Addressing defeatist beliefs in work rehabilitation
Mervis, Joshua E.; Lysaker, Paul H.; Fiszdon, Joanna M.; Bell, Morris D.; Chue, Amanda E.; Pauls, Carol; Bisoglio, Joseph; Choi, Jimmy
2018-01-01
Background Adults with serious mental illness (SMI) may struggle with expectations of failure in vocational rehabilitation. These expectations can be global and trait-like or performance-specific and related to ability. Aims To date, it has not been examined whether global or performance-specific defeatist beliefs are related to functional outcomes. Method The Indianapolis Vocational Intervention Program (IVIP) is a CBT intervention used to address expectations of failure and improve work performance. We examined the relationships between defeatist beliefs, self-esteem, social functioning, and work behaviors in 54 adults with SMI who completed IVIP within a work therapy program. Results Baseline work-specific defeatist beliefs were related to baseline self-esteem, employment attitude, and work behaviors. Decline in work-specific defeatist beliefs was associated with better social functioning, self-esteem, and work behaviors. Decline in global defeatist beliefs was only associated with improvements in social functioning. Conclusions Performance-specific expectations about work may be an appropriate therapeutic target to enhance work outcome in SMI. PMID:26828824
Space station MSFC-DPD-235/DR no. CM-03 specification, modular space station project, Part 1 CEI
NASA Technical Reports Server (NTRS)
1971-01-01
Contract engineering item specifications for the modular space station are presented. These specifications resulted from the development and allocations of requirements which are concise statements of performance or constraints on performance. Specifications contain requirements for functional performance and for the verification of design solutions.
NASA Astrophysics Data System (ADS)
Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.
1992-08-01
Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure
Manne, Sharon L; Siegel, Scott; Heckman, Carolyn J; Kashy, Deborah A
2015-11-01
The purpose was to evaluate whether patient and spouse cancer-specific distress mediated the association between cancer severity and occupational functioning among employed spouses of women diagnosed with breast cancer. We examined whether sociodemographic characteristics, lower spouse-reported marital quality, and lower spouse self-rated health were associated with poorer spouse occupational functioning. One hundred forty-three currently employed spouses of women diagnosed with breast cancer were administered measures of socioeconomic status, occupational functioning (work absenteeism, low productivity, and poor performance), cancer-specific distress, marital quality, and self-rated health. Patients completed measures of cancer-related distress and functional impairment and cancer stage were collected from medical charts. In the model evaluating work absenteeism, greater patient functional impairment was associated with more absenteeism, but there was no evidence of a mediating effect for either partners' cancer-specific distress. Higher cancer stage and more functional impairment were associated with higher spouse cancer-specific distress, which in turn predicted poorer work productivity. Patient cancer-specific distress did not mediate the association between patient functional impairment or cancer stage and spouse work productivity. Finally, higher cancer stage was associated with more spouse cancer-specific distress, which in turn predicted poorer work performance. There were no direct or indirect effects of the patient's functional impairment on spouse work performance. Distressed spouses are more likely to have poorer work productivity after their partners' breast cancer diagnosis. These spouses may need assistance in managing their distress and the patient's functional impairment to ensure that their work productivity is not adversely affected. Copyright © 2015 John Wiley & Sons, Ltd.
Semantic Relevance, Domain Specificity and the Sensory/Functional Theory of Category-Specificity
ERIC Educational Resources Information Center
Sartori, Giuseppe; Gnoato, Francesca; Mariani, Ilenia; Prioni, Sara; Lombardi, Luigi
2007-01-01
According to the sensory/functional theory of semantic memory, Living items rely more on Sensory knowledge than Non-living ones. The sensory/functional explanation of category-specificity assumes that semantic features are organised on the basis of their content. We report here a study on DAT patients with impaired performance on Living items and…
42 CFR 421.201 - Performance criteria and standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... funds. (2) The standards evaluate the specific requirements of each functional responsibility or... performance of functional responsibilities such as— (i) Accurate and timely payment determinations; (ii...
Fujita, Takaaki; Sato, Atsushi; Tsuchiya, Kenji; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Iokawa, Kazuaki; Ohira, Yoko; Otsuki, Koji; Tozato, Fusae
2017-12-01
This study aimed to elucidate the relationship between grooming performance of stroke patients and various motor and cognitive functions and to examine the cognitive and physical functional standards required for grooming independence. We retrospectively analyzed the data of 96 hospitalized patients with first stroke in a rehabilitation hospital ward. Logistic regression analysis and receiver operating characteristic curves were used to investigate the related cognitive and motor functions with grooming performance and to calculate the cutoff values for independence and supervision levels in grooming. For analysis between the independent and supervision-dependent groups, the only item with an area under the curve (AUC) of .9 or higher was the Berg Balance Scale, and the calculated cutoff value was 41/40 (sensitivity, 83.6%; specificity, 87.8%). For analysis between the independent-supervision and dependent groups, the items with an AUC of .9 or higher were the Simple Test for Evaluating Hand Function (STEF) on the nonaffected side, Vitality Index (VI), and FIM ® cognition. The cutoff values were 68/67 for the STEF (sensitivity, 100%; specificity, 72.2%), 9/8 points for the VI (sensitivity, 92.3%; specificity, 88.9%), and 23/22 points for FIM ® cognition (sensitivity, 91.0%; specificity, 88.9%). Our results suggest that upper-extremity functions on the nonaffected side, motivation, and cognitive functions are particularly important to achieve the supervision level and that balance is important to reach the independence level. The effective improvement of grooming performance is possible by performing therapeutic or compensatory intervention on functions that have not achieved these cutoff values. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
de Paula, Jonas J.; Diniz, Breno S.; Bicalho, Maria A.; Albuquerque, Maicon Rodrigues; Nicolato, Rodrigo; de Moraes, Edgar N.; Romano-Silva, Marco A.; Malloy-Diniz, Leandro F.
2015-01-01
Cognitive functioning influences activities of daily living (ADL). However, studies reporting the association between ADL and neuropsychological performance show inconsistent results regarding what specific cognitive domains are related to each specific functional domains. Additionally, whether depressive symptoms are associated with a worse functional performance in older adults is still under explored. We investigated if specific cognitive domains and depressive symptoms would affect different aspects of ADL. Participants were 274 older adults (96 normal aging participants, 85 patients with mild cognitive impairment, and 93 patients probable with mild Alzheimer’s disease dementia) with low formal education (∼4 years). Measures of ADL included three complexity levels: Self-care, Instrumental-Domestic, and Instrumental-Complex. The specific cognitive functions were evaluated through a factorial strategy resulting in four cognitive domains: Executive Functions, Language/Semantic Memory, Episodic Memory, and Visuospatial Abilities. The Geriatric Depression Scale measured depressive symptoms. Multiple linear regression analysis showed executive functions and episodic memory as significant predictors of Instrumental-Domestic ADL, and executive functions, episodic memory and language/semantic memory as predictors of Instrumental-Complex ADL (22 and 28% of explained variance, respectively). Ordinal regression analysis showed the influence of specific cognitive functions and depressive symptoms on each one of the instrumental ADL. We observed a heterogeneous pattern of association with explained variance ranging from 22 to 38%. Different instrumental ADL had specific cognitive predictors and depressive symptoms were predictive of ADL involving social contact. Our results suggest a specific pattern of influence depending on the specific instrumental daily living activity. PMID:26257644
Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen
2018-06-13
Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.
Brain Structure-Function Couplings: Year 2 Accomplishments and Programmatic Plans
2013-06-01
performance through individual-specific neurotechnologies and enhance Soldier protection technologies to minimize neural injury. The long-term vision of this...envision pathways that enable our basic science accomplishments to foster development of revolutionary Soldier neurotechnologies and Soldier protection...improve Soldier-system performance with Soldier-specific neurotechnologies . We expect mid-term impact with models linking structure and function that can
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U. S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides all the information necessary tomore » access the DSPA programs, to input required data and to generate appropriate Design Synthesis or Performance Analysis Output.« less
Roach, Kathryn E; Tappen, Ruth M; Kirk-Sanchez, Neva; Williams, Christine L; Loewenstein, David
2011-01-01
To determine whether an activity specific exercise program could improve ability to perform basic mobility activities in long-term care residents with Alzheimer disease (AD). Randomized, controlled, single-blinded clinical trial. Residents of 7 long-term care facilities. Eighty-two long-term care residents with mild to severe AD. An activity specific exercise program was compared to a walking program and to an attention control. Ability to perform bed mobility and transfers was assessed using the subscales of the Acute Care Index of Function; functional mobility was measured using the 6-Minute Walk test. Subjects receiving the activity specific exercise program improved in ability to perform transfers, whereas subjects in the other 2 groups declined.
49 CFR 107.503 - Registration statement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Inspector” or “Design Certifying Engineer”. The following language may be used. I certify that all Registered Inspectors and Design Certifying Engineers used in performance of the prescribed functions meet... requirements applicable to the functions to be performed. (5) A description of the specific functions to be...
Wang, Chao; Ding, Mingzhou; Kluger, Benzi M
2015-01-01
It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral performance provides a functional link between neural markers and the cognitive processes they index.
Blankenship, Tashauna L.; O'Neill, Meagan; Deater-Deckard, Kirby; Diana, Rachel A.; Bell, Martha Ann
2016-01-01
The contributions of hemispheric-specific electrophysiology (electroencephalogram or EEG) and independent executive functions (inhibitory control, working memory, cognitive flexibility) to episodic memory performance were examined using abstract paintings. Right hemisphere frontotemporal functional connectivity during encoding and retrieval, measured via EEG alpha coherence, statistically predicted performance on recency but not recognition judgments for the abstract paintings. Theta coherence, however, did not predict performance. Likewise, cognitive flexibility statistically predicted performance on recency judgments, but not recognition. These findings suggest that recognition and recency operate via separate electrophysiological and executive mechanisms. PMID:27388478
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification
Zancanaro, Carlo
2015-01-01
The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681
Color and Psychological Functioning: The Effect of Red on Performance Attainment
ERIC Educational Resources Information Center
Elliot, Andrew J.; Maier, Markus A.; Moller, Arlen C.; Friedman, Ron; Meinhardt, Jorg
2007-01-01
This research focuses on the relation between color and psychological functioning, specifically, that between red and performance attainment. Red is hypothesized to impair performance on achievement tasks, because red is associated with the danger of failure in achievement contexts and evokes avoidance motivation. Four experiments demonstrate that…
Composing, Analyzing and Validating Software Models
NASA Astrophysics Data System (ADS)
Sheldon, Frederick T.
1998-10-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
Composing, Analyzing and Validating Software Models
NASA Technical Reports Server (NTRS)
Sheldon, Frederick T.
1998-01-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
NASA Technical Reports Server (NTRS)
Goltz, G.; Kaiser, L. M.; Weiner, H.
1977-01-01
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Functionalized graphene hydrogel-based high-performance supercapacitors.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2013-10-25
Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance
ERIC Educational Resources Information Center
Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu
2012-01-01
The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…
Renewing functionalized graphene as electrodes for high-performance supercapacitors.
Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie
2012-12-11
An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roach, Kathryn E.; Tappen, Ruth M.; Kirk-Sanchez, Neva; Williams, Christine L.; Loewenstein, David
2011-01-01
Objective To determine whether an activity specific exercise program could improve ability to perform basic mobility activities in long-term care residents with Alzheimer disease (AD). Design Randomized, controlled, single-blinded clinical trial. Setting Residents of 7 long-term care facilities. Participants Eighty-two long-term care residents with mild to severe AD. Intervention An activity specific exercise program was compared to a walking program and to an attention control. Measurements Ability to perform bed mobility and transfers were assessed using the subscales of the Acute Care Index of Function; functional mobility was measured using the 6-Minute Walk test. Results Subjects receiving the activity specific exercise program improved in ability to perform transfers, whereas subjects in the other 2 groups declined. PMID:21937893
Maciejewski, Matthew L; Liu, Chuan-Fen; Fihn, Stephan D
2009-01-01
To compare the ability of generic comorbidity and risk adjustment measures, a diabetes-specific measure, and a self-reported functional status measure to explain variation in health care expenditures for individuals with diabetes. This study included a retrospective cohort of 3,092 diabetic veterans participating in a multisite trial. Two comorbidity measures, four risk adjusters, a functional status measure, a diabetes complication count, and baseline expenditures were constructed from administrative and survey data. Outpatient, inpatient, and total expenditure models were estimated using ordinary least squares regression. Adjusted R(2) statistics and predictive ratios were compared across measures to assess overall explanatory power and explanatory power of low- and high-cost subgroups. Administrative data-based risk adjusters performed better than the comorbidity, functional status, and diabetes-specific measures in all expenditure models. The diagnostic cost groups (DCGs) measure had the greatest predictive power overall and for the low- and high-cost subgroups, while the diabetes-specific measure had the lowest predictive power. A model with DCGs and the diabetes-specific measure modestly improved predictive power. Existing generic measures can be useful for diabetes-specific research and policy applications, but more predictive diabetes-specific measures are needed.
Methodology for the systems engineering process. Volume 1: System functional activities
NASA Technical Reports Server (NTRS)
Nelson, J. H.
1972-01-01
Systems engineering is examined in terms of functional activities that are performed in the conduct of a system definition/design, and system development is described in a parametric analysis that combines functions, performance, and design variables. Emphasis is placed on identification of activities performed by design organizations, design specialty groups, as well as a central systems engineering organizational element. Identification of specific roles and responsibilities for doing functions, and monitoring and controlling activities within the system development operation are also emphasized.
Wang, Chao; Ding, Mingzhou; Kluger, Benzi M.
2015-01-01
It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral performance provides a functional link between neural markers and the cognitive processes they index. PMID:26230662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides a detailed description of the DSPAmore » Computer Program system and its subprograms. This manual will assist the programmer in revising or updating the several subprograms.« less
The protein expression landscape of the Arabidopsis root
Petricka, Jalean J.; Schauer, Monica A.; Megraw, Molly; Breakfield, Natalie W.; Thompson, J. Will; Georgiev, Stoyan; Soderblom, Erik J.; Ohler, Uwe; Moseley, Martin Arthur; Grossniklaus, Ueli; Benfey, Philip N.
2012-01-01
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development. PMID:22447775
Pattern Genes Suggest Functional Connectivity of Organs
NASA Astrophysics Data System (ADS)
Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang
2016-05-01
Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.
Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M
2013-07-01
This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
MUSCULOSKELETAL SCREENING AND FUNCTIONAL TESTING: CONSIDERATIONS FOR BASKETBALL ATHLETES
Markwick, William J.
2016-01-01
Background and Purpose Youth participation in basketball is on the rise, with basketball one of the top five participation sports in Australia. With increased participation there is a need for greater awareness of the importance of the pre-participation examination, including musculoskeletal screening and functional performance testing as part of a multidisciplinary approach to reducing the risk for future injuries. As majority of all basketball injuries affect the lower extremities, pre-participation musculoskeletal screening and functional performance testing should assess fundamental movement qualities throughout the kinetic chain with an emphasis on lower extremity force characteristics, specifically eccentric loading tasks. Thus, the purpose of this clinical commentary is to review the existing literature elucidating pre-participation musculoskeletal screening and functional performance tests that can be used as a framework for rehabilitation professionals in assessing basketball athletes’ readiness to safely perform the movement demands of their sport. Methods Relevant articles published between 2000 and 2016 using the search terms ‘musculoskeletal screening’, ‘functional testing’, ‘youth athletes’, and ‘basketball’ were identified using MEDLINE. From a basketball-specific perspective, several relevant musculoskeletal assessments were identified, including: the Functional Hop Test Combination, the Landing Error Scoring System, the Tuck Jump Assessment, the Weight-Bearing Lunge Test, and the Star Excursion Balance Test. Each of these assessments creates movement demands that allow for easy identification of inefficient and/or compensatory movement tendencies. A basic understanding of musculoskeletal deficits including bilateral strength and flexibility imbalances, lower crossed syndrome, and dominance-related factors are key components in determination of injury risk. Discussion Assessment of sport-specific movement demands through musculoskeletal screening and functional performance testing is essential for rehabilitation professionals to determine movement competency during performance of fundamental movements related to basketball performance. Youth athletes represent a unique population due to their developing musculoskeletal and neuromuscular systems and should undergo pre-participation musculoskeletal screening for identification of movement limitations. Such an approach to musculoskeletal screening and functional performance may assist in identifying injury risk and also be useful at the end of rehabilitation in determining readiness to return to sport models. Level of Evidence Level 5 PMID:27757291
MUSCULOSKELETAL SCREENING AND FUNCTIONAL TESTING: CONSIDERATIONS FOR BASKETBALL ATHLETES.
Bird, Stephen P; Markwick, William J
2016-10-01
Youth participation in basketball is on the rise, with basketball one of the top five participation sports in Australia. With increased participation there is a need for greater awareness of the importance of the pre-participation examination, including musculoskeletal screening and functional performance testing as part of a multidisciplinary approach to reducing the risk for future injuries. As majority of all basketball injuries affect the lower extremities, pre-participation musculoskeletal screening and functional performance testing should assess fundamental movement qualities throughout the kinetic chain with an emphasis on lower extremity force characteristics, specifically eccentric loading tasks. Thus, the purpose of this clinical commentary is to review the existing literature elucidating pre-participation musculoskeletal screening and functional performance tests that can be used as a framework for rehabilitation professionals in assessing basketball athletes' readiness to safely perform the movement demands of their sport. Relevant articles published between 2000 and 2016 using the search terms 'musculoskeletal screening', 'functional testing', 'youth athletes', and 'basketball' were identified using MEDLINE. From a basketball-specific perspective, several relevant musculoskeletal assessments were identified, including: the Functional Hop Test Combination, the Landing Error Scoring System, the Tuck Jump Assessment, the Weight-Bearing Lunge Test, and the Star Excursion Balance Test. Each of these assessments creates movement demands that allow for easy identification of inefficient and/or compensatory movement tendencies. A basic understanding of musculoskeletal deficits including bilateral strength and flexibility imbalances, lower crossed syndrome, and dominance-related factors are key components in determination of injury risk. Assessment of sport-specific movement demands through musculoskeletal screening and functional performance testing is essential for rehabilitation professionals to determine movement competency during performance of fundamental movements related to basketball performance. Youth athletes represent a unique population due to their developing musculoskeletal and neuromuscular systems and should undergo pre-participation musculoskeletal screening for identification of movement limitations. Such an approach to musculoskeletal screening and functional performance may assist in identifying injury risk and also be useful at the end of rehabilitation in determining readiness to return to sport models. Level 5.
2014-01-01
Background Cerebral palsy (CP) and brain injury (BI) are common conditions that have devastating effects on a child’s ability to use their hands. Hand splinting and task-specific training are two interventions that are often used to address deficits in upper limb skills, both in isolation or concurrently. The aim of this paper is to describe the method to be used to conduct two randomised controlled trials (RCT) investigating (a) the immediate effect of functional hand splints, and (b) the effect of functional hand splints used concurrently with task-specific training compared to functional hand splints alone, and to task-specific training alone in children with CP and BI. The Cognitive Orientation to Occupational Performance (CO-OP) approach will be the task-specific training approach used. Methods/Design Two concurrent trials; a two group, parallel design, RCT with a sample size of 30 participants (15 per group); and a three group, parallel design, assessor blinded, RCT with a sample size of 45 participants (15 per group). Inclusion criteria: age 4-15 years; diagnosis of CP or BI; Manual Abilities Classification System (MACS) level I – IV; hand function goals; impaired hand function; the cognitive, language and behavioural ability to participate in CO-OP. Participants will be randomly allocated to one of 3 groups; (1) functional hand splint only (n=15); (2) functional hand splint combined with task-specific training (n=15); (3) task-specific training only (n=15). Allocation concealment will be achieved using sequentially numbered, sealed opaque envelopes opened by an off-site officer after baseline measures. Treatment will be provided for a period of 2 weeks, with outcome measures taken at baseline, 1 hour after randomisation, 2 weeks and 10 weeks. The functional hand splint will be a wrist cock-up splint (+/- thumb support or supination strap). Task-specific training will involve 10 sessions of CO-OP provided in a group of 2-4 children. Primary outcome measures will be the Canadian Occupational Performance Measure (COPM) and the Goal Attainment Scale (GAS). Analysis will be conducted on an intention-to-treat basis. Discussion This paper outlines the protocol for two randomised controlled trials investigating functional hand splints and CO-OP for children with CP and BI. PMID:25023385
Lang, Stefan; Gaxiola-Valdez, Ismael; Opoku-Darko, Michael; Partlo, Lisa A; Goodyear, Bradley G; Kelly, John J P; Federico, Paolo
2017-09-01
Patients with diffuse glioma are known to have impaired cognitive functions preoperatively. However, the mechanism of these cognitive deficits remains unclear. Resting-state functional connectivity in the frontoparietal network (FPN) is associated with cognitive performance in healthy subjects. For this reason, it was hypothesized that functional connectivity of the FPN would be related to cognitive functioning in patients with glioma. To assess this relationship, preoperative cognitive status was correlated to patient-specific connectivity within the FPN. Further, we assessed whether connectivity could predict neuropsychologic outcome following surgery. Sixteen patients with diffuse glioma underwent neuropsychologic assessment and preoperative functional magnetic resonance imaging using task (n-back) and resting-state scans. Thirteen patients had postoperative cognitive assessment. An index of patient-specific functional connectivity in the FPN was derived by averaging connectivity values between 2 prefrontal and 2 parietal cortex regions defined by activation during the n-back task. The relationship of these indices with cognitive performance was assessed. Higher average connectivity within the FPN is associated with lower composite cognitive scores. Higher connectivity of the parietal region of the tumor-affected hemisphere is associated specifically with lower fluid cognition. Lower connectivity of the parietal region of the nontumor hemisphere is associated with worse neuropsychologic outcome 1 month after surgery. Resting-state functional connectivity between key regions of the FPN is associated with cognitive performance in patients with glioma and is related to cognitive outcome following surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrated flight/propulsion control - Subsystem specifications for performance
NASA Technical Reports Server (NTRS)
Neighbors, W. K.; Rock, Stephen M.
1993-01-01
A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.
The assessment of function: How is it measured? A clinical perspective
Reiman, Michael P; Manske, Robert C
2011-01-01
Testing for outcome or performance can take many forms; including multiple iterations of self-reported measures of function (an assessment of the individual’s perceived dysfunction) and/or clinical special tests (which are primarily assessments of impairments). Typically absent within these testing mechanisms is whether or not one can perform a specific task associated with function. The paper will operationally define function, discuss the construct of function within the disablement model, will overview the multi-dimensional nature of ‘function’ as a concept, will examine the current evidence for functional testing methods, and will propose a functional testing continuum. Limitations of functional performance testing will be discussed including recommendations for future research. PMID:22547919
Aspects of Cognitive Functioning in Adults with Intellectual Disabilities
ERIC Educational Resources Information Center
Perkins, Elizabeth A.; Small, Brent J.
2006-01-01
Recently, more attention is being given to identifying aging-related and dementia-related pathological changes in performance and cognition among persons with intellectual disabilities (ID). This literature review examines age-related differences in specific aspects of cognitive functioning and cognitive performance of people with ID and…
What Have Paralegals Done?; A Dictionary of Functions.
ERIC Educational Resources Information Center
Statsky, William P.
The document describes the field of paralegalism in terms of what tasks paralegals, or legal assistants, have performed. The contents are based on surveys (seven specifically identified), journals, internal memoranda, and personal contact through the staff of the National Paralegal Institute. Specific tasks performed by paralegals are listed in…
PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 2
NASA Technical Reports Server (NTRS)
Barker, F. C.
1978-01-01
The data handling subsystem, command subsystem, communications subsystem, power subsystem, and mission operations of the Pioneer Venus multiprobe are presented. The multiprobe spacecraft performance in normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission is described.
Functional MRI registration with tissue-specific patch-based functional correlation tensors.
Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang
2018-06-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Site-specific genome modification is an important tool for mosquito functional genomics studies that help to uncover gene functions, identify gene regulatory elements, and perform comparative gene expression studies, all of which contribute to a better understanding of mosquito biology and are thus ...
Maciejewski, Matthew L.; Liu, Chuan-Fen; Fihn, Stephan D.
2009-01-01
OBJECTIVE—To compare the ability of generic comorbidity and risk adjustment measures, a diabetes-specific measure, and a self-reported functional status measure to explain variation in health care expenditures for individuals with diabetes. RESEARCH DESIGN AND METHODS—This study included a retrospective cohort of 3,092 diabetic veterans participating in a multisite trial. Two comorbidity measures, four risk adjusters, a functional status measure, a diabetes complication count, and baseline expenditures were constructed from administrative and survey data. Outpatient, inpatient, and total expenditure models were estimated using ordinary least squares regression. Adjusted R2 statistics and predictive ratios were compared across measures to assess overall explanatory power and explanatory power of low- and high-cost subgroups. RESULTS—Administrative data–based risk adjusters performed better than the comorbidity, functional status, and diabetes-specific measures in all expenditure models. The diagnostic cost groups (DCGs) measure had the greatest predictive power overall and for the low- and high-cost subgroups, while the diabetes-specific measure had the lowest predictive power. A model with DCGs and the diabetes-specific measure modestly improved predictive power. CONCLUSIONS—Existing generic measures can be useful for diabetes-specific research and policy applications, but more predictive diabetes-specific measures are needed. PMID:18945927
Dym, R Joshua; Burns, Judah; Freeman, Katherine; Lipton, Michael L
2011-11-01
To perform a systematic review and meta-analysis to quantitatively assess functional magnetic resonance (MR) imaging lateralization of language function in comparison with the Wada test. This study was determined to be exempt from review by the institutional review board. A systematic review and meta-analysis were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A structured Medline search was conducted to identify all studies that compared functional MR imaging with the Wada test for determining hemispheric language dominance prior to brain surgery. Studies meeting predetermined inclusion criteria were selected independently by two radiologists who also assessed their quality using the Quality Assessment of Diagnostic Accuracy Studies tool. Language dominance was classified as typical (left hemispheric language dominance) or atypical (right hemispheric language dominance or bilateral language representation) for each patient. A meta-analysis was then performed by using a bivariate random-effects model to derive estimates of sensitivity and specificity, with Wada as the standard of reference. Subgroup analyses were also performed to compare the different functional MR imaging techniques utilized by the studies. Twenty-three studies, comprising 442 patients, met inclusion criteria. The sensitivity and specificity of functional MR imaging for atypical language dominance (compared with the Wada test) were 83.5% (95% confidence interval: 80.2%, 86.7%) and 88.1% (95% confidence interval: 87.0%, 89.2%), respectively. Functional MR imaging provides an excellent, noninvasive alternative for language lateralization and should be considered for the initial preoperative assessment of hemispheric language dominance. Further research may help determine which functional MR methods are most accurate for specific patient populations. RSNA, 2011
The Family Therapist as Intermediary
ERIC Educational Resources Information Center
Hurvitz, Nathan
1974-01-01
The family therapist performs specific activities associated with his functions as a therapist, consultant, and intermediary. The intermediary function is based upon concepts associated with symbolic interactionism. (Author)
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... subpart must meet the following requirements: (1) It must be specifically approved for— (i) The program... maintain the performance, functional, and other characteristics that are required for approval. (3... conform with any modification to the aircraft being simulated that changes the performance, functional, or...
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
NASA Astrophysics Data System (ADS)
Zainudin, Nor Syuhada; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad
2017-04-01
Surface functionalization has emerged as a powerful tool for mapping limitless surface-cell membrane interaction in diverse biomolecular applications. Inhibition of non-specific biomolecular and cellular adhesion to solid surfaces is critical in improving the performance of some biomedical devices, particularly for in vitro bioassays. Some factors have to be paid particular attention in determining the right surface modification which are the types of surface, the methods and chemical solution that being used during the experimentation and also tools for analyzing the results. Improved surface functionalization technologies that provide better non-fouling performance in conjunction with specific attachment chemistries are sought for these applications. Hence, this paper serves as a review for multiple surface treatment methods including PEG grafting, adsorptive chemistries, self-assembled monolayers (SAMs) and plasma treatments.
High performance VLSI telemetry data systems
NASA Technical Reports Server (NTRS)
Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.
1990-01-01
NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.
Vazini Taher, Amir; Parnow, Abdolhossein
2017-05-01
Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.
Mornieux, Guillaume; Hirschmüller, Anja; Gollhofer, Albert; Südkamp, Norbert P; Maier, Dirk
2018-04-01
Functional evaluation of sensorimotor function of the shoulder joint is important for guidance of sports-specific training, prevention and rehabilitation of shoulder instability. Such assessment should be multimodal and comprise all qualities of sensorimotor shoulder function. This study evaluates feasibility of such multimodal assessment of glenohumeral sensorimotor function in patients with shoulder instability and handball players. Nine patients with untreated anterior instability of their dominant shoulder and 15 asymptomatic recreational handball players performed proprioceptive joint position sense and dynamic stabilization evaluations on an isokinetic device, as well as a functional throwing performance task. Outcome measures were analysed individually and equally weighted in a Shoulder-Specific Sensorimotor Index (S-SMI). Finally, isokinetic strength evaluations were conducted. We observed comparable sensorimotor functions of unstable dominant shoulders compared to healthy, contralateral shoulders (e.g. P=0.59 for S-SMI). Handball players demonstrated superior sensorimotor function of their dominant shoulders exhibiting a significantly higher throwing performance and S-SMI (P<0.001 and P=0.002, respectively), but comparable internal rotator peak torques for both shoulders (P>0.22). The present study proves feasibility of multimodal assessment of shoulder sensorimotor function in overhead athletes and patients with symptomatic anterior shoulder instability. Untreated shoulder instability led to a loss of dominance-related sensorimotor superiority indicating functional internal rotation deficiency. Dominant shoulders of handball players showed a superior overall sensorimotor function but weakness of dominant internal rotation constituting a risk factor for occurrence of posterior superior impingement syndrome. The S-SMI could serve as a diagnostic tool for guidance of sports-specific training, prevention and rehabilitation of shoulder instability.
Nutritional Supplements and the Brain.
Meeusen, Romain; Decroix, Lieselot
2018-03-01
Cognitive function plays an important role in athletic performance, and it seems that brain functioning can be influenced by nutrition and dietary components. Thus, the central nervous system might be manipulated through changes in diet or supplementation with specific nutrients including branched-chain amino acids, tyrosine, carbohydrates, and caffeine. Despite some evidence that branched-chained amino acids can influence ratings of perceived exertion and mental performance, several well-controlled studies have failed to demonstrate a positive effect on exercise performance. Evidence of an ergogenic benefit of tyrosine supplementation during prolonged exercise is limited. There is evidence that mild dehydration can impair cognitive performance and mood. The beneficial effect of carbohydrate supplementation during prolonged exercise could relate to increased substrate delivery for the brain, with numerous studies indicating that hypoglycemia affects brain function and cognitive performance. Caffeine can enhance performance and reduce perception of effort during prolonged exercise and will influence specific reward centers of the brain. Plant products and herbal extracts such as polyphenols, ginseng, ginkgo biloba, etc. are marketed as supplements to enhance performance. In several animal studies, positive effects of these products were shown, however the literature on their effects on sports performance is scarce. Polyphenols have the potential to protect neurons against injury induced by neurotoxins, suppress neuroinflammation, and to promote memory, learning, and cognitive function. In general, there remains a need for controlled randomized studies with a strong design, sufficient statistical power, and well-defined outcome measures before "claims" on its beneficial effects on brain functioning can be established.
Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping
2017-11-01
The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.
Donohoe, Gary; Corvin, Aiden; Robertson, Ian H
2006-01-01
Although deficits in executive functioning in schizophrenia have been consistently reported, their precise relationship to symptomatology remains unclear. Recent approaches to executive functioning in nonschizophrenia studies have aimed to "fractionate" the individual cognitive processes involved. In this study, we hypothesised that if these processes are fractionable, then particular symptom syndromes may be selectively related to executive deficits. In particular, it was hoped that this approach could clarify whether negative and positive symptoms of schizophrenia are differentially related to particular aspects of executive/attentional functions. A total of 32 patients with schizophrenia and 16 matched controls were assessed on a series of tasks designed to tap the theoretically derived executive functions of Inhibition, Shifting set, Working memory, and Sustained attention. Negative symptoms were significantly predicted by performance on an "Inhibition" task (Stroop), and not by performance on any other task. Furthermore, for a subgroup of patients with predominantly negative symptoms variance in positive symptoms was only significantly predicted by performance on a set-shifting task (Visual Elevator), and not by performance on other tasks, including inhibition. Our results support the contention that negative symptoms can, at least partly, be conceived of as cognitive behaviours expressing specific executive deficits. Specifically, we discuss the possibility that negative symptoms may, in part, express a failure in response monitoring. We further suggest that the disordered metacognition resulting in positive symptoms may be mediated by cognitive flexibility in patients with a predominantly negative symptom profile.
Lesson 7: From Requirements to Specific Solutions
CROMERR requirements set performance goals, they do not dictate specific system functions, operating procedures,system architecture, or technology. The task is to decide on a solution to meet the goals.
NASA Astrophysics Data System (ADS)
Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon
2017-11-01
Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).
Network dysfunction predicts speech production after left hemisphere stroke.
Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S
2016-03-09
To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. © 2016 American Academy of Neurology.
Network dysfunction predicts speech production after left hemisphere stroke
Leech, Robert; Wise, Richard J.S.
2016-01-01
Objective: To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. Methods: We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Results: Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Conclusions: Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. PMID:26962070
Effects of Fasting During Ramadan Month on Cognitive Function in Muslim Athletes
Tian, Ho-Heng; Aziz, Abdul-Rashid; Png, Weileen; Wahid, Mohamed Faizul; Yeo, Donald; Constance Png, Ai-Li
2011-01-01
Purpose Our study aimed to profile the effect of fasting during the Ramadan month on cognitive function in a group of healthy Muslim athletes. Methods Eighteen male athletes underwent computerized neuropsychological testing during (fasting) and after (non-fasting) Ramadan. Diet was standardized, and tests were performed at 0900h and 1600h to characterize potential time-of-day (TOD) interactions. Psychomotor function (processing speed), vigilance (visual attention), visual learning and memory, working memory (executive function), verbal learning and memory were examined. Capillary glucose, body temperature, urine specific gravity, and sleep volume were also recorded. Results Fasting effects were observed for psychomotor function (Cohen's d=1.3, P=0.01) and vigilance (d=0.6, P=0.004), with improved performance at 0900h during fasting; verbal learning and memory was poorer at 1600h (d=-0.8, P=0.03). A TOD effect was present for psychomotor function (d=-0.4, P<0.001), visual learning (d=-0.5, P=0.04), verbal learning and memory (d=-1.3, P=0.001), with poorer performances at 1600h. There was no significant fasting effect on visual learning and working memory. Conclusions Our results show that the effect of fasting on cognition is heterogeneous and domain-specific. Performance in functions requiring sustained rapid responses was better in the morning, declining in the late afternoon, whereas performance in non-speed dependent accuracy measures was more resilient. PMID:22375233
DOT National Transportation Integrated Search
2016-07-14
This report describes the system requirements specifications (SyRS) for the use of mobile devices in a connected vehicle environment. Specifically, it defines the different types of requirements (functional, interface, performance, security, data, an...
