a continuous raster based on remote sensing. The model performance was evaluated for each of the 451 sub-watersheds using four different criteria: 1) Nash-Sutcliffe efficiency (NSE), 2) percent bias (PBIAS), 3) root mean square error (RMSE) normalized to standard deviation (RSR), as well as 4) a combined indicator of the squared correlation coefficient and the linear regression slope (bR2). Conditions that might lead to a poor model performance include aridity, a very flat and steep relief, snowfall and dams, as indicated by previous research. In an attempt to explain spatial differences in model efficiency, the goodness of the model was spatially compared to these four phenomena by means of a bivariate spatial association measure which combines Pearson's correlation coefficient and Moran's index for spatial autocorrelation. In order to assess the model performance of the Mississippi watershed as a whole, three different averages of the sub-watershed results were computed by 1) applying equal weights, 2) weighting by the mean observed river discharge, 3) weighting by the upstream catchment area and the square root of the time series length. Ratings of model performance differed significantly in space and according to efficiency criterion. The model performed much better in the humid Eastern region than in the arid Western region which was confirmed by the high spatial association with the aridity index (ratio of mean annual precipitation to mean annual potential evapotranspiration). This association was still significant when controlling for slopes which manifested the second highest spatial association. In line with these findings, overall model efficiency of the entire Mississippi watershed appeared better when weighted with mean observed river discharge. Furthermore, the model received the highest rating with regards to PBIAS and was judged worst when considering NSE as the most comprehensive indicator. No universal performance indicator exists that considers all aspects of a hydrograph. Therefore, sound model evaluation must take into account multiple criteria. Since model efficiency varies in space which is masked by aggregated ratings spatially explicit model goodness should be communicated as standard praxis - at least as a measure of spatial variability of indicators. Furthermore, transparent documentation of the evaluation procedure also with regards to weighting of aggregated model performance is crucial but often lacking in published research. Finally, the high spatial association between model performance and aridity highlights the need to improve modelling schemes for arid conditions as priority over other aspects that might weaken model goodness.
False Discovery Control in Large-Scale Spatial Multiple Testing
Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin
2014-01-01
Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138
Fradcourt, B; Peyrin, C; Baciu, M; Campagne, A
2013-10-01
Previous studies performed on visual processing of emotional stimuli have revealed preference for a specific type of visual spatial frequencies (high spatial frequency, HSF; low spatial frequency, LSF) according to task demands. The majority of studies used a face and focused on the appraisal of the emotional state of others. The present behavioral study investigates the relative role of spatial frequencies on processing emotional natural scenes during two explicit cognitive appraisal tasks, one emotional, based on the self-emotional experience and one motivational, based on the tendency to action. Our results suggest that HSF information was the most relevant to rapidly identify the self-emotional experience (unpleasant, pleasant, and neutral) while LSF was required to rapidly identify the tendency to action (avoidance, approach, and no action). The tendency to action based on LSF analysis showed a priority for unpleasant stimuli whereas the identification of emotional experience based on HSF analysis showed a priority for pleasant stimuli. The present study confirms the interest of considering both emotional and motivational characteristics of visual stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
Spatial and Activities Models of Airport Based on GIS and Dynamic Model
NASA Astrophysics Data System (ADS)
Masri, R. M.; Purwaamijaya, I. M.
2017-02-01
The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.
Smith, Matthew R.; Artz, Nathan S.; Koch, Kevin M.; Samsonov, Alexey; Reeder, Scott B.
2014-01-01
Purpose To demonstrate feasibility of exploiting the spatial distribution of off-resonance surrounding metallic implants for accelerating multispectral imaging techniques. Theory Multispectral imaging (MSI) techniques perform time-consuming independent 3D acquisitions with varying RF frequency offsets to address the extreme off-resonance from metallic implants. Each off-resonance bin provides a unique spatial sensitivity that is analogous to the sensitivity of a receiver coil, and therefore provides a unique opportunity for acceleration. Methods Fully sampled MSI was performed to demonstrate retrospective acceleration. A uniform sampling pattern across off-resonance bins was compared to several adaptive sampling strategies using a total hip replacement phantom. Monte Carlo simulations were performed to compare noise propagation of two of these strategies. With a total knee replacement phantom, positive and negative off-resonance bins were strategically sampled with respect to the B0 field to minimize aliasing. Reconstructions were performed with a parallel imaging framework to demonstrate retrospective acceleration. Results An adaptive sampling scheme dramatically improved reconstruction quality, which was supported by the noise propagation analysis. Independent acceleration of negative and positive off-resonance bins demonstrated reduced overlapping of aliased signal to improve the reconstruction. Conclusion This work presents the feasibility of acceleration in the presence of metal by exploiting the spatial sensitivities of off-resonance bins. PMID:24431210
NASA Astrophysics Data System (ADS)
Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun
2018-01-01
Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...
2018-06-11
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dąbski, Maciej; Zmarz, Anna; Pabjanek, Piotr; Korczak-Abshire, Małgorzata; Karsznia, Izabela; Chwedorzewska, Katarzyna J.
2017-08-01
High-resolution aerial images allow detailed analyses of periglacial landforms, which is of particular importance in light of climate change and resulting changes in active layer thickness. The aim of this study is to show possibilities of using UAV-based photography to perform spatial analysis of periglacial landforms on the Demay Point peninsula, King George Island, and hence to supplement previous geomorphological studies of the South Shetland Islands. Photogrammetric flights were performed using a PW-ZOOM fixed-winged unmanned aircraft vehicle. Digital elevation models (DEM) and maps of slope and contour lines were prepared in ESRI ArcGIS 10.3 with the Spatial Analyst extension, and three-dimensional visualizations in ESRI ArcScene 10.3 software. Careful interpretation of orthophoto and DEM, allowed us to vectorize polygons of landforms, such as (i) solifluction landforms (solifluction sheets, tongues, and lobes); (ii) scarps, taluses, and a protalus rampart; (iii) patterned ground (hummocks, sorted circles, stripes, nets and labyrinths, and nonsorted nets and stripes); (iv) coastal landforms (cliffs and beaches); (v) landslides and mud flows; and (vi) stone fields and bedrock outcrops. We conclude that geomorphological studies based on commonly accessible aerial and satellite images can underestimate the spatial extent of periglacial landforms and result in incomplete inventories. The PW-ZOOM UAV is well suited to gather detailed geomorphological data and can be used in spatial analysis of periglacial landforms in the Western Antarctic Peninsula region.
Gaussian Process Regression Model in Spatial Logistic Regression
NASA Astrophysics Data System (ADS)
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Modal decomposition of turbulent supersonic cavity
NASA Astrophysics Data System (ADS)
Soni, R. K.; Arya, N.; De, A.
2018-06-01
Self-sustained oscillations in a Mach 3 supersonic cavity with a length-to-depth ratio of three are investigated using wall-modeled large eddy simulation methodology for ReD = 3.39× 105 . The unsteady data obtained through computation are utilized to investigate the spatial and temporal evolution of the flow field, especially the second invariant of the velocity tensor, while the phase-averaged data are analyzed over a feedback cycle to study the spatial structures. This analysis is accompanied by the proper orthogonal decomposition (POD) data, which reveals the presence of discrete vortices along the shear layer. The POD analysis is performed in both the spanwise and streamwise planes to extract the coherence in flow structures. Finally, dynamic mode decomposition is performed on the data sequence to obtain the dynamic information and deeper insight into the self-sustained mechanism.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
NASA Astrophysics Data System (ADS)
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
The role of visualization in learning from computer-based images
NASA Astrophysics Data System (ADS)
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-05-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.
Fulton, James L.
1992-01-01
Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.
Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python
NASA Astrophysics Data System (ADS)
Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor
2017-04-01
As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via ODBC or JDBC respectively, 2) an instance to represent the spatial data stored in the database as a dataframe in Python, called the IdaGeoDataFrame, with a specific geometry attribute which recognises a planar geometry column in dashDB and 3) Python wrappers for spatial functions like within, distance, area, buffer} and more which dashDB currently supports to make the querying process from Python much simpler for the users. The spatial functions translate well-known geopandas-like syntax into SQL queries utilising the database connection to perform spatial operations in-database and can operate on single geometries as well two different geometries from different IdaGeoDataFrames. The in-database queries strictly follow the standards of OpenGIS Implementation Specification for Geographic information - Simple feature access for SQL. The results of the operations obtained can thereby be accessed dynamically via interactive Jupyter notebooks from any system which supports Python, without any additional dependencies and can also be combined with other open source libraries such as matplotlib and folium in-built within Jupyter notebooks for visualization purposes. We built a use case to analyse crime hotspots in New York city to validate our implementation and visualized the results as a choropleth map for each borough.
Ivanoff, Jason; Blagdon, Ryan; Feener, Stefanie; McNeil, Melanie; Muir, Paul H.
2014-01-01
The Simon effect refers to the performance (response time and accuracy) advantage for responses that spatially correspond to the task-irrelevant location of a stimulus. It has been attributed to a natural tendency to respond toward the source of stimulation. When location is task-relevant, however, and responses are intentionally directed away (incompatible) or toward (compatible) the source of the stimulation, there is also an advantage for spatially compatible responses over spatially incompatible responses. Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect following practice with a spatial incompatibility task. One interpretation of this finding is that practicing a spatial incompatibility task disables the natural tendency to respond toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved across blocks of trials. In general, bidirectional S-R transfer was observed: while the spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R mapping of the Simon task also had a small impact on congruency effects within the spatial compatibility and incompatibility tasks. These effects were generally greater when the task contexts were similar. Moreover, the SAT analysis of performance in the Simon task demonstrated that the tendency to respond to the location of the stimulus was not eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial incompatibility task appeared to partially mask the natural tendency to respond to the source of stimulation with a conflicting inclination to respond away from it. These findings support the use of SAT methodology to quantitatively describe rapid response tendencies. PMID:25191217
A Spatial Analysis of Contextual Effects on Educational Accountability in Kentucky.
ERIC Educational Resources Information Center
Pitts, Timothy C.; Reeves, Edward B.
A cornerstone of the Kentucky Education Reform Act of 1990 was the creation of a high-stakes performance assessment program called the Kentucky Instructional Results Information System (KIRIS). KIRIS test results were the basis for granting monetary rewards to schools and school districts where student test performance improved significantly and…
NASA Astrophysics Data System (ADS)
Martin, D. J.
2013-12-01
Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement patterns and geomorphic and riparian variables. Understanding these spatial patterns and relationships will provide valuable insight into the application of LWD-related stream and watershed management practices, and fill a necessary regional knowledge gap in our understanding of LWD's role in fluvial processes.
Reconfigurable wavefront sensor for ultrashort pulses.
Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger
2012-04-01
A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
NASA Astrophysics Data System (ADS)
Rana, Arun; Moradkhani, Hamid
2016-07-01
Uncertainties in climate modelling are well documented in literature. Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional scale. In the present work, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from statistically downscaled GCM projections in Columbia River Basin (CRB). Analysis is performed using two different statistically downscaled climate projections (with ten GCMs downscaled products each, for RCP 4.5 and RCP 8.5, from CMIP5 dataset) namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. The two datasets for BCSD and MACA are downscaled from observed data for both scenarios projections i.e. RCP4.5 and RCP8.5. Analysis is performed using spatial change (yearly scale), temporal change (monthly scale), percentile change (seasonal scale), quantile change (yearly scale), and wavelet analysis (yearly scale) in the future period from the historical period, respectively, at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice versa for temperature. Most of the models have indicated considerate positive change in quantiles and percentiles for both precipitation and temperature. Wavelet analysis provided insights into possible explanation to changes in precipitation.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI.
Sengupta, Ayan; Pollmann, Stefan; Hanke, Michael
2018-01-01
Spatial filtering strategies, combined with multivariate decoding analysis of BOLD images, have been used to investigate the nature of the neural signal underlying the discriminability of brain activity patterns evoked by sensory stimulation -- primarily in the visual cortex. Reported evidence indicates that such signals are spatially broadband in nature, and are not primarily comprised of fine-grained activation patterns. However, it is unclear whether this is a general property of the BOLD signal, or whether it is specific to the details of employed analyses and stimuli. Here we performed an analysis of publicly available, high-resolution 7T fMRI on the response BOLD response to musical genres in primary auditory cortex that matches a previously conducted study on decoding visual orientation from V1. The results show that the pattern of decoding accuracies with respect to different types and levels of spatial filtering is comparable to that obtained from V1, despite considerable differences in the respective cortical circuitry.
Performance analysis of a coherent free space optical communication system based on experiment.
Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun
2017-06-26
Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.
Local regression type methods applied to the study of geophysics and high frequency financial data
NASA Astrophysics Data System (ADS)
Mariani, M. C.; Basu, K.
2014-09-01
In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.
Seismic slope-performance analysis: from hazard map to decision support system
Miles, Scott B.; Keefer, David K.; Ho, Carlton L.
1999-01-01
In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.
Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
Michael, Andrew M.; Anderson, Mathew; Miller, Robyn L.; Adalı, Tülay; Calhoun, Vince D.