An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
Žváček, Clemens; Friedrichs, Gerald; Heizinger, Leonhard; Merkl, Rainer
2015-11-04
The central element of each enzyme is the catalytic site, which commonly catalyzes a single biochemical reaction with high specificity. It was unclear to us how often sites that catalyze the same or highly similar reactions evolved on different, i. e. non-homologous protein folds and how similar their 3D poses are. Both similarities are key criteria for assessing the usability of pose comparison for function prediction. We have analyzed the SCOP database on the superfamily level in order to estimate the number of non-homologous enzymes possessing the same function according to their EC number. 89% of the 873 substrate-specific functions (four digit EC number) assigned to mono-functional, single-domain enzymes were only found in one superfamily. For a reaction-specific grouping (three digit EC number), this value dropped to 35%, indicating that in approximately 65% of all enzymes the same function evolved in two or more non-homologous proteins. For these isofunctional enzymes, structural similarity of the catalytic sites may help to predict function, because neither high sequence similarity nor identical folds are required for a comparison. To assess the specificity of catalytic 3D poses, we compiled the redundancy-free set ENZ_SITES, which comprises 695 sites, whose composition and function are well-defined. We compared their poses with the help of the program Superpose3D and determined classification performance. If the sites were from different superfamilies, the number of true and false positive predictions was similarly high, both for a coarse and a detailed grouping of enzyme function. Moreover, classification performance did not improve drastically, if we additionally used homologous sites to predict function. For a large number of enzymatic functions, dissimilar sites evolved that catalyze the same reaction and it is the individual substrate that determines the arrangement of the catalytic site and its local environment. These substrate-specific requirements turn the comparison of catalytic residues into a weak classifier for the prediction of enzyme function.
Tebrügge, Sarah; Winkler, Angela; Gerards, Diana; Weimar, Christian; Moebus, Susanne; Jöckel, Karl-Heinz; Erbel, Raimund; Jokisch, Martha
2018-01-01
There is strong evidence for an association of olfactory dysfunction and neurodegenerative diseases. Studies on the association of olfaction and cognition in the general population are rare. To evaluate gender- and age-specific associations of olfactory function and cognitive performance in a well characterized population-based study sample. At the third examination of the Heinz Nixdorf Recall study (n = 3,087), 2,640 participants (48% men; 68.2±7.2 years) underwent Sniffin' Sticks Screening Test measuring olfactory function on a scale of 0-12 points. Olfactory function was rated as anosmic, hyposmic, or normosmic (≤6, 7-10 or ≥11 points, respectively). All participants performed eight validated cognitive subtests. Age- (55-64 years, 65-74 years, 75-86 years) and gender-stratified multivariate analysis of covariance was used to evaluate group differences in cognitive performance. Women showed better olfactory function than men (p < 0.001). For middle-aged participants, olfactory groups differed in almost all cognitive subtests. The analyses revealed no gender effects, although associations were slightly greater for women than for men. Anosmics showed the worst cognitive performance and normosmics showed the best cognitive performance. In the young- and old-aged groups, a quantitative association was found for anosmics in all subtests and for normosmics and hyposmics in almost all subtests. This is the first study reporting on age-specific associations of olfactory function and cognitive performance in the general population. The association found in middle-aged participants (65-74 years) may serve as a marker to improve identification of persons at high risk for cognitive decline and dementia.
Xu, Junhai; Yin, Xuntao; Ge, Haitao; Han, Yan; Pang, Zengchang; Tang, Yuchun; Liu, Baolin; Liu, Shuwei
2015-01-01
Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC). Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT) task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN). In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/VAN at rest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H
The questionnaire is the instrument used for recording performance data on the nuclear material protection, control, and accountability (MPC&A) system at a nuclear facility. The performance information provides a basis for evaluating the effectiveness of the MPC&A system. The goal for the questionnaire is to provide an accurate representation of the performance of the MPC&A system as it currently exists in the facility. Performance grades for all basic MPC&A functions should realistically reflect the actual level of performance at the time the survey is conducted. The questionnaire was developed after testing and benchmarking the material control and accountability (MC&A) systemmore » effectiveness tool (MSET) in the United States. The benchmarking exercise at the Idaho National Laboratory (INL) proved extremely valuable for improving the content and quality of the early versions of the questionnaire. Members of the INL benchmark team identified many areas of the questionnaire where questions should be clarified and areas where additional questions should be incorporated. The questionnaire addresses all elements of the MC&A system. Specific parts pertain to the foundation for the facility's overall MPC&A system, and other parts pertain to the specific functions of the operational MPC&A system. The questionnaire includes performance metrics for each of the basic functions or tasks performed in the operational MPC&A system. All of those basic functions or tasks are represented as basic events in the MPC&A fault tree. Performance metrics are to be used during completion of the questionnaire to report what is actually being done in relation to what should be done in the performance of MPC&A functions.« less
Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra
2017-08-16
Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .
The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
Displaying uncertainty: investigating the effects of display format and specificity.
Bisantz, Ann M; Marsiglio, Stephanie Schinzing; Munch, Jessica
2005-01-01
We conducted four studies regarding the representation of probabilistic information. Experiments 1 through 3 compared performance on a simulated stock purchase task, in which information regarding stock profitability was probabilistic. Two variables were manipulated: display format for probabilistic information (blurred and colored icons, linguistic phrases, numeric expressions, and combinations) and specificity level (in which the number and size of discrete steps into which the probabilistic information was mapped differed). Results indicated few performance differences attributable to display format; however, performance did improve with greater specificity. Experiment 4, in which participants generated membership functions corresponding to three display formats, found a high degree of similarity in functions across formats and participants and a strong relationship between the shape of the membership function and the intended meaning of the representation. These results indicate that participants can successfully interpret nonnumeric representations of uncertainty and can use such representations in a manner similar to the way numeric expressions are used in a decision-making task. Actual or potential applications of this research include the use of graphical representations of uncertainty in systems such as command and control and situation displays.
PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document
NASA Technical Reports Server (NTRS)
Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.
1978-01-01
The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.
Engeroff, Tobias; Ingmann, Tobias; Banzer, Winfried
2018-06-01
A growing body of literature suggests that physical activity might alleviate the age-related neurodegeneration and decline of cognitive function. However, most of this evidence is based on data investigating the association of exercise interventions or current physical activity behavior with cognitive function in elderly subjects. We performed a systematic review and hypothesize that physical activity during the adult life span is connected with maintained domain-specific cognitive functions during late adulthood defined as age 60+ years. We performed a systematic literature search up to November 2017 in PubMed, Web of Science, and Google Scholar without language limitations for studies analyzing the association of leisure physical activity during the adult life span (age 18+ years) and domain-specific cognitive functions in older adults (age 60+ years). The literature review yielded 14,294 articles and after applying inclusion and exclusion criteria, nine cross-sectional and 14 longitudinal studies were included. Moderate- and vigorous-intensity leisure physical activity was associated with global cognitive function and specific cognitive domains including executive functions and memory but not attention or working memory. Most studies assessed mid- to late-adulthood physical activity, thus information concerning the influence of young adult life-span physical activity is currently lacking. Observational evidence that moderate- and vigorous-intensity leisure physical activity is beneficially associated with maintained cognitive functions during old age is accumulating. Further studies are necessary to confirm a causal link by assessing objective physical activity data and the decline of cognitive functions at multiple time points during old age.
NASA Technical Reports Server (NTRS)
1979-01-01
The functional, performance, design, and test requirements for the Orbiter power extension package and its associated ground support equipment are defined. Both government and nongovernment standards and specifications are cited for the following subsystems: electrical power, structural/mechanical, avionics, and thermal control. Quality control assurance provisions and preparation for delivery are also discussed.
Knowles, Emma E M; Weiser, Mark; David, Anthony S; Glahn, David C; Davidson, Michael; Reichenberg, Abraham
2015-12-01
Substantial impairment in performance on the digit-symbol substitution task in patients with schizophrenia is well established, which has been widely interpreted as denoting a specific impairment in processing speed. However, other higher order cognitive functions might be more critical to performance on this task. To date, this idea has not been rigorously investigated in patients with schizophrenia. Neuropsychological measures of processing speed, memory, and executive functioning were completed by 125 patients with schizophrenia and 272 control subjects. We implemented a series of confirmatory factor and structural regression modeling to build an integrated model of processing speed, memory, and executive function with which to deconstruct the digit-symbol substitution task and characterize discrepancies between patients with schizophrenia and control subjects. The overall structure of the processing speed, memory, and executive function model was the same across groups (χ(2) = 208.86, p > .05), but the contribution of the specific cognitive domains to coding task performance differed significantly. When completing the task, control subjects relied on executive function and, indirectly, on working memory ability, whereas patients with schizophrenia used an alternative set of cognitive operations whereby they relied on the same processes required to complete verbal fluency tasks. Successful coding task performance relies predominantly on executive function, rather than processing speed or memory. Patients with schizophrenia perform poorly on this task because of an apparent lack of appropriate executive function input; they rely instead on an alternative cognitive pathway. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Functional Amyloids in Reproduction.
Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A
2017-06-29
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
A network function-based definition of communities in complex networks.
Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward
2012-09-01
We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.
König, H; Klose, K J
1999-04-01
The formulation of requirements is necessary to control the goals of a PACS project. Furthermore, in this way, the scope of functionality necessary to support radiological working processes becomes clear. Definitions of requirements and specification are formulated independently of systems according to the IEEE standard "Recommended Practice for Software Requirements Specifications". Definitions are given in the Request for Information, specifications in the Request for Proposal. Functional and non-functional requirements are distinguished. The solutions are rated with respect to scope, appropriateness and quality of implementation. A PACS checklist was created according to the methods described above. It is published on the homepage of the "Arbeitsgemeinschaft Informationstechnologie" (AGIT) within the "Deutsche Röntgengesellschaft" (DRG) (http://www.uni-marburg.de/mzr/agit). The checklist provides a discussion forum which should contribute to an agreement on accepted basic PACS functionalities.
ERIC Educational Resources Information Center
Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody
2015-01-01
This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician)…
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2016-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Genetics Home Reference: CLN4 disease
... with each other. Specifically, CSPα is involved in recycling certain proteins that are involved in nerve impulse ... protein cannot perform its function, which reduces protein recycling, causing a shortage (deficiency) of functional proteins needed ...
Functional and physical abilities in the early continuum of cognitive decline.
Shin, Joon-Ho; Lim, Jae-Young; Kim, Ki Woong; Kim, Suyoung; Lee, Jaebong; Paik, Nam-Jong
2015-01-01
The early cognitive continuum has been emphasized recently. We sought to characterize the functional and physical aspects of the cognitive continuum in subjects with no cognitive impairment (NCI), subjective cognitive impairment (SCI), nonamnestic (NA-MCI), and amnestic mild cognitive impairment (A-MCI). Furthermore, we identified the potential diagnostic utility of specific functional tasks. A total of 702 participants, aged ≥65 years and defined as NCI, SCI, NA-MCI, and A-MCI according to the original Petersen criteria, were included. They completed the Korean basic (K-ADL) and Instrumental Activities of Daily Living Scales (K-IADL) and the Performance-Oriented Mobility Assessment (POMA). Significant differences were observed between the different cognitive status groups in three items and total scores on the K-ADL, six items and total scores on the K-IADL and POMA. Controlling for confounding factors revealed that subjects from the A-MCI group performed poorly at bathing, shopping, handling money, and the sum of assorted functional items. These findings demonstrated the declining feature of functional and physical performance according to the cognitive continuum, with A-MCI being discriminative with respect to specific functional tasks as compared to milder cognitive statuses. © 2014 S. Karger AG, Basel.
Iversen, Maura D; Price, Lori Lyn; von Heideken, Johan; Harvey, William F; Wang, Chenchen
2016-07-12
Many physical examination (PE) maneuvers exist to assess knee function, none of which are specific to knee osteoarthritis (KOA). The Osteoarthritis Research Society International also recommends the use of six functional performance measures to assess function in adults with KOA. While earlier studies have examined the relationship between PE findings and self-reported function or PE findings and select performance tests in adults with knee pain and KOA, few have examined the all three types of measures. This cross-sectional study specifically examines the relationships between results of PE findings, functional performance tests and self-reported function in adults with symptomatic KOA. We used baseline PE data from a prospective randomized controlled trial in 87 participants aged ≥40 years with symptomatic and radiographic KOA. The PE performed by three experienced physical therapists included: muscle assessment, function and special tests. Participants also completed functional performance tests and the Western Ontario and McMaster Osteoarthritis Index (WOMAC). Multivariate linear regression identified contributions of PE findings towards functional performance and WOMAC scores, adjusting for age and gender. Participants' mean age was 60.4 years (SD = 10.5), mean disease duration was 8.4 years (SD = 10.1) and 27 participants had varus knee alignment. Mean WOMAC pain and function scores were 211 (SD = 113) and 709 (SD = 394), respectively. Weakness was present in major hip and knee muscles. Seventy-nine participants had a positive Ely's, 65 a positive Waldron and 49 a positive Grind. Mean 6-min walk was 404 m (SD = 83) and mean Berg Balance was 53 (SD = 4). Regression analysis identified positive findings on 5 special tests (P < 0.05) as indicative of poorer 6 min walk. Positive Apley's was associated (P < 0.05) with slower 20 m walk and a positive Ober with poorer balance scores (P < 0.05). Diminished hip muscle strength and flexibility, and patella dysfunction were prevalent in these adults with symptomatic KOA. Results of functional performance tests suggest balance and walking ability are impaired and are associated with PE findings of muscle length imbalance, hip muscle weakness and patella dysfunction. None of the PE measures were associated with self-reported function. Therefore, performance-based test results may be more useful in informing rehabilitation interventions.
Master, Hiral; Thoma, Louise M; Christiansen, Meredith B; Polakowski, Emily; Schmitt, Laura A; White, Daniel K
2018-07-01
Evidence of physical function difficulties, such as difficulty rising from a chair, may limit daily walking for people with knee osteoarthritis (OA). The purpose of this study was to identify minimum performance thresholds on clinical tests of physical function predictive to walking ≥6,000 steps/day. This benchmark is known to discriminate people with knee OA who develop functional limitation over time from those who do not. Using data from the Osteoarthritis Initiative, we quantified daily walking as average steps/day from an accelerometer (Actigraph GT1M) worn for ≥10 hours/day over 1 week. Physical function was quantified using 3 performance-based clinical tests: 5 times sit-to-stand test, walking speed (tested over 20 meters), and 400-meter walk test. To identify minimum performance thresholds for daily walking, we calculated physical function values corresponding to high specificity (80-95%) to predict walking ≥6,000 steps/day. Among 1,925 participants (mean ± SD age 65.1 ± 9.1 years, mean ± SD body mass index 28.4 ± 4.8 kg/m 2 , and 55% female) with valid accelerometer data, 54.9% walked ≥6,000 steps/day. High specificity thresholds of physical function for walking ≥6,000 steps/day ranged 11.4-14.0 seconds on the 5 times sit-to-stand test, 1.13-1.26 meters/second for walking speed, or 315-349 seconds on the 400-meter walk test. Not meeting these minimum performance thresholds on clinical tests of physical function may indicate inadequate physical ability to walk ≥6,000 steps/day for people with knee OA. Rehabilitation may be indicated to address underlying impairments limiting physical function. © 2017, American College of Rheumatology.
Véliz, Pedro L; Berra, Esperanza M; Jorna, Ana R
2015-07-01
INTRODUCTION Medical specialties' core curricula should take into account functions to be carried out, positions to be filled and populations to be served. The functions in the professional profile for specialty training of Cuban intensive care and emergency medicine specialists do not include all the activities that they actually perform in professional practice. OBJECTIVE Define the specific functions and procedural skills required of Cuban specialists in intensive care and emergency medicine. METHODS The study was conducted from April 2011 to September 2013. A three-stage methodological strategy was designed using qualitative techniques. By purposive maximum variation sampling, 82 professionals were selected. Documentary analysis and key informant criteria were used in the first stage. Two expert groups were formed in the second stage: one used various group techniques (focus group, oral and written brainstorming) and the second used a three-round Delphi method. In the final stage, a third group of experts was questioned in semistructured in-depth interviews, and a two-round Delphi method was employed to assess priorities. RESULTS Ultimately, 78 specific functions were defined: 47 (60.3%) patient care, 16 (20.5%) managerial, 6 (7.7%) teaching, and 9 (11.5%) research. Thirty-one procedural skills were identified. The specific functions and procedural skills defined relate to the profession's requirements in clinical care of the critically ill, management of patient services, teaching and research at the specialist's different occupational levels. CONCLUSIONS The specific functions and procedural skills required of intensive care and emergency medicine specialists were precisely identified by a scientific method. This product is key to improving the quality of teaching, research, administration and patient care in this specialty in Cuba. The specific functions and procedural skills identified are theoretical, practical, methodological and social contributions to inform future curricular reform and to help intensive care specialists enhance their performance in comprehensive patient care. KEYWORDS Intensive care, urgent care, emergency medicine, continuing medical education, curriculum, diagnostic techniques and procedures, medical residency, Cuba.
Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System
NASA Technical Reports Server (NTRS)
White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.
2007-01-01
The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.
Functional Performance Evaluation
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.; Hayes, Judith C.; Siconolfi, Steven F.; Moore, Alan D.
1999-01-01
The Extended Duration Orbiter Medical Project (EDOMP) was established to address specific issues associated with optimizing the ability of crews to complete mission tasks deemed essential to entry, landing, and egress for spaceflights lasting up to 16 days. The main objectives of this functional performance evaluation were to investigate the physiological effects of long-duration spaceflight on skeletal muscle strength and endurance, as well as aerobic capacity and orthostatic function. Long-duration exposure to a microgravity environment may produce physiological alterations that affect crew ability to complete critical tasks such as extravehicular activity (EVA), intravehicular activity (IVA), and nominal or emergency egress. Ultimately, this information will be used to develop and verify countermeasures. The answers to three specific functional performance questions were sought: (1) What are the performance decrements resulting from missions of varying durations? (2) What are the physical requirements for successful entry, landing, and emergency egress from the Shuttle? and (3) What combination of preflight fitness training and in-flight countermeasures will minimize in-flight muscle performance decrements? To answer these questions, the Exercise Countermeasures Project looked at physiological changes associated with muscle degradation as well as orthostatic intolerance. A means of ensuring motor coordination was necessary to maintain proficiency in piloting skills, EVA, and IVA tasks. In addition, it was necessary to maintain musculoskeletal strength and function to meet the rigors associated with moderate altitude bailout and with nominal or emergency egress from the landed Orbiter. Eight investigations, referred to as Detailed Supplementary Objectives (DSOs) 475, 476, 477, 606, 608, 617, 618, and 624, were conducted to study muscle degradation and the effects of exercise on exercise capacity and orthostatic function (Table 3-1). This chapter is divided into three parts. Part 1 describes specific findings from studies of muscle strength, endurance, fiber size, and volume. Part 2 describes results from studies of how in-flight exercise affects postflight exercise capacity and orthostatic function. Part 3 focuses on the development of new noninvasive methods for assessing body composition in astronauts and how those methods can be used to correlate measures of exercise performance and changes in body composition.
Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette
2017-09-01
Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.
Ghorbanpour, Arsalan; Azghani, Mahmoud Reza; Taghipour, Mohammad; Salahzadeh, Zahra; Ghaderi, Fariba; Oskouei, Ali E
2018-04-01
[Purpose] The aim of this study was to compare the effects of "McGill stabilization exercises" and "conventional physiotherapy" on pain, functional disability and active back flexion and extension range of motion in patients with chronic non-specific low back pain. [Subjects and Methods] Thirty four patients with chronic non-specific low back pain were randomly assigned to McGill stabilization exercises group (n=17) and conventional physiotherapy group (n=17). In both groups, patients performed the corresponding exercises for six weeks. The visual analog scale (VAS), Quebec Low Back Pain Disability Scale Questionnaire and inclinometer were used to measure pain, functional disability, and active back flexion and extension range of motion, respectively. [Results] Statistically significant improvements were observed in pain, functional disability, and active back extension range of motion in McGill stabilization exercises group. However, active back flexion range of motion was the only clinical symptom that statistically increased in patients who performed conventional physiotherapy. There was no significant difference between the clinical characteristics while compared these two groups of patients. [Conclusion] The results of this study indicated that McGill stabilization exercises and conventional physiotherapy provided approximately similar improvement in pain, functional disability, and active back range of motion in patients with chronic non-specific low back pain. However, it appears that McGill stabilization exercises provide an additional benefit to patients with chronic non-specific low back, especially in pain and functional disability improvement.
Littlepage, Glenn E; Hein, Michael B; Moffett, Richard G; Craig, Paul A; Georgiou, Andrea M
2016-12-01
This study evaluates the effectiveness of a training program designed to improve cross-functional coordination in airline operations. Teamwork across professional specializations is essential for safe and efficient airline operations, but aviation education primarily emphasizes positional knowledge and skill. Although crew resource management training is commonly used to provide some degree of teamwork training, it is generally focused on specific specializations, and little training is provided in coordination across specializations. The current study describes and evaluates a multifaceted training program designed to enhance teamwork and team performance of cross-functional teams within a simulated airline flight operations center. The training included a variety of components: orientation training, position-specific declarative knowledge training, position-specific procedural knowledge training, a series of high-fidelity team simulations, and a series of after-action reviews. Following training, participants demonstrated more effective teamwork, development of transactive memory, and more effective team performance. Multifaceted team training that incorporates positional training and team interaction in complex realistic situations and followed by after-action reviews can facilitate teamwork and team performance. Team training programs, such as the one described here, have potential to improve the training of aviation professionals. These techniques can be applied to other contexts where multidisciplinary teams and multiteam systems work to perform highly interdependent activities. © 2016, Human Factors and Ergonomics Society.
Li, Q; He, Y L; Wang, Y; Tao, W Q
2007-11-01
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
Psychological Disorders and Functional Limitations
ERIC Educational Resources Information Center
Brentar, John T.
2008-01-01
Psychological disorders lead to functional limitations that can impact a student's performance in school. These students are eligible for accommodations if they can demonstrate that a specific disability exists and that it substantially limits one or more major life activity. The most common functional limitations reported by this population…
41 CFR 105-54.101 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... primary function is to render a public service in connection with a Federal program; (c) A State or local... committee that is established to perform primarily operational as opposed to advisory functions. Operational functions are those specifically provided by law, such as making or implementing Government decisions or...
41 CFR 105-54.101 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... primary function is to render a public service in connection with a Federal program; (c) A State or local... committee that is established to perform primarily operational as opposed to advisory functions. Operational functions are those specifically provided by law, such as making or implementing Government decisions or...
41 CFR 105-54.101 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary function is to render a public service in connection with a Federal program; (c) A State or local... committee that is established to perform primarily operational as opposed to advisory functions. Operational functions are those specifically provided by law, such as making or implementing Government decisions or...
41 CFR 105-54.101 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... primary function is to render a public service in connection with a Federal program; (c) A State or local... committee that is established to perform primarily operational as opposed to advisory functions. Operational functions are those specifically provided by law, such as making or implementing Government decisions or...
DOT National Transportation Integrated Search
1969-04-01
Aviation occupations often require the performance of tasks under stressful conditions. Attempts to relate differences among individuals in performance under stress to personality variables have generally not been successful. Based upon responses to ...
Barttfeld, Pablo; Wicker, Bruno; McAleer, Phil; Belin, Pascal; Cojan, Yann; Graziano, Martín; Leiguarda, Ramón; Sigman, Mariano
2013-01-01
The degree of correspondence between objective performance and subjective beliefs varies widely across individuals. Here we demonstrate that functional brain network connectivity measured before exposure to a perceptual decision task covaries with individual objective (type-I performance) and subjective (type-II performance) accuracy. Increases in connectivity with type-II performance were observed in networks measured while participants directed attention inward (focus on respiration), but not in networks measured during states of neutral (resting state) or exogenous attention. Measures of type-I performance were less sensitive to the subjects’ specific attentional states from which the networks were derived. These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states. PMID:23801762
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Li, Fan-Hui
2010-11-01
Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.
Webb, Taylor W.; Kelly, Yin T.; Graziano, Michael S. A.
2016-01-01
Abstract The temporoparietal junction (TPJ) is activated in association with a large range of functions, including social cognition, episodic memory retrieval, and attentional reorienting. An ongoing debate is whether the TPJ performs an overarching, domain-general computation, or whether functions reside in domain-specific subdivisions. We scanned subjects with fMRI during five tasks known to activate the TPJ, probing social, attentional, and memory functions, and used data-driven parcellation (independent component analysis) to isolate task-related functional processes in the bilateral TPJ. We found that one dorsal component in the right TPJ, which was connected with the frontoparietal control network, was activated in all of the tasks. Other TPJ subregions were specific for attentional reorienting, oddball target detection, or social attribution of belief. The TPJ components that participated in attentional reorienting and oddball target detection appeared spatially separated, but both were connected with the ventral attention network. The TPJ component that participated in the theory-of-mind task was part of the default-mode network. Further, we found that the BOLD response in the domain-general dorsal component had a longer latency than responses in the domain-specific components, suggesting an involvement in distinct, perhaps postperceptual, computations. These findings suggest that the TPJ performs both domain-general and domain-specific computations that reside within spatially distinct functional components. PMID:27280153
EXECUTIVE FUNCTION PROFILES IN CHILDREN WITH AND WITHOUT SPECIFIC LANGUAGE IMPAIRMENT
Marton, Klara; Campanelli, Luca; Scheuer, Jessica; Yoon, Jungmee; Eichorn, Naomi
2013-01-01
We present findings from a study that focused on specific executive functions (EF) in children with and without specific language impairment (SLI). We analyzed performance patterns and EF profiles (spatial working memory, inhibition control, and sustained attention) in school-age SLI children and two control groups: age-matched and language matched. Our main research goal was to identify those EFs that show a weakness in children with SLI. Our specific aims were to: (1) examine whether the EF problems in children with SLI are domain-general; (2) examine whether deficits in EF in children with SLI can be explained by the general slowness hypothesis or by an overall delay in development; (3) compare EF profiles to examine whether children with SLI show a distinct pattern of performance from their peers. Our findings showed different EF profiles for the groups. We observed differences in performance patterns related to age (e.g., reaction time in response inhibition) and differences related to language status (e.g., sensitivity to interference). The findings show interesting associations in EFs that play a crucial role in language processing. PMID:25302062
NASA Technical Reports Server (NTRS)
Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.
1981-01-01
The software modules which comprise the IGDS/TRAP Interface Program are described. A hierarchical input processing output (HIPO) chart for each user command is given. The description consists of: (1) function of the user command; (2) calling sequence; (3) moduls which call this use command; (4) modules called by this user command; (5) IGDS commands used by this user command; and (6) local usage of global registers. Each HIPO contains the principal functions performed within the module. Also included with each function are a list of the inputs which may be required to perform the function and a list of the outputs which may be created as a result of performing the function.
Darbin, Olivier; Gubler, Coral; Naritoku, Dean; Dees, Daniel; Martino, Anthony; Adams, Elizabeth
2016-01-01
This study describes a cost-effective screening protocol for parkinsonism based on combined objective and subjective monitoring of balance function. Objective evaluation of balance function was performed using a game industry balance board and an automated analyses of the dynamic of the center of pressure in time, frequency, and non-linear domains collected during short series of stand up tests with different modalities and severity of sensorial deprivation. The subjective measurement of balance function was performed using the Dizziness Handicap Inventory questionnaire. Principal component analyses on both objective and subjective measurements of balance function allowed to obtained a specificity and selectivity for parkinsonian patients (vs. healthy subjects) of 0.67 and 0.71 respectively. The findings are discussed regarding the relevance of cost-effective balance-based screening system as strategy to meet the needs of broader and earlier screening for parkinsonism in communities with limited access to healthcare.
Manipulating motor performance and memory through real-time fMRI neurofeedback.
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-05-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Manipulating motor performance and memory through real-time fMRI neurofeedback
Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus
2015-01-01
Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342
Functional Thinking for Managing Challenging Behavior
ERIC Educational Resources Information Center
Allday, R. Allan
2018-01-01
Challenging student behavior remains one of the biggest trials for classroom teachers. Understanding why a student performs a specific behavior is important in determining how to develop an intervention that targets the function of the behavior. This column focuses on how thinking functionally about behavior can help teachers understand why…
Role of Performance Goals in Prose Learning
ERIC Educational Resources Information Center
LaPorte, Ronald E.; Nath, Raghu
1976-01-01
Investigates a subject's internalized goals and the relationship of the goals to test performance as a function of different learning instructions. Stating specific goals was found to produce the most significant results among subjects. (Author/DEP)
Integrating evolutionary and functional approaches to infer adaptation at specific loci.
Storz, Jay F; Wheat, Christopher W
2010-09-01
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study
NASA Astrophysics Data System (ADS)
Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-05-01
First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.
ERIC Educational Resources Information Center
Quinones, William A.
This document is a guide developed for the Dallas Independent School District's (DISD's) Multiple Careers Magnet Center, which provides special education students with training in standards of work performance and specific occupational skills for successful transition to community life and employment. The document also provides information for…
FunShift: a database of function shift analysis on protein subfamilies
Abhiman, Saraswathi; Sonnhammer, Erik L. L.
2005-01-01
Members of a protein family normally have a general biochemical function in common, but frequently one or more subgroups have evolved a slightly different function, such as different substrate specificity. It is important to detect such function shifts for a more accurate functional annotation. The FunShift database described here is a compilation of function shift analysis performed between subfamilies in protein families. It consists of two main components: (i) subfamilies derived from protein domain families and (ii) pairwise subfamily comparisons analyzed for function shift. The present release, FunShift 12, was derived from Pfam 12 and consists of 151 934 subfamilies derived from 7300 families. We carried out function shift analysis by two complementary methods on families with up to 500 members. From a total of 179 210 subfamily pairs, 62 384 were predicted to be functionally shifted in 2881 families. Each subfamily pair is provided with a markup of probable functional specificity-determining sites. Tools for searching and exploring the data are provided to make this database a valuable resource for protein function annotation. Knowledge of these functionally important sites will be useful for experimental biologists performing functional mutation studies. FunShift is available at http://FunShift.cgb.ki.se. PMID:15608176
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.
2011-01-01
We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Cognition in Males and Females with Autism: Similarities and Differences
Lai, Meng-Chuan; Lombardo, Michael V.; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Wheelwright, Sally J.; Auyeung, Bonnie; Allison, Carrie; Baron-Cohen, Simon
2012-01-01
The male bias in autism spectrum conditions (ASC) has led to females with ASC being under-researched. This lack of attention to females could hide variability due to sex that may explain some of the heterogeneity within ASC. In this study we investigate four key cognitive domains (mentalizing and emotion perception, executive function, perceptual attention to detail, and motor function) in ASC, to test for similarities and differences between males and females with and without ASC (n = 128 adults; n = 32 per group). In the mentalizing and facial emotion perception domain, males and females with ASC showed similar deficits compared to neurotypical controls. However, in attention to detail and dexterity involving executive function, although males with ASC showed poorer performance relative to neurotypical males, females with ASC performed comparably to neurotypical females. We conclude that performance in the social-cognitive domain is equally impaired in male and female adults with ASC. However, in specific non-social cognitive domains, performance within ASC depends on sex. This suggests that in specific domains, cognitive profiles in ASC are modulated by sex. PMID:23094036
Executive Function and Children's Understanding of False Belief: How Specific Is the Relation?
ERIC Educational Resources Information Center
Muller, U.; Zelazo, P.D.; Imrisek, S.
2005-01-01
The present study examined developmental relations among understanding false belief, understanding ''false'' photographs, performance on the Dimensional Change Card Sort (DCCS), and performance on a picture-sentence verification task in 69 3-5-year-old children. Results showed that performance on the DCCS predicted performance on false belief…
Labudda, Kirsten; von Rothkirch, Nadine; Pawlikowski, Mirko; Laier, Christian; Brand, Matthias
2010-06-01
To investigate whether patients with alcohol-related Korsakoff syndrome (KR) have emotion-specific or general deficits in multicategoric classification performance. Earlier studies have shown reduced performance in classifying stimuli according to their emotional valence in patients with KS. However, it is unclear whether such classification deficits are of emotion-specific nature or whether they can also occur when nonemotional classifications are demanded. In this study, we examined 35 patients with alcoholic KS and 35 healthy participants with the Emotional Picture Task (EPT) to assess valence classification performance, the Semantic Classification Task (SCT) to assess nonemotional categorizations, and an extensive neuropsychologic test battery. KS patients exhibited lower classification performance in both tasks compared with the healthy participants. EPT and SCT performance were related to each other. EPT and SCT performance correlated with general knowledge and EPT performance in addition with executive functions. Our results indicate a common underlying mechanism of the patients' reductions in emotional and nonemotional classification performance. These deficits are most probably based on problems in retrieving object and category knowledge and, partially, on executive functioning.
Material-specific difficulties in episodic memory tasks in mild traumatic brain injury.
Tsirka, Vassiliki; Simos, Panagiotis; Vakis, Antonios; Vourkas, Michael; Arzoglou, Vasileios; Syrmos, Nikolaos; Stavropoulos, Stavros; Micheloyannis, Sifis
2010-03-01
The study examines acute, material-specific secondary memory performance in 26 patients with mild traumatic brain injury (MTBI) and 26 healthy controls, matched on demographic variables and indexes of crystallized intelligence. Neuropsychological tests were used to evaluate primary and secondary memory, executive functions, and verbal fluency. Participants were also tested on episodic memory tasks involving words, pseudowords, pictures of common objects, and abstract kaleidoscopic images. Patients showed reduced performance on episodic memory measures, and on tasks associated with visuospatial processing and executive function (Trail Making Test part B, semantic fluency). Significant differences between groups were also noted for correct rejections and response bias on the kaleidoscope task. MTBI patients' reduced performance on memory tasks for complex, abstract stimuli can be attributed to a dysfunction in the strategic component of memory process.
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.
1985-01-01
The present study explored eye scan behavior as a function of level of subject training. Oculometric (eye scan) measures were recorded from each of ten subjects during training trials on a CRT based flight simulation task. The task developed for the study incorporated subtasks representative of specific activities performed by pilots, but which could be performed at asymptotic levels within relatively short periods of training. Changes in eye scan behavior were examined as initially untrained subjects developed skill in the task. Eye scan predictors of performance on the task were found. Examination of eye scan in proximity to selected task events revealed differences in the distribution of looks at the instruments as a function of level of training.
Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V
2016-07-01
In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.
Erdodi, Laszlo A; Sagar, Sanya; Seke, Kristian; Zuccato, Brandon G; Schwartz, Eben S; Roth, Robert M
2018-06-01
This study was designed to develop performance validity indicators embedded within the Delis-Kaplan Executive Function Systems (D-KEFS) version of the Stroop task. Archival data from a mixed clinical sample of 132 patients (50% male; M Age = 43.4; M Education = 14.1) clinically referred for neuropsychological assessment were analyzed. Criterion measures included the Warrington Recognition Memory Test-Words and 2 composites based on several independent validity indicators. An age-corrected scaled score ≤6 on any of the 4 trials reliably differentiated psychometrically defined credible and noncredible response sets with high specificity (.87-.94) and variable sensitivity (.34-.71). An inverted Stroop effect was less sensitive (.14-.29), but comparably specific (.85-90) to invalid performance. Aggregating the newly developed D-KEFS Stroop validity indicators further improved classification accuracy. Failing the validity cutoffs was unrelated to self-reported depression or anxiety. However, it was associated with elevated somatic symptom report. In addition to processing speed and executive function, the D-KEFS version of the Stroop task can function as a measure of performance validity. A multivariate approach to performance validity assessment is generally superior to univariate models. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
47 CFR 32.2 - Basis of the accounts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... intended to permit technological distinctions. Similarly, the primary bases of plant operations, customer... in the past, specific organizations may have performed specific functions, the future environment... technological view of the telecommunications industry. This view will provide a stable and consistent foundation...
47 CFR 32.2 - Basis of the accounts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... intended to permit technological distinctions. Similarly, the primary bases of plant operations, customer... in the past, specific organizations may have performed specific functions, the future environment... technological view of the telecommunications industry. This view will provide a stable and consistent foundation...
47 CFR 32.2 - Basis of the accounts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... intended to permit technological distinctions. Similarly, the primary bases of plant operations, customer... in the past, specific organizations may have performed specific functions, the future environment... technological view of the telecommunications industry. This view will provide a stable and consistent foundation...
Motor-cognitive dual-task deficits in individuals with early-mid stage Huntington disease.