2014-01-01
Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performance limits of GICA and IVA has not been investigated. Recent interest in resting state fMRI data with potentially higher degree of subject variability makes the evaluation of the above techniques important. In this paper we compare component estimation accuracies of GICA and an improved version of IVA using simulated fMRI datasets. We systematically change the degree of inter-subject spatial variability of components and evaluate estimation accuracy over all spatial maps (SMs) and time courses (TCs) of the decomposition. Our results indicate the following: (1) at low levels of SM variability or when just one SM is varied, both GICA and IVA perform well, (2) at higher levels of SM variability or when more than one SMs are varied, IVA continues to perform well but GICA yields SM estimates that are composites of other SMs with errors in TCs, (3) both GICA and IVA remove spatial correlations of overlapping SMs and introduce artificial correlations in their TCs, (4) if number of SMs is over estimated, IVA continues to perform well but GICA introduces artifacts in the varying and extra SMs with artificial correlations in the TCs of extra components, and (5) in the absence or presence of SMs unique to one subject, GICA produces errors in TCs and IVA estimates are accurate. In summary, our simulation experiments (both simplistic and realistic) and our holistic analyses approach indicate that IVA produces results that are closer to ground truth and thereby better preserves subject variability. The improved version of IVA is now packaged into the GIFT toolbox (http://mialab.mrn.org/software/gift). PMID:25018704
Spatial and temporal patterns of dengue in Guangdong province of China.
Wang, Chenggang; Yang, Weizhong; Fan, Jingchun; Wang, Furong; Jiang, Baofa; Liu, Qiyong
2015-03-01
The aim of the study was to describe the spatial and temporal patterns of dengue in Guangdong for 1978 to 2010. Time series analysis was performed using data on annual dengue incidence in Guangdong province for 1978-2010. Annual average dengue incidences for each city were mapped for 4 periods by using the geographical information system (GIS). Hot spot analysis was used to identify spatial patterns of dengue cases for 2005-2010 by using the CrimeStat III software. The incidence of dengue in Guangdong province had fallen steadily from 1978 to 2010. The time series was a random sequence without regularity and with no fixed cycle. The geographic range of dengue fever had expanded from 1978 to 2010. Cases were mostly concentrated in Zhanjiang and the developed regions of Pearl River Delta and Shantou. © 2013 APJPH.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M
2007-01-01
We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.
NASA Astrophysics Data System (ADS)
Wade, Cherrie; Brennan, Patrick C.; Mc Entee, Mark F.
2005-04-01
Diagnostic efficacy in soft-copy reporting relies heavily on the quality of workstation monitors and an investigation performed in 2002 demonstrated that CRT monitors in Dublin imaging departments were not operating at optimal levels. The current work examines the performance of CRTs being used in Dublin and other parts of Ireland to establish if problems reported in the earlier work have been rectified. All hospitals performing soft-copy reporting for general radiology using CRTs were included in the work. Examination of ambient lighting, calibration of monitors and analysis of CRT performance using the SMPTE test pattern and a selection of the AAPM test images was performed. Maximum luminance, spatial uniformity of luminance, temporal luminance stability, gamma, geometry, sharpness, veiling glare and spatial resolution of each monitor was evaluated. Ambient lighting in all reporting areas was within recommended levels. All the monitors were calibrated appropriately and were performing at acceptable levels for maximum luminance and temporal stability and only one of the thirty-three investigated failed to reach the standard for spatial uniformity. In contrast a number of the CRTs investigated showed poor adherence to acceptable levels for geometrical distortions, veiling glare and spatial resolution all of which are important influencers of image quality. Gamma values also appeared to be low for a number of monitors but this interpretation is provisional and subject to the establishment of ratified guideline values. The results demonstrate that although some improvement on the previous situation is evident, greater adherence to acceptable levels is required for certain parameters.
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
The Monitoring Erosion of Agricultural Land and spatial database of erosion events
NASA Astrophysics Data System (ADS)
Kapicka, Jiri; Zizala, Daniel
2013-04-01
In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed on the base of needs analysis inputs to mathematical models. Mathematical models are used for detailed analysis of chosen erosion events which include soil analysis. Till the end 2012 has had the database 135 events. The content of database still accrues and gives rise to the extensive source of data that is usable for testing mathematical models.
2014-01-01
Background In the general population visual-spatial ability is better in males, due to the influence of biological and socio-cultural factors. We know that sport activity improves motor skills. The aim of this work is to determine if these gender differences exist in young athletes. The orientation test described by Terzi and standardized by Cesaroni, used to measure spatial ability, was carried out on 60 volleyball or 60 tennis athletes as well as on 60 non-sporting subjects. Results The data analysis revealed a worse performance for non-athletes in comparison with athletes in both components of test (p < 0.0001; p = 0.04), with no differences between the volleyball and tennis groups. As far as gender comparison is concerned, as expected in the non- sport group the males presented better values (p < 0.001; p = 0.006). However in both sports groups there weren’t any gender differences in either part of the test (p = 0.18; p = 0.056). Conclusions These results confirm that during athletic preparation in volleyball and tennis the specific training is able to develop spatial ability. Besides, boys and girls have similar performance demands and training experience. It appears that this specific training could be responsible for modifying gender differences in performance of spatial ability during adolescence. PMID:24447526
Dong, Ni; Huang, Helai; Zheng, Liang
2015-09-01
In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis
NASA Astrophysics Data System (ADS)
Karlsson, Caroline S. J.; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W.
2017-11-01
Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.
Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis.
Karlsson, Caroline S J; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W
2017-11-01
Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.
GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases
NASA Astrophysics Data System (ADS)
Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz
2015-07-01
Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, E; Zika, M
1999-04-01
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonantmore » wave numbers, in which case the material heterogeneities most strongly affect iterative performance.« less
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena
2013-09-01
The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej
2017-10-01
In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
Erdogan, Saffet
2009-10-01
The aim of the study is to describe the inter-province differences in traffic accidents and mortality on roads of Turkey. Two different risk indicators were used to evaluate the road safety performance of the provinces in Turkey. These indicators are the ratios between the number of persons killed in road traffic accidents (1) and the number of accidents (2) (nominators) and their exposure to traffic risk (denominator). Population and the number of registered motor vehicles in the provinces were used as denominators individually. Spatial analyses were performed to the mean annual rate of deaths and to the number of fatal accidents that were calculated for the period of 2001-2006. Empirical Bayes smoothing was used to remove background noise from the raw death and accident rates because of the sparsely populated provinces and small number of accident and death rates of provinces. Global and local spatial autocorrelation analyses were performed to show whether the provinces with high rates of deaths-accidents show clustering or are located closer by chance. The spatial distribution of provinces with high rates of deaths and accidents was nonrandom and detected as clustered with significance of P<0.05 with spatial autocorrelation analyses. Regions with high concentration of fatal accidents and deaths were located in the provinces that contain the roads connecting the Istanbul, Ankara, and Antalya provinces. Accident and death rates were also modeled with some independent variables such as number of motor vehicles, length of roads, and so forth using geographically weighted regression analysis with forward step-wise elimination. The level of statistical significance was taken as P<0.05. Large differences were found between the rates of deaths and accidents according to denominators in the provinces. The geographically weighted regression analyses did significantly better predictions for both accident rates and death rates than did ordinary least regressions, as indicated by adjusted R(2) values. Geographically weighted regression provided values of 0.89-0.99 adjusted R(2) for death and accident rates, compared with 0.88-0.95, respectively, by ordinary least regressions. Geographically weighted regression has the potential to reveal local patterns in the spatial distribution of rates, which would be ignored by the ordinary least regression approach. The application of spatial analysis and modeling of accident statistics and death rates at provincial level in Turkey will help to identification of provinces with outstandingly high accident and death rates. This could help more efficient road safety management in Turkey.
A Permutation-Randomization Approach to Test the Spatial Distribution of Plant Diseases.
Lione, G; Gonthier, P
2016-01-01
The analysis of the spatial distribution of plant diseases requires the availability of trustworthy geostatistical methods. The mean distance tests (MDT) are here proposed as a series of permutation and randomization tests to assess the spatial distribution of plant diseases when the variable of phytopathological interest is categorical. A user-friendly software to perform the tests is provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the reliability of the MDT (power > 0.80; type I error < 0.05). A biological validation on the spatial distribution of spores of two fungal pathogens causing root rot on conifers was successfully performed by verifying the consistency between the MDT responses and previously published data. An application of the MDT was carried out to analyze the relation between the plantation density and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly distributed in areas with different plantation densities, suggesting that the distribution of G. castanea was not related to the plantation density. The MDT could be used to analyze the spatial distribution of plant diseases both in agricultural and natural ecosystems.
M. G. Dosskey; S. Neelakantan; T. G. Mueller; T. Kellerman; M. J. Helmers; E. Rienzi
2015-01-01
Spatially nonuniform runoif reduces the water qua1iry perfortnance of constant- width filter strips. A geographic inlormation system (Gls)-based tool was developed and tested that ernploys terrain analysis to account lor spatially nonuniform runoffand produce more ellbctive filter strip designs.The computer program,AgBufTerBuilder, runs with ATcGIS versions 10.0 and 10...
Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya
2016-02-05
Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value < 0.001); Root Mean Square Error (RMSE) values were 0.0245, 0.0300, 0.0401, respectively; and ERGAS values were 0.5416, 0.6507, 0.8737, respectively. The USTARM showed consistently higher performance than STARM when the degree of heterogeneity ranged from 2 to 10, highlighting that the use of this method provides the capacity to solve the data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.
Effects of complex aural stimuli on mental performance.
Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen
2003-06-01
The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments.
NASA Astrophysics Data System (ADS)
Pu, Huangsheng; Zhang, Guanglei; He, Wei; Liu, Fei; Guang, Huizhi; Zhang, Yue; Bai, Jing; Luo, Jianwen
2014-09-01
It is a challenging problem to resolve and identify drug (or non-specific fluorophore) distribution throughout the whole body of small animals in vivo. In this article, an algorithm of unmixing multispectral fluorescence tomography (MFT) images based on independent component analysis (ICA) is proposed to solve this problem. ICA is used to unmix the data matrix assembled by the reconstruction results from MFT. Then the independent components (ICs) that represent spatial structures and the corresponding spectrum courses (SCs) which are associated with spectral variations can be obtained. By combining the ICs with SCs, the recovered MFT images can be generated and fluorophore concentration can be calculated. Simulation studies, phantom experiments and animal experiments with different concentration contrasts and spectrum combinations are performed to test the performance of the proposed algorithm. Results demonstrate that the proposed algorithm can not only provide the spatial information of fluorophores, but also recover the actual reconstruction of MFT images.
Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.
2013-01-01
In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.
2017-03-01
Contribution to Project: Ian primarily focuses on developing tissue imaging pipeline and perform imaging data analysis . Funding Support: Partially...3D ReconsTruction), a multi-faceted image analysis pipeline , permitting quantitative interrogation of functional implications of heterogeneous... analysis pipeline , to observe and quantify phenotypic metastatic landscape heterogeneity in situ with spatial and molecular resolution. Our implementation
Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.
1978-06-01
Hydrologic Engineer- ing Center computer programs that forecast urban storm water quality and dynamic in- stream water quality response to waste...determination. Water Quality The water quality analysis planned for the pilot study includes urban storm water quality forecasting and in-streamn...analysis is performed under the direction of Tony Thomas. Chief, Research Branch, by Jess Abbott for storm water quality analysis, R. G. Willey for
The Measurement of Economic, Social and Environmental Performance of Countries: A Novel Approach
ERIC Educational Resources Information Center
Cracolici, Maria Francesca; Cuffaro, Miranda; Nijkamp, Peter
2010-01-01
This paper presents a new analytical framework for assessing spatial disparities among countries. It takes for granted that the analysis of a country's performance cannot be limited solely to either economic or social factors. The aim of the paper is to combine relevant economic and "non-economic" (mainly social) aspects of a country's performance…
Jakobson, Christopher M; Tullman-Ercek, Danielle; Mangan, Niall M
2018-05-29
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one. PMID:29467698
Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography
NASA Astrophysics Data System (ADS)
Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.
2014-11-01
Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Memory and Obstructive Sleep Apnea: A Meta-Analysis
Wallace, Anna; Bucks, Romola S.
2013-01-01
Study Objectives: To examine episodic memory performance in individuals with obstructive sleep apnea (OSA). Design Meta-analysis was used to synthesize results from individual studies examining the impact of OSA on episodic memory performance. The performance of individuals with OSA was compared to healthy controls or normative data. Participants Forty-two studies were included, comprising 2,294 adults with untreated OSA and 1,364 healthy controls. Studies that recorded information about participants at baseline prior to treatment interventions were included in the analysis. Measurements Participants were assessed with tasks that included a measure of episodic memory: immediate recall, delayed recall, learning, and/or recognition memory. Results: The results of the meta-analyses provide evidence that individuals with OSA are significantly impaired when compared to healthy controls on verbal episodic memory (immediate recall, delayed recall, learning, and recognition) and visuo-spatial episodic memory (immediate and delayed recall), but not visual immediate recall or visuo-spatial learning. When patients were compared to norms, negative effects of OSA were found only in verbal immediate and delayed recall. Conclusions: This meta-analysis contributes to understanding of the nature of episodic memory deficits in individuals with OSA. Impairments to episodic memory are likely to affect the daily functioning of individuals with OSA. Citation Wallace A; Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. SLEEP 2013;36(2):203-220. PMID:23372268
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
NASA Astrophysics Data System (ADS)
Schumann, Andreas; Oppel, Henning
2017-04-01
To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.