Fritz, Nora E; Hamana, Katy; Kelson, Mark; Rosser, Anne; Busse, Monica; Quinn, Lori
2016-09-01
Huntington disease (HD) results in a range of cognitive and motor impairments that progress throughout the disease stages; however, little research has evaluated specific dual-task abilities in this population, and the degree to which they may be related to functional ability. The purpose of this study was to a) examine simple and complex motor-cognitive dual-task performance in individuals with HD, b) determine relationships between dual-task walking ability and disease-specific measures of motor, cognitive and functional ability, and c) examine the relationship of dual-task measures to falls in individuals with HD. Thirty-two individuals with HD were evaluated for simple and complex dual-task ability using the Walking While Talking Test. Demographics and disease-specific measures of motor, cognitive and functional ability were also obtained. Individuals with HD had impairments in simple and complex dual-task ability. Simple dual-task walking was correlated to disease-specific motor scores as well as cognitive performance, but complex dual-task walking was correlated with total functional capacity, as well as a range of cognitive measures. Number of prospective falls was moderately-strongly correlated to dual-task measures. Our results suggest that individuals with HD have impairments in cognitive-motor dual-task ability that are related to disease progression and specifically functional ability. Dual-task measures appear to evaluate a unique construct in individuals with early to mid-stage HD, and may have value in improving the prediction of falls risk in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Social cognition in bipolar disorder: Focus on emotional intelligence.
Varo, C; Jimenez, E; Solé, B; Bonnín, C M; Torrent, C; Valls, E; Morilla, I; Lahera, G; Martínez-Arán, A; Vieta, E; Reinares, M
2017-08-01
The present study aims to characterize emotional intelligence (EI) variability in a sample of euthymic bipolar disorder (BD) patients through the Mayer- Salovey-Caruso Emotional Intelligence Test (MSCEIT). A total of 134 euthymic BD outpatients were recruited and divided into three groups according to the total Emotional Intelligence Quotient (EIQ) score of the MSCEIT, following a statistical criterion of scores 1.5SDs above/below the normative group mean, as follows: a low performance (LP) group (EIQ <85), a normal performance (NP) group (85≤EIQ≤115), and a high performance (HP) group (EIQ >115). Afterwards, main sociodemographic, clinical, functional and neurocognitive variables were compared between the groups. Three groups were identified: 1) LP group (n=16, 12%), 2) NP group (n=93, 69%) and 3) HP group (n=25, 19%). There were significant differences between the groups in premorbid intelligence quotient (IQ) (p=0.010), axis II comorbidity (p=0.008), subthreshold depressive symptoms (p=0.027), general functioning (p=0.013) and in four specific functional domains: autonomy, occupation, interpersonal relations and leisure time. Significant differences in neurocognitive performance were found between groups with the LP group showing the lowest attainments. The cross-sectional design of the study. Our results suggest that EI variability among BD patients, assessed through MSCEIT, is lower than expected. EI could be associated with premorbid IQ, subthreshold depressive symptoms, neurocognitive performance and general functioning. The identification of different profiles of SC may help guide specific interventions for distinct patient subgroups aimed at improving social cognition, neurocognitive performance and psychosocial functioning. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural network classification of myoelectric signal for prosthesis control.
Kelly, M F; Parker, P A; Scott, R N
1991-12-01
An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions. Copyright © 1991. Published by Elsevier Ltd.
The Effect of Neurobehavioral Test Performance on the All-Cause Mortality among US Population
Wu, Li-Wei; Liaw, Fang-Yih; Wang, Gia-Chi; Wang, Chung-Ching
2016-01-01
Evidence of the association between global cognitive function and mortality is much, but whether specific cognitive function is related to mortality is unclear. To address the paucity of knowledge on younger populations in the US, we analyzed the association between specific cognitive function and mortality in young and middle-aged adults. We analyzed data from 5,144 men and women between 20 and 59 years of age in the Third National Health and Nutrition Examination Survey (1988–94) with mortality follow-up evaluation through 2006. Cognitive function tests, including assessments of executive function/processing speed (symbol digit substitution) and learning recall/short-term memory (serial digit learning), were performed. All-cause mortality was the outcome of interest. After adjusting for multiple variables, total mortality was significantly higher in males with poorer executive function/processing speed (hazard ratio (HR) 2.02; 95% confidence interval 1.36 to 2.99) and poorer recall/short-term memory (HR 1.47; 95% confidence interval 1.02 to 2.12). After adjusting for multiple variables, the mortality risk did not significantly increase among the females in these two cognitive tests groups. In this sample of the US population, poorer executive function/processing speed and poorer learning recall/short-term memory were significantly associated with increased mortality rates, especially in males. This study highlights the notion that poorer specific cognitive function predicts all-cause mortality in young and middle-aged males. PMID:27595105
NASA Technical Reports Server (NTRS)
1982-01-01
Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.
ERIC Educational Resources Information Center
Sanchez,Gilbert; Cali, Alfred J.
This study was designed to compare time allocations to major functions actually performed and idealized by bilingual administrators and principals; to rank specific procedures used in accomplishing these functions; to determine staffing patterns, and program and organizational characteristics; and to isolate personal/professional demographics of…
Marfeo, Elizabeth E; Ni, Pengsheng; Chan, Leighton; Rasch, Elizabeth K; Jette, Alan M
2014-07-01
The goal of this article was to investigate optimal functioning of using frequency vs. agreement rating scales in two subdomains of the newly developed Work Disability Functional Assessment Battery: the Mood & Emotions and Behavioral Control scales. A psychometric study comparing rating scale performance embedded in a cross-sectional survey used for developing a new instrument to measure behavioral health functioning among adults applying for disability benefits in the United States was performed. Within the sample of 1,017 respondents, the range of response category endorsement was similar for both frequency and agreement item types for both scales. There were fewer missing values in the frequency items than the agreement items. Both frequency and agreement items showed acceptable reliability. The frequency items demonstrated optimal effectiveness around the mean ± 1-2 standard deviation score range; the agreement items performed better at the extreme score ranges. Findings suggest an optimal response format requires a mix of both agreement-based and frequency-based items. Frequency items perform better in the normal range of responses, capturing specific behaviors, reactions, or situations that may elicit a specific response. Agreement items do better for those whose scores are more extreme and capture subjective content related to general attitudes, behaviors, or feelings of work-related behavioral health functioning. Copyright © 2014 Elsevier Inc. All rights reserved.
Performance index for virtual reality phacoemulsification surgery
NASA Astrophysics Data System (ADS)
Söderberg, Per; Laurell, Carl-Gustaf; Simawi, Wamidh; Skarman, Eva; Nordqvist, Per; Nordh, Leif
2007-02-01
We have developed a virtual reality (VR) simulator for phacoemulsification (phaco) surgery. The current work aimed at developing a performance index that characterizes the performance of an individual trainee. We recorded measurements of 28 response variables during three iterated surgical sessions in 9 subjects naive to cataract surgery and 6 experienced cataract surgeons, separately for the sculpting phase and the evacuation phase of phacoemulsification surgery. We further defined a specific performance index for a specific measurement variable and a total performance index for a specific trainee. The distribution function for the total performance index was relatively evenly distributed both for the sculpting and the evacuation phase indicating that parametric statistics can be used for comparison of total average performance indices for different groups in the future. The current total performance index for an individual considers all measurement variables included with the same weight. It is possible that a future development of the system will indicate that a better characterization of a trainee can be obtained if the various measurements variables are given specific weights. The currently developed total performance index for a trainee is statistically an independent observation of that particular trainee.
Characterizing the Mechanical Properties of Running-Specific Prostheses
Beck, Owen N.; Taboga, Paolo; Grabowski, Alena M.
2016-01-01
The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness. PMID:27973573
49 CFR 172.700 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... recognize and identify hazardous materials, has knowledge of specific requirements of this subchapter applicable to functions performed by the employee, and has knowledge of emergency response information, self-protection measures and accident prevention methods and procedures (see § 172.704). (c) Modal-specific...
NASA Astrophysics Data System (ADS)
Teeples, Ronald; Glyer, David
1987-05-01
Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.
NASA Astrophysics Data System (ADS)
Armstrong, Michael James
Increases in power demands and changes in the design practices of overall equipment manufacturers has led to a new paradigm in vehicle systems definition. The development of unique power systems architectures is of increasing importance to overall platform feasibility and must be pursued early in the aircraft design process. Many vehicle systems architecture trades must be conducted concurrent to platform definition. With an increased complexity introduced during conceptual design, accurate predictions of unit level sizing requirements must be made. Architecture specific emergent requirements must be identified which arise due to the complex integrated effect of unit behaviors. Off-nominal operating scenarios present sizing critical requirements to the aircraft vehicle systems. These requirements are architecture specific and emergent. Standard heuristically defined failure mitigation is sufficient for sizing traditional and evolutionary architectures. However, architecture concepts which vary significantly in terms of structure and composition require that unique failure mitigation strategies be defined for accurate estimations of unit level requirements. Identifying of these off-nominal emergent operational requirements require extensions to traditional safety and reliability tools and the systematic identification of optimal performance degradation strategies. Discrete operational constraints posed by traditional Functional Hazard Assessment (FHA) are replaced by continuous relationships between function loss and operational hazard. These relationships pose the objective function for hazard minimization. Load shedding optimization is performed for all statistically significant failures by varying the allocation of functional capability throughout the vehicle systems architecture. Expressing hazards, and thereby, reliability requirements as continuous relationships with the magnitude and duration of functional failure requires augmentations to the traditional means for system safety assessment (SSA). The traditional two state and discrete system reliability assessment proves insufficient. Reliability is, therefore, handled in an analog fashion: as a function of magnitude of failure and failure duration. A series of metrics are introduced which characterize system performance in terms of analog hazard probabilities. These include analog and cumulative system and functional risk, hazard correlation, and extensions to the traditional component importance metrics. Continuous FHA, load shedding optimization, and analog SSA constitute the SONOMA process (Systematic Off-Nominal Requirements Analysis). Analog system safety metrics inform both architecture optimization (changes in unit level capability and reliability) and architecture augmentation (changes in architecture structure and composition). This process was applied for two vehicle systems concepts (conventional and 'more-electric') in terms of loss/hazard relationships with varying degrees of fidelity. Application of this process shows that the traditional assumptions regarding the structure of the function loss vs. hazard relationship apply undue design bias to functions and components during exploratory design. This bias is illustrated in terms of inaccurate estimations of the system and function level risk and unit level importance. It was also shown that off-nominal emergent requirements must be defined specific to each architecture concept. Quantitative comparisons of architecture specific off-nominal performance were obtained which provide evidence to the need for accurate definition of load shedding strategies during architecture exploratory design. Formally expressing performance degradation strategies in terms of the minimization of a continuous hazard space enhances the system architects ability to accurately predict sizing critical emergent requirements concurrent to architecture definition. Furthermore, the methods and frameworks generated here provide a structured and flexible means for eliciting these architecture specific requirements during the performance of architecture trades.
Forssman, Linda; Eninger, Lilianne; Tillman, Carin M; Rodriguez, Alina; Bohlin, Gunilla
2012-05-01
In this study, the authors investigated whether ADHD and oppositional defiant disorder (ODD) behaviors share associations with problems in cognitive functioning and/or family risk factors in adolescence. This was done by examining independent as well as specific associations of cognitive functioning and family risk factors with ADHD and ODD behaviors. A sample of 120 adolescents from the general population was assessed on various cognitive tasks. ADHD and ODD behaviors were measured through parental and teacher ratings based on Diagnostic and Statistical Manual of Mental Disorders (4th edition) criteria. Parents and adolescents provided information regarding measures of family risk factors. The results show that only cognitive functioning was associated with ADHD behaviors, and family risk factors were, independent of cognitive functioning, associated with ODD behaviors. These results suggest that cognitive performance bears a specific significance for ADHD behaviors, whereas family risk factors have specific importance for ODD behaviors.
Sousa, Liliana B; Simões, Mário R; Firmino, Horácio; Peisah, Carmelle
2014-02-01
Mental health professionals are frequently involved in mental capacity determinations. However, there is a lack of specific measures and well-defined procedures for these evaluations. The main purpose of this paper is to provide a review of financial and testamentary capacity evaluation procedures, including not only the traditional neuropsychological and functional assessment but also the more recently developed forensic assessment instruments (FAIs), which have been developed to provide a specialized answer to legal systems regarding civil competencies. Here the main guidelines, papers, and other references are reviewed in order to achieve a complete and comprehensive selection of instruments used in the assessment of financial and testamentary capacity. Although some specific measures for financial abilities have been developed recently, the same is not true for testamentary capacity. Here are presented several instruments or methodologies for assessing financial and testamentary capacity, including neuropsychological assessment, functional assessment scales, performance based functional assessment instruments, and specific FAIs. FAIs are the only specific instruments intended to provide a specific and direct answer to the assessment of financial capacity based on legal systems. Considering the need to move from a diagnostic to a functional approach in financial and testamentary capacity evaluations, it is essential to consider both general functional examination as well as cognitive functioning.
Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo
2015-01-01
In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and LP.
Maneshi, Mona; Vahdat, Shahabeddin; Gotman, Jean; Grova, Christophe
2016-01-01
Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named “shared and specific independent component analysis” (SSICA) to perform between-group comparisons in the ICA framework. SSICA is sensitive to extract those components which represent a significant difference in functional connectivity between groups or conditions, i.e., components that could be considered “specific” for a group or condition. Here, we investigated the performance of SSICA on realistic simulations, and task fMRI data and compared the results with one of the state-of-the-art group ICA approaches to infer between-group differences. We examined SSICA robustness with respect to the number of allowable extracted specific components and between-group orthogonality assumptions. Furthermore, we proposed a modified formulation of the back-reconstruction method to generate group-level t-statistics maps based on SSICA results. We also evaluated the consistency and specificity of the extracted specific components by SSICA. The results on realistic simulated and real fMRI data showed that SSICA outperforms the regular group ICA approach in terms of reconstruction and classification performance. We demonstrated that SSICA is a powerful data-driven approach to detect patterns of differences in functional connectivity across groups/conditions, particularly in model-free designs such as resting-state fMRI. Our findings in task fMRI show that SSICA confirms results of the general linear model (GLM) analysis and when combined with clustering analysis, it complements GLM findings by providing additional information regarding the reliability and specificity of networks. PMID:27729843
NASA Technical Reports Server (NTRS)
Chie, C. M.
1984-01-01
The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.
Functional Performance of Pyrovalves
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1996-01-01
Following several flight and ground test failures of spacecraft systems using single-shot, 'normally closed' pyrotechnically actuated valves (pyrovalves), a government/industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to improve performance-based requirements for the procurement of pyrovalves. Specific objectives included the demonstration of performance test methods, the measurement of 'blowby' (the passage of gases from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted in-house at NASA on several units each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. All but two designs had adequate functional margins with the pyrotechnic cartridges evaluated.
Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B
2017-12-01
Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Craig, Megan; Trauner, Doris
2018-02-01
We aimed to characterize differences in the use of language in children with specific language impairment and high-functioning autism by analyzing verbal responses on standardized tests. The overall goal was to provide clinicians with additional tools with which to aid in distinguishing the two neurodevelopmental disorders. This study included 16 children with specific language impairment, 28 children with high-functioning autism, and 52 typically developing participants between the ages of six and 14. Groups were matched for age, and specific language impairment and high-functioning autism groups were matched on verbal and performance IQ. Responses from standardized tests were examined for response length, grammatical errors, filler words, perseverations, revisions (repeated attempts to begin or continue a sentence), off-topic attention shifts (lapses in attention to the task), and rambling. Data were analyzed using parametric and nonparametric methods. Specific language impairment responses were longer and contained more filler words than did those of the other two groups, whereas high-functioning autism responses exhibited more grammatical errors, off-topic attention shifts, and rambling. Specific language impairment and high-functioning autism responses showed higher rates of perseveration compared with controls. There were no significant differences in revisions among the three groups. Differences in language patterns of participants with specific language impairment and high-functioning autism may be useful to the clinician in helping to differentiate isolated language impairment from high-functioning autism. The results also support the conclusion that the two conditions are separable, and each exhibits a different pattern of language dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Wen-Jing; Huang, Qi; Zou, Jun; Li, Lin-Li; Yang, Sheng-Yong
2015-07-01
Most of the scoring functions currently used in structure-based drug design belong to 'universal' scoring functions, which often give a poor correlation between the calculated scores and experimental binding affinities. In this investigation, we proposed a simple strategy to construct target-specific scoring functions based on known 'universal' scoring functions. This strategy was applied to Chemscore, a widely used empirical scoring function, which led to a new scoring function, termed TS-Chemscore. TS-Chemscore was validated on 14 protein targets, which cover a wide range of biological target categories. The results showed that TS-Chemscore significantly improved the correlation between the calculated scores and experimental binding affinities compared with the original Chemscore. TS-Chemscore was then applied in virtual screening to retrieve novel JAK3 and YopH inhibitors. Top 30 compounds for each target were selected for experimental validation. Six active compounds for JAK3 and four for YopH were obtained. These compounds were out of the lists of top 30 compounds sorted by Chemscore. Collectively, TS-Chemscore established in this study showed a better performance in virtual screening than its counterpart Chemscore. © 2014 John Wiley & Sons A/S.
ERIC Educational Resources Information Center
Otsuka, Sadao; Uono, Shota; Yoshimura, Sayaka; Zhao, Shuo; Toichi, Motomi
2017-01-01
The aim of this study was to identify specific cognitive abilities that predict functional outcome in high-functioning adults with autism spectrum disorder (ASD), and to clarify the contribution of those abilities and their relationships. In total, 41 adults with ASD performed cognitive tasks in a broad range of neuro- and social cognitive…
Brain Structure-function Couplings (FY11)
2012-01-01
influence time-evolving models of global brain function and dynamic changes in cognitive performance. Both structural and functional connections change on...Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion. Journal of NeuroEngineering and Rehabilitation, submitted. 10...Specifically, identifying the communication between brain regions that occurs during tasks may provide information regarding the cognitive processes involved in
Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver.
Wu, F J; Peshwa, M V; Cerra, F B; Hu, W S
1995-01-01
A bioartificial liver (BAL) employing xenogeneic hepatocytes has been developed as a potential interim support for patients in hepatic failure. For application in human therapy, the BAL requires a substantial increase in liver-specific functions. Cultivation of hepatocytes as spheroids leads to enhanced liver specific functions. We explored the possibility of entrapping spheroids into the BAL in order to improve device performance. Rat hepatocyte spheroids were entrapped in collagen gel within the lumen fibers of the BAL. The morphology and ultrastructure of collagen-entrapped spheroids resembled those of suspended spheroids formed on petri dishes. Albumin synthesis and P-450 enzyme activity were measured as markers of liver specific functions of spheroids entrapped in the BAL. At least a 4-fold improvement in these functions was observed compared to BAL devices entrapped with dispersed hepatocytes in collagen gels.
Gender differences in the roles and functions of inpatient psychiatric nurses.
Torkelson, Diane J; Seed, Mary S
2011-03-01
This study explored the difference between male and female psychiatric nurses' job performance and job satisfaction levels on an acute care inpatient unit. The amount of time male (n = 28) and female (n = 45) nurses spent on 10 specific functions and roles during a shift were observed and recorded. The nurses also self-rated the amount of time they spent on these specific functions and roles. The observed and self-rated functions were then correlated with job satisfaction. Female nurses were observed and self-rated as spending significantly more time on patient care activities, and these activities were significantly correlated with higher job satisfaction levels. Male nurses who self-rated spending more time on patient care activities had significantly lower job satisfaction scores. Findings confirm the concepts from social role theory that gender identity and expectations influence job performance in psychiatric nursing. The results offer insight for increasing job satisfaction and recruitment/retention efforts. Copyright 2011, SLACK Incorporated.
Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays
Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A.; Dew, Steven K.; McDermott, Mark T.; Evoy, Stephane
2015-01-01
Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings. PMID:26263989
Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.
Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane
2015-07-30
Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Norms and Performance Standards for Work Sample Scores.
ERIC Educational Resources Information Center
Wisconsin Univ. - Stout, Menomonie. Dept. of Rehabilitation and Manpower Services. Materials Development Center.
Work samples are commonly used to aid in the assessment of a client's potential for functioning in various competitive occupations. To determine an individual's position relative to a particular reference group the most commonly used norms are those based on scores of other clients who have performed a specific work sample, and performance scores…
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
Estimating Basic Preliminary Design Performances of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Luz, Paul L.; Alexander, Reginald
2004-01-01
Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.
A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less
Chande, Ruchi D; Wayne, Jennifer S
2017-09-01
Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.
Working Memory Updating as a Predictor of Academic Attainment
ERIC Educational Resources Information Center
Lechuga, M. Teresa; Pelegrina, Santiago; Pelaez, Jose L.; Martin-Puga, M. Eva; Justicia, M. Jose
2016-01-01
There is growing evidence supporting the importance of executive functions, and specifically working memory updating (WMU), for children's academic achievement. This study aimed to assess the specific contribution of updating to the prediction of academic performance. Two updating tasks, which included different updating components, were…
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
Executive Function Subcomponents and their Relations to Everyday Functioning in Healthy Older Adults
McAlister, Courtney; Schmitter-Edgecombe, Maureen
2016-01-01
Everyday functioning and its executive functioning cognitive correlates (i.e., switching, inhibition, and updating) were investigated in healthy older adults (HOAs) using multiple methods of functional status. In addition to whether computerized experimental tasks would better dissociate these subcomponents than neuropsychological measures of executive functioning, we were also interested in the contributions of both experimental and neuropsychological measures of executive function subcomponents to functional abilities. Seventy HOAs (45 young-old and 25 old-old) and 70 younger adults completed executive function and neuropsychological tests. In addition to self- and informant questionnaires of functional abilities, HOAs completed two performance-based measures. An aging effect was found on all executive function measures. Old-old older adults and their informants did not report more functional difficulties but demonstrated more difficulties on performance-based measures relative to young-old participants. For the HOAs, after controlling for age and education, the neuropsychological measures of executive functioning, but not experimental measures, explained a significant amount of variance in the informant-report and both performance-based measures. Updating measures differentially predicted performance-based measures, while switching was important for questionnaire and performance-based measures. The contribution of executive functioning to functional status when measured with experimental measures specifically designed to isolate the executive subcomponent was not as strong as hypothesized. Further research examining the value of isolating executive function subcomponents in neuropsychological assessment and the prediction of functional abilities in older adults is warranted. PMID:27206842
McAlister, Courtney; Schmitter-Edgecombe, Maureen
2016-10-01
Everyday functioning and its executive functioning cognitive correlates (i.e., switching, inhibition, and updating) were investigated in healthy older adults (HOAs) using multiple methods of functional status. In addition to whether computerized experimental tasks would better dissociate these subcomponents than neuropsychological measures of executive functioning, we were also interested in the contributions of both experimental and neuropsychological measures of executive function subcomponents to functional abilities. Seventy HOAs (45 young-old and 25 old-old) and 70 younger adults completed executive function and neuropsychological tests. In addition to self- and informant questionnaires of functional abilities, HOAs completed two performance-based measures. An aging effect was found on all executive function measures. Old-old older adults and their informants did not report more functional difficulties but demonstrated more difficulties on performance-based measures than did young-old participants. For the HOAs, after controlling for age and education, the neuropsychological measures of executive functioning, but not experimental measures, explained a significant amount of variance in the informant-report and both performance-based measures. Updating measures differentially predicted performance-based measures, while switching was important for questionnaire and performance-based measures. The contribution of executive functioning to functional status when measured with experimental measures specifically designed to isolate the executive subcomponent was not as strong as hypothesized. Further research examining the value of isolating executive function subcomponents in neuropsychological assessment and the prediction of functional abilities in older adults is warranted.
Personality and Performance in Specific Neurocognitive Domains Among Older Persons.
Chapman, Benjamin P; Benedict, Ralph H; Lin, Feng; Roy, Shumita; Federoff, Howard J; Mapstone, Mark
2017-08-01
Certain Big 5 personality dimensions have been repeatedly linked to global measures of cognitive function and outcome categories. We examined whether the Big 5 or their specific components showed differential evidence of associations with specific neurocognitive domains. Participants were 179 older adults (70+) from a broader study on cognitive aging. The NEO-Five Factor Inventory and a comprehensive battery of neuropsychological tests were used. Adjusted for age, gender, and years of education, probability values, Bayes Factors, and measures effect size from linear models suggested strong evidence for associations between better delayed recall memory and higher Conscientiousness (principally the facets of Goal-Striving and Dependability) and Openness (specifically the Intellectual Interest component). Better executive function and attention showed moderate to strong evidence of associations with lower Neuroticism (especially the Self-conscious Vulnerability facet) and higher Conscientiousness (mostly the Dependability facet). Better language functioning was linked to higher Openness (specifically, the Intellectual Interests facet). Worse visual-spatial function was strongly associated with higher Neuroticism. Different tests of neurocognitive functioning show varying degrees of evidence for associations with different personality traits. Better understanding of the patterning of neurocognitive-personality linkages may facilitate grasp of underlying mechanisms and/or refine understanding of co-occurring clinical presentation of personality traits and specific cognitive deficits. Copyright © 2017. Published by Elsevier Inc.
Tallis, Jason; Hill, Cameron; James, Rob S; Cox, Val M; Seebacher, Frank
2017-01-01
Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle-specific profile of mechanical changes in relation to underpinning mechanisms. These findings may be important to understanding the negative cycle of obesity and in designing interventions for improving weight status. Copyright © 2017 the American Physiological Society.
Gardner, Bethany T.; Dale, Ann Marie; Buckner-Petty, Skye; Rachford, Robert; Strickland, Jaime; Kaskutas, Vicki; Evanoff, Bradley
2017-01-01
Purpose Few studies have explored measures of function across a range of health outcomes in a general working population. Using four upper extremity (UE) case definitions from the scientific literature, we described the performance of functional measures of work, activities of daily living, and overall health. Methods A sample of 573 workers completed several functional measures: modified recall versions of the QuickDASH, Levine Functional Status Scale (FSS), DASH Work module (DASH-W), and standard SF-8 physical component score. We determined case status based on four UE case definitions: 1) UE symptoms, 2) UE musculoskeletal disorders (MSD), 3) carpal tunnel syndrome (CTS), and 4) work limitations due to UE symptoms. We calculated effect sizes for each case definition to show the magnitude of the differences that were detected between cases and non-cases for each case definition on each functional measure. Sensitivity and specificity analyses showed how well each measure identified functional impairments across the UE case definitions. Results All measures discriminated between cases and non-cases for each case definition with the largest effect sizes for CTS and work limitations, particularly for the modified FSS and DASH-W measures. Specificity was high and sensitivity was low for outcomes of UE symptoms and UE MSD in all measures. Sensitivity was high for CTS and work limitations. Conclusions Functional measures developed specifically for use in clinical, treatment-seeking populations may identify mild levels of impairment in relatively healthy, active working populations, but measures performed better among workers with CTS or those reporting limitations at work. PMID:26091980
Spanjer, Jerry; Groothoff, Johan W; Brouwer, Sandra
2011-01-01
To systematically review the quality of the psychometric properties of instruments for assessing functional limitations in workers applying for disability benefit. Electronic searches of Medline, Embase, CINAHL and PsycINFO were performed to identify studies focusing on the psychometric properties of instruments used to assess functional limitations in workers' compensation claimants. Two independent reviewers applied the inclusion criteria to select relevant articles and then evaluated the psychometric qualities of the instruments found. Of the 712 articles that were identified, 10 studies met the inclusion criteria, reporting on four instruments: the Roland-Morris Disability Questionnaire (RMDQ), the Patient-Specific Functional Scale (PSFS), the Isernhagen Work System (IWS) and the Multiperspective Multidimensional Pain Assessment Protocol (MMPAP). The questionnaires (RMDQ and PSFS) did not focus specifically on the work situation and measured three to eight functional limitations. The psychometric qualities of the IWS were poor to moderate. For the MMPAP, only predictive validity was measured. The instruments assessed a range varying between 3 and 34 physical functional limitations. No instruments were found for assessing mental limitations in workers' compensation claimants. Studies on four instruments specifically focusing on assessing physical functional limitations in workers applying for disability benefit were found. All four instruments have limitations regarding their psychometric qualities or contents. Since the RMDQ has the best demonstrated psychometric qualities and takes little time to complete it, we recommend the RMDQ for clinicians in rehabilitation. For the assessment of functional limitations in workers applying for disability benefit a combination of questionnaires, performance tests or interviews together with the judgment by physicians looks the most promising.
Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N.; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni
2016-01-01
Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709
Cognitive profiles in euthymic patients with bipolar disorders: results from the FACE-BD cohort.
Roux, Paul; Raust, Aurélie; Cannavo, Anne Sophie; Aubin, Valérie; Aouizerate, Bruno; Azorin, Jean-Michel; Bellivier, Frank; Belzeaux, Raoul; Bougerol, Thierry; Cussac, Iréna; Courtet, Philippe; Etain, Bruno; Gard, Sébastien; Job, Sophie; Kahn, Jean-Pierre; Leboyer, Marion; Olié, Emilie; Henry, Chantal; Passerieux, Christine
2017-03-01
Although cognitive deficits are a well-established feature of bipolar disorders (BD), even during periods of euthymia, little is known about cognitive phenotype heterogeneity among patients with BD. We investigated neuropsychological performance in 258 euthymic patients with BD recruited via the French network of expert centers for BD. We used a test battery assessing six domains of cognition. Hierarchical cluster analysis of the cross-sectional data was used to determine the optimal number of subgroups and to assign each patient to a specific cognitive cluster. Subsequently, subjects from each cluster were compared on demographic, clinical functioning, and pharmacological variables. A four-cluster solution was identified. The global cognitive performance was above normal in one cluster and below normal in another. The other two clusters had a near-normal cognitive performance, with above and below average verbal memory, respectively. Among the four clusters, significant differences were observed in estimated intelligence quotient and social functioning, which were lower for the low cognitive performers compared to the high cognitive performers. These results confirm the existence of several distinct cognitive profiles in BD. Identification of these profiles may help to develop profile-specific cognitive remediation programs, which might improve functioning in BD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hall, Emma; Bishop, Daniel C.; Gee, Thomas I.
2016-01-01
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors. PMID:26859381
Hall, Emma; Bishop, Daniel C; Gee, Thomas I
2016-01-01
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors.
Functional performance of pyrovalves
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1996-01-01
Following several flight and ground test failures of spacecraft systems using single-shot, 'normally closed' pyrotechnically actuated valves (pyrovalves), a Government/Industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to provide information on functional performance of pyrovalves to allow users the opportunity to improve procurement requirements. Specific objectives included the demonstration of performance test methods, the seating; these gases/particles entered the fluid path of measurement of 'blowby' (the passage of gases from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted at NASA's Langley Research Center on several units for each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. Two of the five designs had inadequate functional margins with the pyrotechnic cartridges evaluated.
Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie
2012-07-01
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Tug fleet and ground operations schedules and controls. Volume 2: Part 3, appendixes
NASA Technical Reports Server (NTRS)
1975-01-01
A space tug function description data sheet is prepared for each block of the space tug functional flow diagram. A summary of the basic information regarding the activities performed in its respective functional block is provided. The sheets are catalogued by functional flow block numbers with reference blocks at the end. The specific items of information contained in each data sheet are defined.
Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection.
Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G; Pederzolli, Cecilia; Pavesi, Lorenzo
2016-01-06
In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.
Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko
2018-06-08
Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Application-specific coarse-grained reconfigurable array: architecture and design methodology
NASA Astrophysics Data System (ADS)
Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu
2015-06-01
Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.
Kober, Silvia Erika; Witte, Matthias; Neuper, Christa; Wood, Guilherme
2017-10-01
Neurofeedback (NF) is often criticized because of the lack of empirical evidence of its specificity. Our present study thus focused on the specificity of NF on three levels: band specificity, cognitive specificity, and baseline specificity. Ten healthy middle-aged individuals performed ten sessions of SMR (sensorimotor rhythm, 12-15Hz) NF training. A second group (N=10) received feedback of a narrow gamma band (40-43Hz). Effects of NF on EEG resting measurements (tonic EEG) and cognitive functions (memory, intelligence) were evaluated using a pre-post design. Both training groups were able to linearly increase the target training frequencies (either SMR or gamma), indicating the trainability of these EEG frequencies. Both NF training protocols led to nonspecific changes in other frequency bands during NF training. While SMR NF only led to concomitant changes in slower frequencies, gamma training affected nearly the whole power spectrum. SMR NF specifically improved memory functions. Gamma training showed only marginal effects on cognitive functions. SMR power assessed during resting measurements significantly increased after SMR NF training compared to a pre-assessment, indicating specific effects of SMR NF on baseline/tonic EEG. The gamma group did not show any pre-post changes in their EEG resting activity. In conclusion, SMR NF specifically affects cognitive functions (cognitive specificity) and tonic EEG (baseline specificity), while increasing SMR during NF training nonspecifically affects slower EEG frequencies as well (band non-specificity). Gamma NF was associated with nonspecific effects on the EEG power spectrum during training, which did not lead to considerable changes in cognitive functions or baseline EEG activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ragland, J. Daniel; Ranganath, Charan; Harms, Michael P.; Barch, Deanna M.; Gold, James M.; Layher, Evan; Lesh, Tyler A.; MacDonald, Angus W.; Niendam, Tara A.; Phillips, Joshua; Silverstein, Steven M.; Yonelinas, Andrew P.; Carter, Cameron S.
2015-01-01
Importance Individuals with schizophrenia (SZ) can encode item-specific information to support familiarity-based recognition, but are disproportionately impaired encoding inter-item relationships (relational encoding) and recollecting information. The Relational and Item-Specific Encoding (RiSE) paradigm has been used to disentangle these encoding and retrieval processes, which may be dependent on specific medial temporal lobe (MTL) and prefrontal cortex (PFC) subregions. Functional imaging during RiSE task performance could help to specify dysfunctional neural circuits in SZ that can be targeted for interventions to improve memory and functioning in the illness. Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that SZ disproportionately affects MTL and PFC subregions during relational encoding and retrieval, relative to item-specific memory processes. Imaging results from healthy comparison subjects (HC) will also be used to establish neural construct validity for RiSE. Design, Setting, and Participants This multi-site, case-control, cross-sectional fMRI study was conducted at five CNTRACS sites. The final sample included 52 clinically stable outpatients with SZ, and 57 demographically matched HC. Main Outcomes and Measures Behavioral performance speed and accuracy (d’) on item recognition and associative recognition tasks. Voxelwise statistical parametric maps for a priori MTL and PFC regions of interest (ROI), testing activation differences between relational and item-specific memory during encoding and retrieval. Results Item recognition was disproportionately impaired in SZ patients relative to controls following relational encoding. The differential deficit was accompanied by reduced dorsolateral prefrontal cortex (DLPFC) activation during relational encoding in SZ, relative to HC. Retrieval success (hits > misses) was associated with hippocampal (HI) activation in HC during relational item recognition and associative recognition conditions, and HI activation was specifically reduced in SZ for recognition of relational but not item-specific information. Conclusions In this unique, multi-site fMRI study, HC results supported RiSE construct validity by revealing expected memory effects in PFC and MTL subregions during encoding and retrieval. Comparison of SZ and HC revealed disproportionate memory deficits in SZ for relational versus item-specific information, accompanied by regionally and functionally specific deficits in DLPFC and HI activation. PMID:26200928
Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism
ERIC Educational Resources Information Center
Ament, Katarina; Mejia, Amanda; Buhlman, Rebecca; Erklin, Shannon; Caffo, Brian; Mostofsky, Stewart; Wodka, Ericka
2015-01-01
To evaluate evidence for motor impairment specificity in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Children completed performance-based assessment of motor functioning (Movement Assessment Battery for Children: MABC-2). Logistic regression models were used to predict group membership. In the models…
30 CFR 285.706 - How do I nominate a CVA for MMS approval?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the specific project; (3) Size and type of organization or corporation; (4) In-house availability of, or access to, appropriate technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering...