Looking behind the score: Skill structure explains sex differences in skilled video game performance
Boot, Walter R.; Ericsson, K. Anders
2018-01-01
Some have explained large sex differences in visuospatial abilities by genetic adaptations to different roles in primitive hunter-gatherer societies and the interaction of innate biological differences and environmental factors. We explored the extent to which variations in behavior and acquired skills can provide alternative accounts for sex differences in the performance of a complex spatially-demanding video game (Space Fortress). Men and women with limited video game experience were given 30 hours of training, and latent curve analyses examined the development of their ship control performance and behavior. Men had significantly better control performance than women before and after training, but differences diminished substantially over the training period. An analysis of participants’ joystick behaviors revealed that initially men and women relied on different patterns of control behaviors, but changes in these behaviors over time accounted for the reduced sex differences in performance. When we controlled for these differences in behavior, sex effects after training were no longer significant. Finally, examining the development of control performance and control behaviors of men and women categorized as initially high and low performers revealed the lower-performing women may have been controlling their ship using an approach that was very different from the men and higher-performing women. The potential problems of analyzing men and women’s spatial performance as homogenous groups are discussed, as well as how these issues may account for sex differences in skilled video game performance and perhaps other domains involving spatial abilities. PMID:29847565
Harwell, Kyle W; Boot, Walter R; Ericsson, K Anders
2018-01-01
Some have explained large sex differences in visuospatial abilities by genetic adaptations to different roles in primitive hunter-gatherer societies and the interaction of innate biological differences and environmental factors. We explored the extent to which variations in behavior and acquired skills can provide alternative accounts for sex differences in the performance of a complex spatially-demanding video game (Space Fortress). Men and women with limited video game experience were given 30 hours of training, and latent curve analyses examined the development of their ship control performance and behavior. Men had significantly better control performance than women before and after training, but differences diminished substantially over the training period. An analysis of participants' joystick behaviors revealed that initially men and women relied on different patterns of control behaviors, but changes in these behaviors over time accounted for the reduced sex differences in performance. When we controlled for these differences in behavior, sex effects after training were no longer significant. Finally, examining the development of control performance and control behaviors of men and women categorized as initially high and low performers revealed the lower-performing women may have been controlling their ship using an approach that was very different from the men and higher-performing women. The potential problems of analyzing men and women's spatial performance as homogenous groups are discussed, as well as how these issues may account for sex differences in skilled video game performance and perhaps other domains involving spatial abilities.
Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama Zone, Southern Ethiopia
Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt
2015-01-01
Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama Zone in southern Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama Zone. The findings can be used to guide TB control programs to devise effective TB control strategies for the geographic areas characterized by the highest CNRs. Further studies are required to understand the factors associated with clustering based on individual level locations and investigation of cases. PMID:26030162
Morelli, Federico
2017-01-01
Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818
NASA Astrophysics Data System (ADS)
Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady
2016-04-01
Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)
Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella
2016-11-16
Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.
NASA Astrophysics Data System (ADS)
Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.
2011-10-01
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.
Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li
2016-02-21
To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.
2009-12-01
Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.
Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210
Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha
2017-01-01
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.
ERIC Educational Resources Information Center
Posner, Michael I.; And Others
Recently, knowledge of the mechanisms of visual-spatial attention has improved due to studies employing single cell recording with alert monkeys and studies using performance analysis of neurological patients. These studies suggest that a complex neural network including parts of the posterior parietal lobe and midbrain are involved in covert…
Function modeling: improved raster analysis through delayed reading and function raster datasets
John S. Hogland; Nathaniel M. Anderson; J .Greg Jones
2013-01-01
Raster modeling is an integral component of spatial analysis. However, conventional raster modeling techniques can require a substantial amount of processing time and storage space, often limiting the types of analyses that can be performed. To address this issue, we have developed Function Modeling. Function Modeling is a new modeling framework that streamlines the...
Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow
NASA Astrophysics Data System (ADS)
Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy
2013-09-01
Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.
Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M
2016-01-01
The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).
Taffe, Michael A.; Taffe, William J.
2011-01-01
Several nonhuman primate species have been reported to employ a distance-minimizing, traveling salesman-like, strategy during foraging as well as in experimental spatial search tasks involving lesser amounts of locomotion. Spatial sequencing may optimize performance by reducing reference or episodic memory loads, locomotor costs, competition or other demands. A computerized self-ordered spatial search (SOSS) memory task has been adapted from a human neuropsychological testing battery (CANTAB, Cambridge Cognition, Ltd) for use in monkeys. Accurate completion of a trial requires sequential responses to colored boxes in two or more spatial locations without repetition of a previous location. Marmosets have been reported to employ a circling pattern of search, suggesting spontaneous adoption of a strategy to reduce working memory load. In this study the SOSS performance of rhesus monkeys was assessed to determine if the use of a distance-minimizing search path enhances accuracy. A novel strategy score, independent of the trial difficulty and arrangement of boxes, has been devised. Analysis of the performance of 21 monkeys trained on SOSS over two years shows that a distance-minimizing search strategy is associated with improved accuracy. This effect is observed within individuals as they improve over many cumulative sessions of training on the task and across individuals at any given level of training. Erroneous trials were associated with a failure to deploy the strategy. It is concluded that the effect of utilizing the strategy on this locomotion-free, laboratory task is to enhance accuracy by reducing demands on spatial working memory resources. PMID:21840507
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Spatial Durbin model analysis macroeconomic loss due to natural disasters
NASA Astrophysics Data System (ADS)
Kusrini, D. E.; Mukhtasor
2015-03-01
Magnitude of the damage and losses caused by natural disasters is huge for Indonesia, therefore this study aimed to analyze the effects of natural disasters for macroeconomic losses that occurred in 115 cities/districts across Java during 2012. Based on the results of previous studies it is suspected that it contains effects of spatial dependencies in this case, so that the completion of this case is performed using a regression approach to the area, namely Analysis of Spatial Durbin Model (SDM). The obtained significant predictor variable is population, and predictor variable with a significant weighting is the number of occurrences of disasters, i.e., disasters in the region which have an impact on other neighboring regions. Moran's I index value using the weighted Queen Contiguity also showed significant results, meaning that the incidence of disasters in the region will decrease the value of GDP in other.
Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna
2018-06-05
Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.
Age-related similarities and differences in monitoring spatial cognition.
Ariel, Robert; Moffat, Scott D
2018-05-01
Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.
Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping
2013-01-01
The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
A high-power spatial filter for Thomson scattering stray light reduction
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.
2011-03-01
The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.
Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System
NASA Technical Reports Server (NTRS)
Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.
2013-01-01
The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers
Ort, Christoph; van Nuijs, Alexander L N; Berset, Jean-Daniel; Bijlsma, Lubertus; Castiglioni, Sara; Covaci, Adrian; de Voogt, Pim; Emke, Erik; Fatta-Kassinos, Despo; Griffiths, Paul; Hernández, Félix; González-Mariño, Iria; Grabic, Roman; Kasprzyk-Hordern, Barbara; Mastroianni, Nicola; Meierjohann, Axel; Nefau, Thomas; Ostman, Marcus; Pico, Yolanda; Racamonde, Ines; Reid, Malcolm; Slobodnik, Jaroslav; Terzic, Senka; Thomaidis, Nikolaos; Thomas, Kevin V
2014-08-01
To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Analyses of raw wastewater over a 1-week period in 2012 and 2013. Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10(-3) ), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist. © 2014 Society for the Study of Addiction.
Ort, Christoph; van Nuijs, Alexander L N; Berset, Jean-Daniel; Bijlsma, Lubertus; Castiglioni, Sara; Covaci, Adrian; de Voogt, Pim; Emke, Erik; Fatta-Kassinos, Despo; Griffiths, Paul; Hernández, Félix; González-Mariño, Iria; Grabic, Roman; Kasprzyk-Hordern, Barbara; Mastroianni, Nicola; Meierjohann, Axel; Nefau, Thomas; Östman, Marcus; Pico, Yolanda; Racamonde, Ines; Reid, Malcolm; Slobodnik, Jaroslav; Terzic, Senka; Thomaidis, Nikolaos; Thomas, Kevin V
2014-01-01
Aims To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Design Analyses of raw wastewater over a 1-week period in 2012 and 2013. Setting and Participants Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Measurements Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Findings Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10−3), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Conclusions Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist. PMID:24861844
Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D
2001-03-01
We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.
A Method for Assessing Auditory Spatial Analysis in Reverberant Multitalker Environments.
Weller, Tobias; Best, Virginia; Buchholz, Jörg M; Young, Taegan
2016-07-01
Deficits in spatial hearing can have a negative impact on listeners' ability to orient in their environment and follow conversations in noisy backgrounds and may exacerbate the experience of hearing loss as a handicap. However, there are no good tools available for reliably capturing the spatial hearing abilities of listeners in complex acoustic environments containing multiple sounds of interest. The purpose of this study was to explore a new method to measure auditory spatial analysis in a reverberant multitalker scenario. This study was a descriptive case control study. Ten listeners with normal hearing (NH) aged 20-31 yr and 16 listeners with hearing impairment (HI) aged 52-85 yr participated in the study. The latter group had symmetrical sensorineural hearing losses with a four-frequency average hearing loss of 29.7 dB HL. A large reverberant room was simulated using a loudspeaker array in an anechoic chamber. In this simulated room, 96 scenes comprising between one and six concurrent talkers at different locations were generated. Listeners were presented with 45-sec samples of each scene, and were required to count, locate, and identify the gender of all talkers, using a graphical user interface on an iPad. Performance was evaluated in terms of correctly counting the sources and accuracy in localizing their direction. Listeners with NH were able to reliably analyze scenes with up to four simultaneous talkers, while most listeners with hearing loss demonstrated errors even with two talkers at a time. Localization performance decreased in both groups with increasing number of talkers and was significantly poorer in listeners with HI. Overall performance was significantly correlated with hearing loss. This new method appears to be useful for estimating spatial abilities in realistic multitalker scenes. The method is sensitive to the number of sources in the scene, and to effects of sensorineural hearing loss. Further work will be needed to compare this method to more traditional single-source localization tests. American Academy of Audiology.
Thermal imaging of Al-CuO thermites
NASA Astrophysics Data System (ADS)
Densmore, John; Sullivan, Kyle; Kuntz, Joshua; Gash, Alex
2013-06-01
We have performed spatial in-situ temperature measurements of aluminum-copper oxide thermite reactions using high-speed color pyrometry. Electrophoretic deposition was used to create thermite microstructures. Tests were performed with micron- and nano-sized particles at different stoichiometries. The color pyrometry was performed using a high-speed color camera. The color filter array on the image sensor collects light within three spectral bands. Assuming a gray-body emission spectrum a multi-wavelength ratio analysis allows a temperature to be calculated. An advantage of using a two-dimensional image sensor is that it allows heterogeneous flames to be measured with high spatial resolution. Light from the initial combustion of the Al-CuO can be differentiated from the light created by the late time oxidization with atmosphere. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano
2015-01-01
Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.
Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning
ERIC Educational Resources Information Center
Polinsky, Naomi; Perez, Jasmin; Grehl, Mora; McCrink, Koleen
2017-01-01
Longitudinal spatial language intervention studies have shown that greater exposure to spatial language improves children's performance on spatial tasks. Can short naturalistic, spatial language interactions also evoke improved spatial performance? In this study, parents were asked to interact with their child at a block wall exhibit in a…
A Spatial Analysis of the Potato Cyst Nematode Globodera pallida in Idaho.
Dandurand, Louise-Marie; Contina, Jean Bertrand; Knudsen, Guy R
2018-03-13
The potato cyst nematode (PCN), Globodera pallida, is a globally regulated and quarantine potato pest. It was detected for the first time in the U.S. in the state of Idaho in 2006. A spatial analysis was performed to: (i) understand the spatial arrangement of PCN infested fields in southern Idaho using spatial point pattern analysis; and (ii) evaluate the potential threat of PCN for entry to new areas using spatial interpolation techniques. Data point locations, cyst numbers and egg viability values for each infested field were collected by USDA-APHIS during 2006-2014. Results showed the presence of spatially clustered PCN infested fields (P = 0.003). We determined that the spread of PCN grew in diameter from the original center of infestation toward the southwest as an ellipsoidal-shaped cluster. Based on the aggregated spatial pattern of distribution and the low extent level of PCN infested fields in southern Idaho, we determined that PCN spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, probably through soil contaminated agricultural equipment or tubers. We determined that the recent PCN presence in southern Idaho is unlikely to be associated with new PCN entry from outside the state of Idaho. The relative aggregation of PCN infested fields, the low number of cysts recovered, and the low values in egg viability facilitate quarantine activities and confine this pest to a small area, which, in 2017, is estimated to be 1,233 hectares. The tools and methods provided in this study should facilitate comprehensive approaches to improve PCN control and eradication programs as well as to raise public awareness about this economically important potato pest.
Protecting Location Privacy for Outsourced Spatial Data in Cloud Storage
Gui, Xiaolin; An, Jian; Zhao, Jianqiang; Zhang, Xuejun
2014-01-01
As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance. PMID:25097865
Protecting location privacy for outsourced spatial data in cloud storage.
Tian, Feng; Gui, Xiaolin; An, Jian; Yang, Pan; Zhao, Jianqiang; Zhang, Xuejun
2014-01-01
As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC(∗)) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC(∗) and DSC are more secure than SHC, and DSC achieves the best index generation performance.
Optimal Sparse Upstream Sensor Placement for Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Ross, Hannah; Hill, Craig; Polagye, Brian
2016-11-01
Accurate measurement of the flow field incident upon a hydrokinetic turbine is critical for performance evaluation during testing and setting boundary conditions in simulation. Additionally, turbine controllers may leverage real-time flow measurements. Particle image velocimetry (PIV) is capable of rendering a flow field over a wide spatial domain in a controlled, laboratory environment. However, PIV's lack of suitability for natural marine environments, high cost, and intensive post-processing diminish its potential for control applications. Conversely, sensors such as acoustic Doppler velocimeters (ADVs), are designed for field deployment and real-time measurement, but over a small spatial domain. Sparsity-promoting regression analysis such as LASSO is utilized to improve the efficacy of point measurements for real-time applications by determining optimal spatial placement for a small number of ADVs using a training set of PIV velocity fields and turbine data. The study is conducted in a flume (0.8 m2 cross-sectional area, 1 m/s flow) with laboratory-scale axial and cross-flow turbines. Predicted turbine performance utilizing the optimal sparse sensor network and associated regression model is compared to actual performance with corresponding PIV measurements.
Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg
2005-02-21
A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.
Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo
2014-10-15
Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Sex is not everything: the role of gender in early performance of a fundamental laparoscopic skill.
Kolozsvari, Nicoleta O; Andalib, Amin; Kaneva, Pepa; Cao, Jiguo; Vassiliou, Melina C; Fried, Gerald M; Feldman, Liane S
2011-04-01
Existing literature on the acquisition of surgical skills suggests that women generally perform worse than men. This literature is limited by looking at an arbitrary number of trials and not adjusting for potential confounders. The objective of this study was to evaluate the impact of gender on the learning curve for a fundamental laparoscopic task. Thirty-two medical students performed the FLS peg transfer task and their scores were plotted to generate a learning curve. Nonlinear regression was used to estimate learning plateau and learning rate. Variables that may affect performance were assessed using a questionnaire. Innate visual-spatial abilities were evaluated using tests for spatial orientation, spatial scanning, and perceptual abilities. Score on first peg transfer attempt, learning plateau, and learning rate were compared for men and women using Student's t test. Innate abilities were correlated to simulator performance using Pearson's coefficient. Multivariate linear regression was used to investigate the effect of gender on early laparoscopic performance after adjusting for factors found significant on univariate analysis. Statistical significance was defined as P < 0.05. Nineteen men and 13 women participated in the study; 30 were right-handed, 12 reported high interest in surgery, and 26 had video game experience. There were no differences between men and women in initial peg transfer score, learning plateau, or learning rate. Initial peg transfer score and learning rate were higher in subjects who reported having a high interest in surgery (P = 0.02, P = 0.03). Initial score also correlated with perceptual ability score (P = 0.03). In multivariate analysis, only surgical interest remained a significant predictor of score on first peg transfer (P = 0.03) and learning rate (P = 0.02), while gender had no significant relationship to early performance. Gender did not affect the learning curve for a fundamental laparoscopic task, while interest in surgery and perceptual abilities did influence early performance.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Dual-domain point diffraction interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2000-01-01
A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.
Spatial heterogeneity of type I error for local cluster detection tests
2014-01-01
Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Fontaine, M; Bradshaw, T; Kubicek, L
2014-06-15
Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less
Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112
Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.
Visuospatial selective attention in chickens.
Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I
2014-05-13
Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.
Heed, Tobias; Azañón, Elena
2014-01-01
To respond to a touch, it is often necessary to localize it in space, and not just on the skin. The computation of this external spatial location involves the integration of somatosensation with visual and proprioceptive information about current body posture. In the past years, the study of touch localization has received substantial attention and has become a central topic in the research field of multisensory integration. In this review, we will explore important findings from this research, zooming in on one specific experimental paradigm, the temporal order judgment (TOJ) task, which has proven particularly fruitful for the investigation of tactile spatial processing. In a typical TOJ task participants perform non-speeded judgments about the order of two tactile stimuli presented in rapid succession to different skin sites. This task could be solved without relying on external spatial coordinates. However, postural manipulations affect TOJ performance, indicating that external coordinates are in fact computed automatically. We show that this makes the TOJ task a reliable indicator of spatial remapping, and provide an overview over the versatile analysis options for TOJ. We introduce current theories of TOJ and touch localization, and then relate TOJ to behavioral and electrophysiological evidence from other paradigms, probing the benefit of TOJ for the study of spatial processing as well as related topics such as multisensory plasticity, body processing, and pain. PMID:24596561
NASA Astrophysics Data System (ADS)
Bekti, Rokhana Dwi; Rachmawati, Ro'fah
2014-03-01
The number of birth and death child is the benchmarks to determine and monitor the health and welfare in Indonesia. It can be used to identify groups of people who have a high mortality risk. Identifying group is important to compare the characteristics of human that have high and low risk. These characteristics can be seen from the factors that influenced it. Furthermore, there are factors which influence of birth and death child, such us economic, health facility, education, and others. The influence factors of every individual are different, but there are similarities some individuals which live close together or in the close locations. It means there was spatial effect. To identify group in this research, clustering is done by spatial cluster method, which is view to considering the influence of the location or the relationship between locations. One of spatial cluster method is Spatial 'K'luster Analysis by Tree Edge Removal (SKATER). The research was conducted in Bogor Regency, West Java. The goal was to get a cluster of districts based on the factors that influence birth and death child. SKATER build four number of cluster respectively consists of 26, 7, 2, and 5 districts. SKATER has good performance for clustering which include spatial effect. If it compare by other cluster method, Kmeans has good performance by MANOVA test.
Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Investigating the Galactic supernova remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Classification of fMRI resting-state maps using machine learning techniques: A comparative study
NASA Astrophysics Data System (ADS)
Gallos, Ioannis; Siettos, Constantinos
2017-11-01
We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.
Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos
2014-11-07
Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos
Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less
Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S
2009-04-22
Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.
Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.
2009-01-01
Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481
Information analysis of a spatial database for ecological land classification
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Dozier, Jeff
1990-01-01
An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.
Creating a spatially-explicit index: a method for assessing the global wildfire-water risk
NASA Astrophysics Data System (ADS)
Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.
2017-04-01
The wildfire-water risk (WWR) has been defined as the potential for wildfires to adversely affect water resources that are important for downstream ecosystems and human water needs for adequate water quantity and quality, therefore compromising the security of their water supply. While tools and methods are numerous for watershed-scale risk analysis, the development of a toolbox for the large-scale evaluation of the wildfire risk to water security has only started recently. In order to provide managers and policy-makers with an adequate tool, we implemented a method for the spatial analysis of the global WWR based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. As this approach heavily relies on data, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. When appropriate, we applied a hydrological routing function to our indicators in order to simulate downstream accumulation of potentially harmful material. Each indicator was then assigned a DPSIR category. We collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the WWR. A thorough sensitivity analysis has been performed in order to understand the relationship between the final risk values and the spatial pattern of each category used during the indexation. For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, to get a sense of regional DPSIR specificities. This rather simple method does not necessitate the use of complex physical models and provides a scalable and efficient tool for the analysis of global water security issues.
Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F
2017-07-01
OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.
Tackling the 2nd V: Big Data, Variety and the Need for Representation Consistency
NASA Astrophysics Data System (ADS)
Clune, T.; Kuo, K. S.
2016-12-01
While Big Data technologies are transforming our ability to analyze ever larger volumes of Earth science data, practical constraints continue to limit our ability to compare data across datasets from different sources in an efficient and robust manner. Within a single data collection, invariants such as file format, grid type, and spatial resolution greatly simplify many types of analysis (often implicitly). However, when analysis combines data across multiple data collections, researchers are generally required to implement data transformations (i.e., "data preparation") to provide appropriate invariants. These transformation include changing of file formats, ingesting into a database, and/or regridding to a common spatial representation, and they can either be performed once, statically, or each time the data is accessed. At the very least, this process is inefficient from the perspective of the community as each team selects its own representation and privately implements the appropriate transformations. No doubt there are disadvantages to any "universal" representation, but we posit that major benefits would be obtained if a suitably flexible spatial representation could be standardized along with tools for transforming to/from that representation. We regard this as part of the historic trend in data publishing. Early datasets used ad hoc formats and lacked metadata. As better tools evolved, published data began to use standardized formats (e.g., HDF and netCDF) with attached metadata. We propose that the modern need to perform analysis across data sets should drive a new generation of tools that support a standardized spatial representation. More specifically, we propose the hierarchical triangular mesh (HTM) as a suitable "generic" resolution that permits standard transformations to/from native representations in use today, as well as tools to convert/regrid existing datasets onto that representation.
Britten, Richard A; Jewell, Jessica S; Davis, Leslie K; Miller, Vania D; Hadley, Melissa M; Semmes, O John; Lonart, György; Dutta, Sucharita M
2017-03-01
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56 Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56 Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Strow, L. Larrabee
2010-01-01
The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.
Real-Time Optical Image Processing Techniques
1988-10-31
pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-chan- nel spatial...required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness...pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the
Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind
Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.
2011-01-01
We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in the occipital cortex. PMID:21716600
Visuospatial training improves elementary students' mathematics performance.
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2017-06-01
Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
NASA Astrophysics Data System (ADS)
Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.
2017-10-01
In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.
The effects of spatially displaced visual feedback on remote manipulator performance
NASA Technical Reports Server (NTRS)
Smith, Randy L.; Stuart, Mark A.
1989-01-01
The effects of spatially displaced visual feedback on the operation of a camera viewed remote manipulation task are analyzed. A remote manipulation task is performed by operators exposed to the following different viewing conditions: direct view of the work site; normal camera view; reversed camera view; inverted/reversed camera view; and inverted camera view. The task completion performance times are statistically analyzed with a repeated measures analysis of variance, and a Newman-Keuls pairwise comparison test is administered to the data. The reversed camera view is ranked third out of four camera viewing conditions, while the normal viewing condition is found significantly slower than the direct viewing condition. It is shown that generalization to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Jiang, Baofa
2016-01-01
The aim of this study was to explore infectious diseases related to the 2007 Huai River flood in Anhui Province, China. The study was based on the notified incidences of infectious diseases between June 29 and July 25 from 2004 to 2011. Daily incidences of notified diseases in 2007 were compared with the corresponding daily incidences during the same period in the other years (from 2004 to 2011, except 2007) by Poisson regression analysis. Spatial autocorrelation analysis was used to test the distribution pattern of the diseases. Spatial regression models were then performed to examine the association between the incidence of each disease and flood, considering lag effects and other confounders. After controlling the other meteorological and socioeconomic factors, malaria (odds ratio [OR] = 3.67, 95% confidence interval [CI] = 1.77–7.61), diarrhea (OR = 2.16, 95% CI = 1.24–3.78), and hepatitis A virus (HAV) infection (OR = 6.11, 95% CI = 1.04–35.84) were significantly related to the 2007 Huai River flood both from the spatial and temporal analyses. Special attention should be given to develop public health preparation and interventions with a focus on malaria, diarrhea, and HAV infection, in the study region. PMID:26903612
NASA Astrophysics Data System (ADS)
Tsai, F.; Hwang, J.-H.; Chen, L.-C.; Lin, T.-H.
2010-10-01
On 8 August 2009, the extreme rainfall of Typhoon Morakot triggered enormous landslides in mountainous regions of southern Taiwan, causing catastrophic infrastructure and property damages and human casualties. A comprehensive evaluation of the landslides is essential for the post-disaster reconstruction and should be helpful for future hazard mitigation. This paper presents a systematic approach to utilize multi-temporal satellite images and other geo-spatial data for the post-disaster assessment of landslides on a regional scale. Rigorous orthorectification and radiometric correction procedures were applied to the satellite images. Landslides were identified with NDVI filtering, change detection analysis and interactive post-analysis editing to produce an accurate landslide map. Spatial analysis was performed to obtain statistical characteristics of the identified landslides and their relationship with topographical factors. A total of 9333 landslides (22 590 ha) was detected from change detection analysis of satellite images. Most of the detected landslides are smaller than 10 ha. Less than 5% of them are larger than 10 ha but together they constitute more than 45% of the total landslide area. Spatial analysis of the detected landslides indicates that most of them have average elevations between 500 m to 2000 m and with average slope gradients between 20° and 40°. In addition, a particularly devastating landslide whose debris flow destroyed a riverside village was examined in depth for detailed investigation. The volume of this slide is estimated to be more than 2.6 million m3 with an average depth of 40 m.
Lyseen, A K; Nøhr, C; Sørensen, E M; Gudes, O; Geraghty, E M; Shaw, N T; Bivona-Tellez, C
2014-08-15
The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health.
Nøhr, C.; Sørensen, E. M.; Gudes, O.; Geraghty, E. M.; Shaw, N. T.; Bivona-Tellez, C.
2014-01-01
Summary Objectives The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. Method The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. Results A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Conclusion Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health. PMID:25123730
Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan
2015-06-01
Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.
A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.
Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano
2015-01-01
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita
Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
Hedman, Leif; Felländer-Tsai, Li
2016-01-01
Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully. PMID:26897701
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
Next generation miniature simultaneous multi-hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Gupta, Neelam
2014-03-01
The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.
Detecting Spatial Patterns of Natural Hazards from the Wikipedia Knowledge Base
NASA Astrophysics Data System (ADS)
Fan, J.; Stewart, K.
2015-07-01
The Wikipedia database is a data source of immense richness and variety. Included in this database are thousands of geotagged articles, including, for example, almost real-time updates on current and historic natural hazards. This includes usercontributed information about the location of natural hazards, the extent of the disasters, and many details relating to response, impact, and recovery. In this research, a computational framework is proposed to detect spatial patterns of natural hazards from the Wikipedia database by combining topic modeling methods with spatial analysis techniques. The computation is performed on the Neon Cluster, a high performance-computing cluster at the University of Iowa. This work uses wildfires as the exemplar hazard, but this framework is easily generalizable to other types of hazards, such as hurricanes or flooding. Latent Dirichlet Allocation (LDA) modeling is first employed to train the entire English Wikipedia dump, transforming the database dump into a 500-dimension topic model. Over 230,000 geo-tagged articles are then extracted from the Wikipedia database, spatially covering the contiguous United States. The geo-tagged articles are converted into an LDA topic space based on the topic model, with each article being represented as a weighted multidimension topic vector. By treating each article's topic vector as an observed point in geographic space, a probability surface is calculated for each of the topics. In this work, Wikipedia articles about wildfires are extracted from the Wikipedia database, forming a wildfire corpus and creating a basis for the topic vector analysis. The spatial distribution of wildfire outbreaks in the US is estimated by calculating the weighted sum of the topic probability surfaces using a map algebra approach, and mapped using GIS. To provide an evaluation of the approach, the estimation is compared to wildfire hazard potential maps created by the USDA Forest service.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2018-01-01
We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.