ERIC Educational Resources Information Center
Potocki, Anna; Sanchez, Monique; Ecalle, Jean; Magnan, Annie
2017-01-01
This article presents two studies investigating the role of executive functioning in written text comprehension in children and adolescents. In a first study, the involvement of executive functions in reading comprehension performance was examined in normally developing children in fifth grade. Two aspects of text comprehension were…
Raum, Heidelore; Dietsche, Bruno; Nagels, Arne; Witt, Stephanie H; Rietschel, Marcella; Kircher, Tilo; Krug, Axel
2015-01-01
The A allele of the single nucleotide polymorphism (SNP) rs1064395 in the NCAN gene has recently been identified as a susceptibility factor for bipolar disorder and schizophrenia. NCAN encodes neurocan, a brain-specific chondroitin sulfate proteoglycan that is thought to influence neuronal adhesion and migration. Several lines of research suggest an impact of NCAN on neurocognitive functioning. In the present study, we investigated the effects of rs1064395 genotype on neural processing and cognitive performance in healthy subjects. Brain activity was measured with functional magnetic resonance imaging (fMRI) during an overt semantic verbal fluency task in 110 healthy subjects who were genotyped for the NCAN SNP rs1064395. Participants additionally underwent comprehensive neuropsychological testing. Whole brain analyses revealed that NCAN risk status, defined as AA or AG genotype, was associated with a lack of task-related deactivation in a large left lateral temporal cluster extending from the middle temporal gyrus to the temporal pole. Regarding neuropsychological measures, risk allele carriers demonstrated poorer immediate and delayed verbal memory performance when compared to subjects with GG genotype. Better verbal memory performance was significantly associated with greater deactivation of the left temporal cluster during the fMRI task in subjects with GG genotype. The current data demonstrate that common genetic variation in NCAN influences both neural processing and cognitive performance in healthy subjects. Our study provides new evidence for a specific genetic influence on human brain function. © 2014 Wiley Periodicals, Inc.
Sanz de la Torre, J C; Pérez-Ríos, M
1996-06-01
In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.
MASTER TELEVISION ANTENNA SYSTEM.
ERIC Educational Resources Information Center
Rhode Island State Dept. of Education, Providence.
SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)
Basic Transportation Economics
NASA Technical Reports Server (NTRS)
Kneafsey, J. T.
1972-01-01
Transportation economics is an integral part of all transportation activities. Refined, detailed, and careful economic analyses consider conduct-performance methodology and the specifications of production, cost and demand functions.
Rogers, Timothy T; Hocking, Julia; Noppeney, Uta; Mechelli, Andrea; Gorno-Tempini, Maria Luisa; Patterson, Karalyn; Price, Cathy J
2006-09-01
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Plasticity of the postural function to sport and/or motor experience.
Paillard, Thierry
2017-01-01
This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies
Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina
2013-01-01
Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661
HDTS 2017.0 Testing and verification document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, Tad S.
2017-08-01
This report is a continuation of the series of Hunter Dose Tracking System (HDTS) Quality Assurance documents including (Foley and Powell, 2010; Dixon, 2012). In this report we have created a suite of automated test cases and a system to analyze the results of those tests as well as documented the methodology to ensure the field system performs within specifications. The software test cases cover all of the functions and interactions of functions that are practical to test. With the developed framework, if software defects are discovered, it will be easy to create one or more test cases to reproducemore » the defect and ensure that code changes correct the defect. These tests con rm HDTS version 2017.0 performs according to its specifications and documentation and that its performance meets the needs of its users at the Savannah River Site.« less
Tseng, Z. Jack; Flynn, John J.
2018-01-01
Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora. PMID:29441363
2013-01-01
Objective: Long-term memory functioning in autism spectrum disorders (ASDs) is marked by a characteristic pattern of impairments and strengths. Individuals with ASD show impairment in memory tasks that require the processing of relational and contextual information, but spared performance on tasks requiring more item-based, acontextual processing. Two experiments investigated the cognitive mechanisms underlying this memory profile. Method: A sample of 14 children with a diagnosis of high-functioning ASD (age: M = 12.2 years), and a matched control group of 14 typically developing (TD) children (age: M = 12.1 years), participated in a range of behavioral memory tasks in which we measured both relational and item-based memory abilities. They also completed a battery of executive function measures. Results: The ASD group showed specific deficits in relational memory, but spared or superior performance in item-based memory, across all tasks. Importantly, for ASD children, executive ability was significantly correlated with relational memory but not with item-based memory. No such relationship was present in the control group. This suggests that children with ASD atypically employed effortful, executive strategies to retrieve relational (but not item-specific) information, whereas TD children appeared to use more automatic processes. Conclusions: The relational memory impairment in ASD may result from a specific impairment in automatic associative retrieval processes with an increased reliance on effortful and strategic retrieval processes. Our findings allow specific neural predictions to be made regarding the interactive functioning of the hippocampus, prefrontal cortex, and posterior parietal cortex in ASD as a neural network supporting relational memory processing. PMID:24245930
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
Thalamic amplification of cortical connectivity sustains attentional control
Schmitt, L. Ian; Wimmer, Ralf D.; Nakajima, Miho; Happ, Michael; Mofakham, Sima; Halassa, Michael M.
2017-01-01
While interactions between the thalamus and cortex are critical for cognitive function1–3, the exact contribution of the thalamus to these interactions is often unclear. Recent studies have shown diverse connectivity patterns across the thalamus 4,5, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions6 is unknown. Here, by investigating prefrontal cortical (PFC) representation of two rules used to guide attention, we find that the mediodorsal thalamus (MD) sustains these representations without relaying categorical information. Specifically, MD input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioral performance, while enhancing MD excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function indicates that the thalamus plays much more central roles in cognition than previously thought. PMID:28467827
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.
ERIC Educational Resources Information Center
Owens, Matthew; Stevenson, Jim; Hadwin, Julie A.; Norgate, Roger
2012-01-01
Anxiety and depression are linked to lower academic performance. It is proposed that academic performance is reduced in young people with high levels of anxiety or depression as a function of increased test-specific worry that impinges on working memory central executive processes. Participants were typically developing children (12 to…
Customizing Countermeasure Prescriptions using Predictive Measures of Sensorimotor Adaptability
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Miller, C. A.; Batson, C. D.; Wood, S. J.; Guined, J. R.; Cohen, H. S.; Buccello-Stout, R.; DeDios, Y. E.;
2014-01-01
Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functional tasks during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of a countermeasure comprised of a training program designed to enhance sensorimotor adaptability. Due to this inherent individual variability we need to develop predictive measures of sensorimotor adaptability that will allow us to predict, before actual space flight, which crewmember will experience challenges in adaptive capacity. Thus, obtaining this information will allow us to design and implement better sensorimotor adaptability training countermeasures that will be customized for each crewmember's unique adaptive capabilities. Therefore the goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to design sensorimotor adaptability training countermeasures that are customized for each crewmember's individual sensorimotor adaptive characteristics. To achieve these goals we are currently pursuing the following specific aims: Aim 1: Determine whether behavioral metrics of individual sensory bias predict sensorimotor adaptability. For this aim, subjects perform tests that delineate individual sensory biases in tests of visual, vestibular, and proprioceptive function. Aim 2: Determine if individual capability for strategic and plastic-adaptive responses predicts sensorimotor adaptability. For this aim, each subject's strategic and plastic-adaptive motor learning abilities are assessed using a test of locomotor function designed specifically to delineate both mechanisms. Aim 3: Develop predictors of sensorimotor adaptability using brain structural and functional metrics. We will measure individual differences in regional brain volumes (structural MRI), white matter integrity (diffusion tensor imaging, or DTI), functional network integrity (resting state functional connectivity MRI), and sensorimotor adaptation task-related functional brain activation (functional MRI). We decided to complete the data collection for Specific Aims 1, 2 and 3 simultaneously on the same subjects to increase data capture. By having the same subjects perform all three specific aims we can enhance our ability to detect how a wider range of factors can predict adaptability in a specific individual. This provides a much richer database and potentially a better understanding of the predictive power of the selected factors. In this presentation I will discuss preliminary data obtained to date.
Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang
2018-01-01
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation and prediction of long-term environmental effects on nonmetallic materials
NASA Technical Reports Server (NTRS)
1982-01-01
Changes in functional properties of a broad spectrum of nonmetallic materials as a function of environment and exposure time were evaluated. Models for predicting long-term material performance are discussed. A literature search on specific materials in the space and simulated space environment was carried out and evaluated.
Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth.
Steinberg, Fabian; Doppelmayr, Michael
2017-01-01
Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans' cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition), the Number/Letter test (Task switching), the 2-back test (Updating/Working memory), and a simple reaction time test (Psychomotor performance). These tests were performed once on land, at 5-meter (m) water depth, and at 20-meter (m) water depth of an indoor diving facility in standardized test conditions (26°C in all water depths). A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability) of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be considered for diver's safety, since inhibition is required in self-control requiring situations where impulsive and automatic behavior must be inhibited. Our interpretation of these selective impairments is based on a discussion suggesting that different neural networks within the central nervous system, which process specific executive functions, are affected differently by nitrogen narcosis.
Gary, Rebecca A; Cress, M Elaine; Higgins, Melinda K; Smith, Andrew L; Dunbar, Sandra B
2011-09-01
To assess the effects of a home-based aerobic and resistance training program on the physical function of adults with New York Heart Association (NYHA) class II and III patients and systolic heart failure (HF). Randomized controlled trial. Home based. Stable patients (N=24; mean age, 60 ± 10 y; left ventricular ejection fraction, 25% ± 9%; 50% white; 50% women) with New York Heart Association (NYHA) classes II and III (NYHA class III, 58%) systolic heart failure (HF). A 12-week progressive home-based program of moderate-intensity aerobic and resistance exercise. Attention control wait list participants performed light stretching and flexibility exercises. A 10-item performance-based physical function measure, the Continuous Scale Physical Functional Performance test (CS-PFP10), was the major outcome variable and included specific physical activities measured in time to complete a task, weight carried during a task, and distance walked. Other measures included muscle strength, HRQOL (Minnesota Living With Heart Failure Questionnaire, Epworth Sleepiness Scale), functional capacity (Duke Activity Status Index), and disease severity (brain natriuretic peptide) levels. After the exercise intervention, 9 of 10 specific task activities were performed more rapidly, with increased weight carried by exercise participants compared with the attention control wait list group. Exercise participants also showed significant improvements in CS-PFP10 total score (P<.025), upper and lower muscle strength, and HRQOL (P<.001) compared with the attention control wait list group. Adherence rates were 83% and 99% for the aerobic and resistance training, respectively. Patients with stable HF who participate in a moderate-intensity combined aerobic and resistance exercise program may improve performance of routine physical activities of daily living by using a home-based exercise approach. Performance-based measures such as the CS-PFP10 may provide additional insights into physical function in patients with HF that more commonly used exercise tests may not identify. Early detection of subtle changes that may signal declining physical function that are amenable to intervention potentially may slow further loss of function in this patient population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2015-01-01
At present, little is still known about the link between depression, memory and executive functioning. This study examined whether there are memory-related impairments in depressed patients and whether the size of such deficits depends on the age group and on specific types of cognitive measures. Memory performances of 215 clinically depressed patients were compared to the data of a matched control sample. Regression analyses were performed to determine the extent to which executive dysfunctions contributed to episodic memory impairments. When compared with healthy controls, significantly lower episodic memory and executive functioning performances were found for depressed patients of all age groups. Effect sizes appeared to vary across different memory and executive functioning measures. The extent to which executive dysfunctions could explain episodic memory impairments varied depending on the type of measure examined. These findings emphasise the need to consider memory-related functioning of depressed patients in the context of therapeutic treatments.
Why are the seed cones of conifers so diverse at pollination?
Losada, Juan M; Leslie, Andrew B
2018-06-08
Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Butler, Ricky W.; Maddalon, Jeffrey M.; Hagen, George E.; Lewis, Timothy A.
2015-01-01
The performance of the conflict detection function in a separation assurance system is dependent on the content and quality of the data available to perform that function. Specifically, data quality and data content available to the conflict detection function have a direct impact on the accuracy of the prediction of an aircraft's future state or trajectory, which, in turn, impacts the ability to successfully anticipate potential losses of separation (detect future conflicts). Consequently, other separation assurance functions that rely on the conflict detection function - namely, conflict resolution - are prone to negative performance impacts. The many possible allocations and implementations of the conflict detection function between centralized and distributed systems drive the need to understand the key relationships that impact conflict detection performance, with respect to differences in data available. This paper presents the preliminary results of an analysis technique developed to investigate the impacts of data quality and data content on conflict detection performance. Flight track data recorded from a day of the National Airspace System is time-shifted to create conflicts not present in the un-shifted data. A methodology is used to smooth and filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies in the data. The metrics used to characterize conflict detection performance are presented and a set of preliminary results is discussed.
Ruthig, Joelle C; Gamblin, Bradlee W; Jones, Kelly; Vanderzanden, Karen; Kehn, Andre
2017-02-01
Researchers have spent considerable effort examining unrealistic absolute optimism and unrealistic comparative optimism, yet there is a lack of research exploring them concurrently. This longitudinal study repeatedly assessed unrealistic absolute and comparative optimism within a performance context over several months to identify the degree to which they shift as a function of proximity to performance and performance feedback, their associations with global individual difference and event-specific factors, and their link to subsequent behavioural outcomes. Results showed similar shifts in unrealistic absolute and comparative optimism based on proximity to performance and performance feedback. Moreover, increases in both types of unrealistic optimism were associated with better subsequent performance beyond the effect of prior performance. However, several differences were found between the two forms of unrealistic optimism in their associations with global individual difference factors and event-specific factors, highlighting the distinctiveness of the two constructs. © 2016 The British Psychological Society.
Beulertz, Julia; Bloch, Wilhelm; Prokop, Aram; Baumann, Freerk T
2013-05-01
Although survival rates in childhood cancer have distinctly improved, pediatric cancer patients often experience various disease- and treatment-related side effects with long-term consequences. Despite current studies investigating inactivity and limitations in physical functioning and quality of life in pediatric cancer patients, only little information regarding specific deficits in physical functioning and quality of life has been available until now. No study has yet analyzed these parameters from a global perspective and then identified specific deficits in a mixed childhood cancer population. Within this cross-sectional pilot study, motor performance and quality of life of 26 pediatric cancer patients were assessed after inpatient medical treatment, using standardized motor test batteries (MOT 4-6; DMT 6-18) and a quality of life questionnaire (KINDL®). Reference data have been mainly provided by the German "Children and Young People Health Survey" (KiGGS). Patients achieved lower motor performance scores (p = .000) (more than 27% below the average of healthy peers). Specific deficits were identified in motor speed and motor control (4-6 years), as well as in endurance, strength and coordination under time pressure (6-17 years). In terms of quality of life, no significant differences were examined compared to healthy children of the same age. The results of this study confirm that children with oncological diseases frequently have specific motor problems. Future research in pediatric oncology must investigate the impact of targeted, individualized exercise interventions addressing these specific deficits.
NASA Technical Reports Server (NTRS)
1974-01-01
The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.
Restoration of soils affected by oil exploitation activities based in functional diversity studies
NASA Astrophysics Data System (ADS)
Villacis, Jaime; Casanoves, Fernando; Hang, Susana; Armas, Cristina
2017-04-01
The functional characteristics of 25 forest species used in the restoration of areas affected by oil extraction activities were determined and species functional groups were constructed. Subsequently, the functional characteristics of the groups were related with performance variables of the species obtained in complementary studies, to make use recommendations. Three functional groups of species with similar responses and / or performance were characterized that showed significant differences between them for quantitative and qualitative traits. The first group formed by all shrubs and the rest of trees, most do not fix nitrogen, have single leaves and all species are evergreen and characterized by having lower values of specific foliar area, foliar nitrogen, dry matter leaf content and wood density, was denominated as intermediate acquisitions. The second group composed only for trees that do not fix nitrogen and with deciduous leaves and characterized by having the highest values of dry matter leaf content and foliar tensile force and intermediate values of specific foliar area and foliar nitrogen, was denominated as low conservative. Finally the third group formed only by trees that fix nitrogen, composed of leaves and mostly evergreen and characterized by having higher values of specific foliar area, foliar nitrogen, foliar phosphorus and lower foliar tensile force, was denominated as acquisitive. The intermediary acquisitions species Apeiba membranacea, Myrcia aff. fallax and Zygia longifolia, and the acquisitive species Cedrelinga cateniformis, Inga densiflora, Myroxylon balsamum, Piptadenia pteroclada and Platymiscium pinnatum, which showed excellent performance in nursery and / or field, represent the most suitable species to be used in reforestation programs of the sites affected by oil extraction activities in the Amazon region of Ecuador, because they have greater potential to protect soil and recycle nutrients in the initial stages of planting.
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
Analysis of crew functions as an aid in Space Station interior layout
NASA Technical Reports Server (NTRS)
Steinberg, A. L.; Tullis, Thomas S.; Bied, Barbra
1986-01-01
The Space Station must be designed to facilitate all of the functions that its crew will perform, both on-duty and off-duty, as efficiently and comfortably as possible. This paper examines the functions to be performed by the Space Station crew in order to make inferences about the design of an interior layout that optimizes crew productivity. Twenty-seven crew functions were defined, as well as five criteria for assessing relationships among all pairs of those functions. Hierarchical clustering and multidimensional scaling techniques were used to visually summarize the relationships. A key result was the identification of two dimensions for describing the configuration of crew functions: 'Private-Public' and 'Group-Individual'. Seven specific recommendations for Space Station interior layout were derived from the analyses.
Multicenter validation of a bedside antisaccade task as a measure of executive function
Hellmuth, J.; Mirsky, J.; Heuer, H.W.; Matlin, A.; Jafari, A.; Garbutt, S.; Widmeyer, M.; Berhel, A.; Sinha, L.; Miller, B.L.; Kramer, J.H.
2012-01-01
Objective: To create and validate a simple, standardized version of the antisaccade (AS) task that requires no specialized equipment for use as a measure of executive function in multicenter clinical studies. Methods: The bedside AS (BAS) task consisted of 40 pseudorandomized AS trials presented on a laptop computer. BAS performance was compared with AS performance measured using an infrared eye tracker in normal elders (NE) and individuals with mild cognitive impairment (MCI) or dementia (n = 33). The neuropsychological domain specificity of the BAS was then determined in a cohort of NE, MCI, and dementia (n = 103) at UCSF, and the BAS was validated as a measure of executive function in a 6-center cohort (n = 397) of normal adults and patients with a variety of brain diseases. Results: Performance on the BAS and laboratory AS task was strongly correlated and BAS performance was most strongly associated with neuropsychological measures of executive function. Even after controlling for disease severity and processing speed, BAS performance was associated with multiple assessments of executive function, most strongly the informant-based Frontal Systems Behavior Scale. Conclusions: The BAS is a simple, valid measure of executive function in aging and neurologic disease. PMID:22573640
Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till
2016-09-01
Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, p<0.038) as well as for tandem stance time (pre: 1.4±0.6s vs. post: 4.5±4.0s, p=0.003) in the intervention group. No significant changes in balance performance were observed in the control group. The MRI analysis did not reveal morphological or functional connectivity differences before or after the training between the intervention and control groups (whole sample). However, subsequent analysis in subjects with improved slackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.
Rodrigue, Amanda L; Schaeffer, David J; Pierce, Jordan E; Clementz, Brett A; McDowell, Jennifer E
2018-01-01
Cognitive control impairments in schizophrenia (SZ) can be evaluated using antisaccade tasks and functional magnetic resonance imaging (fMRI). Studies, however, often compare people with SZ to high performing healthy people, making it unclear if antisaccade-related disruptions are specific to the disease or due to generalized deficits in cognitive control. We included two healthy comparison groups in addition to people with SZ: healthy people with high cognitive control (HCC), who represent a more typical comparison group, and healthy people with low cognitive control (LCC), who perform similarly on antisaccade measures as people with SZ. Using two healthy comparison groups may help determine which antisaccade-related deficits are specific to SZ (distinguish SZ from LCC and HCC groups) and which are due to poor cognitive control (distinguish the LCC and SZ groups from the HCC group). People with SZ and healthy people with HCC or LCC performed an antisaccade task during fMRI acquisition. LCC and SZ groups showed under-activation of saccade circuitry. SZ-specific disruptions were observed in the left superior temporal gyrus and insula during error trials (suppression of activation in the SZ group compared to the LCC and HCC group). Differences related to antisaccade errors may distinguish people with SZ from healthy people with LCC.
Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E
2015-11-01
Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.
ERIC Educational Resources Information Center
Ahmadi, Alireza; Bazvand, Ali Darabi
2016-01-01
Differential Item Functioning (DIF) exists when examinees of equal ability from different groups have different probabilities of successful performance in a certain item. This study examined gender differential item functioning across the PhD Entrance Exam of TEFL (PEET) in Iran, using both logistic regression (LR) and one-parameter item response…
Sasse, Alexander; de Vries, Sjoerd J; Schindler, Christina E M; de Beauchêne, Isaure Chauvot; Zacharias, Martin
2017-01-01
Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol.
Videogame training strategy-induced change in brain function during a complex visuomotor task.
Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F
2012-07-01
Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.
2013-12-01
include the Command Element (CE), the Aviation Combat Element (ACE), the Ground Combat Element ( GCE ), and the Combat Service Support Element (CSSE) (from...35 Figure 9. The upper level functional architecture for EW12 shows the three primary functions of F1-Assemble the Seabase, F2...Function F2-Perform Assault is decomposed to obtain the lower level specific functions. From this decomposition, the sub-function of F2.2- Gain Entry
Enhancing health leadership performance using neurotherapy.
Swingle, Paul G; Hartney, Elizabeth
2018-05-01
The discovery of neuroplasticity means the brain can change, functionally, in response to the environment and to learning. While individuals can develop harmful patterns of brain activity in response to stressors, they can also learn to modify or control neurological conditions associated with specific behaviors. Neurotherapy is one way of changing brain functioning to modify troubling conditions which can impair leadership performance, through responding to feedback on their own brain activity, and enhancing optimal leadership functioning through learning to maximize such cognitive strengths as mental efficiency, focus, creativity, perseverance, and executive functioning. The present article outlines the application of the concept of optimal performance training to organizational leadership in a healthcare context, by describing approaches to neurotherapy and illustrating their application through a case study of a health leader learning to overcome the neurological and emotional sequelae of workplace stress and trauma.
48 CFR 37.503 - Agency-head responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Specific procedures are in place before contracting for services to ensure that inherently governmental functions are performed by Government personnel; and (d) Strategies are developed and necessary staff...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
..., are described in the final safety analysis report (FSAR). The staff safety evaluation documents the acceptability of these analyses, and it is the combination of the FSAR analyses and the staff safety evaluation... analysis, maintain their capability to perform their safety functions. Technical Specification Operability...
Development of Active Control within Working Memory: Active Retrieval versus Monitoring in Children
ERIC Educational Resources Information Center
Blain-Brière, Bénédicte; Bouchard, Caroline; Bigras, Nathalie; Cadoret, Geneviève
2014-01-01
This study aimed to compare children's performance on two mnemonic functions that engage the lateral prefrontal cortex. Brain imaging studies in adults have shown that the mid-ventrolateral prefrontal cortex is specifically involved in active controlled retrieval, and the mid-dorsolateral prefrontal cortex is specifically involved in monitoring…
Eye-scan behavior in a flight simulation task as a function of level of training
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Coates, G. D.; Kirby, R. H.
1985-01-01
The present study explored eye-scan behavior as a function of level of subject training. Oculometric (eye-scan) measures were recorded from each of ten subjects during training trials on a CRT-based flight simulation task. The task developed for the study incorporated subtasks representative of specific activities performed by pilots, but which could be performed at asymptotic levels within relatively short periods of training. Changes in eye-scan behavior were examined as initially untrained subjects developed skill in the task. Eye-scan predictors of performance on the task were found. Examination of eye-scan in proximity to selected task events revealed differences in the distribution of looks at the instruments as a function of level of training.
Driving and off-road impairments underlying failure on road testing in Parkinson's disease.
Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y
2013-12-01
Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.
A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hyd...
Prediction of EST functional relationships via literature mining with user-specified parameters.
Wang, Hei-Chia; Huang, Tian-Hsiang
2009-04-01
The massive amount of expressed sequence tags (ESTs) gathered over recent years has triggered great interest in efficient applications for genomic research. In particular, EST functional relationships can be used to determine a possible gene network for biological processes of interest. In recent years, many researchers have tried to determine EST functional relationships by analyzing the biological literature. However, it has been challenging to find efficient prediction methods. Moreover, an annotated EST is usually associated with many functions, so successful methods must be able to distinguish between relevant and irrelevant functions based on user specifications. This paper proposes a method to discover functional relationships between ESTs of interest by analyzing literature from the Medical Literature Analysis and Retrieval System Online, with user-specified parameters for selecting keywords. This method performs better than the multiple kernel documents method in setting up a specific threshold for gathering materials. The method is also able to uncover known functional relationships, as shown by a comparison with the Kyoto Encyclopedia of Genes and Genomes database. The reliable EST relationships predicted by the proposed method can help to construct gene networks for specific biological functions of interest.
Sports Activity after Low-contact-stress Total Knee Arthroplasty – A long term follow-up study
Vielgut, Ines; Leitner, Lukas; Kastner, Norbert; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick
2016-01-01
The purpose of this study was to provide comprehensive long-term data about sports activity levels in patients following total knee arthroplasty (TKA) and to determine the impact of pre-operative function, pain and specific performed sports on the results. 236 patients who have undergone TKA for severe osteoarthritis of the knee were asked to provide specific information regarding exercised types of sports before surgery and after at least 10 years following TKA. Pre- and postoperative function and pain were evaluated by the use of Tegner-, WOMAC- and VAS Score. After a mean of 14.9 years, a significant improvement regarding pain and function was observed. Pre-operative Tegner- and WOMAC scores revealed significant positive correlations with the post-operative Tegner-Score. Accordingly, a high percentage of patients (70.9%) stayed actively involved in sports. Nevertheless, the number of performing patients has decreased according to the sports impact. 71.3% continued practising low-impact-, 43.7% intermediate-impact sports whereas only 16.4% kept performing high impact sports. We conclude that TKA is highly effective in long-time pain reduction as well as improvement of function. Additionally, we found considerable sports activities preserved in the investigated series. However, sports activities in particular, seem to decrease according to the impact of sports. PMID:27090945
Sports Activity after Low-contact-stress Total Knee Arthroplasty - A long term follow-up study.
Vielgut, Ines; Leitner, Lukas; Kastner, Norbert; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick
2016-04-19
The purpose of this study was to provide comprehensive long-term data about sports activity levels in patients following total knee arthroplasty (TKA) and to determine the impact of pre-operative function, pain and specific performed sports on the results. 236 patients who have undergone TKA for severe osteoarthritis of the knee were asked to provide specific information regarding exercised types of sports before surgery and after at least 10 years following TKA. Pre- and postoperative function and pain were evaluated by the use of Tegner-, WOMAC- and VAS Score. After a mean of 14.9 years, a significant improvement regarding pain and function was observed. Pre-operative Tegner- and WOMAC scores revealed significant positive correlations with the post-operative Tegner-Score. Accordingly, a high percentage of patients (70.9%) stayed actively involved in sports. Nevertheless, the number of performing patients has decreased according to the sports impact. 71.3% continued practising low-impact-, 43.7% intermediate-impact sports whereas only 16.4% kept performing high impact sports. We conclude that TKA is highly effective in long-time pain reduction as well as improvement of function. Additionally, we found considerable sports activities preserved in the investigated series. However, sports activities in particular, seem to decrease according to the impact of sports.
Christiansen, Cory; Fields, Thomas; Lev, Guy; Stephenson, Ryan O.; Stevens-Lapsley, Jennifer E.
2015-01-01
Objective To describe physical function outcomes and modes of physical therapy intervention for a cohort of patients with dysvascular lower extremity amputation (LEA) during the prosthetic training phase of rehabilitation. Design A retrospective cohort study. Setting Physical rehabilitation clinics at a Veterans Affairs Medical Center and a University Hospital. Patients Forty-two patients (38 men, 4 women, age 60.2±8.4 years) who completed outpatient physical therapy rehabilitation with prosthetic training after dysvascular LEA. Methods All patients underwent a prosthetic training phase of rehabilitation, with standardized outcome measures performed at initiation and discharge. Main Outcome Measures Performance-based physical function measures included: Two-Minute Walk (2MW), Timed-Up and Go (TUG), and 5-meter gait speed. Self-report physical function measures included: the Prosthesis Evaluation Questionnaire – Mobility Section (PEQ-MS) and the Patient-Specific Functional Scale (PSFS). Rehabilitation dose was tracked as total number of clinic visits, rehabilitation duration, and specific intervention modes. Results There were significant improvements in 2MW (mean±SD) [67.5±29.9 m (initial) and 103.3±45.8 m (discharge) (p<0.001)], gait speed [0.58±0.27 m/s (initial) and 0.88±0.39 m/s (discharge) (p<0.001)], TUG [34.8±21.3 s (initial) and 18.6±13.9 s (discharge) (p<0.001)], PEQ-MS [2.2±0.9 (initial) and 2.8±0.8 (discharge) (p<0.001)], and PSFS [3.2±2.0 (initial) and 5.9±2.3 (discharge) (p<0.001)]. Performance-based (TUG) and self-report (PEQ-MS) changes in functional mobility from initial exam to discharge had low or no correlations with rehabilitation dose measures. Number of clinic visits was 12.7±13.1 and rehabilitation duration was 13.7±16.8 weeks. Conclusions Significant improvements in performance-based and self-report measures of physical function occurred during the prosthetic training phase of physical rehabilitation following dysvascular major LEA. Despite improvements in function, gait speed and TUG outcomes remained below clinically important thresholds, indicating patients were limited in community ambulation and at risk for falls. Lack of moderate or higher correlation between rehabilitation dose and outcome measures may indicate need for more specific rehabilitation dose measures. PMID:25978948
Montanaro, Maria; Colombatti, Raffaella; Pugliese, Marisa; Migliozzi, Camilla; Zani, Fabiana; Guerzoni, Maria Elena; Manoli, Sheila; Manara, Renzo; Meneghetti, Giorgio; Rampazzo, Patrizia; Cavalleri, Francesca; Giordan, Marco; Paolucci, Paolo; Basso, Giuseppe; Palazzi, Giovanni; Sainati, Laura
2013-06-04
Sickle Cell Disease (SCD) is the most common genetic disease worldwide. Neurological events are among the most worrisome clinical complications of SCD and are frequently accompanied by cognitive impairment. Intellectual function in SCD may vary according to genetic and environmental factors. Immigrant children with SCD are increasing at a global level and display specific health care needs. The aim of our multicenter study was to describe the intellectual function of first generation African immigrants with SCD and the influence of sociodemographic factors on its characteristics. The Wechsler Intelligence Scales were administered to evaluate broad intellectual functions in children with SCD and in age-matched healthy siblings. Patients' clinical, socio-demographic, Magnetic Resonance Imaging (MRI) and Angiography (MRA) data were correlated to intellectual function scores. 68 children, mean age 8.95 years were evaluated. 72% spoke three languages, 21% two. FSIQ was <75 in 25% of the children. Mean VIQ was lower than PIQ in 75%. Mean verbal subtest scores were lower than performance scores. Female gender, number of languages spoken at home and mother's employment were associated with single subtest performances (p < 0.05). MRA was abnormal in 73.4% and MRI in 35.9%. No significant correlation was established between silent lesions and intellectual function, even if patients with lesions performed worse. Fifteen siblings performed better than patients on cognitive domains, including language (p < 0.05). Immigrant bilingual children with SCD seem to display a rate of cognitive impairment similar to their monolingual counterparts but a more pronounced and precocious onset of language difficulties. Adjunctive tests need to be considered in this group of patients to better define their specific deficits.
Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel
2016-10-01
Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kemal, Hatice S; Kayikcioglu, Meral; Kultursay, Hakan; Vuran, Ozcan; Nalbantgil, Sanem; Mogulkoc, Nesrin; Can, Levent
2017-04-01
Right ventricular (RV) dysfunction is a major determinant of outcomes in patients with pulmonary arterial hypertension (PAH), although the optimal measure of RV function is poorly defined. We evaluated the utility of RV free-wall speckle tracking strain as an assessment tool for RV function in patients with PAH who are already under specific treatment compared with conventional echocardiographic parameters and investigated the relationship of RV free-wall strain with clinical hemodynamic parameters of RV performance. Right ventricular free-wall strain was evaluated in 92 patients (Group-1 and Group-4 pulmonary hypertension) who were on PAH-specific treatment for at least 3 months. Right atrial (RA) area, RV FAC, TAPSE, tricuspid S, functional class, 6-minute walking distance, and NT-proBNP were studied. The mean duration of follow-up was 222±133 days. All patients were under PAH-specific treatment, and mean RV free-wall strain was -13.16±6.3%. RV free-wall strain correlated well with functional class (r=.312, P=.01), NT-proBNP (r=.423, P=.0001), RA area (r=.427, P=.0001), FAC (r=-.637, P=.0001), TAPSE (r=-.524, P=.0001), tricuspid S (r=-.450, P=.0001), 6-minute walking distance (r=-.333, P=.002). RV free-wall strain significantly correlated with all follow-up adverse events, death, and clinical right heart failure (RHF) (P=.04, P=.03, P=.02, respectively). According to the receiver operator characteristic analysis, the cutoff value for RV free-wall strain for the development of clinical RHF was -12.5% (sensitivity: 71%, specificity: 67%) and for all cardiovascular adverse events (death included) was -12.5% (sensitivity: 54%, specificity: 64%). Assessment of RV free-wall strain is a feasible, easy-to-perform method and may be used as a predictor of RHF, clinical deterioration, and mortality in patients already under PAH-specific treatment. © 2017, Wiley Periodicals, Inc.
Kwon, Minsu; Kim, Shin-Ae; Lee, Sang-Wook; Kim, Sung-Bae; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon
2016-01-01
Introduction. Frailty refers to a decreased physiologic reserve in geriatric patients and its importance in terms of treatment planning and outcome prediction has been emphasized in oncologic practices for older patients with cancer. We investigated the clinical implications of a head and neck cancer (HNC)-specific frailty index suggested by prospective clinical and functional evaluations of HNC patients. Materials and Methods. We analyzed data on 165 elderly patients with HNC who were prospectively enrolled in our hospital from 2010 to 2013. Pretreatment functional evaluations were performed according to all comprehensive geriatric assessment (CGA) domains. We additionally evaluated the patients’ respiratory and swallowing functions using pulmonary function tests, voice handicap index (VHI), MD Anderson Dysphagia Inventory (MDADI), and other associated tests. Factors affecting the 2-year morbidity and mortality were also analyzed. Results. Respiratory and swallowing problems were major causes of 2-year morbidity. Pretreatment performance status, VHI ≥8, MDADI <70, dental problems, and chemotherapy were significantly associated with early morbidity and mortality (all p < .05). CGA-assessed frailty was found in 72 patients (43.6%) and was significantly associated with 2-year mortality (p = .027) but not with morbidity (p = .716). The high-risk group according to our new HNC-specific frailty index that included functional evaluations of respiration and swallowing showed significantly higher 2-year morbidity (p = .043) and mortality (p < .001). Conclusion. Pretreatment functional disabilities related to respiration and swallowing were significantly associated with early morbidity and mortality. The suggested index would be more useful for assessing frailty in elderly HNC patients. Implications for Practice: This study is the first report in terms of suggesting a new frailty index focusing on respiratory and swallowing functions in elderly patients with head and neck cancer. This study shows that functional disabilities associated with respiration and swallowing significantly affected early morbidity and mortality in these elderly patients. The head and neck cancer-specific frailty index described in this report, which includes functional evaluations of respiration and swallowing, significantly predicted both early morbidity and mortality. PMID:27368883
Differential recruitment of executive resources during mind wandering.
Kam, Julia W Y; Handy, Todd C
2014-05-01
Recent research has shown that mind wandering recruits executive resources away from the external task towards inner thoughts. No studies however have determined whether executive functions are drawn away in a unitary manner during mind wandering episodes, or whether there is variation in specific functions impacted. Accordingly, we examined whether mind wandering differentially modulates three core executive functions-response inhibition, updating of working memory, and mental set shifting. In three experiments, participants performed one of these three executive function tasks and reported their attentional state as either on-task or mind wandering at random intervals. We found that mind wandering led to poorer performance in the response inhibition and working memory tasks, but not the set-shifting task. These findings suggest that mind wandering does not recruit executive functions in a monolithic manner. Rather, it appears to selectively engage certain executive functions, which may reflect the adaptive maintenance of ongoing task performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Analyzing the association between functional connectivity of the brain and intellectual performance
Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.