Species composition and morphologic variation of Porites in the Gulf of California
NASA Astrophysics Data System (ADS)
López-Pérez, R. A.
2013-09-01
Morphometric analysis of corallite calices confirmed that from the late Miocene to the Recent, four species of Porites have inhabited the Gulf of California: the extinct Porites carrizensis, the locally extirpated Porites lobata and the extant Porites sverdrupi and Porites panamensis. Furthermore, large-scale spatial and temporal phenotypic plasticity was observed in the dominant species P. panamensis. Canonical discriminant analysis and ANOVA demonstrated that the calice structures of P. panamensis experienced size reduction between the late Pleistocene and Recent. Similarly, PERMANOVA, regression and correlation analyses demonstrated that across the 800 km north to south in the gulf, P. panamensis populations displayed a similar reduction in calice structures. Based on correlation analysis with environmental data, these large spatial changes are likely related to changes in nutrient concentration and sea surface temperature. As such, the large-scale spatial and temporal phenotypic variation recorded in populations of P. panamensis in the Gulf of California is likely related to optimization of corallite performance (energy acquisition) within various environmental scenarios. These findings may have relevance to modern conservation efforts within this ecological dominant genus.
A New Methodology of Spatial Cross-Correlation Analysis
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120
A new methodology of spatial cross-correlation analysis.
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
Eklund, Anders; Dufort, Paul; Villani, Mattias; LaConte, Stephen
2014-01-01
Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language) that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/). PMID:24672471
GIS-based Landing-Site Analysis and Passive Decision Support
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Nass, Andrea
2016-04-01
The increase of surface coverage and the availability and accessibility of planetary data allow researchers and engineers to remotely perform detailed studies on surface processes and properties, in particular on objects such as Mars and the Moon for which Terabytes of multi-temporal data at multiple spatial resolution levels have become available during the last 15 years. Orbiters, rovers and landers have been returning information and insights into the surface evolution of the terrestrial planets in unprecedented detail. While rover- and lander-based analyses are one major research aim to obtain ground truth, resource exploration or even potential establishment of bases using autonomous platforms are others and they require detailed investigation of settings in order to identify spots on the surface that are suitable for spacecraft to land and operate safely and over a long period of time. What has been done using hardcopy material in the past is today being carried by using either in-house developments or off-the-shelf spatial information system technology which allows to manage, integrate and analyse data as well as visualize and create user-defined reports for performing assessments. Usually, such analyses can be broken down (manually) by considering scientific wishes, engineering boundary conditions, potential hazards and various tertiary constraints. We here (1) review standard tasks of landing site analyses, (2) discuss issues inherently related to the analysis using integrated spatial analysis systems and (3) demonstrate a modular analysis framework for integration of data and for the evaluation of results from individual tasks in order to support decisions for landing-site selection.
NASA Astrophysics Data System (ADS)
Gao, X.; Yan, E. C.; Yeh, T. C. J.; Wang, Y.; Liang, Y.; Hao, Y.
2017-12-01
Notice that most of the underground liquefied petroleum gas (LPG) storage caverns are constructed in unlined rock caverns (URCs), where the variability of hydraulic properties (in particular, hydraulic conductivity) has significant impacts on hydrologic containment performance. However, it is practically impossible to characterize the spatial distribution of these properties in detail at the site of URCs. This dilemma forces us to cope with uncertainty in our evaluations of gas containment. As a consequence, the uncertainty-based analysis is deemed more appropriate than the traditional deterministic analysis. The objectives of this paper are 1) to introduce a numerical first order method to calculate the gas containment reliability within a heterogeneous, two-dimensional unlined rock caverns, and 2) to suggest a strategy for improving the gas containment reliability. In order to achieve these goals, we first introduced the stochastic continuum representation of saturated hydraulic conductivity (Ks) of fractured rock and analyzed the spatial variability of Ks at a field site. We then conducted deterministic simulations to demonstrate the importance of heterogeneity of Ks in the analysis of gas tightness performance of URCs. Considering the uncertainty of the heterogeneity in the real world situations, we subsequently developed a numerical first order method (NFOM) to determine the gas tightness reliability at crucial locations of URCs. Using the NFOM, the effect of spatial variability of Ks on gas tightness reliability was investigated. Results show that as variance or spatial structure anisotropy of Ks increases, most of the gas tightness reliability at crucial locations reduces. Meanwhile, we compare the results of NFOM with those of Monte Carlo simulation, and we find the accuracy of NFOM is mainly affected by the magnitude of the variance of Ks. At last, for improving gas containment reliability at crucial locations at this study site, we suggest that vertical water-curtain holes should be installed in the pillar rather than increasing density of horizontal water-curtain boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolly, S; University of Missouri, Columbia, MO; Chen, H
Purpose: Local noise power spectrum (NPS) properties are significantly affected by calculation variables and CT acquisition and reconstruction parameters, but a thoughtful analysis of these effects is absent. In this study, we performed a complete analysis of the effects of calculation and imaging parameters on the NPS. Methods: The uniformity module of a Catphan phantom was scanned with a Philips Brilliance 64-slice CT simulator using various scanning protocols. Images were reconstructed using both FBP and iDose4 reconstruction algorithms. From these images, local NPS were calculated for regions of interest (ROI) of varying locations and sizes, using four image background removalmore » methods. Additionally, using a predetermined ground truth, NPS calculation accuracy for various calculation parameters was compared for computer simulated ROIs. A complete analysis of the effects of calculation, acquisition, and reconstruction parameters on the NPS was conducted. Results: The local NPS varied with ROI size and image background removal method, particularly at low spatial frequencies. The image subtraction method was the most accurate according to the computer simulation study, and was also the most effective at removing low frequency background components in the acquired data. However, first-order polynomial fitting using residual sum of squares and principle component analysis provided comparable accuracy under certain situations. Similar general trends were observed when comparing the NPS for FBP to that of iDose4 while varying other calculation and scanning parameters. However, while iDose4 reduces the noise magnitude compared to FBP, this reduction is spatial-frequency dependent, further affecting NPS variations at low spatial frequencies. Conclusion: The local NPS varies significantly depending on calculation parameters, image acquisition parameters, and reconstruction techniques. Appropriate local NPS calculation should be performed to capture spatial variations of noise; calculation methodology should be selected with consideration of image reconstruction effects and the desired purpose of CT simulation for radiotherapy tasks.« less
Unsupervised classification of operator workload from brain signals.
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects' error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Unsupervised classification of operator workload from brain signals
NASA Astrophysics Data System (ADS)
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J
2016-08-01
To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.
Spatial Analysis of Rice Blast in China at Three Different Scales.
Guo, Fangfang; Chen, Xinglong; Lu, Minghong; Yang, Li; Wang, Shi Wei; Wu, Bo Ming
2018-05-22
In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from June 10 th to Sep. 10 th during 2009-2014, and surveyed in 143 fields in September, 2016; at county scale, 3 surveys were done covering 1-5 counties in 2015-2016; and at field scale, blast was evaluated in 6 fields in 2015-2016. Spatial cluster and hot spot analyses were conducted in GIS on the geographical pattern of the disease at regional scale, and geostatistical analysis performed at all the three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1080 km at regional scale, and 5 to 10 m at field scale, but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.
NASA Astrophysics Data System (ADS)
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
Dutech, Cyril; Labbé, Frédéric; Capdevielle, Xavier; Lung-Escarmant, Brigitte
Armillaria ostoyae (sometimes named Armillaria solidipes) is a fungal species causing root diseases in numerous coniferous forests of the northern hemisphere. The importance of sexual spores for the establishment of new disease centres remains unclear, particularly in the large maritime pine plantations of southwestern France. An analysis of the genetic diversity of a local fungal population distributed over 500 ha in this French forest showed genetic recombination between genotypes to be frequent, consistent with regular sexual reproduction within the population. The estimated spatial genetic structure displayed a significant pattern of isolation by distance, consistent with the dispersal of sexual spores mostly at the spatial scale studied. Using these genetic data, we inferred an effective density of reproductive individuals of 0.1-0.3 individuals/ha, and a second moment of parent-progeny dispersal distance of 130-800 m, compatible with the main models of fungal spore dispersal. These results contrast with those obtained for studies of A. ostoyae over larger spatial scales, suggesting that inferences about mean spore dispersal may be best performed at fine spatial scales (i.e. a few kilometres) for most fungal species. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Landsat image data quality studies
NASA Technical Reports Server (NTRS)
Schueler, C. F.; Salomonson, V. V.
1985-01-01
Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.
Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.
Laha, Bireswar; Bowman, Doug A; Socha, John J
2014-04-01
Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less
Large-scale derived flood frequency analysis based on continuous simulation
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.
ERIC Educational Resources Information Center
Liao, Kun-Hsi
2017-01-01
Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…
Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.
Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil
2014-08-20
In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Duarte, F; Calvo, M V; Borges, A; Scatoni, I B
2015-08-01
The oriental fruit moth, Grapholita molesta (Busck), is the most serious pest in peach, and several insecticide applications are required to reduce crop damage to acceptable levels. Geostatistics and Geographic Information Systems (GIS) are employed to measure the range of spatial correlation of G. molesta in order to define the optimum sampling distance for performing spatial analysis and to determine the current distribution of the pest in peach orchards of southern Uruguay. From 2007 to 2010, 135 pheromone traps per season were installed and georeferenced in peach orchards distributed over 50,000 ha. Male adult captures were recorded weekly from September to April. Structural analysis of the captures was performed, yielding 14 semivariograms for the accumulated captures analyzed by generation and growing season. Two sets of maps were constructed to describe the pest distribution. Nine significant models were obtained in the 14 evaluated periods. The range estimated for the correlation was from 908 to 6884 m. Three hot spots of high population level and some areas with comparatively low populations were constant over the 3-year period, while there is a greater variation in the size of the population in different generations and years in other areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments
NASA Astrophysics Data System (ADS)
Chen, Zhanlong; Wu, Xin-cai; Wu, Liang
2008-12-01
Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.
ERIC Educational Resources Information Center
Casey, Beth M.; Dearing, Eric; Vasilyeva, Marina; Ganley, Colleen M.; Tine, Michele
2011-01-01
Spatial reasoning and numerical predictors of measurement performance were investigated in 4th graders from low-income and affluent communities. Predictors of 2 subtypes of measurement performance (spatial-conceptual and formula based) were assessed while controlling for verbal and spatial working memory. Consistent with prior findings, students…
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders.
Tapia-McClung, Horacio; Ajuria Ibarra, Helena; Rao, Dinesh
2016-01-01
Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology.
Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders
Ajuria Ibarra, Helena; Rao, Dinesh
2016-01-01
Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology. PMID:27902724
Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q
2003-01-01
We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.
Deineko, Viktor
2006-01-01
Human multisynthetase complex auxiliary component, protein p43 is an endothelial monocyte-activating polypeptide II precursor. In this study, comprehensive sequence analysis of N-terminus has been performed to identify structural domains, motifs, sites of post-translation modification and other functionally important parameters. The spatial structure model of full-chain protein p43 is obtained.
Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Erlebacher, G.
2002-01-01
The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
NASA Astrophysics Data System (ADS)
Fauzi, A. F.; Aditianata, A.
2018-02-01
The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.
NASA Astrophysics Data System (ADS)
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian
2010-07-01
Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang
2009-11-01
Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.
A Spatial Statistical Model for Landscape Genetics
Guillot, Gilles; Estoup, Arnaud; Mortier, Frédéric; Cosson, Jean François
2005-01-01
Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations, and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in the data set, estimates the number of populations in the studied area, assigns individuals to their population of origin, and detects individual migrants between populations, while taking into account uncertainty on the location of sampled individuals. The performance of the method is evaluated through the analysis of simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., FST < 0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the northwestern United States and genotyped at 10 microsatellites. PMID:15520263
Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K
2017-08-01
Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.
Analysis of the cadastral data published in the Polish Spatial Data Infrastructure
NASA Astrophysics Data System (ADS)
Izdebski, Waldemar
2017-12-01
The cadastral data, including land parcels, are the basic reference data for presenting various objects collected in spatial databases. Easy access to up-to-date records is a very important matter for the individuals and institutions using spatial data infrastructure. The primary objective of the study was to check the current accessibility of cadastral data as well as to verify how current and complete they are. The author started researching this topic in 2007, i.e. from the moment the Team for National Spatial Data Infrastructure developed documentation concerning the standard of publishing cadastral data with the use of the WMS. Since ten years, the author was monitoring the status of cadastral data publishing in various districts as well as participated in data publishing in many districts. In 2017, when only half of the districts published WMS services from cadastral data, the questions arise: why is it so and how to change this unfavourable status? As a result of the tests performed, it was found that the status of publishing cadastral data is still far from perfect. The quality of the offered web services varies and, unfortunately, many services offer poor performance; moreover, there are plenty services that do not operate at all.
Fedotova, Iu O
2014-03-01
The present work was devoted to the comparative analysis of α4β2 nicotinic acetylcholine receptors (nAChRs) in learning/memory processes during ovary cycle in the adult female rats. RJR-2403 (1.0 mg/kg, i. p.), α4β2 nAChRs agonist and mecamylamine (1.0 mg/kg, i. p.), α4β2 nAChRs antagonist were injected chronically during 14 days. The processes of learning/memory were assessed in different models of learning: passive avoidance performance and Morris water maze. Chronic RJR-2403 administration to females improved the passive avoidance performance in proestrous and estrous as compared to the control animals. Also, RJR-2403 restored spatial learning of rats during proestrous phases in Morris water maze, and stimulated the dynamics of spatial learning during estrous phases. On the contrary, the chronic mecamylamine administration impaired non-spatial, and especially, spatial learning in females during key phases of ovary cycle. The results of the study suggest positive effect of α4β2 nAChRs stimulation in learning/memory processes during ovary cycle in the adult female rats.
Development of an adaptive bilateral filter for evaluating color image difference
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Hardeberg, Jon Yngve
2012-04-01
Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.
COGNITIVE IMPAIRMENT AND MORPHOLOGICAL CHANGES IN THE DORSAL HIPPOCAMPUS OF VERY OLD FEMALE RATS
Morel, Gustavo R.; Andersen, Tomás; Pardo, Joaquín; Zuccolilli, Gustavo O.; Cambiaggi, Vanina L.; Hereñú, Claudia B.; Goya, Rodolfo G.
2015-01-01
The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory 4–6 months old (young), 26 months old (old) and 29–32 months old (senile) Sprague–Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. Age changes in spatial memory performance were assessed with a modified version of the Barnes maze test. We employed two probe trials (PT), one and five days after training, respectively, in order to evaluate learning ability as well as short-term and longer-term spatial memory retention. A set of relevant hippocampal cell markers was also quantitated in the animals by means of an unbiased stereological approach. The results revealed that old rats perform better than senile rats in acquisition trials and young rats perform better than both aging groups. However, during short-term PT both aging groups showed a preserved spatial memory while in longer-term PT, spatial memory showed deterioration in both aged groups. Morphological analysis showed a marked decrease (94–97%) in doublecortin neuron number in the dentate gyrus in both aged groups and a reduction in glial fibrillary acidic protein-positive cell number in the stratum radiatum of aging rats. Astroglial process length and branching complexity decreased in the aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats. PMID:26141841
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646
Sahgal, A; McKeith, I G; Galloway, P H; Tasker, N; Steckler, T
1995-02-01
Visuospatial memory was investigated in two groups of patients suffering from senile dementias of the Alzheimer (SDAT) or Lewy body (SDLT) types; a, third, age-matched, healthy control group was also included. The two patient groups were mildly demented and could not be distinguished from each other by traditional tests of cognitive function. A different pattern of performance emerged in the two groups on a computerised test of spatial working memory, which is a self-ordered pointing task requiring the subject to search for hidden tokens. An analysis of the pattern of errors revealed that the SDLT group made more of both possible types of error ("Within Search" and "Between Search") than the SDAT group. Neither patient groups' performance differed from each other when assessed on a computerised Corsi spatial span task. A measure of planning ability was obtained by examining search strategies. Although an index previously developed to measure the subject's use of a particular strategy in the spatial working memory task failed to detect any differences between the three groups, a novel index was calculated which focuses on performance within a search, and this revealed deficits in both demented groups. Since the two patient groups differed from each other in the spatial working memory, but not the Corsi spatial span, task, it is suggested that the differences between the two demented groups are not due to a specific mnemonic impairment, but reflect dysfunctions in non-mnemonic processes mediated by fronto-subcortical circuits, which are more severely damaged in SDLT.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
A scoping review of spatial cluster analysis techniques for point-event data.
Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott
2013-05-01
Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.
Some dynamical aspects of interacting quintessence model
NASA Astrophysics Data System (ADS)
Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita
2018-04-01
In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.
An efficient 3D R-tree spatial index method for virtual geographic environments
NASA Astrophysics Data System (ADS)
Zhu, Qing; Gong, Jun; Zhang, Yeting
A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the new method the overlap of R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.
NASA Astrophysics Data System (ADS)
Ciddio, Manuela; Mari, Lorenzo; Sokolow, Susanne H.; De Leo, Giulio A.; Casagrandi, Renato; Gatto, Marino
2017-10-01
Schistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations.
Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Córdova-Kreylos, Ana Lucía; Cao, Yiping; Green, Peter G.; Hwang, Hyun-Min; Kuivila, Kathryn M.; LaMontagne, Michael G.; Van De Werfhorst, Laurie C.; Holden, Patricia A.; Scow, Kate M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. PMID:16672478
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.
Sturt, Ruth; Punt, T David
2013-01-01
The impact of spatial neglect remains a substantial challenge to patients undergoing rehabilitation following stroke. Beyond the relatively well-described implications for visuospatial function, neglect is increasingly shown to have a negative impact on the wider aspects of sensori-motor performance with corresponding implications for activities including gait and balance. Caloric vestibular stimulation (CVS) administered to the contralesional ear has previously been shown to improve performance in patients with spatial neglect. Here, in Experiment One, we investigated the effect of CVS on clinical measures of spatial neglect and postural control in three groups of patients following stroke; left brain damaged patients (LBD, n = 6), right brain damaged patients without neglect (RBD-, n = 6), and right brain damaged patients with neglect (RBD+ , n = 6). While post-stimulation scores demonstrated an improvement for participants with spatial neglect, further analysis of postural scores indicated that improvement was selective for asymmetrical activities, with symmetrical activities remaining unchanged. We interpret these results with reference to the related problem of extinction which predicts that activities demanding synchronous bilateral activity (symmetrical activities) would cause greater difficulties for patients with neglect. In Experiment Two, we tested a further six RBD+ patients on the same measures following CVS to the ipsilesional (right) ear. There was no significant improvement in perceptual or postural scores. Our findings are supportive of previous studies that demonstrate improvement in perception and movement for patients with spatial neglect following contralesional CVS and suggest that these improvements may have clinical benefits.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
NASA Astrophysics Data System (ADS)
Kistler, Marc; Estre, Nicolas; Merle, Elsa
2018-01-01
As part of its R&D activities on high-energy X-ray imaging for non-destructive characterization, the Nuclear Measurement Laboratory has started an upgrade of its imaging system currently implemented at the CEA-Cadarache center. The goals are to achieve a sub-millimeter spatial resolution and the ability to perform tomographies on very large objects (more than 100-cm standard concrete or 40-cm steel). This paper presentsresults on the detection part of the imaging system. The upgrade of the detection part needs a thorough study of the performance of two detectors: a series of CdTe semiconductor sensors and two arrays of segmented CdWO4 scintillators with different pixel sizes. This study consists in a Quantum Accounting Diagram (QAD) analysis coupled with Monte-Carlo simulations. The scintillator arrays are able to detect millimeter details through 140 cm of concrete, but are limited to 120 cm for smaller ones. CdTe sensors have lower but more stable performance, with a 0.5 mm resolution for 90 cm of concrete. The choice of the detector then depends on the preferred characteristic: the spatial resolution or the use on large volumes. The combination of the features of the source and the studies on the detectors gives the expected performance of the whole equipment, in terms of signal-over-noise ratio (SNR), spatial resolution and acquisition time.
NASA Astrophysics Data System (ADS)
Reshetenko, Tatyana V.; St-Pierre, Jean
2015-10-01
Due to the wide applications of acetonitrile as a solvent in the chemical industry, acetonitrile can be present in the air and should be considered a possible pollutant. In this work, the spatial proton exchange membrane fuel cell performance exposed to air with 20 ppm CH3CN was studied using a segmented cell system. The injection of CH3CN led to performance losses of 380 mV at 0.2 A cm-2 and 290 mV at 1.0 A cm-2 accompanied by a significant change in the current density distribution. The observed local currents behavior is likely attributed to acetonitrile chemisorption and the subsequent two consecutive reduction/oxidation reactions. The hydrolysis of CH3CN and its intermediate imine species resulted in NH4+ formation, which increased the high-frequency resistance of the cell and affected oxygen reduction and performance. Other products of hydrolysis can be oxidized to CO2 under the operating conditions. The reintroduction of pure air completely recovered cell performance within 4 h at 1.0 A cm-2, while at 0.2 A cm-2 the cell recovery was only partial. A detailed analysis of the current density distribution, its correlation with spatial electrochemical impedance spectroscopy data, possible CH3CN oxidation/reduction mechanisms and mitigation strategies are presented and discussed.
Shapes on a plane: Evaluating the impact of projection distortion on spatial binning
Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.
2017-01-01
One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.
Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis
Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong
2009-01-01
Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530
Spatial analysis for prevalence of type 2 diabetes mellitus - A state investigation
NASA Astrophysics Data System (ADS)
Zainal, Siti Salsabilah Nabilah; Masnan, Maz Jamilah; Amin, Nor Azrita Mohd; Mohamed, Nordin
2017-11-01
Type 2 Diabetes Mellitus (T2DM) is a chronic and non-communicable disease, which is characterized as the cause of premature deaths in the world. Unfortunately, Malaysia is one of the many countries facing this epidemic. Based on the increasing current trend of T2DM patients' cases from the National Diabetes Registry (NDR) Report from 2009 to 2012, there were approximately 2.6 million adults aged 18 years and above living with diabetes disease in Malaysia. Thus, this study aims to (i) perform preliminary spatial analysis for the prevalence of T2DM patients based on some factors, (ii) map the findings of the analyses according to some spatial properties, and (iii) analyze the pattern of diagnosed T2DM patients based on the studied factors. The studied population is one of the highest prevalence states of T2DM in Malaysia. This study is expected to reveal some demographic patterns that probably significant to this alarming epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu
A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less
Measuring the spatial resolution of an optical system in an undergraduate optics laboratory
NASA Astrophysics Data System (ADS)
Leung, Calvin; Donnelly, T. D.
2017-06-01
Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.
Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.
2015-01-01
A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216
Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J
2015-11-08
A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.
Spatial cluster detection using dynamic programming.
Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F
2012-03-25
The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.
Spatial cluster detection using dynamic programming
2012-01-01
Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103
NASA Astrophysics Data System (ADS)
Rose, K.; Bauer, J. R.; Baker, D. V.
2015-12-01
As big data computing capabilities are increasingly paired with spatial analytical tools and approaches, there is a need to ensure uncertainty associated with the datasets used in these analyses is adequately incorporated and portrayed in results. Often the products of spatial analyses, big data and otherwise, are developed using discontinuous, sparse, and often point-driven data to represent continuous phenomena. Results from these analyses are generally presented without clear explanations of the uncertainty associated with the interpolated values. The Variable Grid Method (VGM) offers users with a flexible approach designed for application to a variety of analyses where users there is a need to study, evaluate, and analyze spatial trends and patterns while maintaining connection to and communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analysis through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom 'Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations. The presentation includes examples of the approach being applied to a range of subsurface, geospatial studies (e.g. induced seismicity risk).
Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator
NASA Astrophysics Data System (ADS)
Martin, K.; Esguerra, J.; Dodson, C.; Razani, A.
2015-12-01
In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing. In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations.
Near-road air pollution has been associated with various health risks in human populations living near roadways. To better understand relationship between vehicle emissions and spatial profiles of traffic-related air pollutants we performed a comprehensive and systematic literat...
Place, Poverty, and Algebra: A Statewide Comparative Spatial Analysis of Variable Relationships
ERIC Educational Resources Information Center
Hogrebe, Mark C.; Tate, William F.
2012-01-01
Place matters in moderating variable relationships between algebra performance and educational variables because there are differences on the socioeconomic (SES) poverty-affluence continuum that shape local contexts. This article examines relationships between variables for school district demographic composition, teaching and financial contexts,…
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...
Infrared diagnosis using liquid crystal detectors
NASA Technical Reports Server (NTRS)
Hugenschmidt, M.; Vollrath, K.
1986-01-01
The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.
NASA Astrophysics Data System (ADS)
Liu, Jiangang; Tian, Jie
2007-03-01
The present study combined the Independent Component Analysis (ICA) and low-resolution brain electromagnetic tomography (LORETA) algorithms to identify the spatial distribution and time course of single-trial EEG record differences between neural responses to emotional stimuli vs. the neutral. Single-trial multichannel (129-sensor) EEG records were collected from 21 healthy, right-handed subjects viewing the emotion emotional (pleasant/unpleasant) and neutral pictures selected from International Affective Picture System (IAPS). For each subject, the single-trial EEG records of each emotional pictures were concatenated with the neutral, and a three-step analysis was applied to each of them in the same way. First, the ICA was performed to decompose each concatenated single-trial EEG records into temporally independent and spatially fixed components, namely independent components (ICs). The IC associated with artifacts were isolated. Second, the clustering analysis classified, across subjects, the temporally and spatially similar ICs into the same clusters, in which nonparametric permutation test for Global Field Power (GFP) of IC projection scalp maps identified significantly different temporal segments of each emotional condition vs. neutral. Third, the brain regions accounted for those significant segments were localized spatially with LORETA analysis. In each cluster, a voxel-by-voxel randomization test identified significantly different brain regions between each emotional condition vs. the neutral. Compared to the neutral, both emotional pictures elicited activation in the visual, temporal, ventromedial and dorsomedial prefrontal cortex and anterior cingulated gyrus. In addition, the pleasant pictures activated the left middle prefrontal cortex and the posterior precuneus, while the unpleasant pictures activated the right orbitofrontal cortex, posterior cingulated gyrus and somatosensory region. Our results were well consistent with other functional imaging studies, while revealed temporal dynamics of emotional processing of specific brain structure with high temporal resolution.
Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording
Scholvin, Jörg; Kinney, Justin P.; Bernstein, Jacob G.; Moore-Kochlacs, Caroline; Kopell, Nancy; Fonstad, Clifton G.; Boyden, Edward S.
2015-01-01
Objective Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are close-packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes, to enable spatially oversampled recording of neural activity in a scalable fashion. Methods Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. Results We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. Significance Finally, we perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites. PMID:26699649
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
Effects of spatial variability and scale on areal -average evapotranspiration
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane
Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less
A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities
NASA Astrophysics Data System (ADS)
Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.
2017-12-01
The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.
Research of GIS-services applicability for solution of spatial analysis tasks.