2015-01-01
Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J
2012-06-01
The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.
Color discrimination performance in patients with Alzheimer's disease.
Salamone, Giovanna; Di Lorenzo, Concetta; Mosti, Serena; Lupo, Federica; Cravello, Luca; Palmer, Katie; Musicco, Massimo; Caltagirone, Carlo
2009-01-01
Visual deficits are frequent in Alzheimer's disease (AD), yet little is known about the nature of these disturbances. The aim of the present study was to investigate color discrimination in patients with AD to determine whether impairment of this visual function is a cognitive or perceptive/sensory disturbance. A cross-sectional clinical study was conducted in a specialized dementia unit on 20 patients with mild/moderate AD and 21 age-matched normal controls. Color discrimination was measured by the Farnsworth-Munsell 100 hue test. Cognitive functioning was measured with the Mini-Mental State Examination (MMSE) and a comprehensive battery of neuropsychological tests. The scores obtained on the color discrimination test were compared between AD patients and controls adjusting for global and domain-specific cognitive performance. Color discrimination performance was inversely related to MMSE score. AD patients had a higher number of errors in color discrimination than controls (mean +/- SD total error score: 442.4 +/- 84.5 vs. 304.1 +/- 45.9). This trend persisted even after adjustment for MMSE score and cognitive performance on specific cognitive domains. A specific reduction of color discrimination capacity is present in AD patients. This deficit does not solely depend upon cognitive impairment, and involvement of the primary visual cortex and/or retinal ganglionar cells may be contributory.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Narrative Skills in Young Adults with High-Functioning Autism Spectrum Disorders
ERIC Educational Resources Information Center
Rollins, Pamela Rosenthal
2014-01-01
In this study, the author investigated narrative performances of 10 high-functioning young adults with Autism Spectrum Disorders (ASD) across personal and storybook narratives. Narratives were elicited with genre-specific procedures and then transcribed and scored using the narrative scoring scheme (NSS). One-tailed paired-sample t tests were…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... management functions for the Office on Women's Health (OWH) in the OASH. Specifically, this notice establishes the Division of Policy and Performance Management (ACB2), the Division of Strategic Communication (ACB3) and the Division of Program Innovation (ACB4) within the Office on Women's Health (ACB). The...
Detection of Differential Item Functioning Using the Lasso Approach
ERIC Educational Resources Information Center
Magis, David; Tuerlinckx, Francis; De Boeck, Paul
2015-01-01
This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…
Hardware and software status of QCDOC
NASA Astrophysics Data System (ADS)
Boyle, P. A.; Chen, D.; Christ, N. H.; Clark, M.; Cohen, S. D.; Cristian, C.; Dong, Z.; Gara, A.; Joó, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Mawhinney, R. D.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.
2004-03-01
QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.
NASA Astrophysics Data System (ADS)
Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.
2012-10-01
In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.
Hampson, Robert E.; Gerhardt, Greg A.; Marmarelis, Vasilis; Song, Dong; Opris, Ioan; Santos, Lucas; Berger, Theodore W.; Deadwyler, Sam A.
2012-01-01
Problem addressed Maintenance of cognitive control is a major concern for many human disease condition, therefore a major goal of human neuroprosthetics is to facilitate and/or recover cognitive function when such circumstances impair appropriate decision making. Methodology Nonhuman primates trained to perform a delayed match to sample (DMS) were employed to record mini-columnar activity in the prefrontal cortex (PFC) via custom designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multi-columnar firing patterns during DMS performance. Results The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation facilitated normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following pharmacological disruption of decision making in the same task. Significance and potential impact These findings provide the first successful application of a neuroprosthesis in primate brain designed specifically to restore or repair disrupted cognitive function. PMID:22976769
Schaefer, Sydney Y; Patterson, Chavelle B; Lang, Catherine E
2013-09-01
Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. The purpose of the current study was to test whether training on one motor task in individuals with chronic hemiparesis poststroke would transfer to untrained tasks that were either spatiotemporally similar or different. In all, 11 participants with chronic mild to moderate hemiparesis following stroke completed 5 days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with 2 other untrained functional upper-extremity motor tasks (sorting, dressing) was assessed before and after training. Performance of all 3 tasks improved significantly after training exclusively on 1 motor task. The amount of improvement in the untrained tasks was comparable and was not dependent on the degree of similarity to the trained task. Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits.
Cognitive Predictors of Verbal Memory in a Mixed Clinical Pediatric Sample
Jordan, Lizabeth L.; Tyner, Callie E.; Heaton, Shelley C.
2013-01-01
Verbal memory problems, along with other cognitive difficulties, are common in children diagnosed with neurological and/or psychological disorders. Historically, these “memory problems” have been poorly characterized and often present with a heterogeneous pattern of performance across memory processes, even within a specific diagnostic group. The current study examined archival neuropsychological data from a large mixed clinical pediatric sample in order to understand whether functioning in other cognitive areas (i.e., verbal knowledge, attention, working memory, executive functioning) may explain some of the performance variability seen across verbal memory tasks of the Children’s Memory Scale (CMS). Multivariate analyses revealed that among the cognitive functions examined, only verbal knowledge explained a significant amount of variance in overall verbal memory performance. Further univariate analyses examining the component processes of verbal memory indicated that verbal knowledge is specifically related to encoding, but not the retention or retrieval stages. Future research is needed to replicate these findings in other clinical samples, to examine whether verbal knowledge predicts performance on other verbal memory tasks and to explore whether these findings also hold true for visual memory tasks. Successful replication of the current study findings would indicate that interventions targeting verbal encoding deficits should include efforts to improve verbal knowledge. PMID:25379253
Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T
2017-02-01
Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient Evaluation Functions for Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2004-01-01
Evolutionary computation can be a powerful tool in cresting a control policy for a single agent receiving local continuous input. This paper extends single-agent evolutionary computation to multi-agent systems, where a collection of agents strives to maximize a global fitness evaluation function that rates the performance of the entire system. This problem is solved in a distributed manner, where each agent evolves its own population of neural networks that are used as the control policies for the agent. Each agent evolves its population using its own agent-specific fitness evaluation function. We propose to create these agent-specific evaluation functions using the theory of collectives to avoid the coordination problem where each agent evolves a population that maximizes its own fitness function, yet the system has a whole achieves low values of the global fitness function. Instead we will ensure that each fitness evaluation function is both "aligned" with the global evaluation function and is "learnable," i.e., the agents can readily see how their behavior affects their evaluation function. We then show how these agent-specific evaluation functions outperform global evaluation methods by up to 600% in a domain where a set of rovers attempt to maximize the amount of information observed while navigating through a simulated environment.
Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0)
NASA Technical Reports Server (NTRS)
Talabac, Stephen; Ames, Troy; Blank, Karin; Hostetter, Carl; Brandt, Matthew
2013-01-01
ILIADS 3.0 provides the data management capabilities to access CxP-vetted lunar data sets from the LMMP-provided Data Portal and the LMMP-provided On-Moon lunar data product server. (LMMP stands for Lunar Mapping and Modeling Project.) It also provides specific quantitative analysis functions to meet the stated LMMP Level 3 functional and performance requirements specifications that were approved by the CxP. The purpose of ILIADS 3.0 is to provide an integrated, rich client lunar GIS software application
Implementing Speed and Separation Monitoring in Collaborative Robot Workcells.
Marvel, Jeremy A; Norcross, Rick
2017-04-01
We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization.
Implementing Speed and Separation Monitoring in Collaborative Robot Workcells
Marvel, Jeremy A.; Norcross, Rick
2016-01-01
We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization. PMID:27885312
Fliss, Rafika; Lemerre, Marion; Mollard, Audrey
2016-06-01
Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed.
NASA Technical Reports Server (NTRS)
Lee, Mark
1991-01-01
Many companies, including Xerox and Texas Instruments, are using cross functional systems to deal with the increasingly complex and competitive business environment. However, few firms within the aerospace industry appear to be aware of the significant benefits that cross functional systems can provide. Those benefits are examined and a flexible methodology is discussed that companies can use to identify and develop cross functional systems that will help improve organizational performance. In addition, some of the managerial issues are addressed that cross functional systems may raise and specific examples are used to explore networking's contributions to cross functional systems.
Validation of "laboratory-supported" criteria for functional (psychogenic) tremor.
Schwingenschuh, Petra; Saifee, Tabish A; Katschnig-Winter, Petra; Macerollo, Antonella; Koegl-Wallner, Mariella; Culea, Valeriu; Ghadery, Christine; Hofer, Edith; Pendl, Tamara; Seiler, Stephan; Werner, Ulrike; Franthal, Sebastian; Maurits, Natasha M; Tijssen, Marina A; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J
2016-04-01
In a small group of patients, we have previously shown that a combination of electrophysiological tests was able to distinguish functional (psychogenic) tremor and organic tremor with excellent sensitivity and specificity. This study aims to validate an electrophysiological test battery as a tool to diagnose patients with functional tremor with a "laboratory-supported" level of certainty. For this prospective data collection study, we recruited 38 new patients with functional tremor (mean age 37.9 ± 24.5 years; mean disease duration 5.9 ± 9.0 years) and 73 new patients with organic tremor (mean age 55.4 ± 25.4 years; mean disease duration 15.8 ± 17.7 years). Tremor was recorded at rest, posture (with and without loading), action, while performing tapping tasks (1, 3, and 5 Hz), and while performing ballistic movements with the less-affected hand. Electrophysiological tests were performed by raters blinded to the clinical diagnosis. We calculated a sum score for all performed tests (maximum of 10 points) and used a previously suggested cut-off score of 3 points for a diagnosis of laboratory-supported functional tremor. We demonstrated good interrater reliability and test-retest reliability. Patients with functional tremor had a higher average score on the test battery when compared with patients with organic tremor (3.6 ± 1.4 points vs 1.0 ± 0.8 points; P < .001), and the predefined cut-off score for laboratory-supported functional tremor yielded a test sensitivity of 89.5% and a specificity of 95.9%. We now propose this test battery as the basis of laboratory-supported criteria for the diagnosis of functional tremor, and we encourage its use in clinical and research practice. © 2016 International Parkinson and Movement Disorder Society.
Hoerzer, Stefan; von Tscharner, Vinzenz; Jacob, Christian; Nigg, Benno M
2015-07-16
A functional group is a collection of individuals who react in a similar way to a specific intervention/product such as a sport shoe. Matching footwear features to a functional group can possibly enhance footwear-related comfort, improve running performance, and decrease the risk of movement-related injuries. To match footwear features to a functional group, one has to first define the different groups using their distinctive movement patterns. Therefore, the main objective of this study was to propose and apply a methodological approach to define functional groups with different movement patterns using Self-Organizing Maps and Support Vector Machines. Further study objectives were to identify differences in age, gender and footwear-related comfort preferences between the functional groups. Kinematic data and subjective comfort preferences of 88 subjects (16-76 years; 45 m/43 f) were analysed. Eight functional groups with distinctive movement patterns were defined. The findings revealed that most of the groups differed in age or gender. Certain functional groups differed in their comfort preferences and, therefore, had group-specific footwear requirements to enhance footwear-related comfort. Some of the groups, which had group-specific footwear requirements, did not show any differences in age or gender. This is important because when defining functional groups simply using common grouping criteria like age or gender, certain functional groups with group-specific movement patterns and footwear requirements might not be detected. This emphasises the power of the proposed pattern recognition approach to automatically define groups by their distinctive movement patterns in order to be able to address their group-specific product requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen
2017-09-05
In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cheong, Sau Kuan; Lang, Cathryne P; Johnston, Leanne M
2018-02-01
Self-concept is an individual's perception of him/herself. Research into the self-concept of children with cerebral palsy (CP) has been sparse due to the lack of a population-specific self-concept instrument. Using the new myTREEHOUSE Self-Concept Assessment, this study investigated the self-concept of children with CP in relation to age, gender, motor, communication and cognitive function. Children with CP aged 8-12 years (n = 50; 29 males; mean 10 years 2 months; GMFCS-E&R I = 36, II = 8, III = 5, IV = 1) completed myTREEHOUSE and a standardised intelligence measure. Most children reported positive self-concept from all three myTREEHOUSE Performance Perspectives and over half (60%) fell within the Low range for the Personal Concern Score. Self-concept was not associated with age, gender, motor function, or communication function. However, for cognitive function, associations were observed for Social Skills (Below Average > Average cognitive function; Cohen's d = 1.07) and Learning Skills (Above Average > Average cognitive function; Cohen's d = 0.95) domains when rated from a Personal Performance Perspective. As the first study of the self-concept of children with CP using a CP-specific assessment, this study offers important insights into what children with CP think about themselves. Generally, the self-concept of children with CP was sound. Future research on environmental facilitators and barriers to robust self-concept development is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.;
2011-01-01
Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
Analysis of Skeletal Muscle Metrics as Predictors of Functional Task Performance
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey W.; Buxton, Roxanne E.; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle J.; Fiedler, James; Ploutz-Snyder, Robert J.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.
2010-01-01
PURPOSE: The ability to predict task performance using physiological performance metrics is vital to ensure that astronauts can execute their jobs safely and effectively. This investigation used a weighted suit to evaluate task performance at various ratios of strength, power, and endurance to body weight. METHODS: Twenty subjects completed muscle performance tests and functional tasks representative of those that would be required of astronauts during planetary exploration (see table for specific tests/tasks). Subjects performed functional tasks while wearing a weighted suit with additional loads ranging from 0-120% of initial body weight. Performance metrics were time to completion for all tasks except hatch opening, which consisted of total work. Task performance metrics were plotted against muscle metrics normalized to "body weight" (subject weight + external load; BW) for each trial. Fractional polynomial regression was used to model the relationship between muscle and task performance. CONCLUSION: LPMIF/BW is the best predictor of performance for predominantly lower-body tasks that are ambulatory and of short duration. LPMIF/BW is a very practical predictor of occupational task performance as it is quick and relatively safe to perform. Accordingly, bench press work best predicts hatch-opening work performance.
Electronic fitness function for screening semiconductors as thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Guangzong; Sun, Jifeng; Li, Yuwei
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
Electronic fitness function for screening semiconductors as thermoelectric materials
Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...
2017-11-17
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
A space-based public service platform for terrestrial rescue operations
NASA Technical Reports Server (NTRS)
Fleisig, R.; Bernstein, J.; Cramblit, D. C.
1977-01-01
The space-based Public Service Platform (PSP) is a multibeam, high-gain communications relay satellite that can provide a variety of functions for a large number of people on earth equipped with extremely small, very low cost transceivers. This paper describes the PSP concept, the rationale used to derive the concept, the criteria for selecting specific communication functions to be performed, and the advantages of performing such functions via satellite. The discussion focuses on the benefits of using a PSP for natural disaster warning; control of attendant rescue/assistance operations; and rescue of people in downed aircraft, aboard sinking ships, lost or injured on land.
Stratton, John; Cobia, Derin J; Reilly, James; Brook, Michael; Hanlon, Robert E
2018-02-07
Few studies have compared performance on neurocognitive measures between violent and nonviolent schizophrenia samples. A better understanding of neurocognitive dysfunction in violent individuals with schizophrenia could increase the efficacy of violence reduction strategies and aid in risk assessment and adjudication processes. This study aimed to compare neuropsychological performance between 25 homicide offenders with schizophrenia and 25 nonviolent schizophrenia controls. The groups were matched for age, race, sex, and handedness. Independent t-tests and Mann-Whitney U-tests were used to compare the schizophrenia groups' performance on measures of cognition, including composite scores assessing domain level functioning and individual neuropsychological tests. Results indicated the violent schizophrenia group performed worse on measures of memory and executive functioning, and the Intellectual Functioning composite score, when compared to the nonviolent schizophrenia sample. These findings replicate previous research documenting neuropsychological deficits specific to violent individuals with schizophrenia and support research implicating fronto-limbic dysfunction among violent offenders with schizophrenia. © 2018 American Academy of Forensic Sciences.
Liu, Chao-Yu; Huang, Wei-Lieh; Kao, Wei-Chih; Gau, Susan Shur-Fen
2017-12-01
Childhood attention-deficit/hyperactivity disorder (ADHD) and comorbid oppositional defiant disorder/conduct disorder (ODD/CD) are associated with negative school outcomes. The study aimed to examine the impact of ADHD and ODD/CD on various school functions. 395 youths with ADHD (244 with ADHD + ODD/CD and 151 with ADHD only) and 156 controls received semi-structured psychiatric interviews. School functions were assessed and compared between each group with a multiple-level model. The results showed that youths with ADHD had poorer performance across different domains of school functioning. Youths with ADHD + ODD/CD had more behavioral problems but similar academic performance than those with ADHD only. The multiple linear regression models revealed that ADHD impaired academic performance while ODD/CD aggravated behavioral problems. Our findings imply that comorbid ODD/CD may specifically contribute to social difficulties in youths with ADHD. Measures of early detection and intervention for ODD/CD should be conducted to prevent adverse outcomes.
The effect of the COMT val(158)met polymorphism on neural correlates of semantic verbal fluency.
Krug, Axel; Markov, Valentin; Sheldrick, Abigail; Krach, Sören; Jansen, Andreas; Zerres, Klaus; Eggermann, Thomas; Stöcker, Tony; Shah, N Jon; Kircher, Tilo
2009-12-01
Variation in the val(158)met polymorphism of the COMT gene has been found to be associated with cognitive performance. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal areas. Given the complex modulation and functional heterogeneity of frontal lobe systems, further specification of COMT gene-related phenotypes differing in prefrontally mediated cognitive performance are of major interest. Eighty healthy individuals (54 men, 26 women; mean age 23.3 years) performed an overt semantic verbal fluency task while brain activation was measured with functional magnetic resonance imaging (fMRI). COMT val(158)met genotype was determined and correlated with brain activation measured with fMRI during the task. Although there were no differences in performance, brain activation in the left inferior frontal gyrus [Brodmann area 10] was positively correlated with the number of val alleles in the COMT gene. COMT val(158)met status modulates brain activation during the language production on a semantic level in an area related to executive functions.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Physiological Factors Contributing to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
Cognitive Mechanisms, Specificity and Neural Underpinnings of Visuospatial Peaks in Autism
ERIC Educational Resources Information Center
Caron, M.-J.; Mottron, L.; Berthiaume, C.; Dawson, M.
2006-01-01
In order to explain the cognitive and cerebral mechanisms responsible for the visuospatial peak in autism, and to document its specificity to this condition, a group of eight high-functioning individuals with autism and a visuospatial peak (HFA-P) performed a modified block-design task (BDT; subtest from Wechsler scales) at various levels of…
Representation of action in occipito-temporal cortex.
Wiggett, Alison J; Downing, Paul E
2011-07-01
A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498-1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.
Shettigar, Vikram; Zhang, Bo; Little, Sean C; Salhi, Hussam E; Hansen, Brian J; Li, Ning; Zhang, Jianchao; Roof, Steve R; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K; Weisleder, Noah; Fedorov, Vadim V; Accornero, Federica; Rafael-Fortney, Jill A; Gyorke, Sandor; Janssen, Paul M L; Biesiadecki, Brandon J; Ziolo, Mark T; Davis, Jonathan P
2016-02-24
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.
Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.
2016-01-01
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229
Squeglia, Lindsay M; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F
2011-10-01
Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. Significant binge drinking status × gender interactions were found (p < 0.05) in 8 brain regions spanning bilateral frontal, anterior cingulate, temporal, and cerebellar cortices. In all regions, female binge drinkers showed less SWM activation than female controls, while male bingers exhibited greater SWM response than male controls. For female binge drinkers, less activation was associated with poorer sustained attention and working memory performances (p < 0.025). For male binge drinkers, greater activation was linked to better spatial performance (p < 0.025). Binge drinking during adolescence is associated with gender-specific differences in frontal, temporal, and cerebellar brain activation during an SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that blood oxygen level-dependent activation is affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance. Copyright © 2011 by the Research Society on Alcoholism.
ERIC Educational Resources Information Center
Braunstein, Jean; Janky, James M.
This paper describes the network coordination for the Health, Education, Telecommunications (HET) system. Specifically, it discusses HET network performance as a function of a specially-developed coordination system which was designed to link terrestrial equipment to satellite operations centers. Because all procedures and equipment developed for…
Menachemi, Nir; Burkhardt, Jeffrey; Shewchuk, Richard; Burke, Darrell; Brooks, Robert G
2007-01-01
Outsourcing of information technology (IT) functions is a popular strategy with both potential benefits and risks for hospitals. Anecdotal evidence, based on case studies, suggests that outsourcing may be associated with significant cost savings. However, no generalizable evidence exists to support such assertions. This study examines whether outsourcing IT functions is related to improved financial performance in hospitals. Primary survey data on IT outsourcing behavior were combined with secondary data on hospital financial performance. Regression analyses examined the relationship between outsourcing and various measures of financial performance while controlling for bed size, average patient acuity, geographic location, and overall IT adoption. Complete data from a total of 83 Florida hospitals were available for analyses. Findings suggest that the decision to outsource IT functions is not related to any of the hospital financial performance measures that were examined. Specifically, outsourcing of IT functions did not correlate with net inpatient revenue, net patient revenue, hospital expenses, total expenses, cash flow ratio, operating margin, or total margin. In most cases, IT outsourcing is not necessarily a cost-lowering strategy, but instead, a cost-neutral manner in which to accomplish an organizational strategy.
Annett, Robert D; Bender, Bruce G; Gordon, Michael
2007-01-01
The relationship between attention, intelligence, memory, achievement, and behavior in a large population (N = 939) of children without neuropsychologic problems was investigated in children with mild and moderate asthma. It was hypothesized that different levels of children's attentional capabilities would be associated with different levels of intellectual, memory, and academic abilities. Children ages 6-12 at the eight clinical centers of the Childhood Asthma Management Program (CAMP) were enrolled in this study. Standardized measures of child neuropsychological and behavioral performance were administered to all participants, with analyses examining both the developmental trajectory of child attentional capabilities and the associations between Continuous Performance Test (CPT) scores and intellectual functioning, and measures of memory, academic achievement, and behavioral functioning. Findings demonstrated that correct responses on the CPT increase significantly with age, while commission errors decrease significantly with age. Performance levels on the CPT were associated with differences in child intellectual function, memory, and academic achievement. Overall these findings reveal how impairments in child attention skills were associated with normal levels of performance on measures of children's intelligence, memory, academic achievement, and behavioral functioning, suggesting that CPT performance is a salient marker of brain function.
Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.
Zalvidea, D; Sicre, E E
1998-06-10
A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Cameron, K.W.
1998-11-24
Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less
Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions.
Liu, Xiaoling; Formanek, Petr; Voit, Brigitte; Appelhans, Dietmar
2017-12-18
Next-generation therapeutic approaches are expected to rely on the engineering of biomimetic cellular systems that can mimic specific cellular functions. Herein, we demonstrate a highly effective route for constructing structural and functional eukaryotic cell mimics by loading pH-sensitive polymersomes as membrane-associated and free-floating organelle mimics inside the multifunctional cell membrane. Metabolism mimicry has been validated by performing successive enzymatic cascade reactions spatially separated at specific sites of cell mimics in the presence and absence of extracellular organelle mimics. These enzymatic reactions take place in a highly controllable, reproducible, efficient, and successive manner. Our biomimetic approach to material design for establishing functional principles brings considerable enrichment to the fields of biomedicine, biocatalysis, biotechnology, and systems biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B
2018-08-15
We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan
2015-05-01
We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.
Bruffaerts, Rose; De Weer, An-Sofie; De Grauwe, Sophie; Thys, Miek; Dries, Eva; Thijs, Vincent; Sunaert, Stefan; Vandenbulcke, Mathieu; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2014-09-01
We investigated the critical contribution of right ventral occipitotemporal cortex to knowledge of visual and functional-associative attributes of biological and non-biological entities and how this relates to category-specificity during confrontation naming. In a consecutive series of 7 patients with lesions confined to right ventral occipitotemporal cortex, we conducted an extensive assessment of oral generation of visual-sensory and functional-associative features in response to the names of biological and nonbiological entities. Subjects also performed a confrontation naming task for these categories. Our main novel finding related to a unique case with a small lesion confined to right medial fusiform gyrus who showed disproportionate naming impairment for nonbiological versus biological entities, specifically for tools. Generation of visual and functional-associative features was preserved for biological and non-biological entities. In two other cases, who had a relatively small posterior lesion restricted to primary visual and posterior fusiform cortex, retrieval of visual attributes was disproportionately impaired compared to functional-associative attributes, in particular for biological entities. However, these cases did not show a category-specific naming deficit. Two final cases with the largest lesions showed a classical dissociation between biological versus nonbiological entities during naming, with normal feature generation performance. This is the first lesion-based evidence of a critical contribution of the right medial fusiform cortex to tool naming. Second, dissociations along the dimension of attribute type during feature generation do not co-occur with category-specificity during naming in the current patient sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exercising with a Muscle Disease
... for extended periods of time. Examples are walking, running, swimming and cycling. anaerobic exercise : exercise that does ... movements to perform specific functions, such as walking, running or manipulation of small objects; eye-hand coordination ...
Celetti, Giorgia; Natale, Concetta Di; Causa, Filippo; Battista, Edmondo; Netti, Paolo A
2016-09-01
Polymeric microparticles represent a robustly platform for the detection of clinically relevant analytes in biological samples; they can be functionalized encapsulating a multiple types of biologics entities, enhancing their applications as a new class of colloid materials. Microfluidic offers a versatile platform for the synthesis of monodisperse and engineered microparticles. In this work, we report microfluidic synthesis of novel polymeric microparticles endowed with specific peptide due to its superior specificity for target binding in complex media. A peptide sequence was efficiently encapsulated into the polymeric network and protein binding occurred with high affinity (KD 0.1-0.4μM). Fluidic dynamics simulation was performed to optimize the production conditions for monodisperse and stable functionalized microgels. The results demonstrate the easy and fast realization, in a single step, of functionalized monodisperse microgels using droplet-microfluidic technique, and how the inclusion of the peptide within polymeric network improve both the affinity and the specificity of protein capture. Copyright © 2016 Elsevier B.V. All rights reserved.
1980-09-01
gates stuck-at- zero or stuck-at-one, one at a time. As indicated, there is little differ- ence between the function most affected and the function...one at a time. These two histograms are not arranged in descending order. Note that there is little difference between the function most affected and...the function least affected for either case. Even though there is little difference in the frequency with which each instruction will be affected, the
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
Electro-Optic Computing Architectures. Volume I
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW
Unidirectional transmission using array of zero-refractive-index metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yangyang; Xu, Lin; Hong Hang, Zhi
2014-05-12
In this Letter, we find that high efficient unidirectional transmission occurs for an array of prisms made of zero-refractive-index metamaterials. As a specific demonstration, we further design the device using Dirac-cone-like photonic crystals. The device can function for a broadband of spectrum. Numerical simulations are performed to verify the one-way wave functionality.
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.
Performance degradation of helicopter rotor in forward flight due to ice
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Dadone, L.; Shaw, R. J.
1985-01-01
This study addresses the analytical assessment of the degradation in the forward flight performance of the front rotor Boeing Vertol CH47D helicopter in a rime ice natural icing encounter. The front rotor disk was divided into 24 15-deg sections and the local Mach number and angle of attack were evaluated as a function of azimuthal and radial location for a specified flight condition. Profile drag increments were then calculated as a function of azimuthal and radial position for different times of exposure to icing, and the rotor performance was re-evaluated including these drag increments. The results of the analytical prediction method, such as horsepower required to maintain a specific flight condition, as a function of icing time have been generated. The method to illustrate the value of such an approach in assessing performance changes experienced by a helicopter rotor as a result of rime ice accretion is described.
NASA Astrophysics Data System (ADS)
Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo
2018-04-01
Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.
Functional and cognitive changes in community-dwelling elderly: longitudinal study.
Figueiredo, Carolina S; Assis, Marcella G; Silva, Silvia L A; Dias, Rosângela C; Mancini, Marisa C
2013-01-01
The relationship between aging and increased life expectancy in the overall population likely contributes to a higher frequency rate and incidence of illnesses and functional disabilities. Physical dependence and cognitive impairment might hinder the performance of activities and result in an overload of care duties for the patient's family and the healthcare system. The aim of this study was to compare the functional and cognitive changes exhibited by the elderly over a 6-month period. This longitudinal and observational study was conducted in a sample of 167 elderly people, who were selected from the database of the Network of Studies on Frailty in Brazilian Elderly, Universidade Federal de Minas Gerais - UFMG. The participants submitted to the Mini Mental State Examination (MMSE), Katz Index, Lawton and Brody's scale and responded to items on Advanced Activities of Daily Living (AADLs). We analyzed the data using multivariate regression models. The participants' functional capacity exhibited reduced performance of specific instrumental activities of daily living (IADLs), p=0.002, and basic activities of daily living (BADLs), p=0.038. Living alone (odds ratio (OR), 2.53; 95% confidence interval (CI), 1.09-5.87) and work status (OR, 2.52; 95% CI, 1.18-5.41) were associated with changes in the IADLs. The scores in the AADL scale (p=0.163) and MMSE (p=0.059) did not exhibit any significant difference during the study period. The participants with better cognitive function were more independent in their performance of AADLs and IADLs. The results depict specific patterns of loss and stability of functional capacity in community-dwelling elderly.
Ferdous, Tamanna; Cederholm, Tommy; Kabir, Zarina Nahar; Hamadani, Jena Derakhshani; Wahlin, Ake
2010-05-01
To investigate the association between nutritional status and general and specific (fluid and crystallized) cognitive functioning in a group of older people living in a rural area in Bangladesh. Cross-sectional study. Matlab, Bangladesh. Four hundred fifty-seven randomly selected persons aged 60 and older (mean age 69.5 +/- 6.8), 55% female. Nutritional status was evaluated using a modified form of the Mini Nutritional Assessment (MNA). General cognitive function was assessed using the Bangla Adaptation of the Mini-Mental State Examination, and a word synonym test was used to test semantic memory function (a crystallized ability). To assess cognitive processing speed (a fluid ability), "cross balls" and "complete boxes" tests (scores/time unit) were used. Clinical diagnoses were registered. Structured questionnaires were used to assess demographic and socioeconomic status of the participants. Twenty-six percent of the participants were undernourished, and 62% were at risk of malnutrition according to the MNA. The MNA scores were significantly lower in women than in men (P=.01). Women performed worse than men in all three cognitive tasks (P<.001). Poorer cognitive performance was independently associated with older age, female sex, illiteracy, visual impairment, severity of disease, and depressive symptoms. There were significant associations between better nutritional status and better cognitive performance tests of general ability and processing speed, whereas semantic memory appeared to be less affected. The association between nutritional status and cognitive function involves general and specific cognitive abilities, with fluid ability seeming to be affected but crystalized functions being relatively spared.
Team Synergies in Sport: Theory and Measures
Araújo, Duarte; Davids, Keith
2016-01-01
Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis. PMID:27708609
Team Synergies in Sport: Theory and Measures.
Araújo, Duarte; Davids, Keith
2016-01-01
Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis.
de Visser, L; van der Knaap, L J; van de Loo, A J A E; van der Weerd, C M M; Ohl, F; van den Bos, R
2010-05-01
Excessive levels of trait anxiety are a risk factor for psychiatric conditions, including anxiety disorders and substance abuse. High trait anxiety has been associated with altered cognitive functioning, in particular with an attentional bias towards aversive stimuli. Decision-making is a crucial aspect of cognitive functioning that relies on the correct processing and control of emotional stimuli. Interestingly, anxiety and decision-making share underlying neural substrates, involving cortico-limbic pathways, including the amygdala, striatum and medial and dorsolateral prefrontal cortices. In the present study, we investigated the relationship between trait anxiety, measured by the State-Trait Anxiety Inventory, and complex decision-making, measured by the Iowa Gambling Task, in healthy male and female volunteers. The main focus of this study was the inclusion of gender as a discriminative factor. Indeed, we found distinct gender-specific effects of trait anxiety: in men, both low and high anxiety groups showed impaired decision-making compared to medium anxiety individuals, whereas in women only high anxiety individuals performed poorly. Furthermore, anxiety affected decision-making in men early in the task, i.e. the exploration phase, as opposed to an effect on performance in women during the second part of the test, i.e. the exploitation phase. These findings were related to different profiles of trait anxiety in men and women, and were independent of performance in the Wisconsin Card Sorting Test and cortisol levels. Our data show gender-specific effects of trait anxiety on emotional decision-making. We suggest gender-specific endophenotypes of anxiety to exist, that differentially affect cognitive functioning. 2010 Elsevier Ltd. All rights reserved.
Safety performance functions for intersections : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
Road safety management activities include screening the network for sites with a potential for safety improvement (Network : Screening), diagnosing safety problems at specific sites, and evaluating the safety effectiveness of implemented : countermea...
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.
Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.
Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M
2018-06-01
Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.
Collision Avoidance Functional Requirements for Step 1. Revision 6
NASA Technical Reports Server (NTRS)
2006-01-01
This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.