NASA Astrophysics Data System (ADS)
Terekhin, D. A.; Botygin, I. A.; Sherstneva, A. I.; Sherstnev, V. S.
2017-01-01
Experiments for working out the areas of applying various gis-services in the tasks of spatial analysis are discussed in this paper. Google Maps, Yandex Maps, Microsoft SQL Server are used as services of spatial analysis. All services have shown a comparable speed of analyzing the spatial data when carrying out elemental spatial requests (building up the buffer zone of a point object) as well as the preferences of Microsoft SQL Server in operating with more complicated spatial requests. When building up elemental spatial requests, internet-services show higher efficiency due to cliental data handling with JavaScript-subprograms. A weak point of public internet-services is an impossibility to handle data on a server side and a barren variety of spatial analysis functions. Microsoft SQL Server offers a large variety of functions needed for spatial analysis on the server side. The authors conclude that when solving practical problems, the capabilities of internet-services used in building up routes and completing other functions with spatial analysis with Microsoft SQL Server should be involved.
Verdine, Brian N.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia
2013-01-01
This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematics skills was evaluated. Spatial skill independently predicted a significant amount of the variability in concurrent mathematics performance. Finally, the relationship between spatial assembly skill and socioeconomic status, gender, and parent-reported spatial language was examined. While children's performance did not differ by gender, lower-SES children were already lagging behind higher-SES children in block assembly. Furthermore, lower-SES parents reported using significantly fewer spatial words with their children. PMID:24112041
Automated texture-based identification of ovarian cancer in confocal microendoscope images
NASA Astrophysics Data System (ADS)
Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.
2005-03-01
The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.
Spatial Statistics for Tumor Cell Counting and Classification
NASA Astrophysics Data System (ADS)
Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas
To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.
Double Fourier analysis for Emotion Identification in Voiced Speech
NASA Astrophysics Data System (ADS)
Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.
2016-04-01
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.
Spatial variation of pneumonia hospitalization risk in Twin Cities metro area, Minnesota.
Iroh Tam, P Y; Krzyzanowski, B; Oakes, J M; Kne, L; Manson, S
2017-11-01
Fine resolution spatial variability in pneumonia hospitalization may identify correlates with socioeconomic, demographic and environmental factors. We performed a retrospective study within the Fairview Health System network of Minnesota. Patients 2 months of age and older hospitalized with pneumonia between 2011 and 2015 were geocoded to their census block group, and pneumonia hospitalization risk was analyzed in relation to socioeconomic, demographic and environmental factors. Spatial analyses were performed using Esri's ArcGIS software, and multivariate Poisson regression was used. Hospital encounters of 17 840 patients were included in the analysis. Multivariate Poisson regression identified several significant associations, including a 40% increased risk of pneumonia hospitalization among census block groups with large, compared with small, populations of ⩾65 years, a 56% increased risk among census block groups in the bottom (first) quartile of median household income compared to the top (fourth) quartile, a 44% higher risk in the fourth quartile of average nitrogen dioxide emissions compared with the first quartile, and a 47% higher risk in the fourth quartile of average annual solar insolation compared to the first quartile. After adjusting for income, moving from the first to the second quartile of the race/ethnic diversity index resulted in a 21% significantly increased risk of pneumonia hospitalization. In conclusion, the risk of pneumonia hospitalization at the census-block level is associated with age, income, race/ethnic diversity index, air quality, and solar insolation, and varies by region-specific factors. Identifying correlates using fine spatial analysis provides opportunities for targeted prevention and control.
The variants of an LOD of a 3D building model and their influence on spatial analyses
NASA Astrophysics Data System (ADS)
Biljecki, Filip; Ledoux, Hugo; Stoter, Jantien; Vosselman, George
2016-06-01
The level of detail (LOD) of a 3D city model indicates the model's grade and usability. However, there exist multiple valid variants of each LOD. As a consequence, the LOD concept is inconclusive as an instruction for the acquisition of 3D city models. For instance, the top surface of an LOD1 block model may be modelled at the eaves of a building or at its ridge height. Such variants, which we term geometric references, are often overlooked and are usually not documented in the metadata. Furthermore, the influence of a particular geometric reference on the performance of a spatial analysis is not known. In response to this research gap, we investigate a variety of LOD1 and LOD2 geometric references that are commonly employed, and perform numerical experiments to investigate their relative difference when used as input for different spatial analyses. We consider three use cases (estimation of the area of the building envelope, building volume, and shadows cast by buildings), and compute the deviations in a Monte Carlo simulation. The experiments, carried out with procedurally generated models, indicate that two 3D models representing the same building at the same LOD, but modelled according to different geometric references, may yield substantially different results when used in a spatial analysis. The outcome of our experiments also suggests that the geometric reference may have a bigger influence than the LOD, since an LOD1 with a specific geometric reference may yield a more accurate result than when using LOD2 models.
Electrophysiological Evidence for Domain-General Processes in Task-Switching
Capizzi, Mariagrazia; Ambrosini, Ettore; Arbula, Sandra; Mazzonetto, Ilaria; Vallesi, Antonino
2016-01-01
The ability to flexibly switch between tasks is a hallmark of cognitive control. Despite previous studies that have investigated whether different task-switching types would be mediated by distinct or overlapping neural mechanisms, no definitive consensus has been reached on this question yet. Here, we aimed at directly addressing this issue by recording the event-related potentials (ERPs) elicited by two types of task-switching occurring in the context of spatial and verbal cognitive domains. Source analysis was also applied to the ERP data in order to track the spatial dynamics of brain activity underlying task-switching abilities. In separate blocks of trials, participants had to perform either spatial or verbal switching tasks both of which employed the same type of stimuli. The ERP analysis, which was carried out through a channel- and time-uninformed mass univariate approach, showed no significant differences between the spatial and verbal domains in the modulation of switch and repeat trials. Specifically, relative to repeat trials, switch trials in both domains were associated with a first larger positivity developing over left parieto-occipital electrodes and with a subsequent larger negativity distributed over mid-left fronto-central sites. The source analysis reconstruction for the two ERP components complemented these findings by highlighting the involvement of left-lateralized prefrontal areas in task-switching. Overall, our results join and extend recent research confirming the existence of left-lateralized domain-general task-switching processes. PMID:27047366
Short-term estimation of GNSS TEC using a neural network model in Brazil
NASA Astrophysics Data System (ADS)
Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.
2017-10-01
This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed in order to verify the feasibility on using low amount of data for short-term forecasting. In a third analysis, the spatial performance of the NN model is assessed and compared against CODE Global Ionospheric Maps during the geomagnetic storm registered on 13th and 14th October 2016. The results obtained from the three described analyses indicate that even using a ten-days period of data to train the network, the proposed NN model provides good spatial performance and presents to be a promising tool for short-term forecasting. The results obtained in the analysis presented a root mean squared error less than 7.9 TECU in all scenarios under investigation.
NASA Astrophysics Data System (ADS)
Hamidi, A.; Grossberg, M.; Khanbilvardi, R.
2016-12-01
Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.
Evaluation of Urban Drainage Infrastructure: New York City Case Study
NASA Astrophysics Data System (ADS)
Hamidi, A.; Grossberg, M.; Khanbilvardi, R.
2017-12-01
Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.
2015-12-01
Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.
Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro
2012-11-01
Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya
2017-04-01
Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.
Xiao, Gexin; Xu, Chengdong; Wang, Jinfeng; Yang, Dongyang; Wang, Li
2014-09-25
Bacillary dysentery remains a major public health concern in China. The Beijing-Tianjin-Tangshan urban region is one of the most heavily infected areas in the country. This study aimed to analyze epidemiological features of bacillary dysentery, detect spatial-temporal clusters of the disease, and analyze risk factors that may affect bacillary dysentery incidence in the region. Bacillary dysentery case data from January 2011 to December 2011 in Beijing-Tianjin-Tangshan were used in this study. The epidemiological features of cases were characterized, then scan statistics were performed to detect spatial temporal clusters of bacillary dysentery. A spatial panel model was used to identify potential risk factors. There were a total of 28,765 cases of bacillary dysentery in 2011. The results of the analysis indicated that compared with other age groups, the highest incidence (473.75/105) occurred in individuals <5 years of age. The incidence in males (530.57/105) was higher compared with females (409.06/105). On a temporal basis, incidence increased rapidly starting in April. Peak incidence occurred in August (571.10/105). Analysis of the spatial distribution model revealed that factors such as population density, temperature, precipitation, and sunshine hours were positively associated with incidence rate. Per capita gross domestic product was negatively associated with disease incidence. Meteorological and socio-economic factors have affected the transmission of bacillary dysentery in the urban Beijing-Tianjin-Tangshan region of China. The success of bacillary dysentery prevention and control department strategies would benefit from giving more consideration to climate variations and local socio-economic conditions.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
NASA Astrophysics Data System (ADS)
Felix, Simon; Bolzern, Roman; Battaglia, Marina
2017-11-01
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less
Update and review of accuracy assessment techniques for remotely sensed data
NASA Technical Reports Server (NTRS)
Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.
1983-01-01
Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.
Analysis of the Cape Cod tracer data
Ezzedine, Souheil; Rubin, Yoram
1997-01-01
An analysis of the Cape Cod test was performed using several first- and higher-order theoretical models. We compare conditional and unconditional solutions of the transport equation and employ them for analysis of the experimental data. We consider spatial moments, mass breakthrough curves, and the distribution of the solute mass in space. The concentration measurements were also analyzed using theoretical models for the expected value and variance of concentration. The theoretical models we employed are based on the spatial correlation structure of the conductivity field, without any fitting of parameters to the tracer data, and hence we can test the predictive power of the theories tested. The effects of recharge on macrodispersion are investigated, and it is shown that recharge provides a reasonable explanation for the enhanced lateral spread of the Cape Cod plume. The compendium of the experimental results presented here is useful for testing of theoretical and numerical models.
Spatial characterization of acid rain stress in Canadian Shield Lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1987-01-01
An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.
NASA Astrophysics Data System (ADS)
Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun
2018-06-01
This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.
Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools
NASA Astrophysics Data System (ADS)
Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.
2017-12-01
The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.
Lauria, Valentina; Power, Anne Marie; Lordan, Colm; Weetman, Adrian; Johnson, Mark P
2015-01-01
Knowledge of the spatial distribution and habitat associations of species in relation to the environment is essential for their management and conservation. Habitat suitability models are useful in quantifying species-environment relationships and predicting species distribution patterns. Little is known, however, about the stability and performance of habitat suitability models when projected into new areas (spatial transferability) and how this can inform resource management. The aims of this study were to model habitat suitability of Norway lobster (Nephrops norvegicus) in five fished areas of the Northeast Atlantic (Aran ground, Irish Sea, Celtic Sea, Scotland Inshore and Fladen ground), and to test for spatial transferability of habitat models among multiple regions. Nephrops burrow density was modelled using generalised additive models (GAMs) with predictors selected from four environmental variables (depth, slope, sediment and rugosity). Models were evaluated and tested for spatial transferability among areas. The optimum models (lowest AICc) for different areas always included depth and sediment as predictors. Burrow densities were generally greater at depth and in finer sediments, but relationships for individual areas were sometimes more complex. Aside from an inclusion of depth and sediment, the optimum models differed between fished areas. When it came to tests of spatial transferability, however, most of the models were able to predict Nephrops density in other areas. Furthermore, transferability was not dependent on use of the optimum models since competing models were also able to achieve a similar level of transferability to new areas. A degree of decoupling between model 'fitting' performance and spatial transferability supports the use of simpler models when extrapolating habitat suitability maps to different areas. Differences in the form and performance of models from different areas may supply further information on the processes shaping species' distributions. Spatial transferability of habitat models can be used to support fishery management when the information is scarce but caution needs to be applied when making inference and a multi-area transferability analysis is preferable to bilateral comparisons between areas.
NASA Astrophysics Data System (ADS)
Bektasli, Behzat
Graphs have a broad use in science classrooms, especially in physics. In physics, kinematics is probably the topic for which graphs are most widely used. The participants in this study were from two different grade-12 physics classrooms, advanced placement and calculus-based physics. The main purpose of this study was to search for the relationships between student spatial ability, logical thinking, mathematical achievement, and kinematics graphs interpretation skills. The Purdue Spatial Visualization Test, the Middle Grades Integrated Process Skills Test (MIPT), and the Test of Understanding Graphs in Kinematics (TUG-K) were used for quantitative data collection. Classroom observations were made to acquire ideas about classroom environment and instructional techniques. Factor analysis, simple linear correlation, multiple linear regression, and descriptive statistics were used to analyze the quantitative data. Each instrument has two principal components. The selection and calculation of the slope and of the area were the two principal components of TUG-K. MIPT was composed of a component based upon processing text and a second component based upon processing symbolic information. The Purdue Spatial Visualization Test was composed of a component based upon one-step processing and a second component based upon two-step processing of information. Student ability to determine the slope in a kinematics graph was significantly correlated with spatial ability, logical thinking, and mathematics aptitude and achievement. However, student ability to determine the area in a kinematics graph was only significantly correlated with student pre-calculus semester 2 grades. Male students performed significantly better than female students on the slope items of TUG-K. Also, male students performed significantly better than female students on the PSAT mathematics assessment and spatial ability. This study found that students have different levels of spatial ability, logical thinking, and mathematics aptitude and achievement levels. These different levels were related to student learning of kinematics and they need to be considered when kinematics is being taught. It might be easier for students to understand the kinematics graphs if curriculum developers include more activities related to spatial ability and logical thinking.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Astronaut activity in weightlessness and unsupported space
NASA Technical Reports Server (NTRS)
Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.
1975-01-01
For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.
The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science
NASA Astrophysics Data System (ADS)
Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.
2017-12-01
The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.
NASA Technical Reports Server (NTRS)
Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.
2014-01-01
This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).
Milenković, Jana; Dalmış, Mehmet Ufuk; Žgajnar, Janez; Platel, Bram
2017-09-01
New ultrafast view-sharing sequences have enabled breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to be performed at high spatial and temporal resolution. The aim of this study is to evaluate the diagnostic potential of textural features that quantify the spatiotemporal changes of the contrast-agent uptake in computer-aided diagnosis of malignant and benign breast lesions imaged with high spatial and temporal resolution DCE-MRI. The proposed approach is based on the textural analysis quantifying the spatial variation of six dynamic features of the early-phase contrast-agent uptake of a lesion's largest cross-sectional area. The textural analysis is performed by means of the second-order gray-level co-occurrence matrix, gray-level run-length matrix and gray-level difference matrix. This yields 35 textural features to quantify the spatial variation of each of the six dynamic features, providing a feature set of 210 features in total. The proposed feature set is evaluated based on receiver operating characteristic (ROC) curve analysis in a cross-validation scheme for random forests (RF) and two support vector machine classifiers, with linear and radial basis function (RBF) kernel. Evaluation is done on a dataset with 154 breast lesions (83 malignant and 71 benign) and compared to a previous approach based on 3D morphological features and the average and standard deviation of the same dynamic features over the entire lesion volume as well as their average for the smaller region of the strongest uptake rate. The area under the ROC curve (AUC) obtained by the proposed approach with the RF classifier was 0.8997, which was significantly higher (P = 0.0198) than the performance achieved by the previous approach (AUC = 0.8704) on the same dataset. Similarly, the proposed approach obtained a significantly higher result for both SVM classifiers with RBF (P = 0.0096) and linear kernel (P = 0.0417) obtaining AUC of 0.8876 and 0.8548, respectively, compared to AUC values of previous approach of 0.8562 and 0.8311, respectively. The proposed approach based on 2D textural features quantifying spatiotemporal changes of the contrast-agent uptake significantly outperforms the previous approach based on 3D morphology and dynamic analysis in differentiating the malignant and benign breast lesions, showing its potential to aid clinical decision making. © 2017 American Association of Physicists in Medicine.
Random field theory to interpret the spatial variability of lacustrine soils
NASA Astrophysics Data System (ADS)
Russo, Savino; Vessia, Giovanna
2015-04-01
The lacustrine soils are quaternary soils, dated from Pleistocene to Holocene periods, generated in low-energy depositional environments and characterized by soil mixture of clays, sands and silts with alternations of finer and coarser grain size layers. They are often met at shallow depth filling several tens of meters of tectonic or erosive basins typically placed in internal Appenine areas. The lacustrine deposits are often locally interbedded by detritic soils resulting from the failure of surrounding reliefs. Their heterogeneous lithology is associated with high spatial variability of physical and mechanical properties both along horizontal and vertical directions. The deterministic approach is still commonly adopted to accomplish the mechanical characterization of these heterogeneous soils where undisturbed sampling is practically not feasible (if the incoherent fraction is prevalent) or not spatially representative (if the cohesive fraction prevails). The deterministic approach consists on performing in situ tests, like Standard Penetration Tests (SPT) or Cone Penetration Tests (CPT) and deriving design parameters through "expert judgment" interpretation of the measure profiles. These readings of tip and lateral resistances (Rp and RL respectively) are almost continuous but highly variable in soil classification according to Schmertmann (1978). Thus, neglecting the spatial variability cannot be the best strategy to estimated spatial representative values of physical and mechanical parameters of lacustrine soils to be used for engineering applications. Hereafter, a method to draw the spatial variability structure of the aforementioned measure profiles is presented. It is based on the theory of the Random Fields (Vanmarcke 1984) applied to vertical readings of Rp measures from mechanical CPTs. The proposed method relies on the application of the regression analysis, by which the spatial mean trend and fluctuations about this trend are derived. Moreover, the scale of fluctuation is calculated to measure the maximum length beyond which profiles of measures are independent. The spatial mean trend can be used to identify "quasi-homogeneous" soil layers where the standard deviation and the scale of fluctuation can be calculated. In this study, five Rp profiles performed in the lacustrine deposits of the high River Pescara Valley have been analyzed. There, silty clay deposits with thickness ranging from a few meters to about 60m, and locally rich in sands and peats, are investigated. In this study, vertical trends of Rp profiles have been derived to be converted into design parameter mean trends. Furthermore, the variability structure derived from Rp readings can be propagated to design parameters to calculate the "characteristic values" requested by the European building codes. References Schmertmann J.H. 1978. Guidelines for Cone Penetration Test, Performance and Design. Report No. FHWA-TS-78-209, U.S. Department of Transportation, Washington, D.C., pp. 145. Vanmarcke E.H. 1984. Random Fields, analysis and synthesis. Cambridge (USA): MIT Press.
Veeraraghavan, Rengasayee; Gourdie, Robert G
2016-11-07
The spatial association between proteins is crucial to understanding how they function in biological systems. Colocalization analysis of fluorescence microscopy images is widely used to assess this. However, colocalization analysis performed on two-dimensional images with diffraction-limited resolution merely indicates that the proteins are within 200-300 nm of each other in the xy-plane and within 500-700 nm of each other along the z-axis. Here we demonstrate a novel three-dimensional quantitative analysis applicable to single-molecule positional data: stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA). This method offers significant advantages: 1) STORM imaging affords 20-nm resolution in the xy-plane and <50 nm along the z-axis; 2) STORM-RLA provides a quantitative assessment of the frequency and degree of overlap between clusters of colabeled proteins; and 3) STORM-RLA also calculates the precise distances between both overlapping and nonoverlapping clusters in three dimensions. Thus STORM-RLA represents a significant advance in the high-throughput quantitative assessment of the spatial organization of proteins. © 2016 Veeraraghavan and Gourdie. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Logo recognition using alpha-rooted phase correlation in the radon transform domain
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2009-08-01
Alpha-rooted phase correlation (ARPC) is a recently-developed variant of classical phase correlation that includes a Fourier domain image enhancement operation. ARPC combines classical phase correlation with alpha-rooting to provide tunable image enhancement. The alpha-rooting parameters may be adjusted to provide a tradeoff between height and width of the ARPC main lobe. A high narrow main lobe peak provides high matching accuracy for aligned images, but reduced matching performance for misaligned logos. A lower, wider peak trades matching accuracy on aligned logos, for improved matching performance on misaligned imagery. Previously, we developed ARPC and used it in the spatial domain for logo recognition as part of an overall automated document analysis problem. However, spatial domain ARPC performance can be sensitive to logo misalignments, including rotational misalignment. In this paper we use ARPC as a match metric in the radon transform domain for logo recognition. In the radon transform domain, rotational misalignments correspond to translations in the radon transform angle parameter. These translations are captured by ARPC, thereby producing rotation-invariant logo matching. In the paper, we first present an overview of ARPC, and then describe the logo matching algorithm. We present numerical performance results demonstrating matching tolerance to rotational misalignments. We demonstrate robustness of the radon transform domain rotation estimation to noise. We present logo verification and recognition performance results using the proposed approach on a public domain logo database. We compare performance results to performance obtained using spatial domain ARPC, and state-of-the-art SURF features, for logos in salt-and-pepper noise.
Study of flow structure in a four-vortex furnace model
NASA Astrophysics Data System (ADS)
Anufriev, I. S.; Sharypov, O. V.; Dekterev, A. A.; Shadrin, E. Yu.; Papulov, A. P.
2017-11-01
The flow pattern was studied for a four-vortex furnace of a coal-dust boiler. The paper presents results of experimental study of inner aerodynamics performed on a lab-scale isothermal model of the furnace device. The PIV method was used to receive the flow velocity fields for several cross sections. The analysis was performed for the spatial structure of the flow comprising four stable closed vortices with vertical axes of flow swirling.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Environmental assessment of spatial plan policies through land use scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.it
2012-01-15
This paper presents a method based on scenario analysis to compare the environmental effects of different spatial plan policies in a range of possible futures. The study aimed at contributing to overcome two limitations encountered in Strategic Environmental Assessment (SEA) for spatial planning: poor exploration of how the future might unfold, and poor consideration of alternative plan policies. Scenarios were developed through what-if functions and spatial modeling in a Geographical Information System (GIS), and consisted in maps that represent future land uses under different assumptions on key driving forces. The use of land use scenarios provided a representation of howmore » the different policies will look like on the ground. This allowed gaining a better understanding of the policies' implications on the environment, which could be measured through a set of indicators. The research undertook a case-study approach by developing and assessing land use scenarios for the future growth of Caia, a strategically-located and fast-developing town in rural Mozambique. The effects of alternative spatial plan policies were assessed against a set of environmental performance indicators, including deforestation, loss of agricultural land, encroachment of flood-prone areas and wetlands and access to water sources. In this way, critical environmental effects related to the implementation of each policy were identified and discussed, suggesting possible strategies to address them. - Graphical abstract: Display Omitted Research Highlights: Black-Right-Pointing-Pointer The method contributes to two critical issues in SEA: exploration of the future and consideration of alternatives. Black-Right-Pointing-Pointer Future scenarios are used to test the environmental performance of different spatial plan policies in uncertainty conditions. Black-Right-Pointing-Pointer Spatially-explicit land use scenarios provide a representation of how different policies will look like on the ground.« less
Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.
Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida
2015-12-01
Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clem, Douglas Wayne
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E
2015-05-01
Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.
Design of the Resources and Environment Monitoring Website in Kashgar
NASA Astrophysics Data System (ADS)
Huang, Z.; Lin, Q. Z.; Wang, Q. J.
2014-03-01
Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated.
Estimation of optimal hologram recording modes on photothermal materials
NASA Astrophysics Data System (ADS)
Dzhamankyzov, Nasipbek Kurmanalievich; Ismanov, Yusupzhan Khakimzhanovich; Zhumaliev, Kubanychbek Myrzabekovich; Alymkulov, Samsaly Amanovich
2018-01-01
A theoretical analysis of the hologram recording process on photothermal media to estimate the required laser radiation power for the information recording as the function of the spatial frequency and radiation exposure duration is considered. Results of the analysis showed that materials with a low thermal diffusivity are necessary to increase the recording density in these media and the recording should be performed with short pulses to minimize the thermal diffusion length. A solution for the heat conduction equation for photothermal materials heated by an interference laser field was found. The solution obtained allows one to determine the required value of the recording temperature for given spatial frequencies, depending on the thermal physical parameters of the medium and on the power and duration of the heating radiation.
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
Waruru, Anthony; Achia, Thomas N O; Muttai, Hellen; Ng'ang'a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Young, Peter W; Tobias, James L; Juma, Peter; De Cock, Kevin M; Tylleskär, Thorkild
2018-01-01
Using spatial-temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial-temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran-Mantel-Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial-temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Median age was two months, interquartile range 1.5-5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial-temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions.
Sex and cultural differences in spatial performance between Japanese and North Americans.
Sakamoto, Maiko; Spiers, Mary V
2014-04-01
Previous studies have suggested that Asians perform better than North Americans on spatial tasks but show smaller sex differences. In this study, we evaluated the relationship between long-term experience with a pictorial written language and spatial performance. It was hypothesized that native Japanese Kanji (a complex pictorial written language) educated adults would show smaller sex differences on spatial tasks than Japanese Americans or North Americans without Kanji education. A total of 80 young healthy participants (20 native Japanese speakers, 20 Japanese Americans-non Japanese speaking, and 40 North Americans-non Japanese speaking) completed the Rey Complex Figure Test (RCFT), the Mental Rotations Test (MRT), and customized 2D and 3D spatial object location memory tests. As predicted, main effects revealed men performed better on the MRT and RCFT and women performed better on the spatial object location memory tests. Also, as predicted, native Japanese performed better on all tests than the other groups. In contrast to the other groups, native Japanese showed a decreased magnitude of sex differences on aspects of the RCFT (immediate and delayed recall) and no significant sex difference on the efficiency of the strategy used to copy and encode the RCFT figure. This study lends support to the idea that intensive experience over time with a pictorial written language (i.e., Japanese Kanji) may contribute to increased spatial performance on some spatial tasks as well as diminish sex differences in performance on tasks that most resemble Kanji.
Spatial language facilitates spatial cognition: Evidence from children who lack language input
Gentner, Dedre; Özyürek, Asli; Gürcanli, Özge; Goldin-Meadow, Susan
2013-01-01
Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a spatial mapping task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space. PMID:23542409
A spatial scan statistic for survival data based on Weibull distribution.
Bhatt, Vijaya; Tiwari, Neeraj
2014-05-20
The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1989-01-01
An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho
2016-01-01
Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP–AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP–AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP–AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP–AES analysis data, PXRF analysis data, both ICP–AES and transformed PXRF analysis data by considering the correlation between the ICP–AES and PXRF analysis data, and co-kriging to both the ICP–AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP–AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP–AES and PXRF analysis data. PMID:27043594
Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho
2016-03-30
Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
Spatial Visualization--A Gateway to Computer-Based Technology.
ERIC Educational Resources Information Center
Norman, Kent L.
1994-01-01
A model is proposed for the influence of individual differences on performance when computer-based technology is introduced. The primary cognitive factor driving differences in performance is spatial visualization ability. Four techniques for mitigating the negative impact of low spatial visualization are discussed: spatial metaphors, graphical…
Differentiating Spatial Memory from Spatial Transformations
ERIC Educational Resources Information Center
Street, Whitney N.; Wang, Ranxiao Frances
2014-01-01
The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…
Land use/cover classification in the Brazilian Amazon using satellite images.
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira
2012-09-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.