Anderson, Britt; Soliman, Sherif; O’Malley, Shannon; Danckert, James; Besner, Derek
2015-01-01
Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing. PMID:25870571
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Su, Fong-Chin; Yu, Hui-I; Hua, Shih-Che; Lu, Chieh-Hsiang
2014-01-01
To comprehend the sensorimotor control ability in diabetic hands, this study investigated the sensation, motor function and precision pinch performances derived from a pinch-holding-up activity (PHUA) test of the hands of diabetic patients and healthy subjects. The precision, sensitivity and specificity of the PHUA test in the measurements of diabetic patients were also analyzed. We hypothesized that the diabetic hands would have impacts on the sensorimotor functions of the hand performances under functionally quantitative measurements. One hundred and fifty-nine patients with clinically defined diabetes mellitus (DM) and 95 age- and gender-matched healthy controls were included. Semmes-Weinstein monofilament (SWM), static and moving two-point discrimination (S2PD and M2PD), maximal pinch strength and precision pinch performance tests were conducted to evaluate the sensation, motor and sensorimotor status of the recruited hands. The results showed that there were significant differences (all p<0.05) in SWM, S2PD, M2PD and maximum pinch strength between the DM and control groups. A higher force ratio in the DM patients than in the controls (p<0.001) revealed a poor ability of pinch force adjustment in the DM patients. The percentage of maximal pinch strength was also significantly different (p<0.001) between the DM and control groups. The sensitivity, specificity and area under the receiver operating characteristic curve were 0.85, 0.51, and 0.724, respectively, for the PHUA test. Statistically significant degradations in sensory and motor functions and sensorimotor control ability were observed in the hands of the diabetic patients. The PHUA test could be feasibly used as a clinical tool to determine the sensorimotor function of the hands of diabetic patients from a functional perspective.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Su, Fong-Chin; Yu, Hui-I; Hua, Shih-Che; Lu, Chieh-Hsiang
2014-01-01
To comprehend the sensorimotor control ability in diabetic hands, this study investigated the sensation, motor function and precision pinch performances derived from a pinch-holding-up activity (PHUA) test of the hands of diabetic patients and healthy subjects. The precision, sensitivity and specificity of the PHUA test in the measurements of diabetic patients were also analyzed. We hypothesized that the diabetic hands would have impacts on the sensorimotor functions of the hand performances under functionally quantitative measurements. One hundred and fifty-nine patients with clinically defined diabetes mellitus (DM) and 95 age- and gender-matched healthy controls were included. Semmes-Weinstein monofilament (SWM), static and moving two-point discrimination (S2PD and M2PD), maximal pinch strength and precision pinch performance tests were conducted to evaluate the sensation, motor and sensorimotor status of the recruited hands. The results showed that there were significant differences (all p<0.05) in SWM, S2PD, M2PD and maximum pinch strength between the DM and control groups. A higher force ratio in the DM patients than in the controls (p<0.001) revealed a poor ability of pinch force adjustment in the DM patients. The percentage of maximal pinch strength was also significantly different (p<0.001) between the DM and control groups. The sensitivity, specificity and area under the receiver operating characteristic curve were 0.85, 0.51, and 0.724, respectively, for the PHUA test. Statistically significant degradations in sensory and motor functions and sensorimotor control ability were observed in the hands of the diabetic patients. The PHUA test could be feasibly used as a clinical tool to determine the sensorimotor function of the hands of diabetic patients from a functional perspective. PMID:24722361
van Norren, K; Kegler, D; Argilés, J M; Luiking, Y; Gorselink, M; Laviano, A; Arts, K; Faber, J; Jansen, H; van der Beek, E M; van Helvoort, A
2009-01-01
Cancer cachexia is characterised by metabolic alterations leading to loss of adipose tissue and lean body mass and directly compromises physical performance and the quality of life of cancer patients. In a murine cancer cachectic model, the effects of dietary supplementation with a specific combination of high protein, leucine and fish oil on weight loss, muscle function and physical activity were investigated. Male CD2F1 mice, 6–7 weeks old, were divided into body weight-matched groups: (1) control, (2) tumour-bearing, and (3) tumour-bearing receiving experimental diets. Tumours were induced by s.c. inoculation with murine colon adenocarcinoma (C26) cells. Food intake, body mass, tumour size and 24 h-activity were monitored. Then, 20 days after tumour/vehicle inoculation, the animals were killed and muscle function was tested ex vivo. Tumour-bearing mice showed reduced carcass, muscle and fat mass compared with controls. EDL muscle performance and total daily activity were impaired in the tumour-bearing mice. Addition of single nutrients resulted in no or modest effects. However, supplementation of the diet with the all-in combination of high protein, leucine and fish oil significantly reduced loss of carcass, muscle and fat mass (loss in mass 45, 52 and 65% of TB-con, respectively (P<0.02)) and improved muscle performance (loss of max force reduced to 55–64% of TB-con (P<0.05)). Moreover, total daily activity normalised after intervention with the specific nutritional combination (50% of the reduction in activity of TB-con (P<0.05)). In conclusion, a nutritional combination of high protein, leucine and fish oil reduced cachectic symptoms and improved functional performance in cancer cachectic mice. Comparison of the nutritional combination with its individual modules revealed additive effects of the single components provided. PMID:19259092
Loewenstein, D A; Rubert, M P; Argüelles, T; Duara, R
1995-03-01
Neuropsychological measures have been widely used by clinicians to assist them in making judgments regarding a cognitively impaired patient's ability to independently perform important activities of daily living. However, important questions have been raised concerning the degree to which neuropsychological instruments can predict a broad array of specific functional capacities required in the home environment. In the present study, we examined 127 English-speaking and 56 Spanish-speaking patients with Alzheimer's disease (AD) and determined the extent to which various neuropsychological measures and demographic variables were predictive of performance on functional measures administered within the clinical setting. Among English-speaking AD patients, Block Design and Digit-Span of the WAIS-R, as well as tests of language were among the strongest predictors of functional performance. For Spanish-speakers, Block Design, The Mini-Mental State Evaluation (MMSE) and Digit Span had the optimal predictive power. When stepwise regression was conducted on the entire sample of 183 subjects, ethnicity emerged as a statistically significant predictor variable on one of the seven functional tests (writing a check). Despite the predictive power of several of the neuropsychological measures for both groups, most of the variability in objective functional performance could not be explained in our regression models. As a result, it would appear prudent to include functional measures as part of a comprehensive neuropsychological evaluation for dementia.
Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng; ...
2017-08-19
Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng
Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less
Functional Annotations of Paralogs: A Blessing and a Curse
Zallot, Rémi; Harrison, Katherine J.; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie
2016-01-01
Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105
Moussa, Malaak Nasser; Wesley, Michael J; Porrino, Linda J; Hayasaka, Satoru; Bechara, Antoine; Burdette, Jonathan H; Laurienti, Paul J
2014-04-01
Human decision making is dependent on not only the function of several brain regions but also their synergistic interaction. The specific function of brain areas within the ventromedial prefrontal cortex has long been studied in an effort to understand choice evaluation and decision making. These data specifically focus on whole-brain functional interconnectivity using the principles of network science. The Iowa Gambling Task (IGT) was the first neuropsychological task used to model real-life decisions in a way that factors reward, punishment, and uncertainty. Clinically, it has been used to detect decision-making impairments characteristic of patients with prefrontal cortex lesions. Here, we used performance on repeated blocks of the IGT as a behavioral measure of advantageous and disadvantageous decision making in young and mature adults. Both adult groups performed poorly by predominately making disadvantageous selections in the beginning stages of the task. In later phases of the task, young adults shifted to more advantageous selections and outperformed mature adults. Modularity analysis revealed stark underlying differences in visual, sensorimotor and medial prefrontal cortex community structure. In addition, changes in orbitofrontal cortex connectivity predicted behavioral deficits in IGT performance. Contrasts were driven by a difference in age but may also prove relevant to neuropsychiatric disorders associated with poor decision making, including the vulnerability to alcohol and/or drug addiction.
Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
1997-01-01
A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.
BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3
Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.
2014-01-01
Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793
Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide
2013-09-01
The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of physiology in the development of golf performance.
Smith, Mark F
2010-08-01
The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.
Flow and free running speed characterization of dental air turbine handpieces.
Dyson, J E; Darvell, B W
1999-09-01
Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.
Communications network design and costing model users manual
NASA Technical Reports Server (NTRS)
Logan, K. P.; Somes, S. S.; Clark, C. A.
1983-01-01
The information and procedures needed to exercise the communications network design and costing model for performing network analysis are presented. Specific procedures are included for executing the model on the NASA Lewis Research Center IBM 3033 computer. The concepts, functions, and data bases relating to the model are described. Model parameters and their format specifications for running the model are detailed.
ERIC Educational Resources Information Center
Hall, Jessica; McGregor, Karla K.; Oleson, Jacob
2017-01-01
Purpose: The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. Method: One hundred eighty-five students with LD (n = 53) or normal language development (ND, n =…
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Diehl, Adam G
2018-01-01
Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190
Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls
Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut
2013-01-01
The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148
Yeh, Zai-Ting
2013-01-01
Social intelligence is the ability to understand others and the social context effectively and thus to interact with people successfully. Research has suggested that the theory of mind (ToM) and executive function may play important roles in explaining social intelligence. The specific aim of the present study was to test with structural equation modeling (SEM) the hypothesis that performance on ToM tasks is more associated with social intelligence in the elderly than is performance on executive functions. One hundred and seventy-seven participants (age 56-96) completed ToM, executive function, and other basic cognition tasks, and were rated with social intelligence scales. The SEM results showed that ToM and executive function were strongly correlated (0.54); however, only the path coefficient from ToM to social intelligence, and not from executive function, was significant (0.37). ToM performance, but not executive function, was strongly correlated with social intelligence among elderly individuals. ToM and executive function might play different roles in social behavior during normal aging; however, based on the present results, it is possible that ToM might play an important role in social intelligence.
Semenova, O A; Machinskaya, R I
2015-01-01
A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.
Exploring the relations among physical fitness, executive functioning, and low academic achievement.
de Bruijn, A G M; Hartman, E; Kostons, D; Visscher, C; Bosker, R J
2018-03-01
Physical fitness seems to be related to academic performance, at least when taking the role of executive functioning into account. This assumption is highly relevant for the vulnerable population of low academic achievers because their academic performance might benefit from enhanced physical fitness. The current study examined whether physical fitness and executive functioning are independent predictors of low mathematics and spelling achievement or whether the relation between physical fitness and low achievement is mediated by specific executive functions. In total, 477 students from second- and third-grade classes of 12 primary schools were classified as either low or average-to-high achievers in mathematics and spelling based on their scores on standardized achievement tests. Multilevel structural equation models were built with direct paths between physical fitness and academic achievement and added indirect paths via components of executive functioning: inhibition, verbal working memory, visuospatial working memory, and shifting. Physical fitness was only indirectly related to low achievement via specific executive functions, depending on the academic domain involved. Verbal working memory was a mediator between physical fitness and low achievement in both domains, whereas visuospatial working memory had a mediating role only in mathematics. Physical fitness interventions aiming to improve low academic achievement, thus, could potentially be successful. The mediating effect of executive functioning suggests that these improvements in academic achievement will be preceded by enhanced executive functions, either verbal working memory (in spelling) or both verbal and visuospatial working memory (in mathematics). Copyright © 2017 Elsevier Inc. All rights reserved.
Laser homeostatics on delayed onset muscle soreness
NASA Astrophysics Data System (ADS)
Liu, T. C. Y.; Fu, D. R.; Liu, X. G.; Tian, Z. X.
2011-01-01
Delayed onset muscle soreness (DOMS) and its photobiomodulation were reviewed from the viewpoint of function-specific homeostasis (FSH) in this paper. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stressor may destroy a FSH. A stress is a response of a biosystem to a stressor and may also be in stress-specific homeostasis (StSH). A low level light (LLL) is so defined that it has no effects on a function in its FSH or a stress in its StSH, but it modulate a function far from its FSH or a stress far from its StSH. For DOMS recovery, protein metabolism in the Z-line streaming muscular cell is the essential process, but the inflammation, pain and soreness are non-essential processes. For many DOMS phenomena, protein metabolism in the Z-line streaming muscular cell is in protein metabolism-specific homeostasis (PmSH) so that there are no effects of LLL although the inflammation can be inhibited and the pain can be relieved. An athlete or animal in the dysfunctional conditions such as blood flow restriction and exercise exhaustion is far from PmSH and the protein metabolism can be improved with LLL.
Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R
2016-02-01
Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cognitive Performance in Suicidal Depressed Elderly: Preliminary Report
Dombrovski, Alexandre Y.; Butters, Meryl A.; Reynolds, Charles F.; Houck, Patricia R.; Clark, Luke; Mazumdar, Sati; Szanto, Katalin
2009-01-01
Objective Deficits in executive functions may play an important role in late-life suicide; however the association is understudied. This study examined cognitive function in general and executive functioning specifically in depressed elderly with and without suicidal ideation and attempts. Design Case-control study. Setting University-affiliated psychiatric hospital. Participants We compared 32 suicidal depressed participants aged 60 and older with 32 non-suicidal depressed participants equated for age, education, and gender. Measurements We assessed global cognitive function and executive function with the Dementia Rating Scale (DRS) and the Executive Interview (EXIT25), respectively. Results Suicidal and non-suicidal depressed groups were comparable in terms of severity of depression and burden of physical illness. Suicidal participants performed worse on the EXIT25, and on the DRS total scale, as well as on Memory and Attention subscales. The differences were not explained by the presence of dementia, substance use, medication exposure, or brain injury from suicide attempts. Conclusions Poor performance on tests of executive function, attention, and memory is associated with suicidal behavior in late-life depression. PMID:18239196
Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.
Yaeli, Steve; Meir, Ron
2010-01-01
Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.
Age-Related Differences in Reaction Time Task Performance in Young Children
ERIC Educational Resources Information Center
Kiselev, Sergey; Espy, Kimberlay Andrews; Sheffield, Tiffany
2009-01-01
Performance of reaction time (RT) tasks was investigated in young children and adults to test the hypothesis that age-related differences in processing speed supersede a "global" mechanism and are a function of specific differences in task demands and processing requirements. The sample consisted of 54 4-year-olds, 53 5-year-olds, 59…
ERIC Educational Resources Information Center
Kangas, Brian D.; Branch, Marc N.
2012-01-01
The effects of cocaine were examined under a titrating-delay matching-to-sample procedure. In this procedure, the delay between sample stimulus offset and comparison stimuli onset adjusts as a function of the subject's performance. Specifically, matches increase the delay and mismatches decrease the delay. Titrated delay values served as the…
Onboard FPGA-based SAR processing for future spaceborne systems
NASA Technical Reports Server (NTRS)
Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce;
2004-01-01
We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.
Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A
2007-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.
Dickerson, B.C.; Miller, S.L.; Greve, D.N.; Dale, A.M.; Albert, M.S.; Schacter, D.L.; Sperling, R.A.
2009-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which pre-frontal activity was greater for all items of the list and hippocampal and fusi-form activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance. PMID:17604356
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Cognitive functions in preschool children with specific language impairment.
Reichenbach, Katrin; Bastian, Laura; Rohrbach, Saskia; Gross, Manfred; Sarrar, Lea
2016-07-01
A growing body of research has focused on executive functions in children with specific language impairment (SLI). However, results show limited convergence, particularly in preschool age. The current neuropsychological study compared performance of cognitive functions focused on executive components and working memory in preschool children with SLI to typically developing controls. Performance on the measures cognitive flexibility, inhibition, processing speed and phonological short-term memory was assessed. The monolingual, Caucasian study sample consisted of 30 children with SLI (Mage = 63.3 months, SD = 4.3 months) and 30 healthy controls (Mage = 62.2 months, SD = 3.7 months). Groups were matched for age and nonverbal IQ. Socioeconomic status of the participating families was included. Children with SLI had significantly poorer abilities of phonological short-term memory than matched controls. A tendency of poorer abilities in the SLI group was found for inhibition and processing speed. We confirmed phonological short-term memory to be a reliable marker of SLI in preschoolers. Our results do not give definite support for impaired executive function in SLI, possibly owing to limited sensitivity of test instruments in this age group. We argue for a standardization of executive function tests for research use. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Goodkind, Madeleine S; Gallagher-Thompson, Dolores; Thompson, Larry W; Kesler, Shelli R; Anker, Lauren; Flournoy, John; Berman, Mika P; Holland, Jason M; O'Hara, Ruth M
2016-04-01
Late-life depression (LLD) is a common and debilitating condition among older adults. Cognitive behavioral therapy (CBT) has strong empirical support for the treatment of depression in all ages, including in LLD. In teaching patients to identify, monitor, and challenge negative patterns in their thinking, CBT for LLD relies heavily on cognitive processes and, in particular, executive functioning, such as planning, sequencing, organizing, and selectively inhibiting information. It may be that the effectiveness of CBT lies in its ability to train these cognitive areas. Participants with LLD completed a comprehensive neuropsychological battery before enrolling in CBT. The current study examined the relationship between neuropsychological function prior to treatment and response to CBT. When using three baseline measures of executive functioning that quantify set shifting, cognitive flexibility, and response inhibition to predict treatment response, only baseline Wisconsin Card Sort Task performance was associated with a significant drop in depression symptoms after CBT. Specifically, worse performance on the Wisconsin Card Sort Task was associated with better treatment response. These results suggest that CBT, which teaches cognitive techniques for improving psychiatric symptoms, may be especially beneficial in LLD if relative weaknesses in specific areas of executive functioning are present. Copyright © 2015 John Wiley & Sons, Ltd.
In silico design of context-responsive mammalian promoters with user-defined functionality
Gibson, Suzanne J.; Hatton, Diane
2017-01-01
Abstract Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation. PMID:28977454
Advanced information processing system
NASA Technical Reports Server (NTRS)
Lala, J. H.
1984-01-01
Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.
Filter Function for Wavefront Sensing Over a Field of View
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Kyriazi, Maria-Eleni; Giust, Davide; El-Sagheer, Afaf H; Lackie, Peter M; Muskens, Otto L; Brown, Tom; Kanaras, Antonios G
2018-04-24
The design of nanoparticulate systems which can perform multiple synergistic functions in cells with high specificity and selectivity is of great importance in applications. Here we combine recent advances in DNA-gold nanoparticle self-assembly and sensing to develop gold nanoparticle dimers that are able to perform multiplexed synergistic functions within a cellular environment. These dimers can sense two mRNA targets and simultaneously or independently deliver one or two DNA-intercalating anticancer drugs (doxorubicin and mitoxantrone) in live cells. Our study focuses on the design of sophisticated nanoparticle assemblies with multiple and synergistic functions that have the potential to advance sensing and drug delivery in cells.
Anderegg, William R L
2015-02-01
Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.
Schaefer, Sydney Y.; Patterson, Chavelle B.; Lang, Catherine E.
2013-01-01
Background Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. Objective The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. Methods Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. Results Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. Conclusions Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits. PMID:23549521
ERIC Educational Resources Information Center
Hochhauser, Michal; Engel-Yeger, Batya
2010-01-01
Children with autism may have atypical sensory processing abilities, which are known to impact child's performance and participation. However, lack of information exists regarding the expression of these abilities in specific groups on the spectrum, as children with high-functioning autism spectrum disorder (HFASD). This study aimed to…
Functional Epitaxial Oxide Devices
2010-04-12
complex oxides , epitaxial growth, antennas, varactors 16. SECURITY CLASSIFICATION OF: REPORT U b. ABSTRACT u c. THIS PAGE u 17. LIMITATION OF...Technical Report DATES COVERED (From - To) 17-06-2008-31-12-2009 4. TITLE AND SUBTITLE Functional Epitaxial Oxide Devices 5a. CONTRACT NUMBER NA...This research effort addresses the need for high performance radio frequency (RF) components, specifically varactors and miniaturized, high gain
Practical Comptrollership Course
1987-03-01
variables that drive selection of "significant" areas. " Multilocation audits investigate specific functions. In 1985, for example, the NAS performed... audits of health care functions, and of supply departments, focusing on spare parts. These two audits were part of DoD-wide multilocation audit ...should have included more practical examples. Evaluator A questioned the inclusion of Chapter IIIE, addressing auditing , in the comptrollership course
Formal specification and verification of Ada software
NASA Technical Reports Server (NTRS)
Hird, Geoffrey R.
1991-01-01
The use of formal methods in software development achieves levels of quality assurance unobtainable by other means. The Larch approach to specification is described, and the specification of avionics software designed to implement the logic of a flight control system is given as an example. Penelope is described which is an Ada-verification environment. The Penelope user inputs mathematical definitions, Larch-style specifications and Ada code and performs machine-assisted proofs that the code obeys its specifications. As an example, the verification of a binary search function is considered. Emphasis is given to techniques assisting the reuse of a verification effort on modified code.
Gender effects of the COMT Val 158 Met genotype on verbal fluency in healthy adults.
Soeiro-De-Souza, Marcio Gerhardt; Bio, Danielle Soares; David, Denise Petresco; Missio, Giovani; Lima, Bruno; Fernandes, Fernando; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto
2013-09-01
Cognitive performance in healthy individuals is associated with gender differences in specific tests; a female advantage has been demonstrated in language tests, whereas a male advantage has been demonstrated in spatial relation examinations. The prefrontal cortex (PFC) mediates important cognitive domains and is influenced by dopamine (DA) activity. The single nucleotide polymorphism (SNP) rs4680 in the catechol‑O‑methyltransferase (COMT) gene results in an amino acid substitution from valine (Val) to methionine (Met). The Met allele has been demonstrated to decrease COMT enzyme activity and improve PFC cognitive function. COMT regulates DA activity in the PFC and exhibits gender effects. The aim of the present study was to investigate the gender‑specific effects of the COMT genotype on cognition in healthy young adults. Seventy‑six healthy subjects were genotyped for COMT rs4680 and submitted to an extensive range of neuropsychological tests assessing aspects of PFC function. The COMT Met allele influenced the performance of executive function. The results revealed gender effects of the COMT rs4680 Met allele on verbal fluency, with positive effects in males and negative effects in females. This suggested that DA activity affects cognitive function in different ways, according to gender.
Statistical Model of Dynamic Markers of the Alzheimer's Pathological Cascade.
Balsis, Steve; Geraci, Lisa; Benge, Jared; Lowe, Deborah A; Choudhury, Tabina K; Tirso, Robert; Doody, Rachelle S
2018-05-05
Alzheimer's disease (AD) is a progressive disease reflected in markers across assessment modalities, including neuroimaging, cognitive testing, and evaluation of adaptive function. Identifying a single continuum of decline across assessment modalities in a single sample is statistically challenging because of the multivariate nature of the data. To address this challenge, we implemented advanced statistical analyses designed specifically to model complex data across a single continuum. We analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1,056), focusing on indicators from the assessments of magnetic resonance imaging (MRI) volume, fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic activity, cognitive performance, and adaptive function. Item response theory was used to identify the continuum of decline. Then, through a process of statistical scaling, indicators across all modalities were linked to that continuum and analyzed. Findings revealed that measures of MRI volume, FDG-PET metabolic activity, and adaptive function added measurement precision beyond that provided by cognitive measures, particularly in the relatively mild range of disease severity. More specifically, MRI volume, and FDG-PET metabolic activity become compromised in the very mild range of severity, followed by cognitive performance and finally adaptive function. Our statistically derived models of the AD pathological cascade are consistent with existing theoretical models.
pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs
NASA Astrophysics Data System (ADS)
Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.
2008-03-01
We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
2013-01-01
Introduction Malignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy. Methods To evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice. Results FAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice. Conclusion FAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re-directed T cells. PMID:23937772
Naughton, M; Oppenheim, A; Hill, J
1996-01-01
The Adolescent to Adult Personality Functioning Assessment (ADAPFA) a modification of the Adult Personality Functioning Assessment (APFA) is described. It may be used to assess specific and general social dysfunction in the transition from childhood to adult life. Two raters independently rated 38 audiotaped interviews to test the interrater reliability of the instrument. The relationship between dysfunction in specific domains and overall psychosocial dysfunction was examined. Interrater reliabilities for the total ADAPFA score and for the majority of the domains were high. Agreement on type of dysfunction and on categorical ratings indicating the presence of personality disorder were good. The ADAPFA is a useful measure of interpersonal and social role performance in the transition between adolescent and adult life.
Characterization of nutraceuticals and functional foods by innovative HPLC methods.
Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella
2002-04-01
In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.
NASA Technical Reports Server (NTRS)
1979-01-01
The functions performed by the systems management (SM) application software are described along with the design employed to accomplish these functions. The operational sequences (OPS) control segments and the cyclic processes they control are defined. The SM specialist function control (SPEC) segments and the display controlled 'on-demand' processes that are invoked by either an OPS or SPEC control segment as a direct result of an item entry to a display are included. Each processing element in the SM application is described including an input/output table and a structured control flow diagram. The flow through the module and other information pertinent to that process and its interfaces to other processes are included.
Solca, Federica; Faini, Andrea; Madotto, Fabiana; Lafronza, Annalisa; Monti, Alessia; Zago, Stefano; Doretti, Alberto; Ciammola, Andrea; Ticozzi, Nicola; Silani, Vincenzo; Poletti, Barbara
2018-01-01
Introduction: The observed association between depressive symptoms and cognitive performances has not been previously clarified in patients with amyotrophic lateral sclerosis (pALS). In fact, the use of cognitive measures often not accommodating for motor disability has led to heterogeneous and not conclusive findings about this issue. The aim of the present study was to evaluate the relationship between cognitive and depressive/anxiety symptoms by means of the recently developed Edinburgh Cognitive and Behavioral ALS Screen (ECAS), a brief assessment specifically designed for pALS. Methods: Sample included 168 pALS (114 males, 54 females); they were administered two standard cognitive screening tools (FAB; MoCA) and the ECAS, assessing different cognitive domains, including ALS-specific (executive functions, verbal fluency, and language tests) and ALS non-specific subtests (memory and visuospatial tests). Two psychological questionnaires for depression and anxiety (BDI; STAI/Y) were also administered to patients. Pearson’s correlation coefficient was used to assess the degree of association between cognitive and psychological measures. Results: Depression assessment negatively correlated with the ECAS, more significantly with regard to the executive functions subdomain. In particular, Sentence Completion and Social Cognition subscores were negatively associated with depression levels measured by BDI total score and Somatic-Performance symptoms subscore. Conversely, no significant correlations were observed between depression level and cognitive functions as measured by traditional screening tools for frontal abilities (FAB) and global cognition (MoCA) assessment. Finally, no significant correlations were observed between state/trait anxiety and the ECAS. Discussion and conclusion: This represents the first study focusing on the relationship between cognitive and psychological components in pALS by means of the ECAS, the current gold standard for ALS cognitive-behavioral assessment. If confirmed by further investigations, the observed association between depression and executive functions suggests the need for a careful screening and treatment of depression, to avoid overestimation of cognitive involvement and possibly improve cognitive performances in ALS. PMID:29674987
Oehr, Lucy; Anderson, Jacqueline
2017-11-01
To undertake a systematic review and meta-analysis of the relationship between microstructural damage and cognitive function after hospitalized mixed-mechanism (HMM) mild traumatic brain injury (mTBI). PsycInfo, EMBASE, and MEDLINE were used to find relevant empirical articles published between January 2002 and January 2016. Studies that examined the specific relationship between diffusion tensor imaging (DTI) and cognitive test performance were included. The final sample comprised previously medically and psychiatrically healthy adults with HMM mTBI. Specific data were extracted including mTBI definitional criteria, descriptive statistics, outcome measures, and specific results of associations between DTI metrics and cognitive test performance. Of the 248 original articles retrieved and reviewed, 8 studies met all inclusion criteria and were included in the meta-analysis. The meta-analysis revealed statistically significant associations between reduced white matter integrity and poor performance on measures of attention (fractional anisotropy [FA]: d=.413, P<.001; mean diffusivity [MD]: d=-.407, P=.001), memory (FA: d=.347, P<.001; MD: d=-.568, P<.001), and executive function (FA: d=.246, P<.05), which persisted beyond 1 month postinjury. The findings from the meta-analysis provide clear support for an association between in vivo markers of underlying neuropathology and cognitive function after mTBI. Furthermore, these results demonstrate clearly for the first time that in vivo markers of structural neuropathology are associated with cognitive dysfunction within the domains of attention, memory, and executive function. These findings provide an avenue for future research to examine the causal relationship between mTBI-related neuropathology and cognitive dysfunction. Furthermore, they have important implications for clinical management of patients with mTBI because they provide a more comprehensive understanding of factors that are associated with cognitive dysfunction after mTBI. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Toro-Tamargo, Esther; Gimeno, Francisca; Narberhaus, Ana; Segarra, Dolors; Pueyo, Roser
2018-01-01
Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Disability-Specific Atlases of Gray Matter Loss in Relapsing-Remitting Multiple Sclerosis.
MacKenzie-Graham, Allan; Kurth, Florian; Itoh, Yuichiro; Wang, He-Jing; Montag, Michael J; Elashoff, Robert; Voskuhl, Rhonda R
2016-08-01
Multiple sclerosis (MS) is characterized by progressive gray matter (GM) atrophy that strongly correlates with clinical disability. However, whether localized GM atrophy correlates with specific disabilities in patients with MS remains unknown. To understand the association between localized GM atrophy and clinical disability in a biology-driven analysis of MS. In this cross-sectional study, magnetic resonance images were acquired from 133 women with relapsing-remitting MS and analyzed using voxel-based morphometry and volumetry. A regression analysis was used to determine whether voxelwise GM atrophy was associated with specific clinical deficits. Data were collected from June 28, 2007, to January 9, 2014. Voxelwise correlation of GM change with clinical outcome measures (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite scores). Among the 133 female patients (mean [SD] age, 37.4 [7.5] years), worse performance on the Multiple Sclerosis Functional Composite correlated with voxelwise GM volume loss in the middle cingulate cortex (P < .001) and a cluster in the precentral gyrus bilaterally (P = .004). In addition, worse performance on the Paced Auditory Serial Addition Test correlated with volume loss in the auditory and premotor cortices (P < .001), whereas worse performance on the 9-Hole Peg Test correlated with GM volume loss in Brodmann area 44 (Broca area; P = .02). Finally, voxelwise GM loss in the right paracentral lobulus correlated with bowel and bladder disability (P = .03). Thus, deficits in specific clinical test results were directly associated with localized GM loss in clinically eloquent locations. These biology-driven data indicate that specific disabilities in MS are associated with voxelwise GM loss in distinct locations. This approach may be used to develop disability-specific biomarkers for use in future clinical trials of neuroprotective treatments in MS.
NASA Technical Reports Server (NTRS)
Trosset, Michael W.
1999-01-01
Comprehensive computational experiments to assess the performance of algorithms for numerical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear objective functions. We propose a procedure that is based on the convenient fiction that objective functions are realizations of stochastic processes. This report details the calculations necessary to implement our procedure for the case of certain stationary Gaussian processes and presents a specific implementation in the statistical programming language S-PLUS.
Instrumental resolution of the chopper spectrometer 4SEASONS evaluated by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kajimoto, Ryoichi; Sato, Kentaro; Inamura, Yasuhiro; Fujita, Masaki
2018-05-01
We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.
Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders
Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M.; Mohanty, Aprajita
2016-01-01
Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926
Performance of a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Jacobson, David T.
1995-01-01
Performance measurements were obtained and life-limiting mechanisms were identified on a laboratory-model arcjet thruster designed to operate at a nominal power level of 300 W. The design employed a supersonic-arc-attachment concept and was operated from 200 to 400 W on hydrogen/nitrogen mixtures in ratios simulating fully decomposed hydrazine and ammonia. Power was provided by breadboard power processor. Performance was found to be a strong function of propellant flow rate. Anode losses were essentially constant for the range of mass flow rates tested. It is believed that the performance is dominated by viscous effects. Significantly improved performance was noted with simulated ammonia operation. At 300 W the specific impulse on simulated ammonia was 410 s with an efficiency of 0.34, while simulated hydrazine provided 370 s specific impulse at an efficiency of 0.27.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuo, Yao-Lung; Chiu, Haw-Yen; Jou, I-Ming; Wu, Po-Ting; Su, Fong-Chin
2013-01-01
To understand the feasibility of a novel functional sensibility test for determining precision pinch performance in patients with carpal tunnel syndrome, this study investigates the validity, sensitivity and specificity of functional sensibility derived from a pinch-holding-up activity (PHUA) test. Participants include 70 clinically defined carpal tunnel syndrome (CTS) patients with 119 involved hands and 70 age- and gender-matched controls. To examine the discriminating ability of the functional sensibility test, the differences in the ability of pinch force adjustments to the inertial load of handling object between CTS and control subjects are analyzed. The results of functional sensibility are correlated with the severity of CTS to establish concurrent validity. The receiver operating characteristic (ROC) curve is constructed to demonstrate the accuracy of the proposed test. The functional sensibility score significantly discriminates the patients and control groups (respectively, 12.94±1.72 vs. 11.51±1.15N in peak pinch force (FPPeak), p<0.001; 2.92±0.41 vs. 2.52±0.24 in force ratio, p<0.001) and is moderately correlated (r = 0.42–0.54, p<0.001) with the results of traditional sensibility tests (touch-pressure threshold and two-point discrimination test). In addition, there is a statistical difference in the results of functional sensibility (p<0.001) among the subgroups of CTS severity based on electrophysiological study. The sensitivity and specificity are 0.79 and 0.76, respectively, for the functional sensibility test. The areas under the ROC curve are 0.85 and 0.80 for the force ratio and FPPeak, respectively. In conclusion, the functional sensibility test could be feasibly used as a clinical tool for determining both the sensibility and precision pinch performance of hands for the patients with CTS. PMID:23977209
Trikojat, K; Buske-Kirschbaum, A; Plessow, F; Schmitt, J; Fischer, R
2017-04-01
In previous research, patients with seasonal allergic rhinitis (SAR) showed poorer school and work performance during periods of acute allergic inflammation, supporting the idea of an impact of SAR on cognitive functions. However, the specific cognitive domains particularly vulnerable to inflammatory processes are unclear. In this study, the influence of SAR on memory and multitasking performance, as two potentially vulnerable cognitive domains essential in everyday life functioning, was investigated in patients with SAR. Non-medicated patients with SAR (n = 41) and healthy non-allergic controls (n = 42) performed a dual-task paradigm and a verbal learning and memory test during and out of symptomatic allergy periods (pollen vs. non-pollen season). Disease-related factors (e.g. symptom severity, duration of symptoms, duration of disease) and allergy-related quality of life were evaluated as potential influences of cognitive performance. During the symptomatic allergy period, patients showed (1) poorer performance in word list-based learning (P = 0.028) and (2) a general slowing in processing speed (P < 0.001) and a shift in processing strategy (P < 0.001) in multitasking. Yet, typical parameters indicating specific multitasking costs were not affected. A significant negative association was found between learning performance and duration of disease (r = -0.451, P = 0.004), whereas symptom severity (r = 0.326; P = 0.037) and quality of life (r = 0.379; P = 0.015) were positively associated with multitasking strategy. Our findings suggest that SAR has a differentiated and complex impact on cognitive functions, which should be considered in the management of SAR symptoms. They also call attention to the importance of selecting sensitive measures and carefully interpreting cognitive outcomes. © 2017 John Wiley & Sons Ltd.
Numerical aerodynamic simulation facility. Preliminary study extension
NASA Technical Reports Server (NTRS)
1978-01-01
The production of an optimized design of key elements of the candidate facility was the primary objective of this report. This was accomplished by effort in the following tasks: (1) to further develop, optimize and describe the function description of the custom hardware; (2) to delineate trade off areas between performance, reliability, availability, serviceability, and programmability; (3) to develop metrics and models for validation of the candidate systems performance; (4) to conduct a functional simulation of the system design; (5) to perform a reliability analysis of the system design; and (6) to develop the software specifications to include a user level high level programming language, a correspondence between the programming language and instruction set and outline the operation system requirements.
Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John
2016-01-12
Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of reference genomes can impact comprehensive annotation of metatranscriptomes. Consequently, beyond the application of standardized pipelines, additional caution must be taken when interpreting their output and performing downstream, microbiome-specific, analyses. The pipeline used in these analyses along with a tutorial has been made freely available for download from our project website: http://www.compsysbio.org/microbiome .
Widder, Stefanie; Allen, Rosalind J; Pfeiffer, Thomas; Curtis, Thomas P; Wiuf, Carsten; Sloan, William T; Cordero, Otto X; Brown, Sam P; Momeni, Babak; Shou, Wenying; Kettle, Helen; Flint, Harry J; Haas, Andreas F; Laroche, Béatrice; Kreft, Jan-Ulrich; Rainey, Paul B; Freilich, Shiri; Schuster, Stefan; Milferstedt, Kim; van der Meer, Jan R; Groβkopf, Tobias; Huisman, Jef; Free, Andrew; Picioreanu, Cristian; Quince, Christopher; Klapper, Isaac; Labarthe, Simon; Smets, Barth F; Wang, Harris; Soyer, Orkun S
2016-01-01
The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved. PMID:27022995
A Method for Functional Task Alignment Analysis of an Arthrocentesis Simulator.
Adams, Reid A; Gilbert, Gregory E; Buckley, Lisa A; Nino Fong, Rodolfo; Fuentealba, I Carmen; Little, Erika L
2018-05-16
During simulation-based education, simulators are subjected to procedures composed of a variety of tasks and processes. Simulators should functionally represent a patient in response to the physical action of these tasks. The aim of this work was to describe a method for determining whether a simulator does or does not have sufficient functional task alignment (FTA) to be used in a simulation. Potential performance checklist items were gathered from published arthrocentesis guidelines and aggregated into a performance checklist using Lawshe's method. An expert panel used this performance checklist and an FTA analysis questionnaire to evaluate a simulator's ability to respond to the physical actions required by the performance checklist. Thirteen items, from a pool of 39, were included on the performance checklist. Experts had mixed reviews of the simulator's FTA and its suitability for use in simulation. Unexpectedly, some positive FTA was found for several tasks where the simulator lacked functionality. By developing a detailed list of specific tasks required to complete a clinical procedure, and surveying experts on the simulator's response to those actions, educators can gain insight into the simulator's clinical accuracy and suitability. Unexpected of positive FTA ratings of function deficits suggest that further revision of the survey method is required.
Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function
Allen, Corinne M.; Martin, Randi C.; Martin, Nadine
2012-01-01
Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889
Oliveira, Jorge; Gamito, Pedro; Alghazzawi, Daniyal M; Fardoun, Habib M; Rosa, Pedro J; Sousa, Tatiana; Picareli, Luís Felipe; Morais, Diogo; Lopes, Paulo
2017-08-14
This investigation sought to understand whether performance in naturalistic virtual reality tasks for cognitive assessment relates to the cognitive domains that are supposed to be measured. The Shoe Closet Test (SCT) was developed based on a simple visual search task involving attention skills, in which participants have to match each pair of shoes with the colors of the compartments in a virtual shoe closet. The interaction within the virtual environment was made using the Microsoft Kinect. The measures consisted of concurrent paper-and-pencil neurocognitive tests for global cognitive functioning, executive functions, attention, psychomotor ability, and the outcomes of the SCT. The results showed that the SCT correlated with global cognitive performance as measured with the Montreal Cognitive Assessment (MoCA). The SCT explained one third of the total variance of this test and revealed good sensitivity and specificity in discriminating scores below one standard deviation in this screening tool. These findings suggest that performance of such functional tasks involves a broad range of cognitive processes that are associated with global cognitive functioning and that may be difficult to isolate through paper-and-pencil neurocognitive tests.
40 CFR 89.309 - Analyzers required for gaseous emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... condensation is acceptable. A water trap performing this function and meeting the specifications in § 89.308(b) is an acceptable method. Means other than condensation may be used only with prior approval from the...
40 CFR 89.309 - Analyzers required for gaseous emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... condensation is acceptable. A water trap performing this function and meeting the specifications in § 89.308(b) is an acceptable method. Means other than condensation may be used only with prior approval from the...
40 CFR 89.309 - Analyzers required for gaseous emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... condensation is acceptable. A water trap performing this function and meeting the specifications in § 89.308(b) is an acceptable method. Means other than condensation may be used only with prior approval from the...
IVHS Countermeasures for Rear-End Collisions, Task 2 -- Functional Goals
DOT National Transportation Integrated Search
1996-05-01
The attached report is from the NHTSA sponsored program, "IVHS Countermeasures : for Rear-End Collisions," contract #DTNH22-93-C-07326. This program's primary : objective is the development of practical performance guidelines or : specifications for ...
Sumiyoshi, Chika; Harvey, Philip D; Takaki, Manabu; Okahisa, Yuko; Sato, Taku; Sora, Ichiro; Nuechterlein, Keith H; Subotnik, Kenneth L; Sumiyoshi, Tomiki
2015-09-01
Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1) to identify which outcome factors predict occupational functioning, quantified as work hours, and 2) to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB), the UCSD Performance-based Skills Assessment-Brief (UPSA-B), and the Social Functioning Scale Individuals' version modified for the MATRICS-PASS (Modified SFS for PASS), respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly) and a multiple logistic regression analyses (predicting dichotomized work status based on work hours). ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60-70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Development of High Toughness Sheet and Extruded Products for Airplane Fuselage Structures
NASA Astrophysics Data System (ADS)
Magnusen, P. E.; Mooy, D. C.; Yocum, L. A.; Rioja, R. J.
High specific ultimate strength and high plane stress fracture toughness are primary requirements of aircraft fuselage skins. The performance of alloys/products used in high performance fuselage applications is first reviewed. The specific fracture toughness for products such as 2017-T3, 2024-T3, 2524-T3 and 6013-T6, is discussed as a function of their composition and microstructure. Then the performance of modern Al-Li alloys/products such as 2199 and 2060 sheet and 2099 and 2055 extrusions is examined. It is concluded that the performance of Li containing alloys/products offer significant improvements over non-Li containing conventional fuselage products because of the optimization of strengthening precipitates and grain microstructures. The role of chemical composition on resulting microstructures is discussed.
2016-08-30
certifying official in the certification of vouchers for payment. 21 U.S. Office of Government Ethics Form 450, “Confidential Financial Disclosure Report...contracting officer to perform specific technical or administrative functions for Government contracts. We performed this audit in response to a...February 2015 U.S. Forces−Afghanistan policy memorandum requesting the DoD Office of Inspector General to review COR performance in the Combined
Development of real-time software environments for NASA's modern telemetry systems
NASA Technical Reports Server (NTRS)
Horner, Ward; Sabia, Steve
1989-01-01
An effort has been made to maintain maximum performance and flexibility for NASA-Goddard's VLSI telemetry system elements through the development of two real-time systems: (1) the Base System Environment, which supports generic system integration and furnishes the basic porting of various manufacturers' cards, and (2) the Modular Environment for Data Systems, which supports application-specific developments and furnishes designers with a set of tested generic library functions that can be employed to speed up the development of such application-specific real-time codes. The performance goals and design rationale for these two systems are discussed.
Mallorquí-Bagué, Núria; Tolosa-Sola, Iris; Fernández-Aranda, Fernándo; Granero, Roser; Fagundo, Ana Beatriz; Lozano-Madrid, María; Mestre-Bach, Gemma; Gómez-Peña, Mónica; Aymamí, Neus; Borrás-González, Indira; Sánchez-González, Jessica; Baño, Marta; Del Pino-Gutiérrez, Amparo; Menchón, José M; Jiménez-Murcia, Susana
2018-03-01
To identify Gambling Disorder (GD) subtypes, in a population of men seeking treatment for GD, according to specific executive function domains (i.e., cognitive flexibility, inhibition and working memory as well as decision making) which are usually impaired in addictive behaviors. A total of 145 males ranging from 18 to 65 years diagnosed with GD were included in this study. All participants completed: (a) a set of questionnaires to assess psychopathological symptoms, personality and impulsivity traits, and (b) a battery of neuropsychological measures to test different executive functioning domains. Two clusters were identified based on the individual performance on the neuropsychological assessment. Cluster 1 [n = 106; labeled as Low Impaired Executive Function (LIEF)] was composed by patients with poor results in the neuropsychological assessment; cluster 2 patients [n = 46; labeled as High Impaired Executive Function (HIEF)] presented significantly higher deficits on the assessed domains and performed worse than the ones of LIEF cluster. Regarding the characterization of these two clusters, patients in cluster 2 were significantly older, unemployed and registered higher mean age of GD onset than patients in cluster 1. Additionally, patients in cluster 2 also obtained higher psychopathological symptoms, impulsivity (in both positive and negative urgency as well as sensation seeking) and some specific personality traits (higher harm avoidance as well as lower self-directedness and cooperativeness) than patients in cluster 1. The results of this study describe two different GD subtypes based on different cognitive domains (i.e., executive function performance). These two GD subtypes display different impulsivity and personality traits as well as clinical symptoms. The results provide new insight into the etiology and characterization of GD and have the potential to help improving current treatments.
Yao, Yuan-Wei; Liu, Lu; Ma, Shan-Shan; Shi, Xin-Hui; Zhou, Nan; Zhang, Jin-Tao; Potenza, Marc N
2017-12-01
This meta-analytic study aimed to identify the common and specific neural alterations in Internet gaming disorder (IGD) across different domains and modalities. Two separate meta-analyses for functional neural activation and gray-matter volume were conducted. Sub-meta-analyses for the domains of reward, cold-executive, and hot-executive functions were also performed, respectively. IGD subjects, compared with healthy controls, showed: (1) hyperactivation in the anterior and posterior cingulate cortices, caudate, posterior inferior frontal gyrus (IFG), which were mainly associated with studies measuring reward and cold-executive functions; and, (2) hypoactivation in the anterior IFG in relation to hot-executive function, the posterior insula, somatomotor and somatosensory cortices in relation to reward function. Furthermore, IGD subjects showed reduced gray-matter volume in the anterior cingulate, orbitofrontal, dorsolateral prefrontal, and premotor cortices. These findings suggest that IGD is associated with both functional and structural neural alterations in fronto-striatal and fronto-cingulate regions. Moreover, multi-domain assessments capture different aspects of neural alterations in IGD, which may be helpful for developing effective interventions targeting specific functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa
Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan
2017-01-01
Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813
Park, Heesu; Dong, Suh-Yeon; Lee, Miran; Youn, Inchan
2017-07-24
Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major functions in the mobile healthcare system. Both functions have been investigated for a long time; however, several challenges remain unsolved, such as the confusion between activities and the recognition of energy-consuming activities involving little or no movement. To solve these problems, we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary participants. We compared the HAR performances of three models with respect to the input data type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition performance was 96.35%, which was obtained with some selected HRV parameters. EE was also estimated for different choices of the input data type (with or without HRV parameters) and the model type (single and activity-specific). The best estimation performance was found in the case of the activity-specific model with HRV parameters. Our findings indicate that the use of human physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE estimation, which are crucial functions in the mobile healthcare system.
Meikle, Andrew; Riby, Leigh M; Stollery, Brian
2004-12-01
A great deal of research has been devoted to the issue of whether the ingestion of a glucose containing drink facilitates cognitive performance. However, it remains unclear exactly how age and individual differences in gluco-regulatory control mediate a boost in cognitive functioning. The present study investigates these issues further. A repeated measures (25 g vs 50 g glucose vs placebo) counterbalanced, double-blind design was used with 25 younger and middle-aged adults. A battery of memory and non-memory tasks was administered; including tests of episodic and semantic memory, attention and visuospatial functioning. Glucose ingestion largely facilitated performance on tasks with a memory component. Notably, task demands and age (young vs middle-aged) contributed to the magnitude of memory enhancement. This finding suggests an age- and load-specific benefit of glucose intake. In addition, evidence suggests greater facilitation in individuals with good glucose regulation. These data are discussed in relation to the idea that glucose specifically affects neural mechanisms supporting memory functioning (i.e. the hippocampus), which are known to decline in ageing. Importantly, the present investigation adds to the growing body of literature showing the utility of glucose supplementation as memory enhancers. 2004 John Wiley & Sons, Ltd.
Pujol, Jesus; Fenoll, Raquel; Macià, Dídac; Martínez-Vilavella, Gerard; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Deus, Joan; Blanco-Hinojo, Laura; Querol, Xavier; Sunyer, Jordi
2016-06-01
Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Keilp, J G; Gorlyn, M; Russell, M; Oquendo, M A; Burke, A K; Harkavy-Friedman, J; Mann, J J
2013-03-01
Executive dysfunction, distinct from other cognitive deficits in depression, has been associated with suicidal behavior. However, this dysfunction is not found consistently across samples. Medication-free subjects with DSM-IV major depressive episode (major depressive disorder and bipolar type I disorder) and a past history of suicidal behavior (n = 72) were compared to medication-free depressed subjects with no history of suicidal behavior (n = 80) and healthy volunteers (n = 56) on a battery of tests assessing neuropsychological functions typically affected by depression (motor and psychomotor speed, attention, memory) and executive functions reportedly impaired in suicide attempters (abstract/contingent learning, working memory, language fluency, impulse control). All of the depressed subjects performed worse than healthy volunteers on motor, psychomotor and language fluency tasks. Past suicide attempters, in turn, performed worse than depressed non-attempters on attention and memory/working memory tasks [a computerized Stroop task, the Buschke Selective Reminding Task (SRT), the Benton Visual Retention Test (VRT) and an N-back task] but not on other executive function measures, including a task associated with ventral prefrontal function (Object Alternation). Deficits were not accounted for by current suicidal ideation or the lethality of past attempts. A small subsample of those using a violent method in their most lethal attempt showed a pattern of poor executive performance. Deficits in specific components of attention control, memory and working memory were associated with suicidal behavior in a sample where non-violent attempt predominated. Broader executive dysfunction in depression may be associated with specific forms of suicidal behavior, rather than suicidal behavior per se.
Ozonoff, Sally; Cook, Ian; Coon, Hilary; Dawson, Geraldine; Joseph, Robert M; Klin, Ami; McMahon, William M; Minshew, Nancy; Munson, Jeffrey A; Pennington, Bruce F; Rogers, Sally J; Spence, M Anne; Tager-Flusberg, Helen; Volkmar, Fred R; Wrathall, Debora
2004-04-01
Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components of cognition. Previous studies document the role of frontal cortex in performance of two CANTAB subtests: the Stockings of Cambridge, a planning task, and the Intradimensional/Extradimensional Shift task, a measure of cognitive set shifting. To examine the integrity of frontal functions, these subtests were administered to 79 participants with autism and 70 typical controls recruited from seven universities who are part of the Collaborative Programs of Excellence in Autism network. The two groups were matched on age, sex, and full-scale IQ. Significant group differences were found in performance on both subtests, with the autism group showing deficits in planning efficiency and extradimensional shifting relative to controls. Deficits were found in both lower- and higher-IQ individuals with autism across the age range of 6 to 47 years. Impairment on the CANTAB executive function subtests did not predict autism severity or specific autism symptoms (as measured by the ADI-R and ADOS), but it was correlated with adaptive behavior. If these CANTAB subtests do indeed measure prefrontal function, as suggested by previous research with animals and lesion patients, this adds to the accumulating evidence of frontal involvement in autism and indicates that this brain region should remain an active area of investigation.
Re-examination of the role of the human acoustic stapedius reflex
NASA Astrophysics Data System (ADS)
Phillips, Dennis P.; Stuart, Andrew; Carpenter, Michael
2002-05-01
The ``rollover'' seen in the word recognition performance scores of patients with Bell's palsy (facial nerve paralysis) has historically been taken as an indicator of the role of the stapedius reflex in the protection from upward spread of masking. Bell's palsy, however, may be a polyneuropathy, so it is not clear that the poor word recognition performance at high levels is necessarily attributable specifically to impaired facial nerve function. The present article reports two new experiments that probe whether an isolated impairment of the stapedius reflex can produce rollover in word recognition performance-intensity functions. In experiment 1, performance-intensity functions for monosyllabic speech materials were obtained from ten normal listeners under two listening conditions: normal and low-frequency augmented to offset the effects of the stapedius reflex on the transmission of low-frequency vibrations to the cochlea. There was no effect of the spectral augmentation on word recognition for stimulus levels up to 107 dB SPL. In experiment 2, six patients who had undergone stapedectomy were tested for rollover using performance-intensity functions. None of the patients showed rollover in their performance-intensity functions, even at stimulus levels in excess of 100 dB HL. These data suggest that if the stapedius reflex has a role in protection from upward spread of masking, then this role is inconsequential for word recognition in quiet.
Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV.
Brown, Eric P; Weiner, Joshua A; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan H; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E
2018-04-01
The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Reyes, Amanda N; Cardoso, Taiane A; Jansen, Karen; Mondin, Thaíse C; Souza, Luciano D M; Magalhães, Pedro V S; Kapczinski, Flavio; Silva, Ricardo A
2017-05-01
The aim of this study was to compare the global functioning and cognitive performance in a community sample of young adults with mood disorders versus community controls. This was a cross-sectional study nested in a cohort study with a community sample. Data was collected from February 2012 to June 2014; specifically, at a mean of five years after the first phase, all young adults were invited to participate in a re-evaluation. Mini International Neuropsychiatric Interview - PLUS (MINI-PLUS) was used for the diagnosis of mood disorders. The Functional Assessment Short Test (FAST) and the Montreal Cognitive Assessment (MoCA) were used to assess the global functioning, and cognitive performance, respectively. Were included 1258 subjects. Functional impairment was greater in subjects with bipolar disorder when compared to community controls, and there were no differences between major depressive disorder and community controls. There were no significant differences in cognitive performance between young adults with mood disorders when compared to community controls. Functional impairment is a marker for bipolar disorder in young adults; however, gross cognitive impairment assessed by a screening test is not, possibly because cognition is impaired in more advanced stages of the disorder. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Functional specification of the Performance Measurement (PM) module
NASA Technical Reports Server (NTRS)
Berliner, J. E.
1980-01-01
The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the ability of NovaSil (NS) clay to sorb and mitigate the toxic effects of aflatoxin B1 (AFB1) in Nile tilapia (Oreochromis niloticus). Growth performance, specific innate immunological function, intestinal microbial community, and histology were evaluate...
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
Many human accelerated regions are developmental enhancers
Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.
2013-01-01
The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637
Towards A Complete Model Of Photopic Visual Threshold Performance
NASA Astrophysics Data System (ADS)
Overington, I.
1982-02-01
Based on a wide variety of fragmentary evidence taken from psycho-physics, neurophysiology and electron microscopy, it has been possible to put together a very widely applicable conceptual model of photopic visual threshold performance. Such a model is so complex that a single comprehensive mathematical version is excessively cumbersome. It is, however, possible to set up a suite of related mathematical models, each of limited application but strictly known envelope of usage. Such models may be used for assessment of a variety of facets of visual performance when using display imagery, including effects and interactions of image quality, random and discrete display noise, viewing distance, image motion, etc., both for foveal interrogation tasks and for visual search tasks. The specific model may be selected from the suite according to the assessment task in hand. The paper discusses in some depth the major facets of preperceptual visual processing and their interaction with instrumental image quality and noise. It then highlights the statistical nature of visual performance before going on to consider a number of specific mathematical models of partial visual function. Where appropriate, these are compared with widely popular empirical models of visual function.
Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François
2016-01-01
Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154
Definition and characterization of an extended multiple-demand network.
Camilleri, J A; Müller, V I; Fox, P; Laird, A R; Hoffstaedter, F; Kalenscher, T; Eickhoff, S B
2018-01-15
Neuroimaging evidence suggests that executive functions (EF) depend on brain regions that are not closely tied to specific cognitive demands but rather to a wide range of behaviors. A multiple-demand (MD) system has been proposed, consisting of regions showing conjoint activation across multiple demands. Additionally, a number of studies defining networks specific to certain cognitive tasks suggest that the MD system may be composed of a number of sub-networks each subserving specific roles within the system. We here provide a robust definition of an extended MDN (eMDN) based on task-dependent and task-independent functional connectivity analyses seeded from regions previously shown to be convergently recruited across neuroimaging studies probing working memory, attention and inhibition, i.e., the proposed key components of EF. Additionally, we investigated potential sub-networks within the eMDN based on their connectional and functional similarities. We propose an eMDN network consisting of a core whose integrity should be crucial to performance of most operations that are considered higher cognitive or EF. This then recruits additional areas depending on specific demands. Copyright © 2017 Elsevier Inc. All rights reserved.
Han, Ji Young; Byun, Min Soo; Seo, Eun Hyun; Yi, Dahyun; Choe, Young Min; Sohn, Bo Kyung; Choi, Hyo Jung; Baek, Hyewon; Lee, Jun Ho; Kim, Hyun Jung; Woo, Jong Inn; Lee, Dong Yong
2015-12-02
Figure copy and recall tasks from the Benton Visual Retention Test (BVRT) and the Consortium to Establish a Registry of Alzheimer's Disease (CERAD) neuropsychological battery are used widely to assess visuospatial function in cognitively impaired (CI) individuals. We aimed to identify functional neural correlates of figure copy and recall task performances as measured by the BVRT and the CERAD constructional praxis (CP) and CP recall (CR) in CI individuals. Both tasks were administered to 64 CI individuals with early or prodromal stage Alzheimer's disease and 36 cognitively normal individuals. Voxel-wise correlations between test scores and regional cerebral glucose metabolism (rCMglc) measured by fluorine-18 fluorodeoxyglucose PET in CI participants were analyzed. BVRT figure copy task performance was associated with rCMglc of the bilateral posterior brain regions including the parieto-temporo-occipital regions, whereas the BVRT figure recall task performance was predominantly correlated with rCMglc of the left parietal and temporo-occipital regions. Meanwhile, CERAD CP performance was associated mainly with rCMglc of the left prefrontal and temporo-occipital areas as well as in the bilateral parietal regions, whereas CERAD CR performance was correlated with rCMglc of the right prefrontal, parietal, and temporal regions. In conclusion, the functional neural correlates of the two tasks were markedly different, suggesting that these tasks might measure different visuospatial functions. Our findings contribute toward understanding the functional neuroanatomical aspects of these tasks, which is useful for both interpreting the task results as well as for more sophisticated utilization of these tasks for probing specific neuroanatomical functions.
Executive functioning and visual working memory.
Lepach, Anja C; Pauls, Franz; Petermann, Franz
2015-01-01
The matter of modality is controversially discussed in the context of working memory (WM). There is evidence that modality-specific processes are accompanied by amodal processes to some extent. We investigated the relationship between executive-functioning tasks and visual WM (VWM) and were especially interested in the issue of amodal processes. Our correlational analyses suggest modality-independent relations of the tasks. We also aimed to quantify to what extent executive functioning is meaningful for VWM performances. We therefore estimated the relationship between executive tasks and VWM performances in a healthy (n = 710) and a clinical traumatic brain injury sample (n = 151) as well as in the combined total sample. The results indicate a substantial relevance of the verbal task for VWM performances in the total and the clinical sample but a low relevance in the healthy sample. These results could support assumptions of resource-depending differences in the relations of executive functioning and VWM but need further validation due to limitations of our study.
Reulen, Holger; Kneib, Thomas
2016-04-01
One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.
The Leadership of Groups in Organizations
1985-07-01
Managemert • July, 1985 01 i J JAN14 19866 K) Abstract A theory of leadership that focusses specifically on task-performing , groups in organizations in...p:xoposed. The theory takes a functional approach to leadership , explcring how leaders fulfill functions that are required for group effectiveness...that there are no theories of leadership around. There are theories of managerial leadership , from the classic statements of organization theorists
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
ERIC Educational Resources Information Center
Ozonoff, Sally; Cook, Ian; Coon, Hilary; Dawson, Geraldine; Joseph, Robert M.; Klin, Ami; McMahon, William M.; Minshew, Nancy; Munson, Jeffrey A.
2004-01-01
Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components…
Roos, Leslie E; Kim, Hyoun K; Schnabler, Simone; Fisher, Philip A
2016-12-01
Prior research has identified the presence of executive function (EF) deficits in child protective service (CPS) involved (versus non-involved) children but minimal work has examined predictors that might explain individual differences within these CPS-involved children. Here, we sought to characterize EF in a large sample (N=694) of CPS-involved children and examine how specific adversities (physical abuse, neglect, caregiver domestic violence, and caregiver substance dependence) and cumulative adversity (at ages 0-3 and 3-6 years) predict EF (at approximately 5-6 years). It was expected that the sample would exhibit low EF overall based on previous research in maltreated children. Specific adversity and cumulative adversity analyses were largely exploratory given the limited previous work in this area. Results indicated poor EF overall, with 43.5% of children performing worse than chance. Amongst children who performed greater than chance, higher cumulative adversity, physical abuse, and caregiver substance use (at ages 3-6 years) predicted better EF. These findings join literature documenting that, within CPS-involved children, the presence of certain adversities predicts variable cognitive function. Findings highlight the potential relevance of evolutionary psychology to understanding how alterations in behavior linked to harsh and unpredictable early environments may cue accelerated brain development underlying relative cognitive advantages, within at-risk, low performing samples. Longitudinal studies are critical to determine if the relative EF advantages linked to higher adversity persist over time or result in lower EF later on, reflecting a more rapid, but overall limited, trajectory of cognitive development.
Development of a kernel function for clinical data.
Daemen, Anneleen; De Moor, Bart
2009-01-01
For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.
Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study
Allam, Sushmita L.; Bouteiller, Jean-Marie C.; Hu, Eric Y.; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.
2015-01-01
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics. PMID:26480028
Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study.
Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric Y; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W
2015-01-01
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.
Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.
Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak
2014-03-01
The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.
Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen
2009-06-01
A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.
"Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...
ADOT state-specific crash prediction models : an Arizona needs study.
DOT National Transportation Integrated Search
2016-12-01
The predictive method in the Highway Safety Manual (HSM) includes a safety performance function (SPF), : crash modification factors (CMFs), and a local calibration factor (C), if available. Two alternatives exist for : applying the HSM prediction met...
Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole
2014-12-15
Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.
2012-01-01
The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings. PMID:22701442
Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T
2012-01-01
The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.
Ivanova, N B
2011-01-01
The present study of the functional state of the cadiorespiratory system included athletes engaged in cyclic team sports. The state of the cardiorespiratory system was estimated from the measurement of central hemodynamics and cardiac rhythm variability, results of electrocardiography, spirography, and pneumotachography performed during the preparatory period for the training cycle. It was shown that the cardiovascular and respiratory systems as well as vegetative regulation of the cardiac rhythm of the athletes under examination underwent differently directed structural modification depending on the specific patterns of muscular activity.
Continuous quality improvement for the clinical decision unit.
Mace, Sharon E
2004-01-01
Clinical decision units (CDUs) are a relatively new and growing area of medicine in which patients undergo rapid evaluation and treatment. Continuous quality improvement (CQI) is important for the establishment and functioning of CDUs. CQI in CDUs has many advantages: better CDU functioning, fulfillment of Joint Commission on Accreditation of Healthcare Organizations mandates, greater efficiency/productivity, increased job satisfaction, better performance improvement, data availability, and benchmarking. Key elements include a database with volume indicators, operational policies, clinical practice protocols (diagnosis specific/condition specific), monitors, benchmarks, and clinical pathways. Examples of these important parameters are given. The CQI process should be individualized for each CDU and hospital.
Cardiovascular studies using the chimpanzee (Pan troglodytes)
NASA Technical Reports Server (NTRS)
Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.
1977-01-01
Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.
Lu, Hanna; Xi, Ni; Fung, Ada W T; Lam, Linda C W
2018-06-09
Memory and learning, as the core brain function, shows controversial results across studies focusing on aging and dementia. One of the reasons is because of the multi-faceted nature of memory and learning. However, there is still a dearth of comparable proxies with psychometric and morphometric portrait in clinical and non-clinical populations. We aim to investigate the proxies of memory and learning function with direct and derived measures and examine their associations with morphometric features in senior adults with different cognitive status. Based on two modality-driven tests, we assessed the component-specific memory and learning in the individuals with high performing (HP), normal aging, and neurocognitive disorders (NCD) (n = 488). Structural magnetic resonance imaging was used to measure the regional cortical thickness with surface-based morphometry analysis in a subsample (n = 52). Compared with HP elderly, the ones with normal aging and minor NCD showed declined recognition memory and working memory, whereas had better learning performance (derived scores). Meanwhile, major NCD patients showed more breakdowns of memory and learning function. The correlation between proxies of memory and learning and cortical thickness exhibited the overlapped and unique neural underpinnings. The proxies of memory and learning could be characterized by component-specific constructs with psychometric and morphometric bases. Overall, the constructs of memory are more likely related to the pathological changes, and the constructs of learning tend to reflect the cognitive abilities of compensation.
Functional and Structural Correlates of Motor Speed in the Cerebellar Anterior Lobe
Wenzel, Uwe; Taubert, Marco; Ragert, Patrick; Krug, Jürgen; Villringer, Arno
2014-01-01
In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows “power athletes” to perform a simple foot movement significantly faster than “endurance athletes”. We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 “power athletes” requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system. PMID:24800742
Computer task performance by subjects with Duchenne muscular dystrophy.
Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira
2016-01-01
Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality.
Accurate perception of negative emotions predicts functional capacity in schizophrenia.
Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J
2014-04-30
Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Quantitative Biology of Exercise-Induced Signal Transduction Pathways.
Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang
2017-01-01
Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.
Efficacy of functional movement screening for predicting injuries in coast guard cadets.
Knapik, Joseph J; Cosio-Lima, Ludimila M; Reynolds, Katy L; Shumway, Richard S
2015-05-01
Functional movement screening (FMS) examines the ability of individuals to perform highly specific movements with the aim of identifying individuals who have functional limitations or asymmetries. It is assumed that individuals who can more effectively accomplish the required movements have a lower injury risk. This study determined the ability of FMS to predict injuries in the United States Coast Guard (USCG) cadets. Seven hundred seventy male and 275 female USCG freshman cadets were administered the 7 FMS tests before the physically intense 8-week Summer Warfare Annual Basic (SWAB) training. Physical training-related injuries were recorded during SWAB training. Cumulative injury incidence was calculated at various FMS cutpoint scores. The ability of the FMS total score to predict injuries was examined by calculating sensitivity and specificity. Determination of the FMS cutpoint that maximized specificity and sensitivity was determined from the Youden's index (sensitivity + specificity - 1). For men, FMS scores ≤ 12 were associated with higher injury risk than scores >12; for women, FMS scores ≤ 15 were associated with higher injury risk than scores >15. The Youden's Index indicated that the optimal FMS cutpoint was ≤ 11 for men (22% sensitivity, 87% specificity) and ≤ 14 for women (60% sensitivity, 61% specificity). Functional movement screening demonstrated moderate prognostic accuracy for determining injury risk among female Coast Guard cadets but relatively low accuracy among male cadets. Attempting to predict injury risk based on the FMS test seems to have some limited promise based on the present and past investigations.
Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.
2014-01-01
The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327
Sánchez-Sánchez, M Luz; Belda-Lois, Juan-Manuel; Mena-Del Horno, Silvia; Viosca-Herrero, Enrique; Igual-Camacho, Celedonia; Gisbert-Morant, Beatriz
2018-05-05
A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. A randomized controlled pilot trial was developed. Thirty inpatients post-stroke were included. Control and target groups were treated with the same conventional physical therapy protocol based on functional criteria, but specific techniques were added to the target group depending on the subjects' functional level. Postural stability during standing was quantified by posturography. The assessments were performed once a month from the moment the participants were able to stand up to six months post-stroke. The target group showed a significant improvement in postural control recovery trend six months after stroke that was not present in the control group. Some of the assessed parameters revealed significant differences between treatment groups (P < 0.05). The proposed methodology allows Functional Principal Component Analysis to be performed when data is scarce. Moreover, it allowed the dynamics of recovery of two different treatment groups to be determined, showing that the techniques added in the target group increased postural stability compared to the base protocol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Temporal context memory in high-functioning autism.
Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie
2007-11-01
Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.
Lilholt, Pernille Heyckendorff; Hæsum, Lisa Korsbakke Emtekær; Ehlers, Lars Holger; Hejlesen, Ole K
2016-07-01
The Danish TeleCare North trial has developed a telehealth system, Telekit, which is used for self-management by patients diagnosed with chronic obstructive pulmonary disease (COPD). Self-management is the engagement in one's own illness and health by monitoring and managing one's symptoms and signs of illness. The study examines the association between COPD patients' use of Telekit and their functional health literacy and the association between their use of Telekit and their specific technological communication skills. A consecutive sample of participants (n=60) from the TeleCare North trial were recruited. Face-to-face interviews were conducted with each participant to collect demographic data. Functional health literacy was measured with the Danish TOFHLA test. Participants completed a non-standardised questionnaire about their health status, their use of the Telekit system, and their specific technological communication skills. Binary logistic regressions were performed to examine how functional health literacy and specific technological communication skills influenced the use of Telekit by giving users an enhanced sense of freedom, security, control, and a greater awareness of COPD symptoms. Participants (27 women, 33 men) had a mean age of 70 (SD: 8.37) years. Functional health literacy levels were classified as inadequate in 14 (23%) participants, as marginal in 12 (20%), and as adequate in 34 (57%). Participants self-reported a feeling of increased security (72%), greater freedom (27%), more control (62%), and greater awareness of symptoms (50%) when using Telekit. The use of Telekit was not significantly associated with levels of functional health literacy or with the number of specific technological communication skills (p>0.05) based on the binary logistic regressions. The enhanced sense of security, freedom, control, and the greater awareness of COPD symptoms achieved by using Telekit were unassociated both with the patients' score of functional health literacy and with their specific technological communication skills. On the basis of our results it seems that the specific technological communication skills and functional health literacy are not a prerequisite for the use of the Telekit system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Munro, K J; Hatton, N
2000-02-01
The purpose of the study was to evaluate the validity of predicting the real-ear aided response by adding customized acoustic transform functions to the performance of a hearing aid in a 2-cc coupler. The real-ear hearing aid response, the real-ear-to-coupler difference (RECD/HA2), and field to behind-the-ear microphone transfer functions were measured in both ears of 24 normally hearing subjects using probe-tube microphone equipment. The RECD/HA2 transform function was obtained using both insert earphones and with the hearing aid/ pressure comparison method. An RECD/HA2 transfer function was also obtained with a customized earmold, ER-3A foam tip, and an oto-admittance tip. Validity estimates were calculated as the difference between the derived and measured real-ear response. The derived response was generally within 5 dB of the measured real-ear response when it incorporated an RECD/HA2 transform function obtained with a customized earmold for the specific ear in question. Discrepancies increased when the RECD/HA2 transfer function was obtained from the same subject but the opposite ear. There were significant differences between the RECD/HA2 transform function obtained with customized and temporary earmolds. As a result, the derived response incorporating these transforms differed significantly from the measured real-ear response obtained with the customized earmold. The insert earphone and the hearing aid RECD/HA2 transfer function were equally valid. The derived response may be used as a substitute for in situ hearing aid response procedures when it incorporates acoustic transform functions obtained with a customized earmold from the specific ear in question.
Characterization and prediction of residues determining protein functional specificity.
Capra, John A; Singh, Mona
2008-07-01
Within a homologous protein family, proteins may be grouped into subtypes that share specific functions that are not common to the entire family. Often, the amino acids present in a small number of sequence positions determine each protein's particular functional specificity. Knowledge of these specificity determining positions (SDPs) aids in protein function prediction, drug design and experimental analysis. A number of sequence-based computational methods have been introduced for identifying SDPs; however, their further development and evaluation have been hindered by the limited number of known experimentally determined SDPs. We combine several bioinformatics resources to automate a process, typically undertaken manually, to build a dataset of SDPs. The resulting large dataset, which consists of SDPs in enzymes, enables us to characterize SDPs in terms of their physicochemical and evolutionary properties. It also facilitates the large-scale evaluation of sequence-based SDP prediction methods. We present a simple sequence-based SDP prediction method, GroupSim, and show that, surprisingly, it is competitive with a representative set of current methods. We also describe ConsWin, a heuristic that considers sequence conservation of neighboring amino acids, and demonstrate that it improves the performance of all methods tested on our large dataset of enzyme SDPs. Datasets and GroupSim code are available online at http://compbio.cs.princeton.edu/specificity/. Supplementary data are available at Bioinformatics online.
Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks
Clune, Jeff
2017-01-01
A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting. PMID:29145413
The Functional Theory of Counterfactual Thinking
Epstude, Kai; Roese, Neal J.
2008-01-01
Counterfactuals are thoughts about alternatives to past events, that is, thoughts of what might have been. This article provides an updated account of the functional theory of counterfactual thinking, suggesting that such thoughts are best explained in terms of their role in behavior regulation and performance improvement. The article reviews a wide range of cognitive experiments indicating that counterfactual thoughts may influence behavior by either of two routes: a content-specific pathway (which involves specific informational effects on behavioral intentions, which then influence behavior) and a content-neutral pathway (which involves indirect effects via affect, mind-sets, or motivation). The functional theory is particularly useful in organizing recent findings regarding counterfactual thinking and mental health. The article concludes by considering the connections to other theoretical conceptions, especially recent advances in goal cognition. PMID:18453477
The functional theory of counterfactual thinking.
Epstude, Kai; Roese, Neal J
2008-05-01
Counterfactuals are thoughts about alternatives to past events, that is, thoughts of what might have been. This article provides an updated account of the functional theory of counterfactual thinking, suggesting that such thoughts are best explained in terms of their role in behavior regulation and performance improvement. The article reviews a wide range of cognitive experiments indicating that counterfactual thoughts may influence behavior by either of two routes: a content-specific pathway (which involves specific informational effects on behavioral intentions, which then influence behavior) and a content-neutral pathway (which involves indirect effects via affect, mind-sets, or motivation). The functional theory is particularly useful in organizing recent findings regarding counterfactual thinking and mental health. The article concludes by considering the connections to other theoretical conceptions, especially recent advances in goal cognition.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.
2003-01-01
Given the previous complete-potential structure framework together with the notion of strain- and stress-partitioning in terms of separate contributions of several submechanisms (viscoelastic and viscoplastic) to the thermodynamic functions (stored energy and dissipation) a detailed viscoelastoplastic multimechanism characterization of a specific hardening functional form of the model is presented and discussed. TIMETAL 21S is the material of choice as a comprehensive test matrix, including creep, relaxation, constant strain-rate tension tests, etc. are available at various temperatures. Discussion of these correlations tests, together with comparisons to several other experimental results, are given to assess the performance and predictive capabilities of the present model particularly with regard to the notion of hardening saturation as well as the interaction of multiplicity of dissipative (reversible/irreversible) mechanisms.
Patient specific ankle-foot orthoses using rapid prototyping
2011-01-01
Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898
Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study
Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk
2017-01-01
The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714
Complex roles of myoglianin in regulating adult performance and lifespan
2017-01-01
ABSTRACT Myoglianin, the Drosophila homolog of the secreted vertebrate proteins Myostatin and GDF-11, is an important regulator of neuronal modeling, and synapse function and morphology. While Myoglianin suppression during development elicits positive effects on the neuromuscular system, genetic manipulations of myoglianin expression levels have a varied effect on the outcome of performance tests in aging flies. Specifically, Myoglianin preserves jumping ability, has no effect on negative geotaxis, and negatively regulates flight performance in aging flies. In addition, Myoglianin exhibits a tissue-specific effect on longevity, with myoglianin upregulation in glial cells increasing the median lifespan. These findings indicate complex role for this TGF-β-like protein in governing neuromuscular signaling and consequent behavioral outputs and lifespan in adult flies. PMID:28837401
Schulz, Sebastian; Eckweiler, Denitsa; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Dötsch, Andreas; Hornischer, Klaus; Bruchmann, Sebastian; Düvel, Juliane; Häussler, Susanne
2015-01-01
Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN. PMID:25780925
Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Svedas, Vytas
2014-01-01
Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.
Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas
2014-01-01
Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852
The Occupational Profile of Women with Fibromyalgia Syndrome.
Pérez-de-Heredia-Torres, Marta; Huertas Hoyas, Elisabet; Sánchez-Camarero, Carlos; Pérez-Corrales, Jorge; Fernández de-Las-Peñas, César
2016-06-01
The aims of this study were to assess the functional level of women with fibromyalgia; to investigate the differences in the occupational activities between women with fibromyalgia and healthy women; and to analyse the perceived importance of occupational performance during self-care, productivity and leisure activities. A cross-sectional case control study was performed. Twenty women with fibromyalgia and 20 healthy women completed the Functional Independence Measure (FIM), the Canadian Occupational Performance Measure (COPM), a Numerical Pain Rating Scale, the Fibromyalgia Impact Questionnaire and the SF-36 health survey. The Chi-square test (χ2), the Student's t test and the Spearman's test were used on the data. The FIM revealed significant differences regarding several activities: personal hygiene, bathing and memory (p < 0.01). The COPM scores did not reveal significant differences between groups (p > 0.10). Women with fibromyalgia had higher disability and reduced quality of life and required greater assistance to perform specific activities of daily living, i.e. hygiene, than healthy women. This highlights the specific occupational therapy needs these women have for performing many basic activities and for improving their quality of life. Limitations of the study include the small sample size, the exclusion of male participants and the possible influence of the women's psychological status on the assessments performed. Findings should be generalized with caution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Kelley, Amanda M; Ranes, Bethany M; Estrada, Art; Grandizio, Catherine M
2015-01-01
Several important factors must be considered when deciding to return a soldier to duty after a traumatic brain injury (TBI). Premature return increases risk for not only second-impact syndrome during the acute phase but also permanent changes from repetitive concussions. Thus, there is a critical need for return-to-duty (RTD) assessment criteria that encompass the spectrum of injury and disease experienced by US soldiers, particularly TBI. To provide evidence-based standards to eventually serve as criteria for operational competence and performance of a soldier after injury. Specifically, the relationships between clinical assessments and novel military-specific tasks were evaluated. Exploratory analyses (including nonparametric tests and Spearman rank correlations) of an archived database. A total of 79 patients with TBI who participated in an RTD assessment program at a US Army rehabilitation and recovery center. Military Functional Assessment Program (to determine a soldier's operational competence and performance after TBI) tasks; Dizziness Handicap Inventory; Dynamic Visual Acuity (vestibular function); Sensory Organization Test (postural control); Repeatable Battery for the Assessment of Neuropsychological Status (neuropsychological screening test); Beck Depression Inventory-II; Beck Anxiety Inventory; Comprehensive Trail Making Test (visual search and sequencing); posttraumatic stress disorder checklist military version; Alcohol Use Disorders Identification Test; Epworth Sleepiness Scale; Patient Health Questionnaire; and Military Acute Concussion Evaluation. Selected military operational assessment tasks correlated significantly with clinical measures of vestibular function, psychological well-being, and cognitive function. Differences on occupational therapy assessments, a concussion screening tool, and a self-report health questionnaire were seen between those who passed and those who failed the RTD assessment. Specifically, those who passed the RTD assessment scored more favorably on these clinical assessments. This study demonstrated convergent validity between Military Functional Assessment Program tasks and clinical assessment scores. The Military Functional Assessment Program shows promise for augmenting decision making related to RTD and soldier skills. Additional research is needed to determine the effectiveness of this program in predicting RTD success.
Johansen, Kirsten L; Dalrymple, Lorien S; Delgado, Cynthia; Kaysen, George A; Kornak, John; Grimes, Barbara; Chertow, Glenn M
2014-10-01
A well-accepted definition of frailty includes measurements of physical performance, which may limit its clinical utility. In a cross-sectional study, we compared prevalence and patient characteristics based on a frailty definition that uses self-reported function to the classic performance-based definition and developed a modified self-report-based definition. Prevalent adult patients receiving hemodialysis in 14 centers around San Francisco and Atlanta in 2009-2011. Self-report-based frailty definition in which a score lower than 75 on the Physical Function scale of the 36-Item Short Form Health Survey (SF-36) was substituted for gait speed and grip strength in the classic definition; modified self-report definition with optimized Physical Function score cutoff points derived in a development (one-half) cohort and validated in the other half. Performance-based frailty defined as 3 of the following: weight loss, weakness, exhaustion, low physical activity, and slow gait speed. 387 (53%) patients were frail based on self-reported function, of whom 209 (29% of the cohort) met the performance-based definition. Only 23 (3%) met the performance-based definition of frailty only. The self-report definition had 90% sensitivity, 64% specificity, 54% positive predictive value, 93% negative predictive value, and 72.5% overall accuracy. Intracellular water per kilogram of body weight and serum albumin, prealbumin, and creatinine levels were highest among nonfrail individuals, intermediate among those who were frail by self-report, and lowest among those who also were frail by performance. Age, percentage of body fat, and C-reactive protein level followed an opposite pattern. The modified self-report definition had better accuracy (84%; 95% CI, 79%-89%) and superior specificity (88%) and positive predictive value (67%). Our study did not address prediction of outcomes. Patients who meet the self-report-based but not the performance-based definition of frailty may represent an intermediate phenotype. A modified self-report definition can improve the accuracy of a questionnaire-based method of defining frailty. Published by Elsevier Inc.
2018-01-01
Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878
Sperduti, Marco; Martinelli, Pénélope; Kalenzaga, Sandrine; Devauchelle, Anne-Dominique; Lion, Stéphanie; Malherbe, Caroline; Gallarda, Thierry; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale
2013-01-01
Autobiographical memory (AM) comprises representation of both specific (episodic) and generic (semantic) personal information. Depression is characterized by a shift from episodic to semantic AM retrieval. According to theoretical models, this process (“overgeneralization”), would be linked to reduced executive resources. Moreover, “overgeneral” memories, accompanied by a negativity bias in depression, lead to a pervasive negative self-representation. As executive functions and AM specificity are also closely intricate among “non-clinical” populations, “overgeneral” memories could result in depressive emotional responses. Consequently, our hypothesis was that the neurocognitive profile of healthy subjects showing a rigid negative self-image would mimic that of patients. Executive functions and self-image were measured and brain activity was recorded, by means of fMRI, during episodic AMs retrieval in young healthy subjects. The results show an inverse correlation, that is, a more rigid and negative self-image produces lower performances in both executive and specific memories. Moreover, higher negative self-image is associated with decreased activity in the left ventro-lateral prefrontal and in the anterior cingulate cortex, repeatedly shown to exhibit altered functioning in depression. Activity in these regions, on the contrary, positively correlates with executive and memory performances, in line with their role in executive functions and AM retrieval. These findings suggest that rigid negative self-image could represent a marker or a vulnerability trait of depression by being linked to reduced executive function efficiency and episodic AM decline. These results are encouraging for psychotherapeutic approaches aimed at cognitive flexibility in depression and other psychiatric disorders. PMID:23734107
Insights into multimodal imaging classification of ADHD
Colby, John B.; Rudie, Jeffrey D.; Brown, Jesse A.; Douglas, Pamela K.; Cohen, Mark S.; Shehzad, Zarrar
2012-01-01
Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be extremely valuable. This provided motivation for the ADHD-200 machine learning (ML) competition, a multisite collaborative effort to investigate imaging classifiers for ADHD. Here we present our ML approach, which used structural and functional magnetic resonance imaging data, combined with demographic information, to predict diagnostic status of individuals with ADHD from typically developing (TD) children across eight different research sites. Structural features included quantitative metrics from 113 cortical and non-cortical regions. Functional features included Pearson correlation functional connectivity matrices, nodal and global graph theoretical measures, nodal power spectra, voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature ranking for each site and modality using the multiple support vector machine recursive feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the expected generalization performance of a radial basis function kernel SVM (RBF-SVM) trained across a range of the top features. Site-specific RBF-SVMs using these optimal feature sets from each imaging modality were used to predict the class labels of an independent hold-out test set. A voting approach was used to combine these multiple predictions and assign final class labels. With this methodology we were able to predict diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33% sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive structural and functional features giving insight into abnormal brain circuitry in ADHD. PMID:22912605
Deng, Yanjia; Shi, Lin; Lei, Yi; Liang, Peipeng; Li, Kuncheng; Chu, Winnie C. W.; Wang, Defeng
2016-01-01
The human cortical regions for processing high-level visual (HLV) functions of different categories remain ambiguous, especially in terms of their conjunctions and specifications. Moreover, the neurobiology of declined HLV functions in patients with Alzheimer's disease (AD) has not been fully investigated. This study provides a functionally sorted overview of HLV cortices for processing “what” and “where” visual perceptions and it investigates their atrophy in AD and MCI patients. Based upon activation likelihood estimation (ALE), brain regions responsible for processing five categories of visual perceptions included in “what” and “where” visions (i.e., object, face, word, motion, and spatial visions) were analyzed, and subsequent contrast analyses were performed to show regions with conjunctive and specific activations for processing these visual functions. Next, based on the resulting ALE maps, the atrophy of HLV cortices in AD and MCI patients was evaluated using voxel-based morphometry. Our ALE results showed brain regions for processing visual perception across the five categories, as well as areas of conjunction and specification. Our comparisons of gray matter (GM) volume demonstrated atrophy of three “where” visual cortices in late MCI group and extensive atrophy of HLV cortices (25 regions in both “what” and “where” visual cortices) in AD group. In addition, the GM volume of atrophied visual cortices in AD and MCI subjects was found to be correlated to the deterioration of overall cognitive status and to the cognitive performances related to memory, execution, and object recognition functions. In summary, these findings may add to our understanding of HLV network organization and of the evolution of visual perceptual dysfunction in AD as the disease progresses. PMID:27445770
Kawana-Tachikawa, Ai; Llibre, Josep M; Bravo, Isabel; Escrig, Roser; Mothe, Beatriz; Puig, Jordi; Puertas, Maria C; Martinez-Picado, Javier; Blanco, Julia; Manzardo, Christian; Miro, Jose M; Iwamoto, Aikichi; Pozniak, Anton L; Gatell, Jose M; Clotet, Bonaventura; Brander, Christian
2014-01-01
The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown. Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation). Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8⁺ T cells were indistinguishable between the two arms and did not change over time between the groups. Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.
Heyberger, Clémence; Auberger, Guillaume; Babinet, Antoine; Anract, Philippe; Biau, David J
2017-12-21
We asked whether there would be any difference between primary and revision modern cemented fixed hinge megaprosthesis of the distal femur in function and activity-related outcomes following treatment of a bone tumor. An identical custom-made fixed hinge cemented megaprosthesis with a hydroxyapatite collar was used in all cases. The main outcomes were joint-specific function, disease-specific activity, and health-related quality of life. Implant survival was also evaluated. Patients in the revision group performed slightly better than patients in the primary group on disease-specific (Toronto Extremity Salvage Score, p = 0.033; Musculoskeletal Tumor Society, p = 0.072) and health-related outcomes (Short Form 36 [SF-36] physical component, p = 0.085; SF-36 mental component, p = 0.069) but not on joint-specific outcomes (Knee Society Score, p = 0.94). The cumulative probabilities of revision for any reason were 14.5% (7-25%) at 5 years with no statistically significant difference between primary and revision procedures ( p = 0.77). In conclusion, patients undergoing a revision have similar joint-specific functional outcome but improved disease-specific and health-related outcomes. Implant survival are similar between groups. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Geonames Processing System Functional Design Specification. Volume 5. Performance Specifications.
1985-03-01
Chinese, Japanese , and Thai are the important ideographies to consider for electronic names processing. Chinese and Japanese character sets are...was no written Japanese language. Chinese characters are called Kanji by the Japanese . There are approximately 55(X) Chinese characters of common...Kanji was taken from A.V. Hershey, "Calligraphy for Computers," U.S. Naval Weapons Laboratory, Dahlgren, VA, August 1967. AD (-2398. C-1 Japanese
Chu, Richard; Shumsky, Jed; Waterhouse, Barry D
2016-06-15
Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.
Bednarz, Haley M; Maximo, Jose O; Murdaugh, Donna L; O'Kelley, Sarah; Kana, Rajesh K
2017-06-01
Despite intact decoding ability, deficits in reading comprehension are relatively common in children with autism spectrum disorders (ASD). However, few neuroimaging studies have tested the neural bases of this specific profile of reading deficit in ASD. This fMRI study examined activation and synchronization of the brain's reading network in children with ASD with specific reading comprehension deficits during a word similarities task. Thirteen typically developing children and 18 children with ASD performed the task in the MRI scanner. No statistically significant group differences in functional activation were observed; however, children with ASD showed decreased functional connectivity between the left inferior frontal gyrus (LIFG) and the left inferior occipital gyrus (LIOG). In addition, reading comprehension ability significantly positively predicted functional connectivity between the LIFG and left thalamus (LTHAL) among all subjects. The results of this study provide evidence for altered recruitment of reading-related neural resources in ASD children and suggest specific weaknesses in top-down modulation of semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ready to rumble: how team personality composition and task conflict interact to improve performance.
Bradley, Bret H; Klotz, Anthony C; Postlethwaite, Bennett E; Brown, Kenneth G
2013-03-01
Although prior work has proposed a number of conditions under which task conflict in teams may improve performance, composition variables have been left unexplored. Given the effects of personality traits on team processes and outcomes demonstrated in prior work, investigating whether specific personality compositions influence the effect of task conflict on team performance is critical to researchers' understanding of conflict in teams. Our results indicate that team-level averages of both openness to experience and emotional stability function as moderators of the relationship between task conflict and team performance. Specifically, task conflict had a positive impact on performance in teams with high levels of openness or emotional stability; in contrast, task conflict had a negative impact on performance in teams with low levels of openness or emotional stability. Thus, when task conflict emerges, teams composed of members who are open minded or emotionally stable are best able to leverage conflict to improve performance. Implications for theory and practice are discussed.
Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A
2004-12-01
Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004
Space-based multifunctional end effector systems functional requirements and proposed designs
NASA Technical Reports Server (NTRS)
Mishkin, A. H.; Jau, B. M.
1988-01-01
The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested manipulator systems in time for space stations operations in the early 1990s.
Mechanisms of functional improvement through cognitive rehabilitation in schizophrenia.
Peña, J; Ibarretxe-Bilbao, N; Sánchez, P; Uriarte, J J; Elizagarate, E; Gutierrez, M; Ojeda, N
2018-06-01
Whereas the efficacy of cognitive rehabilitation in schizophrenia is widely known, studies examining mechanisms for functional improvement are still scarce. The aim of the study was to examine the mediational mechanisms through which cognitive rehabilitation improves functioning in schizophrenia. One hundred and eleven schizophrenia patients were randomly assigned to either a 4-month cognitive rehabilitation group or an active control group. Patients underwent a neurocognitive battery (including processing speed, verbal memory, working memory and executive functioning) and social cognition assessment (emotion perception, theory of mind and social perception). Functioning was assessed by the combined use of a performance-based instrument, the UCSD Performance-based Skills Assessment (UPSA) and an observer-rated instrument, the Global Assessment of Functioning (GAF). The trial was registered in clinicaltrials.gov (NCT02796417). Multiple mediational analyses revealed that the effect of cognitive rehabilitation on functional improvement was partially mediated by changes in processing speed and verbal memory, but not by the domains of social cognition and negative symptoms. More specifically, verbal memory partially mediated the treatment's effect on performance-based functioning (UPSA), whereas processing speed acted as a partial mediator for observer-rated functioning (GAF). The effect of rehabilitation on functioning did not take place through all the domains that showed significant improvement. Verbal memory and processing speed emerged as the most crucial factors. However, these complex interactions need further research. Copyright © 2018. Published by Elsevier Ltd.
Johari, Hanapi M; Zainudin, Hakimi A; Knight, Victor F; Lumley, Steven A; Subramanium, Ananthan S; Caszo, Brinnell A; Gnanou, Justin V
2017-04-01
Anthropometric and lung function characteristics of triathletes are important for the implementation of individual specific training and recovery recommendations. However, limited data are available for these parameters in triathletes. Hence, the aim of this study was to characterize and examine the gender differences of lung function and anthropometry parameters in competitive triathletes from Malaysia. Body composition assessment and lung function tests were performed on sixteen competitive triathletes (nine male and seven female). The subject's body composition profile including muscle mass (kg), fat free mass (kg), and percent body fat was measured using a bio-impedance segmental body composition analyzer. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were measured by Quark PFT2 spirometer. The anthropometric measurements revealed that male triathletes were significantly taller than female triathletes and had significantly more protein and skeletal muscle mass. The female triathletes, however, had significantly higher percent body fat. Male triathletes had statistically significant higher FVC and FEV1 than female triathletes. Both the male and female triathletes showed a positive correlation between height, fat free mass and the lung function markers FVC and FEV1. This association was not seen with Body Mass Index (BMI) in female triathletes. The data from our study shows that anthropometric parameters are directly linked to lung function of a triathlete. We also found the relationship between BMI and lung function to be gender specific in triathletes and is dependent on the body protein and fat content. Hence, body composition characterization is essential and provides valuable information for developing individual specific training modules.
Influence of cattle temperament on blood serum fatty acid content
USDA-ARS?s Scientific Manuscript database
Cattle temperament has been reported to influence blood metabolites. Specifically, temperament was related with increased circulation of serum NEFA, decreased blood urea nitrogen, and reduced insulin sensitivity. Metabolic alterations such as these may impact cattle immune function, performance trai...
IVHS Countermeasures For Rear-End Collisions, Task 2 - Functional Goals, Interim Report
DOT National Transportation Integrated Search
1996-05-01
THE ATTACHED REPORT IS FROM THE NHTSA SPONSORED PROGRAM, "IVHS COUNTERMEASURES FOR REAR-END COLLISIONS," CONTRACT #DTNH22-93-C-07326. : THIS PROGRAM?S PRIMARY OBJECTIVE IS THE DEVELOPMENT OF PRACTICAL PERFORMANCE : GUIDELINES OR SPECIFICATIONS FOR RE...
DOT National Transportation Integrated Search
1981-07-01
The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...
22 CFR 121.14 - Submersible vessels.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., launching rockets, firing missiles, deploying mines, deploying countermeasures) or deploy military payloads... subchapter) that are defense articles that perform specific military functions such as by providing military...; or (6) Are developmental vessels funded or contracted by the Department of Defense. (b) Submersible...
Materials for Space: It's Challenging!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space environments place tremendous demands on materials that must perform with exceptional reliability to realize the goals of human or robotic space exploration missions. Materials are subjected to extremes of temperature, pressure, radiation and mechanical loads during all phases of use, including takeoff and ascent, exposure to space or entry into an atmosphere, and operation in a planetary atmosphere. Space materials must be robust and enable the formation of lightweight structures or components that perform the required functions; materials that perform multiple functions are of particular interest. This talk will review the unique challenges for materials in space and some of the specific material capabilities that will be needed for future exploration missions. A description of needs and trends in thermal protection materials and systems will complete the talk.
Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta
2015-12-08
We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
Practical analysis of specificity-determining residues in protein families.
Chagoyen, Mónica; García-Martín, Juan A; Pazos, Florencio
2016-03-01
Determining the residues that are important for the molecular activity of a protein is a topic of broad interest in biomedicine and biotechnology. This knowledge can help understanding the protein's molecular mechanism as well as to fine-tune its natural function eventually with biotechnological or therapeutic implications. Some of the protein residues are essential for the function common to all members of a family of proteins, while others explain the particular specificities of certain subfamilies (like binding on different substrates or cofactors and distinct binding affinities). Owing to the difficulty in experimentally determining them, a number of computational methods were developed to detect these functional residues, generally known as 'specificity-determining positions' (or SDPs), from a collection of homologous protein sequences. These methods are mature enough for being routinely used by molecular biologists in directing experiments aimed at getting insight into the functional specificity of a family of proteins and eventually modifying it. In this review, we summarize some of the recent discoveries achieved through SDP computational identification in a number of relevant protein families, as well as the main approaches and software tools available to perform this type of analysis. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil
2015-01-01
Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044
Responsiveness of pain and disability measures for chronic whiplash.
Stewart, Mark; Maher, Christopher G; Refshauge, Kathryn M; Bogduk, Nikolai; Nicholas, Michael
2007-03-01
Cohort study. To evaluate the responsiveness of common pain and disability measures in a cohort of patients with chronic whiplash. Pain and disability are routinely measured in clinical practice and clinical research. However, to date, a head-to-head comparison of competing measures for whiplash patients has not been performed. Pain (pain intensity, bothersomeness, and SF-36 bodily pain score) and disability (Patient Specific Functional Scale, Neck Disability Index, Functional Rating Index, Copenhagen Scale, and SF-36 physical summary) measures were completed by 132 patients with chronic whiplash at baseline and then again after 6 weeks together with an 11-point global perceived effect scale. Internal responsiveness was evaluated by calculating effect sizes and standardized response means, and external responsiveness by correlating change scores with global perceived effect scores and by ROC curves. The ranking of responsiveness was consistent across the different analyses. Pain bothersomeness was more responsive than pain intensity, which was more responsive than the SF-36 pain measure. The Patient Specific Functional Scale was the most responsive disability measure, followed by the spine-specific measures, with the SF-36 physical summary measure the least responsive. Pain bothersomeness and the Patient Specific Functional Scale provide the most responsive measures of pain and disability, respectively, in patients with chronic whiplash.
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Chemical, Biological, and Radiological Contamination Survivability: Material Effects Testing
2012-06-22
form that can be compared to pretest and posttest functional performance data. If Soldiers are desired, ensure a Test Schedule and Review Committee...test execution. f. The material’s performance specification should also be reviewed before planning test execution. For example , the...test data, and conformance with specified test and operating procedures cannot be overemphasized. 3.1 Test Planning. 3.1.1 Pretest Preparation
USDA-ARS?s Scientific Manuscript database
The overall objective of this study was to examine the relationship between executive function, specifically decision making, and weight loss. We used the Iowa Gambling Task (IGT) to characterize decision making and compared performance on this task to weight loss in obese women (n=29) participatin...
Evaluation plan for space station network interface units
NASA Technical Reports Server (NTRS)
Weaver, Alfred C.
1990-01-01
Outlined here is a procedure for evaluating network interface units (NIUs) produced for the Space Station program. The procedures should be equally applicable to the data management system (DMS) testbed NIUs produced by Honeywell and IBM. The evaluation procedures are divided into four areas. Performance measurement tools are hardware and software that must be developed in order to evaluate NIU performance. Performance tests are a series of tests, each of which documents some specific characteristic of NIU and/or network performance. In general, these performance tests quantify the speed, capacity, latency, and reliability of message transmission under a wide variety of conditions. Functionality tests are a series of tests and code inspections that demonstrate the functionality of the particular subset of ISO protocols which have been implemented in a given NIU. Conformance tests are a series of tests which would expose whether or not selected features within the ISO protocols are present and interoperable.
NASA Technical Reports Server (NTRS)
Swanson, T. D.; Ollendorf, S.
1979-01-01
This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.
Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Jochem W.; Laird, Daniel
Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less
Guilherme, José; Garganta, Júlio; Graça, Amândio; Seabra, André
2015-01-01
The functional asymmetry of the lower limbs has been regarded as a relevant factor of the performance of football players. We purposed to ascertain whether a specific technical training programme for the non-preferred foot has implications in the increasing utilisation rate of the respective member during the game. Young football players (n = 71) were randomly divided into experimental group (N = 35; 14.37 ± 1.94 years) and control group (N = 36; 14.50 ± 1.81 years). The study was developed into three stages: first, assessment of the index utilisation of both limbs during the game; second, application of a technical training programme that includes the drilling of specific motor skills exclusively directed to the non-preferred foot; and third, assessment of the new rate of both limbs' utilisation after the predefined six months. The main findings were: (1) the use of the non-preferred foot increased significantly with the technical training programme in the experimental group and remained constant in the control group; (2) the use of the preferred foot decreased significantly in the experimental group and remained similar in control group. We concluded that a systematic and specific technical training for the non-preferred foot increases its use and reduces functional asymmetry in game situation, consequently improving the player's performance.
NASA Astrophysics Data System (ADS)
Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.
2018-03-01
Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).
Nakanishi, Tadashi; Goto, Chie; Kobayashi, Michihiro; Kang, Wonkyung; Suzuki, Takehiro; Dohmae, Naoshi; Matsumoto, Shogo; Shimada, Toru; Katsuma, Susumu
2010-05-01
Lepidopteran baculovirus-specific protein FP25K performs many roles during the infection cycle, including functions in the production of occlusion bodies (OBs) and budded viruses (BVs), oral infection, and postmortem host degradation. To explore the common and specific functions of FP25K proteins among lepidopteran baculoviruses, we performed comparative analyses of FP25K proteins from group I and group II nucleopolyhedroviruses (NPVs) and granulovirus (GV). Using recombinant Bombyx mori NPVs (BmNPVs), we showed that the FP25Ks from NPVs were able to eliminate all the phenotypic defects observed in an infection with a BmNPV mutant lacking functional fp25K but that FP25K from GV did not show abilities to recover oral infectivity and postmortem host degradation. We also observed that introduction of Autographa californica multiple NPV (AcMNPV) fp25K into the BmNPV genome enhanced OB and BV production. According to these results, we generated a novel BmNPV-based expression vector with AcMNPV fp25K and examined its potential in BmN cells and B. mori larvae. Our results showed that the introduction of AcMNPV fp25K significantly increases the expression of foreign gene products in cultured cells and shortens the time for obtaining the secreted recombinant proteins from larval hemolymph.
Onate, James A; Starkel, Cambrie; Clifton, Daniel R; Best, Thomas M; Borchers, James; Chaudhari, Ajit; Comstock, R Dawn; Cortes, Nelson; Grooms, Dustin R; Hertel, Jay; Hewett, Timothy E; Miller, Meghan Maume; Pan, Xueliang; Schussler, Eric; Van Lunen, Bonnie L
2018-01-01
The fourth edition of the Preparticipation Physical Evaluation recommends functional testing for the musculoskeletal portion of the examination; however, normative data across sex and grade level are limited. Establishing normative data can provide clinicians reference points with which to compare their patients, potentially aiding in the development of future injury-risk assessments and injury-mitigation programs. To establish normative functional performance and limb-symmetry data for high school-aged male and female athletes in the United States. Cross-sectional study. Athletic training facilities and gymnasiums across the United States. A total of 3951 male and female athletes who participated on high school-sponsored basketball, football, lacrosse, or soccer teams enrolled in this nationwide study. Functional performance testing consisted of 3 evaluations. Ankle-joint range of motion, balance, and lower extremity muscular power and landing control were assessed via the weight-bearing ankle-dorsiflexion-lunge, single-legged anterior-reach, and anterior single-legged hop-for-distance (SLHOP) tests, respectively. We used 2-way analyses of variance and χ 2 analyses to examine the effects of sex and grade level on ankle-dorsiflexion-lunge, single-legged anterior-reach, and SLHOP test performance and symmetry. The SLHOP performance differed between sexes (males = 187.8% ± 33.1% of limb length, females = 157.5% ± 27.8% of limb length; t = 30.3, P < .001). A Cohen d value of 0.97 indicated a large effect of sex on SLHOP performance. We observed differences for SLHOP and ankle-dorsiflexion-lunge performance among grade levels, but these differences were not clinically meaningful. We demonstrated differences in normative data for lower extremity functional performance during preparticipation physical evaluations across sex and grade levels. The results of this study will allow clinicians to compare sex- and grade-specific functional performances and implement approaches for preventing musculoskeletal injuries in high school-aged athletes.
Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J
2011-06-01
In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.
Rehabilitation of an Elite Olympic Class Sailor With MCL Injury
Herrera, Chris; Cicerale, Stephanie; Moses, Kevin; Smiley, Philip
2009-01-01
Background A paucity of literature exists related to the care of sailing athletes with knee injuries. Hiking has been examined to describe its demands, but comprehensive sources for rehabilitation recommendations based upon evidence are non-existent. Guidance and understanding of human motion are key to success in the face of limited evidence. Objectives Impairments and functional restrictions were identified in a Finn Sailor with MCL (medial collateral ligament) injury. A regimen of strengthening, conditioning, and functional benchmarks was devised to progress a sailing athlete from non-functional to sailing specific training and the athlete's competitive goal. Coordination with a strength/conditioning professional was key to maintaining the athlete's competitive level. Case description The patient is a 21 year old Finn class sailor with an acute MCL knee injury eight weeks prior to a world class and national ranking event. Following evaluation, treatment with sailing-specific functional testing coincided with training/conditioning. Common-sense functional tasks were used to replicate demands of hiking and balancing to evaluate readiness for sailing/training. Outcomes Return to sailing with protection occurred in 12 days, unrestricted training and competition were achieved prior to the ranking event at 8 weeks. Discussion Mobility, stability, control, strength, and endurance are not only crucial to performance in the boat, but sailors need to avoid pitfalls in the boatyard while safely transitioning from land to water. Competitive calendars may not allow for textbook protocol, therefore, all goals should be strongly correlated with functional ability, athlete confidence, and performance needs. PMID:21509107
Mirror neurons: from origin to function.
Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia
2014-04-01
This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
ERIC Educational Resources Information Center
Henning, Anne; Spinath, Frank M.; Aschersleben, Gisa
2011-01-01
The aim of this study was to assess the specific relation between 3- to 6-year-olds' performance on a task measuring executive function (EF), the Dimensional Change Card Sort task (DCCS), and different developmental attainments in their theory of mind (ToM) by employing a battery of scaled ToM tasks that were comparable in task format and task…
Vonnahme, Kimberly A; Lemley, Caleb O
2011-01-01
As placental growth and vascularity precedes exponential fetal growth, not only is proper establishment of the placenta important, but also a continual plasticity of placental function throughout gestation. Inadequate maternal environment, such as nutritional plane, has been documented to alter fetal organogenesis and growth, thus leading to improper postnatal growth and performance in many livestock species. The timing and duration of maternal nutritional restriction appears to influence the capillary vascularity, angiogenic profile and vascular function of the placenta in cattle and sheep. In environments where fetal growth and/or fetal organogenesis are compromised, potential therapeutics may augment placental nutrient transport capacity and improve offspring performance. Supplementation of specific nutrients, including protein, as well as hormone supplements, such as indolamines, during times of nutrient restriction may assist placental function. Current use of Doppler ultrasonography has allowed for repeated measurements of uterine and umbilical blood flow including assessment of uteroplacental hemodynamics in cattle, sheep and swine. Moreover, these variables can be monitored in conjugation with placental capacity and fetal growth at specific time points of gestation. Elucidating the consequences of inadequate maternal intake on the continual plasticity of placental function will allow us to determine the proper timing and duration for intervention.
Keefe, Richard S E; Nomikos, George; Zhong, Wei; Christensen, Michael Cronquist; Jacobson, William
2018-05-01
We evaluated vortioxetine's effects on functional capacity in demographic and clinical subgroups of patients with major depressive disorder. This was an exploratory analysis of the CONNECT study (NCT01564862) that evaluated changes in functional capacity using University of California San Diego Performance-based Skills Assessment data, categorized by sex, age, education, employment status, and baseline disease severity (Montgomery-Åsberg Depression Rating Scale, Clinical Global Impressions-Severity of Illness). Greater changes in University of California San Diego Performance-based Skills Assessment composite scores were observed with vortioxetine vs placebo in specific subgroups: males (∆+3.2), females (∆+2.9), 45-54 or ≥55 years (∆+5.6, ∆+3.4), working (∆+2.8), high school or greater education (∆+2.7, ∆+2.8), disease severity (Montgomery-Åsberg Depression Rating Scale, <30, ∆+3.5; ≥30, ∆+2.5; Clinical Global Impressions-Severity of Illness ≤4, ∆+2.8; >4, ∆+3.0), major depressive episodes (≤2, >2 [∆+2.7,+3.3]), and episode duration (≤22, >22 weeks [∆+3.7,+2.4]). Our findings support the need for additional studies to assess whether vortioxetine improves functional capacity within specific patient subgroups. clinicaltrials.gov: NCT01564862.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Closed-Loop Optogenetic Intervention in Mice
Oijala, Mikko; Soltesz, Ivan
2014-01-01
Optogenetic interventions offer novel ways of probing, in a temporally specific manner, the roles of specific cell types in neuronal network functions of awake, behaving animals. Despite the unique potential for temporally specific optogenetic interventions in disease states, a major hurdle in its broad application to unpredictable brain states in a laboratory setting is constructing a real-time responsive system. We recently created a closed-loop system for stopping spontaneous seizures in chronically epileptic mice using optogenetic intervention. This system performs with very high sensitivity and specificity, and the strategy is relevant not only to epilepsy, but can also be used to react in real time, with optogenetic or other interventions, to diverse brain states. The protocol presented here is highly modular and requires variable time to perform. We describe the basic construction of a complete system, and include our downloadable custom closed-loop detection software which can be employed for this purpose. PMID:23845961
Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A; Wu, Jia Qian
2015-12-01
Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results via the interactive genome browser at our laboratory website that is freely accessible to the research community. This is the first lncRNA expression database of collective populations of glia, vascular cells, and neurons. We anticipate that these studies will advance the knowledge of this major class of non-coding genes and their potential roles in neurological development and diseases.
Gammadelta T cells: functional plasticity and heterogeneity.
Carding, Simon R; Egan, Paul J
2002-05-01
Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.
Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen
2018-03-13
Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen
Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.
Standard module approach to scanning requirements for second-generation airborne FLIRs
NASA Astrophysics Data System (ADS)
Ludwiszewski, Alan P.
1995-05-01
This paper examines the specification requirements for the development of standard module scanning components to be used in conjunction with SADA I and SADA II sensor arrays. System-level design considerations are presented to identify a selection of components that is consistent with optimum use of the SADA technology. A limited-rotation electromagnetic actuator, used in conjunction with an angular position sensor and a digital controller, is shown to have the necessary performance and flexibility to perform the frame scan function for a wide range of airborne systems. System level requirements and specifications for an optional interlace scan system are also provided.
NASA Technical Reports Server (NTRS)
Rudolph, L. K.; Jahn, R. G.; Clark, K. E.; Von Jaskowsky, W. F.
1976-01-01
The onset of voltage fluctuations in a multi-megawatt quasi-steady MPD accelerator, indicative of increased cathode ablation and a consequent degradation of performance, is found to be a function of cathode size. With longer cathodes, this onset shifts to substantially higher powers per unit mass flow and the plasma exhaust velocity can be increased to values previously thought inaccessible to accelerators of this class. Centerline velocities up to 30 km/sec have been measured in argon, which for the observed exhaust profiles translate into specific impulses up to 2400 sec and corresponding thrust efficiencies above 30%.
RAId_aPS: MS/MS Analysis with Multiple Scoring Functions and Spectrum-Specific Statistics
Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo
2010-01-01
Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an -value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic -value reported by any method into the textbook-defined -value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific -values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign -values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign -values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page. PMID:21103371